Sorptive removal of tetracycline from water by palygorskite
等温滴定量热法和荧光滴定法研究十二烷基硫酸钠与纤维素酶的结合_项瑾
2003年第61卷第12期,1949~1954化学学报ACTA CHI M ICA SINICAVol.61,2003No.12,1949~1954等温滴定量热法和荧光滴定法研究十二烷基硫酸钠与纤维素酶的结合项 瑾 梁 毅陈 楠(武汉大学生命科学学院 武汉430072)摘要 用等温滴定量热法和荧光滴定法研究了阴离子型去垢剂十二烷基硫酸钠(SDS)与绿色木霉纤维素酶相互作用的热力学.SDS 结合纤维素酶的亲和力较弱,为较小的放热反应,并伴随着一定程度的熵增,为焓和熵共同驱动的反应,而且存在着显著的焓-熵补偿作用.该结合过程的摩尔恒压热容为较大的负值(-186J mol -1 K -1),这表明疏水相互作用是形成复合物的主要作用力.SDS 的加入使纤维素酶的内源荧光发生猝灭,同时导致该蛋白荧光光谱最大发射峰位的红移和酶活力的部分丧失,这表明SDS 与纤维素酶的相互作用既包含结合反应也包含SDS 诱导该蛋白部分去折叠的过程.关键词 等温滴定量热法,荧光滴定法,纤维素酶,十二烷基硫酸钠,结合亲和力,蛋白质去折叠Stud ies on the Binding of Sodium Dodecyl Sulfate to Cellulase by IsothermalTitration Calorimetry and Fluorescence TitrationXI ANG,Jin LIANG,Yi C HE N,Nan(Colle ge of Li f e Sciences ,Wuhan Unive rsity ,Wuhan 430072)Abstract Thermodynamics of the interaction of an anionic detergent,sodium dodecyl sulfate (SDS),with cellulase from Trichoderma reesei has been studied by isother mal titration calorimetry and fluorescence titration.The binding of SDS to cellulase is driven by a favorable entropy increase with a less favorable enthalpy decrease,and shows strong enthalpy entropy c ompensa tion and weak affinity.A larger negative heat capacity change of the binding,-186J mol -1 K -1,at all temperatures e xamined indicates that hydrophobic interaction is a major force for the binding.SDS quenches the intrinsic fluorescence of cellulase,and causes both a red shift in the maximum fluorescence emission wavelength of the protein and a partial loss in the enzymatic activity.These results indicate that the interaction of SDS with cellulase includes contributions of the binding and the partial unfolding of the protein induced by SDS.Keywords isothermal titration calorimetry,fluorescence titration,cellulase,sodium dodecyl sulfate,binding affinity,protein unfolding纤维素是地球上最丰富的可再生性自然资源,木质纤维材料生物质的全利用无疑是新的千年中对人类最为重要的生物技术之一[1,2].纤维素酶(包括内切葡聚糖酶、外切葡聚糖纤维二糖水解酶和 葡萄糖苷酶)是水解纤维素中 1,4 糖苷键的一种酶[1~7].现在纤维素酶已被越来越多地应用于工业领域,特别是添加在去垢剂中以降解污垢中的纤维素[8],因此研究去垢剂与纤维素酶的相互作用及其在去垢剂中的稳定性就显得尤为重要.