高中数学 第二章 参数方程 2.3 参数方程化成普通方程

合集下载

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)

2、曲线y=x2的一种参数方程是( ).
分析: 在=x2中,x∈R, y≥0, 在A、B、C中,x,y的范围都
发生了变化,因而与 y=x2不等价; 而在D中,
x t2 x sin t x t x t A、 4 B、 C、 D、 2 2 y t y t y sin t y t
(B)抛物线的一部分,这部分过( 1, );
1 (D)抛物线的一部分,这部分过(–1, ) 2
分析 一般思路是:化参数方程为普通方程 求出范围、判断。 解 x2= (cos sin ) 2 =1+sin=2y,
2 2
普通方程是x2=2y,为抛物线。 x | cos sin | 2 sin( ),又0<<2, 2 2 2 4
(2)参数方程通过代入消元或加减消元消去参数化为 普通方程
x a r cos , 如:①参数方程 消去参数 y b r sin . 可得圆的普通方程(x-a)2+(y-b)2=r2.
x t , ②参数方程 (t为参数) y 2 t 4.
x,y范围与y=x2中x,y的范围相同,
x t 且以 y t 2
代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.
注意: 在参数方程与普通方程的互化中,必须 使x,y的取值范围保持一致。否则,互化就是 不等价的.

普通方程

参数方程
引入参数 消去参数
3、参数方程和普通方程 的互化
x cos 3, 由参数方程 ( 为参数)直接判断点M 的轨迹的 y sin 曲线类型并不容易,但如果将参数方程转化为熟悉的普通 方程,则比较简单。

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)

x= sin cos (2) ( 为参数). y 1 sin 2
解: 因为x t 1 1 (1) 所以普通方程是y 2 x (x 1) 3
(2)因为:x sin cos 2 sin( ) 4 所以x 2, 2 2 所以普通方程是x y , x 2, 2 .
x,y范围与y=x2中x,y的范围相同,
x t 且以 y t 2
代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.
注意: 在参数方程与普通方程的互化中,必须 使x,y的取值范围保持一致。否则,互化就是 不等价的.

普通方程

参数方程
引入参数 消去参数
3、参数方程和普通方程 的互化
x cos 3, 由参数方程 ( 为参数)直接判断点M 的轨迹的 y sin 曲线类型并不容易,但如果将参数方程转化为熟悉的普通 方程,则比较简单。
由参数方程得: cos x 3 ,sin 2 cos 2 ( x 3) 2 y 2 1 sin y 所以点M 的轨迹是圆心在(3,0),半径为1的圆。
通过代入消元法消去参数t ,
可得普通方程:y=2x-4 (x≥0) 注意:
在参数方程与普通方程的互化中,必须使x,y的取 值范围保持一致。 否则,互化就是不等价的.
例1、把下列参数方程化为普通方程, 并说明它们各表示什么曲线?
x= t 1 (1) (t为参数) y 1 2 t
这是以(1, 1)为端点的一条射线(包括端点)
例2、求参数方程
x | cos 2 sin 2 |, (0 2 ) 表示 y 1 (1 sin ) 2

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)
0<x 2 ,故应选(B) 说明 这里切不可轻易去绝对值讨论,平方法 是最好的方法。
x2 y 2 例4 求椭圆 1的参数方程。 9 4
(1)设x=3cos,为参数; (2)设y=2t,t为参数.
为参数。
x 3cos 解:(1)参数方程是 y 2sin
通过代入消元法消去参数t ,
可得普通方程:y=2x-4 (x≥0) 注意:
在参数方程与普通方程的互化中,必须使x,y的取 值范围保持一致。 否则,互化就是不等价的.
例1、把下列参数方程化为普通方程, 并说明它们各表示什么曲线?
x= t 1 (1) (t为参数) y 1 2 t
参数方程和普通方程的互化:
(1)普通方程化为参数方程需要引入参数 如:①直线L 的普通方程是2x-y+2=0,可以化为参 数方程
x t, (t为参数) y 2t 2.
②在普通方程xy=1中,令x = tan,可以化为参数方程
x t an , (为参数) y cot .
(2)参数方程通过代入消元或加减消元消去参数化为 普通方程
x a r cos , 如:①参数方程 消去参数 y b r sin . 可得圆的普通方程(x-a)2+(y-b)2=r2.
x t , ②参数方程 (t为参数) y 2 t 4.
2、曲线y=x2的一种参数方程是( ).
分析: 在y=x2中,x∈R, y≥0, 在A、B、C中,x,y的范围都
发生了变化,因而与 y=x2不等价; 而在D中,
x t2 x sin t x t x t A、 4 B、 C、 D、 2 2 y t y t y sin t y t