等温滴定量热法(I TC)是近年来发展起来的一种原位、在线和无损伤地研究生物热力学与生物动力学的重要方法[9~12],尽管该法缺乏特异性,但由于蛋白质本身具有特异性,因此这种非特异性方法特别适应于研究与蛋白质相关的各种特异过程[9~18].但迄今为止,应用该法研究去垢剂与蛋白质的相互作用只有少数几例报道[16~18].十二烷基硫酸钠(SDS)是一种常用的阴离子型去垢剂,也是蛋白质的变性剂[19,20],已被广泛应用于蛋白质的十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SD S PAGE)中.由于采用非特异性方法(如I TC)和特异性方法(如荧光滴定法[21~28])同时研究生物分子相互作用,能获得只采用单一方法所无法获取的信息[21~24],因此本文即用I TC 结合荧光滴E mail:liangyi@Received M arch 13,2003;revi sed Augus t 12,2003;accepted Augus t 15,2003.国家重点基础研究发展规划(No.G1999075608)、国家自然科学基金(No.39970164)和湖北省自然科学基金(No.2001abb046)资助项目.定法研究了SDS与绿色木霉纤维素酶相互作用的热力学.实验结果表明,SDS通过疏水相互作用与纤维素酶形成复合物,并诱导该蛋白部分去折叠.1 实验部分1.1 试剂绿色木霉(Tricho derma reesei)纤维素酶为上海伯奥生物科技有限公司产品,其浓度用称重法测得,所用的分子量为52kDa.微晶纤维素(柱层析纯)为上海试剂四厂产品.十二烷基硫酸钠(纯度>99%)为Amre sco公司产品.3,5 二硝基水杨酸(化学纯)为中国医药集团上海化学试剂公司产品.其余试剂均为国产分析纯试剂.实验过程中所用水均为Milli Q 去离子水.柠檬酸-磷酸氢二钠缓冲溶液浓度为0 1mol L-1,pH=5 4.3,5 二硝基水杨酸显色剂(DNS显色剂)[29]贮于棕色瓶中,放置一周后使用,使用前过滤.1.2 配体与蛋白质结合的荧光滴定模型对于一个蛋白质与其配体之间的结合反应,其本征结合常数(K b)为:K b=x(1-x)(c L,0-n xc P,0)(1)式中c L,0和c P,0分别为配体L和蛋白质P的初始摩尔浓度, n为1分子蛋白质结合配体的分子数,它是蛋白质的配体结合位点数,x是蛋白质与其配体的结合率,可由下式计算得到:x=FFmax(2)式中 F和 F ma x分别是配体与蛋白质结合达到平衡时所导致的蛋白质内源荧光强度的变化值和最大变化值,可由荧光滴定实验直接测出.联立式(1)和(2),可以证明:FF max=(K b c L,0+n K b c P,0+1)-(K b c L,0+n K b c P,0+1)2-4K2b nc L,0c P,02n K b c P,0(3)或FF ma x=(c L,0+nc P,0+K d)-(c L,0+nc P,0+K d)2-4nc L,0c P,02nc P,0(4)固定蛋白质浓度c P,0(在本文实验条件下,荧光滴定完成后,纤维素酶浓度仅降低了8 5%),改变配体浓度c L,0,根据式(3)或(4)采用Origin软件(版本:5 0)以 F/ F ma x对c L,0进行非线性最小方差拟合,即可获得K b(或本征解离常数K d)和n值.1.3 SDS与纤维素酶作用的等温滴定量热实验15 0,25 0,30 0和37 0 时SDS与纤维素酶相互作用的热力学性质的测定在美国MicroCal公司生产的VP型等温滴定量热仪上进行.滴定实验中,将SDS溶液装入250 L 的滴定注射器,酶溶液放入1 43mL的样品池,搅拌器以300 r/min的速度搅拌,每间隔240s加入10 L SDS溶液到纤维素酶溶液中,共滴28次.参比池中加入去离子水作为样品池的热平衡参照.须另做一空白实验以扣除SDS稀释热的影响,即在样品池中加入缓冲液,用SDS溶液滴定.纤维素酶的稀释热经测定非常小,可略去.所有的溶液都在相应温度条件下真空脱气处理以减小信号噪音.积分每个峰面积并扣除稀释热后得到结合反应热,对SDS与酶的摩尔比作图得到反应等温线.以Mic roCal公司提供的Origin软件(版本:5 0)中的独立结合位点模型进行非线性最小方差拟合,可计算出SDS与纤维素酶作用的本征结合常数K b、本征摩尔结合焓 b H0m和纤维素酶的SDS结合位点数n.根据下列热力学基本方程可分别求出上述结合反应的本征摩尔结合Gibbs自由能( b G0m)和本征摩尔结合熵( b S0m):b G0m=-RT ln K b(5)b S0m=bH0m- b G0mT(6)如果该结合过程的摩尔恒压热容( b C P,m)为与温度无关的常数,则可利用下列两式分别以 b H0m对T和以 b S0m 对ln T进行线性拟合确定 b C P,m值:bH0m= b C P,m T+ H0(7)b S0m= b C P,m ln T+ S0(8)式中 H0和 S0均为积分常数.1.4 SDS与纤维素酶作用的荧光滴定实验移取3mL10 mol L-1的纤维素酶溶液于1c m的石英比色皿(内置高速搅拌的磁力转子),用微量可调移液器逐次加入10 L0 5mol L-1的SDS溶液进行荧光滴定,并作用240s使两者结合达到平衡,共滴28次.用Perkin Elmer LS 55型荧光光谱仪,在25 ,激发波长280nm,激发狭缝和发射狭缝宽均为7 5nm,扫描范围300~450nm,扫描速度250 nm/min条件下,逐次测SDS滴定纤维素酶的内源荧光发射谱.荧光发射光谱均扫描三次取平均值.须另做一空白实验以扣除SDS的影响,即在石英比色皿中加入缓冲液,用SDS 溶液滴定.1.5 不同浓度SDS对纤维素酶活力的影响纤维素酶溶液加入含不同浓度SDS的缓冲溶液中,25 条件下作用240s使两者结合达到平衡,并使纤维素酶不同程度变性,然后加入底物纤维素并开始计酶解时间,酶解5 min后沸水浴10min去酶活.按D NS法[29]测量测活体系在490nm处光吸收值的变化,用生成的还原糖量来衡量酶活力的大小.以天然酶活力为100%,将不同浓度SDS条件下1950 化学学报Vol.61,2003纤维素酶的残余活力对SDS 浓度作图.2 结果2.1 SDS 结合纤维素酶的热力学图1A 是记录得到的15 0 时SDS 与纤维素酶结合的I TC 曲线,图1B 示出了由实测ITC 曲线积分得到的结合反应热对SDS 与蛋白摩尔比的非线性拟合曲线.由图1可见,SDS 与纤维素酶的结合反应为放热反应,随着SD S 浓度由0 35mmol/L 逐渐增大到8 2mmol/L,结合趋于饱和,滴定曲线逐渐减小.采用独立结合位点模型拟合出该过程的本征结合常数、本征摩尔结合焓和纤维素酶的SDS 结合位点数分别为:K b =126 23L mol -1, b H 0m =-3 49 0 24kJ mol -1和n =42 5 0 7.然后根据式(5)和(6)分别求出该过程的本征摩尔结合Gibbs 自由能和本征摩尔结合熵分别为 b G 0m =-11 6 0 4kJ mol -1和 b S 0m =28 1 2 2J mol -1 K -1.图1 (A)十二烷基硫酸钠(SDS)与绿色木霉纤维素酶结合的等温滴定量热曲线;(B)结合反应热( )对SDS 与蛋白摩尔比的非线性拟合曲线滴定实验中,由SDS 滴定纤维素酶,蛋白浓度0 325mmol L -1,SDS 浓度50mmol L -1,实验温度15Figure 1 Isothermal titration calorimetry profile for the binding of sodi um dodecyl sulfate (SDS)to cellulase from Trichoderma reesei(A)Raw data for s equential 10 L injecti ons of SDS (50mmol L -1)into cellulase (0 325mmol L -1)at 15 ;(B)Pl ot of the heat evolved (kJ)per mole of SDS added against the molar rati o of SDS to cellulas e; :Theexperimental data; represents the bes t fi t不同温度条件下SDS 与纤维素酶结合的热力学数据列于表1.由表1可见,该结合反应的全部热力学数据(均为三次实验的平均值)重现性均较好.将表1中 b H 0m 对T b S 0m 作图得一直线(相关系数0 99),斜率为0 836,纵截距为-10 6kJ mol -1,这表明SDS 与纤维素酶的结合是一个典型的焓-熵补偿的过程.由表1亦可看出,随着温度的升高,K b 总体上是下降的,但25和30 的两个数据几乎一致,从数值上来看,30 的K b 反而比25 的数据稍大,这可能是由于SDS 结合纤维素酶的亲和力较弱,因此K b 随温度下降的趋势有时不太明显,但30 时两次重复实验K b 的平均值(100 7L mol -1)则符合随温度升高而下降的规律.图2示出了温度对SDS 与纤维素酶相互作用的本征摩尔结合焓和本征摩尔结合熵的影响.