参数方程化成普通方程

参数方程化成普通方程

参数方程化成普通方程参数方程可以表示为一组含有参数的方程组,而普通方程是不含有参数的方程。

将参数方程转化为普通方程的方法有以下几种:1.消参法消参法是将参数方程中的参数用非参数变量表示出来,从而得到普通方程。

具体步骤如下:(1)根据参数方程的定义,将参数用非参数表示,假设参数为t,则可以将参数表示为x=f(t)和y=g(t);(2)将上述表达式代入参数方程中的方程组中,得到非参数变量的方程组,即F(x,y)=0;(3)通过解F(x,y)=0,得到x和y之间的关系,从而得到普通方程。

2.去参数化法去参数化法是通过消去参数,将参数方程对应的曲线变为非参数方程的方法。

具体步骤如下:(1)将参数方程中的参数表示为t=x/y或y/x;(2)将上述表达式代入参数方程中的方程组,得到去参数化的方程组;(3)通过解去参数化的方程组,得到x和y之间的关系,从而得到普通方程。

3.参数消去法参数消去法是通过消去参数,得到仅含有非参数变量的方程。

具体步骤如下:(1)将参数方程中的参数表示为非参数变量t的函数,即t=f(x,y);(2)将t代入参数方程的方程组中,得到含有非参数变量x和y的方程组;(3)通过解上述方程组,得到x和y之间的关系,从而得到普通方程。

4.直接法直接法是对特定的参数方程直接求导或代入一些特定的数值来消去参数,从而得到普通方程。

(1)将参数方程中的参数表示为非参数变量t的函数,即t=f(x,y);(2)对 t 求导,得到 dt/dx 和 dt/dy;(3)代入 dt/dx 和 dt/dy,消去参数 t,从而得到 x 和 y 之间的关系,从而得到普通方程。

以上是将参数方程化为普通方程的几种方法,具体的选用方法取决于具体的参数方程形式和求解的要求。

不同的方法在不同的场合下有着不同的适用性,需要根据具体情况进行选择。

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)

2.3 参数方程和普通方程的互化 课件 (北师大选修4-4)

通过代入消元法消去参数t ,
可得普通方程:y=2x-4 (x≥0) 注意:
在参数方程与普通方程的互化中,必须使x,y的取 值范围保持一致。 否则,互化就是不等价的.
例1、把下列参数方程化为普通方程, 并说明它们各表示什么曲线?
x= t 1 (1) (t为参数) y 1 2 t
参数方程和普通方程的互化:
(1)普通方程化为参数方程需要引入参数 如:①直线L 的普通方程是2x-y+2=0,可以化为参 数方程
x t, (t为参数) y 2t 2.
②在普通方程xy=1中,令x = tan,可以化为参数方程
x t an , (为参数) y cot .
(2)参数方程通过代入消元或加减消元消去参数化为 普通方程
x a r cos , 如:①参数方程 消去参数 y b r sin . 可得圆的普通方程(x-a)2+(y-b)2=r2.
x t , ②参数方程 (t为参数) y 2 t 4.
(B)抛物线的一部分,这部分过( 1, );
1 (D)抛物线的一部分,这部分过(–1, ) 2
分析 一般思路是:化参数方程为普通方程 求出范围、判断。 解 x2= (cos sin ) 2 =1+sin=2y,
2 2
普通方程是x2=2y,为抛物线。 x | cos sin | 2 sin( ),又0<<2, 2 2 2 4
x,y范围与y=x2中x,y的范围相同,
x t 且以 y t 2
代入y=x2后满足该方程,从而D是曲线y=x2的一种参数方程.
注意: 在参数方程与普通方程的互化中,必须 使x,y的取值范围保持一致。否则,互化就是 不等价的.