由图2可见,以 b H 0m 对T 和以 b S 0m 对ln T 进行线性拟合得到的 b C P,m 值分别为-158和-213J mol -1 K -1,两者较为接近,而且线性相关性很好(相关系数分别为-0 99和-1 00),这充分说明该结合过程的摩尔恒压热容确为与温度无关之常数.图2 温度对SDS 结合纤维素酶的本征摩尔结合焓(A)和本征摩尔结合熵(B)的影响该结合过程的摩尔恒压热容分别以 b H 0m 对T 和以 b S 0m 对ln T 进行线性拟合来确定, b H 0m 和 b S 0m 均为三次实验的平均值Figure 2 T emperature dependence of the standard molar enthalpy change (A )and the standard molar entropy change (B)for the binding of SDS to cellulaseThe mol ar heat capacity change associated wi th the binding reaction, b C P,m ,was determined by linear regres sion anal ysis of b H 0m vers us T and b S 0m versusl n T res pecti vely.The data with error bars were express ed as mean S.D.(N =3)1951No.12项 瑾等:等温滴定量热法和荧光滴定法研究十二烷基硫酸钠与纤维素酶的结合2.2 SDS 与纤维素酶作用的荧光滴定研究由图3A 和3B 可见,天然纤维素酶的荧光光谱最大发射峰位为373nm,随着28次10 L 的SDS 溶液的逐次加入,SDS 浓度逐渐增大,依次为1 7,3 3,4 9,6 6,8 2,9 8,11 4,13 0,14 6,16 1,17 7,19 2,20 8,22 3,23 8,25 3,26 8,28 3,29 8,31 2,32 7,34 2,35 6,37 0,38 5,39 9,41 3和42 7mmol L -1,该蛋白的内源荧光发射强度逐渐降低,同时伴随着最大发射峰位的不断红移,这表明SDS 的加入使纤维素酶的内源荧光有规律地猝灭,色氨酸和酪氨酸残基逐渐从疏水环境暴露到亲水环境中,该蛋白逐渐去折叠.当SDS 浓度增大至0 3mol L -1时,SDS 使该蛋白的内源荧光完全猝灭(图3中未显示).表1 十二烷基硫酸钠与绿色木霉纤维素酶结合的热力学参数Table 1 Thermodynamic parameters for the bi nding of sodium dodecyl sulfate to cellulase from Trichoderma reesei aTemperature/K b 10-2/(L mol -1)n b H 0m /(kJ mol -1) b G 0m /(kJ mol -1) b S 0m /(J mol -1 K -1)15 1.47 0.4044.0 1.3-3.11 0.33-12.0 0.730.9 3.625 1.06 0.3239.3 3.0-4.52 1.00-11.6 0.723.7 5.730 1.07 0.1437.3 1.8-5.81 0.25-11.8 0.319.8 1.8370.759 0.04531.5 0.7-6.45 0.60-11.2 0.215.3 2.6aData are expressed as mean S.D.(N =3).图3 (A)SDS (0 5mol L -1)滴定纤维素酶(10 mol L -1)的内源荧光发射光谱(图中箭头表示从上到下,SDS 浓度从0逐渐增大到42 7mmol L -1,荧光发射光谱均扫描三次取平均值,实验温度25 );(B)纤维素酶荧光光谱最大发射峰位随SDS 浓度的变化;(C)以SDS 结合纤维素酶的 F / F max 对SDS 浓度进行非线性拟合,得到SDS 与纤维素酶作用的本征结合常数为122 13L mol -1,激发波长280nm,实验温度25Figure 3 (A)Intrinsic fluorescence emission spectra of cellulase and ti tration wi th SDS (0 5mol L -1)at 25 .Here,the arrow represents the concen tration of SDS increases gradually from 0(the top spectrum)to 42 7mmol L -1(the bottom one).The spectra presen ted were the average of three scans;(B)Effects of SDS on fluorescence maximum emission wavelength of cellulase;(C)Plot of F / F max for the binding of cellulase to SDS against the concentration of SDS.The hollow squares are the experimental data and the solid line represen ts the best fit.The intri nsic binding constant of the SDS binding to cellulase has been determined to be 122 13L mol -1.Protein concen tration was 10 mol L -1and fluorescence was excited at 280n m.1952化学学报Vol.61,2003图3C 中的实线代表了25 时SDS 结合纤维素酶的 F / F max 随SDS 初始摩尔浓度变化的非线性最小方差拟合曲线,在中等浓度区与实验数据点吻合得很好,相应的本征结合常数和纤维素酶的SDS 结合位点数分别为:K b =122 13L mol -1和n =2530 190,其中K b 值与表1中用I TC 测得的K b 值(106 32L/mol)很接近,这表明中等浓度SDS 与纤维素酶的相互作用可用本文建立的配体与蛋白质结合的荧光滴定模型描述.这里应说明的是, F / F max 随SDS 浓度变化的非线性拟合曲线在低浓度和高浓度区与实验数据点的吻合情况并不令人满意(图3C),从实验数据的变化趋势和曲线变化趋势来看,两者并不一致,这是因为拟合曲线实际上是在假设蛋白质的内源荧光强度与其游离浓度成正比而导出的.图3C 说明这一假设在低浓度和高浓度区可能并不符合实际情况,需要引入其它假设,这方面的研究将另文报道.2.3 不同浓度SDS 条件下纤维素酶的残余活力由图4可见,在SDS 浓度0~70mmol L -1之间,纤维素酶的残余活力随SDS 浓度的增大而逐渐降低,这表明低浓度SDS 对纤维素酶有变性作用.在SDS 浓度70~150mmol L -1之间,纤维素酶的残余活力则随SDS 浓度的增大反而增加,当SDS 浓度大于150mmol L -1时,该酶的残余活力稳定在天然酶活力的52%附近,这表明SDS 浓度的进一步提高反而对纤维素酶有一定的稳定和激活作用.图4 不同浓度SDS 条件下纤维素酶的残余活力酶浓度为19 2 mol L -1,实验温度25Figure 4 Remaining activities of cellulase at differen t SDSconcentrationsProtein concentrati on was 19 2 mol L -1.Measure ments were carried out at 253 讨论本文的实验结果表明,SDS 结合绿色木霉纤维素酶的亲和力较弱,为较小的放热反应,并伴随着一定程度的熵增,为焓和熵共同驱动的反应.该结合过程的焓变和熵变强烈地依赖于温度,但其Gibbs 自由能则几乎与温度无关,而且比相应的焓变小得多,清楚表明SDS 结合纤维素酶的过程中存在着显著的焓-熵补偿作用.该结合过程的摩尔恒压热容为较大的负值(-186J mol -1 K -1,图2中两个 b C 0P,m 值的平均值),而较大的负 b C 0P,m 值已经证明是疏水相互作用的特征之一[13,30,31],因此本研究认为疏水相互作用是导致该结合过程的主要驱动力.由于SDS 的临界胶束浓度约为8mmol L -1[32],因此在本研究I TC 实验条件下,SDS 主要以单分子形式通过其非极性基团以疏水相互作用与纤维素酶形成复合物,但也不排除少数SD S 分子通过其带负电荷的极性基团以静电相互作用与纤维素酶表面带正电荷的氨基酸残基结合.而在本文荧光滴定实验条件下,SDS 则主要以胶束形式与纤维素酶形成复合物,由于每个胶束通常都由几十个或几百个分子组成,因此导致荧光滴定实验所得到的纤维素酶的SDS 结合位点数比I TC 实验所得到的结合位点数高近两个数量级.绿色木霉产生至少七种胞外纤维素酶,包括两种外切葡聚糖纤维二糖水解酶:Cel7A 和Cel6A (也被称为CBH I 和CBH II,分别占总酶量的约50%和20%),五种内切葡聚糖酶:Cel7B,Cel5A,Cel12A,Cel61A 和Cel45A (也被称为EG1,EG2,EG3,EG4和EG5,依次占总酶量的约15%,10%,1%,<1%和<1%)[7].