参数方程化成普通方程

参数方程化成普通方程
引例
直接判断此参数方程所表示的曲线类型 并不容易,但若将参数方程化为熟悉的普 通方程,则比较简单了。
参数方程化成 普通方程
例1、把下列参数方程化为普通方程, 并说明它们各表示什么曲线?
解:(1)应用加减消元法,得2x 3y 7,因此,所求 的普通方程是 2x+3y+7=0
解:(2)因为x t 1 1 所以普通方程是y 2x ( 3 x 1) 这是以(1,1)为端点的一条射线(包括端点)
链接高考
广东卷 在直角坐标系中圆
C的参数方程

x 2 cos
y 2 2 sin
为参数 ,则圆C的普通方程为x_2 _____y___ 22 4
宁夏
海南卷已知曲线C1
x y

cos s in
为参数
曲线C2
x
同时平方得
x2 1 2y
又 x sin cos
x 2
2 sin
4
普通方程为x2 1 2 y x 2
练习 把下列参数方程化为普通方程
解:1 x2 y2 1 x 5且0 y 4
25 16
二. 利用三角恒等式消去参数
解:利用sin2 cos2 1得到
x2 y2 25
若 0,2 ,则普通方程是什么?
思 若 0, ,则普通方程是什么?
考 若 0, ,则普通方程是什么?
2
解:将x xs2in1c2ossin两 边cos
苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且病,将退休于颍水之上,则又更号六一居士。客有问曰:“六一何谓也?”居士曰:“吾家藏书一万卷,集录三代以来金石遗文一千卷,有琴一张,有棋一局,而常置酒一壶。”客曰:“是为五一尔,奈何?”居士曰:“以吾一翁,老于

高考数学 参数方程化成普通方程

高考数学 参数方程化成普通方程

x=1+12t,
x=(11-+kk22)r,
(1) y=5+
23t;(2)y=12+krk2.
自主预习
讲练互动
课堂达标
教材链接

(1)由
x=1+12t

t=2x-2
代入
y=5+
3 2t
中得
y=5
+ 23(2x-2),即: 3x-y+5- 3=0 就是它的普通方程. (2)xy= =( 12+k11r- k+2 kk22)r,⇒yx22==( ((1141- +k+2kkrk222) )2)22,r22,得 x2+y2= (1-2(k2+1+k4k)2)r22+4k2r2=(1(+12+k2+k2)k4)2 r2=r2.
线的类型.
x=acos (1)y=bsin
θ, θ (θ
为参数,a,b
为常数,且
a>b>0);
(2)x=coas φ,(φ 为参数,a,b 为正常数); y=btan φ
x=2pt2, (3)y=2pt (t
为参数,p
为正常数).
自主预习
讲练互动
课堂达标
教材链接
解 (1)由 cos2θ+sin2θ=1 得ax22+by22=1 这是一个长轴长为 2a, 短轴长为 2b,中心在原点的椭圆. (2)由已知co1s φ=ax,tan φ=by,由于co1s φ2-tan2φ=1, ∴有ax22-by22=1 这是一条双曲线. (3)由已知 t=2yp代入 x=2pt2 中得4yp22·2p=x, 即 y2=2px,这是一条抛物线.
为参数).
解 (1)由 y2=(sin θ+cos θ)2=1+sin 2θ=1+2x 得
y2=2x+1,∵-12≤12sin 2θ≤12,