绿色木霉纤维素酶的主要组分Cel7A [6]是一种由两个相同亚基组成的同源二聚体蛋白,其序列中含有18个色氨酸、40个酪氨酸和48个带正电荷的氨基酸残基(包括8个组氨酸、26个赖氨酸和14个精氨酸).每个亚基约三分之一的残基构成了一个由2个大的面对面的反平行 折叠片组成的 三明治结构,除了4个短的 螺旋,其余都是连接 折叠股的环,而且这些环由9个二硫键部分稳定.这些环与 折叠股通过局部扭曲共同形成一条长度贯穿凹面折叠片的疏水隧道,这条隧道是纤维二糖及其衍生物的结合部位,也是Cel7A 的活性部位[6].两种外切葡聚糖纤维二糖水解酶都有一条包含活性部位的扁平隧道,隧道周边的氨基酸侧链可形成复杂的氢键和盐键网络,并且富含与糖作用的氨基酸残基,尤其是色氨酸,在Cel6A 和Cel7A 的疏水隧道中分别含有3个和4个色氨酸[6].蛋白质在不同浓度SDS 作用下引起的内源荧光变化,表明蛋白质的构象和引起内源荧光发射的氨基酸残基的微环境发生了变化.由于本文采用的280nm 是针对酪氨酸的激发波长,因此此时对蛋白质内源荧光有贡献的氨基酸残基包括色氨酸和酪氨酸两种残基.酪氨酸在280nm 被激发,能量转移到色氨酸上后发射.较低浓度的SDS 通过疏水相互作用与纤维素酶形成复合物,并破坏纤维素酶分子内的疏水相互作用使非极性基团暴露于介质水中,从而导致其荧光光谱最大发射峰位的红移和部分去折叠,对外切葡聚糖纤维二糖水解酶Cel7A 和Cel6A 来说,SDS 能部分破坏其活性部位存在的疏水隧道,从而使隧道中的色氨酸暴露到亲水环境中.这表明SDS 与纤维素酶的相互作用既包含结合反应也包含SDS 诱导该蛋白部分去折叠的过程,本文测得的本征摩尔结合焓应为结合反应和去折叠反应的摩尔焓变的综合.由于较高浓度的SDS 以胶束的形式与纤维素酶形成复合物,并诱导其二级结构中的 螺旋含量提高和蛋白质复性[19,33],同时1953No.12项 瑾等:等温滴定量热法和荧光滴定法研究十二烷基硫酸钠与纤维素酶的结合其活性部位的二硫键也起部分稳定作用,因此较高浓度SDS 反而对纤维素酶有一定的稳定和激活作用.References1Bayer, E. A.;Chanzy,H.;Lamed,R.;Shoham,Y.Curr.Opin.Struct.Biol.1998,8,548.2Himmel,M. E.;Ruth,M. F.;Wyman, C. E.Cu rr.Opin.Biotechnol.1999,10,358.3Yan, B. X.;Qi, F.;Zhang,Y. S.;Gao,P. J.Prog.Biochem.Biophys.1999,26,233(in Chi nese).(阎伯旭,齐飞,张颖舒,高培基,生物化学与生物物理进展,1999,26,233.)4Sch lein,M.Biochim.Biophys.Acta2000,1543,239.5Baht,M.K.Biotechnol.Adv.2000,18,355.6Divne, C.;St hlberg,J.;Reinikainen,T.;Ruohonen,L.;Pettersson,G.;Knowles,J.K. C.;T eeri,T.T.;Jones,T.A.Science1994,265,524.7Sandgren,M.;Shaw, A.;Ropp,T.H.;Wu,S.;Bott,R.;Cameron, A. D.;St hlberg,J.;Mitchinson, C.;Jones,T.A.J.Mol.Biol.2001,308,295.8Otzen, D. E.;Christiansen,L.;Sch lein,M.Protein Sci.1999,8,1878.9Stites,W. E.Chem.Rev.1997,97,1233.10Leavi tt,S.;Frei re, E.Cu rr.Opin.Struct.Biol.2001,11, 560.11Todd,M.J.;Gomez,J.A nal.Biochem.2001,296,179.12Weber,P. C.;Salemme, F.R.Curr.Opin.Struct.Biol.2003,13,115.13Liang,Y.;Li,J.;Chen,J.;Wang, C. C.Eur.J.Biochem.2001,268,4183.14Liang,Y.;Du, F.;Zhou, B.R.;Zhou,H.;Zou,G.L.;Wang, C.X.;Qu,S.S.Eu r.J.Bioche m.2002,269, 2851.15Demarest,S.J.;Martinez Yamout,M.;Chung,J.;Chen,H.;Xu,W.;Dyson,H.J.;Evans,R.M.;Wrigh t,P. E.Nature 