第2章 §3 参数方程化成普通方程

第2章 §3 参数方程化成普通方程

上一页
返回首页
下一页
普通方程化为参数方程时,①选取参数后,要特别注意参数的取值范围, 它将决定参数方程是否与普通方程等价.②参数的选取不同,得到的参数方程是 不同的.如本例(2),若令 x=tan θ(θ 为参数),则参数方程为xy= =ttaann2θθ,+tan θ-1 (θ 为参数).
即(y-1)2=-14x(y≥1).
方程表示的曲线是顶点为(0,1),对称轴平行于 x 轴,开口向左的抛物线的一
部分.
上一页
返回首页
下一页
(2)由已知可得
ax=11- +tt22,


by=1+2tt2, ②
①2+②2 得ax22+by22=1(a>b>0,x≠-a),这就是所求的普通方程,方程表 示的曲线是焦点在 x 轴上的椭圆(去掉左顶点).
上一页
返回首页
下一页
【解析】 (1)把 t=x 代入②得 y=2x 即普通方程为 y=2x. (2)由 sin2 θ+cos2 θ=1 得 x2+y2=1. (3)由②得 t=y-1,代入①得 x=2(y-1)2.
【答案】 (1)y=2x (2)x2+y2=1 (3)x=2(y-1)2
上一页
返回首页
(t 为参数)
x=tan t, D.y=1-tan2t
(t 为参数)
上一页
返回首页
下一页
【解析】 A 化为普通方程为 x2+y-1=0,x∈[-1,1],y∈[0,1]. B 化为普通方程为 x2+y-1=0,x∈[-1,1],y∈[0,1]. C 化为普通方程为 x2+y-1=0,x∈[0,+∞),y∈(-∞,1]. D 化为普通方程为 x2+y-1=0,x∈R,y∈(-t 为参数);

高考数学(理)总复习讲义: 参数方程

高考数学(理)总复习讲义: 参数方程

第二节参数方程1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).参数方程与普通方程互化的注意点(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.直线、圆与椭圆的普通方程和参数方程轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎝⎛⎭⎫α≠π2,点斜式⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆(x -a )2+(y -b )2=r 2 ⎩⎪⎨⎪⎧ x =a +r cos θ,y =b +r sin θ(θ为参数) 椭圆 x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数) [熟记常用结论]经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=⎪⎪⎪⎪t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、选填题1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析:选B 由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数)与曲线C :⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数)相切,则实数m 的值为( )A.-4或6B.-6或4C.-1或9D.-9或1解析:选A 由⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数),得直线l :2x +y -1=0,由⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数),得曲线C :x 2+(y -m )2=5,因为直线l 与曲线C 相切,所以圆心到直线的距离等于半径,即|m -1|22+12=5,解得m =-4或m =6.故选A.3.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=04.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),则它们的交点坐标为________.解析:消去参数θ得普通方程为x 25+y 2=1(0≤y ≤1),表示椭圆的一部分.消去参数t 得普通方程为y 2=45x ,表示抛物线,联立两方程,可知两曲线有一个交点,解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,255 5.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)考点一 参数方程与普通方程的互化 [基础自学过关][题组练透]1.已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ].2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.[名师微点]将参数方程化为普通方程消参的3种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.[提醒] 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.考点二 参数方程的应用 [师生共研过关][典例精析](2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.[解题技法]一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.[过关训练]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.考点三 参数方程与极坐标方程的综合应用 [师生共研过关][典例精析](2019·柳州模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.[解] (1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2 θ4=1,即ρ2=364+5sin 2θ.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2=364+5sin 2θ,曲线D 的直角坐标方程为x 2+y 2+2x -23y =0.(2)由点A ⎝⎛⎭⎫22,π4,得⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0, 设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[解题技法]参数方程与极坐标方程综合问题的解题策略(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[过关训练](2018·合肥质检)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ. (1)求曲线C 的直角坐标方程;(2)已知直线l 过点 P (1,0)且与曲线C 交于A ,B 两点,若|PA |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝⎛⎭⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2,故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α, t 1t 2=-1,|PA |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.[课时跟踪检测]1.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. 解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数),得圆C 的圆心是C (1,-1),半径为2.由直线l 的参数方程⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),得直线l 的普通方程为y -4=k (x -3)(斜率存在), 即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,解得k >2120.即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞. 2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tanα·x +2-tan α;当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.3.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2a cos θ(a >0).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C 的直角坐标方程为y 2=2ax (a >0).由直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l 的普通方程为x -y +2=0.(2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax ,得t 2-22at +8a =0,由Δ>0得a >4,设M ,N 对应的参数分别为t 1,t 2,则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列,∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5.4.(2019·青岛调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|P Q |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|P Q |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 5.(2018·辽宁五校联合体模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.解:(1)由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,可得(x -1)2+y 2=cos 2α+sin 2α=1,即C 1的普通方程为(x -1)2+y 2=1.方程ρcos 2θ=sin θ可化为ρ2cos 2θ=ρsin θ (*),将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*)式,可得x 2=y , 所以C 2的直角坐标方程为x 2=y . (2)因为A ,B 异于原点,所以联立⎩⎪⎨⎪⎧(x -1)2+y 2=1,y =kx ,可得A ⎝⎛⎭⎫2k 2+1,2k k 2+1;联立⎩⎪⎨⎪⎧y =kx ,y =x 2,可得B (k ,k 2). 故|OA |·|OB |=1+k 2·2k 2+1·1+k 2·|k |=2|k |.又k ∈(1,3],所以|OA |·|OB |∈(2,23].6.(2019·惠州调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0. 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝⎛⎭⎫22,-π4,可得点P 的直角坐标为(2,-2),∴点P 在曲线C 1上.将曲线C 1的参数方程⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数)代入y =x 2,得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数, 则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 7.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值. 解:(1)由直线l 过点A ,得2cos ⎝⎛⎭⎫π4-π4=a ,故a =2,则易得直线l 的直角坐标方程为x +y -2=0.由点到直线的距离公式,得曲线C 1上的点到直线l 的距离d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,⎝⎛⎭⎫其中tan φ=233,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数).易知曲线C 1的普通方程为x 24+y 23=1.把直线l 1的参数方程代入曲线C 1的普通方程, 得72t 2+72t -5=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=-107, 根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 8.(2019·郑州模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-32t ,y =m +12t (t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π6,直线l 与圆C 交于A ,B 两点. (1)若OA ⊥OB ,求直线l 的普通方程;(2)设P (3,1)是直线l 上的点,若|AB |=λ|PC |,求λ的值.解:(1)消去参数t ,得直线l 的普通方程为x +3y =3+3m ,将圆C 的极坐标方程ρ=8cos ⎝⎛⎭⎫θ-π6的两边同时乘ρ, 得ρ2=43ρcos θ+4ρsin θ,则圆C 的直角坐标方程为(x -23)2+(y -2)2=16,所以圆C 的圆心C (23,2),半径为4,且经过原点O ,数形结合得,若OA ⊥OB ,则直线l 经过圆心C ,即23+3×2=3+3m ,解得m =3, 即直线l 的普通方程为x +3y -43=0. (2)由P (3,1)是直线l 上的点,得m =1,此时直线l 的参数方程为⎩⎨⎧x =3-32t ,y =1+12t (t 为参数),代入到圆C 的方程(x -23)2+(y -2)2=16中,得t 2+2t -12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1t 2=-12,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4+48=213, 又|PC |=2,|AB |=λ|PC |,所以λ=13.。

参数方程化为普通方程

参数方程化为普通方程

3x2 y2 4
二. 利用三角恒等式消去参数
例5.将 x
5 cos
为参数化为普通方程。
y 5 sin
解:利用sin2 cos2 1得到
x2 y2 25
若 0,2 ,则普通方程是什么?
思 若 0, ,则普通方程是什么?
考 若 0, ,则普通方程是什么?
2
例6
将 x
t为参数
y t2
x
2
3t 2
1 t2 (t为 参 数 )
t2
x
(3)
t
1
t t为参数
y 1 t 2
将参数方程化为
y
t
1 t
普通方程中,必 须使x,y的取值
范围保持一致。
解:(1)x 3y 1 0(x 1) 否则,转化就是
2x 3y 00 x 3或 1 y 0 不等价的.
复习回顾
2.直线,圆,椭圆,抛物线与双曲线的参数方程
x x t cos
直线的参数方程
0
t为参数
y
y 0
t sin
圆 的 参 数 方 程 x
a
r cos
为 参 数
y b r sin
x a cos
椭圆的参数方程
为参数
y b sin
抛物线的参数方程 x y
2 pt 2 2 pt
1
普通方程是x2 y2 1
C 是直线,普通方程是x y 2 0 2
C 与C 有且只有一个交点
1
2
已知参数方

x y
at bt
cos a, b, 均不为0,0
sin
2 ,
分别取1t为参数; 2 为参数; 3 为参数.

参数方程与普通方程互换

参数方程与普通方程互换

常见类型举例
线性方程
形如 $y = ax + b$ 的方程,表示一条直线 。
二次方程
形如 $y = ax^2 + bx + c$ 的方程,表示一条抛物 线。
圆的方程
形如 $(x - h)^2 + (y - k)^2 = r^2$ 的方 程,表示一个以 $(h, k)$ 为圆心、$r$ 为半 径的圆。
椭圆
对于椭圆 $frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,可以引入 参数 $theta$,令 $x = acos theta$,$y = bsin theta$,得 到参数方程为 $left{ begin{matrix} x = acos theta y = bsin theta end{matrix} right.$。
曲线形状
不同的参数方程形式对应不同的曲 线形状,如直线、圆、椭圆等。
02 普通方程基本概念
定义及性质
定义
普通方程是描述平面上点集合的一种 方式,通常表示为 $y = f(x)$ 或 $F(x, y) = 0$ 的形式。
性质
普通方程反映了因变量和自变量之间 的直接关系,具有直观、易于理解的 优点。
性质
参数方程不直接表示变量间的显式关 系,而是通过参数间接表达。因此, 它具有更高的灵活性和表达能力。
常见类型举例
01
02
03
直线参数方程
形如 $x = x_0 + at, y = y_0 + bt$ 的方程,其中 $t$ 是参数,表示直线上 的点。
圆参数方程
形如 $x = rcostheta, y = rsintheta$ 的方程,其中 $theta$ 是参数,表示圆 上的点。

参数方程与普通方程互化

参数方程与普通方程互化
在将参数方程转化为普通方程后,需要 采用适当的方法验证转化过程的正确性 ,例如通过对比原方程和转化后的方程 的图形或数值解等。
VS
误差分析
在验证过程中,需要对误差进行分析,以 评估转化过程的精度和准确性,并根据需 要调整和改进转化方法。
转化后方程的简化与化简
简化方程进行简化,以使其更易于理解和分析。简化的步骤可 能包括合并同类项、消去某些变量等。
= a(t)t$、$y = b(t)$,其中 $t$ 是参数。
三角函数法
要点一
总结词
利用三角函数的性质,将普通方程转化为参数方程。
要点二
详细描述
利用三角函数的周期性、有界性等性质,将普通方程转化为 参数方程。例如,将普通方程 $x = acostheta$、$y = bsintheta$ 转化为参数方程 $theta = theta(t)$、$x = acostheta(t)$、$y = bsintheta(t)$,其中 $t$ 是参数。
详细描述
三角函数法的基本思想是利用三角函数的性质,如三角恒等式、周期性等,将 参数方程转化为普通方程。这种方法适用于与三角函数有关的参数方程。
代数法
总结词
通过代数运算,将参数方程转化为普通方程 的方法。
详细描述
代数法的基本思想是通过代数运算,如加减、 乘除、乘方等,将参数方程转化为普通方程。 这种方法适用于参数不易消去或与三角函数 无关的参数方程。
03 普通方程转化为参数方程 的方法
引入参数法
总结词
通过引入参数,将普通方程转化为参数方程 ,参数通常表示方向或时间。
详细描述
在普通方程中引入一个或多个参数,将普通 方程中的变量表示为参数的函数,从而将普 通方程转化为参数方程。例如,将普通方程 $x = a(t)t$、$y = b(t)t$ 转化为参数方程 $x

参数方程与普通方程的相互转化

参数方程与普通方程的相互转化
2 2
y =ρsinθ 可 以 求 得 圆 心 的 直 角 坐 标 为 (1cos0, 1sin0),
即为 (1, 0), 又因为半径为 1 , 所以圆的普通方程为 : (x-1)2 +y2 =1 , 展 开 得 : x2 -2x+1+y2 =1 , x2 +y2 -2x =0 … (1 ), 因 为 x =ρcosθ , y =ρsinθ , ρ = 姨x2+y2 , 所 以 ( 1 ) 式 可 以 化 为 ρ2 -2ρcosθ =0 , 即 ρ (ρ -2cosθ )=0 , 故 ρ -
更 , 而 边 界 AB 、 BC 可 以 调 整 , 为 了 提 高 棚 户 区 改 造 建 筑 用 地 的 利 用 率 , 请 在 圆 弧 ABC 上 设 计 一 点 P ; 使 得 棚 户 区 改 造 的 新 建 筑 用 地 APCD 的 面 积 最 大 , 并 求 最大值 . 解析 :
2 2
在曲线 x2+4y2=4 上移动 , 则 PQ 的最大值为

策 略 : 如 果 直 接 利 用 两 点 间 距 离 公 式 求 PQ , 变量多 , 运算量大 , 可以利用转化思想 , 利用换元法 将 可 将 x2+4y2=4 化 为 参 数 方 程
2cosθ=0 或 ρ=0 , 因为 ρ-2cosθ=0 在 θ= π 已 经 包 括 ρ= 2 0 , 所以圆的极坐标方程是 ρ=2cosθ.
d= 0-1+a =1 , 解得 : a=1- 姨 2 或 1+ 姨 2 . 姨2 x= 3 (t+ 1 ), 2 t 例 2 . 曲线 (t 为 参 数 ) 的 离 心 率 y= 3 (t- 1 ) , 4 t
姨 姨 姨 姨 姨 姨 姨 姨 姨 姨 姨

参数方程化成普通方程

参数方程化成普通方程
同学们,请检查一下你的课本、笔、 草稿本是否已经备好。
让我们开始一段美妙的数学旅程!
沁阳第一中学 魏月娥
2.3 参数方程化成普通方程
抽象概括
代入消参法的“三步曲”: 第1步:从参数方程中选出一个方程,解出 参数;
第2步:把参数的表达式代入另一个方程, 消去参数,得到曲线的普通方程;
第3步:标出x,y的取值范围(即检查得到 的普通方程与参数方程是否等价).
作业
课本P42.习题2-3 A组,1,2,3,4,5
祝同学们的生活和学习
越来越好!
【参考信息】代数变换消参法的“三步曲”: 第1步:通过代数方法,把参数方程中的方程适当地 变形; 第2步:把参数方程中的两个方程进行代数运算,消 去参数,得到曲线的普通方程;
第3步:标出x,y的取值范围(即检查得到的普通方 程与参数方程是否等价).
吟诵
参数方程化普通,常用两法记心中; 代数变换和代入,合称代数消参法。 三角恒等式消参,正弦余弦平方和; 勿忘横纵两范围,消参前后等价回。
抽象概括
三角恒等式消参法的“三步曲”: 第1步:用参数方程中的x,y表示含参数的 三角函数;
第2步:代入三角恒等式,消去参数,得到 曲线的普通方程;
第3步:标出x,y的取值范围(即检查得到 面的抽象概括,认真阅读例3,掌 握代数变换消参法的“三步曲”,并在例3的解题过 程中标出“第1步”、“第2步”、 “第3步”;

参数方程化普通方程

参数方程化普通方程

参数方程化普通方程要将参数方程转化为普通方程,我们首先来看一下参数方程的定义。

参数方程是通过给定的一个或多个参数,将方程的自变量和因变量表示为参数的函数。

例如,一个简单的二维平面上的参数方程可以表示为:x=f(t)y=g(t)这里的参数t可以是任何实数。

当我们给定t的值时,就可以计算出x和y的值。

要将参数方程化为普通方程,我们可以使用以下步骤:1.确定参数的范围:首先,我们必须确定参数t的范围。

该范围应该包含任何使方程有意义的值。

通常情况下,我们选择一个连续的范围来表示整个曲线或曲面。

2.消除参数:为了将参数方程转化为普通方程,我们需要消除参数t。

这可以通过解方程组x=f(t)和y=g(t)来实现。

具体来说,我们可以将其中一个参数方程表示为t的函数,并将其代入另一个参数方程中。

这样就得到了只包含自变量x和因变量y的普通方程。

3.简化方程:在得到普通方程后,我们可以进一步简化它,使其更容易理解和分析。

这可能涉及到对方程进行化简、整理和变形的步骤。

让我们通过一个具体的例子来说明这些步骤。

考虑以下二维平面的参数方程:x=2ty=3t+1我们可以将上述步骤应用于此参数方程:1.确定参数的范围:在这种情况下,参数t的范围可以选择为任何实数。

2.消除参数:我们可以从第一个参数方程中得到t=x/2,并将其代入第二个参数方程中:y=3(x/2)+1=(3/2)x+13.简化方程:我们可以观察到,将消除参数后的方程乘以2可以得到一个更简单的形式:2y=3x+2这就是我们所得到的普通方程。

通过以上的步骤,我们可以将参数方程转化为普通方程。

然而,需要注意的是,并不是所有的参数方程都可以很容易地转化为普通方程。

在一些情况下,这可能需要更复杂的代数运算和技巧。

参数方程在数学和物理中有广泛的应用。

例如,在物理学中,参数方程常常用于描述物体的运动轨迹。

此外,参数方程还可以用于描述曲线、曲面、空间曲线等复杂的几何形状。

转化为普通方程后,我们可以更方便地进行分析和计算。

参数方程参数方程和普通方程的互化ppt

参数方程参数方程和普通方程的互化ppt

参数方程和普通方程的优缺点比较
03
参数方程和普通方程的应用场景
03
电磁学
在研究电磁场时,参数方程可以用来描述电场和磁场的变化。
物理问题中的参数方程应用
01
运动学
参数方程常用于描述物体的运动轨迹,例如,物体质点的位置随时间的变化。
02
波动
参数方程可以用来描述波的传播,例如,振幅随时间的变化。
解析几何
参数方程通常用于描述具有某些特定变化规律的问题,如运动轨迹、物理实验数据等。
参数方程的定义
普通方程又叫直角坐标方程,它是一种以x、y坐标轴为基准的平面图形表示方式,通过x、y坐标轴上点的坐标来表示图形上的点。
普通方程通常用于描述几何图形、函数图像等平面图形。
普通方程的定义
将参数方程转化通方程更加直观易懂。
案例二:圆方程的参数形式
椭圆方程的参数形式通过使用两个参数,描述椭圆在坐标系中的位置和形状。
总结词
椭圆方程的一般形式是 (x - a)2/b2 + (y - c)2/d2 = 1,其中 (a, c) 是椭圆中心的坐标,b 和 d 是椭圆的长半轴和短半轴
详细描述
案例三:椭圆方程的参数形式
05
总结与展望
2023
参数方程参数方程和普通方程的互化
目录
contents
参数方程和普通方程的基本概念参数方程和普通方程的互化方法参数方程和普通方程的应用场景参数方程和普通方程的案例分析总结与展望
01
参数方程和普通方程的基本概念
参数方程是一种描述某一变化过程的数学表达方式,其中包含一个或多个参数,这些参数是变化的,而参数的变化规律则由参数方程来描述。
参数方程的优势
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档