2002,415,549.16Bordbar, A.K.;Moosavi Movahedi, A. A.;Saboury, A. A.T he rmochim.Acta1996,287,343.17Nielsen, A. D.;Borch,K.;Westh,P.Biochim.Biophys.Acta2000,1479,321.18Chatterjee, A.;Moulik,S.P.;Majhi,P.R.;Sanyal,S.K.Biop h ys.Chem.2002,98,313.19Parker,W.;Song,P.S.Biop h ys.J.1992,61,1435.20Wang,Z. F.;Huang,M.Q.;Zou,X.M.;Zhou,H.M.Biochim.Biophys.Acta1995,1251,109.21Douliez,J. P.;J gou,S.;Pato, C.;Moll , D.;Tran,V.;M arion, D.Eu r.J.Biochem.2001,268,384.22Garnier, C.;Lafitte, D.;Tsvetkov,P.O.;Barbier,P.;Leclerc Devin,J.;Millot,J. M.;Briand, C.;Makarov, A.A.;Catelli,M.G.;Peyrot,V.J.Biol.Chem.2002,277,12208.23Niedzwiecka, A.;Stepinski,J.;Darzynkiewicz, E.;Sonenberg, N.;S tolarski,R.Biochemistry2002,41,12140.24Akhter,S.;Vi gni ni, A.;Wen,Z.;English, A.;Wang,P.G.;Mu tus, B.Proc.Natl.Acad.Sci.U.S.A.2002,99,9172.25Barbier,P.;Peyrot,V.;Sarrazin,M.;Rener,G. A.;Briand,C.Biochemistry1995,34,16821.26Shang,Z. C.;Yi,P. G.;Yu,Q. S.;Lin,R. S.Acta Phys. Chim.Sin.2001,17,48(in Chinese).(商志才,易平贵,俞庆森,林瑞森,物理化学学报,2001, 17,48.)27Ashcroft, A. E.;Brinker, A.;Coyle,J. E.;Weber, F.;Kaiser,M.;Moroder,L.;Parsons,M.R.;Jager,J.;Hartl, U. F.;Hayer Hartl,M.;Radford,S.J.Biol.Chem.2002, 277,33115.28Encinas,M.V.;Gonz lez Nilo, F. D.;Goldie,H.;Cardemil,E.Eu r.J.Biochem.2002,269,4960.29Wang,L.;Liu,G. S.;Wang,L. S.;Zhang,Z. H.;Hou, J. H.;Guo,H. M.J.Henan Normal Univ.(Nat.Sci.) 1998,26,66(in Chi nese).(王琳,刘国生,王林嵩,张志宏,候进怀,郭惠敏,河南师范大学学报(自然科学版),1998,26,66.)30Spolar,R.S.;Ha,J. H.;Record,M.T.,Jr.Proc.Natl.Aca d.Sci.U.S.A.1989,86,8382.31Lin,Z.;Schwarz, F.P.;Eisenstein, E.J.Biol.Chem.1995,270,1011.32McClements, D.J.J.Agric.Food Chem.2000,48,5604. 33Moriyama,Y.;T akeda,ngmuir1999,15,2003.(A0303133 SONG,J.P.;DONG,H.Z.)1954 化学学报Vol.61,2003。
翻译
天然产物杂志从对细胞死亡敏感和抗癌细胞系列中的海绵生物中提取抗恶性细胞增值活性的二萜异腈的评价人名和通讯地址等等暂不翻译背景信息摘要:一个新的在1位的和在已知2,4位的腈基的二萜,是从加勒比海海绵Pseudoaxinella在人类体外癌症细胞使用的线检MTT比色法检测和定量和电子扫描显微镜中分离出来的。
化合物14显示的为人类的PC3前列腺凋亡敏感的肿瘤细胞系的活动,。
化合物3和4表现出类似的增长抑制个人为三个APOP凋亡敏感和3个抗凋亡的肿瘤细胞株的定量电子显微镜分析表明,化合物1和2施加他们的活动,通过细胞毒性个人ECTS 通过抑制细胞生长的个人ECTS化合物3和4。
这些结果确定潜在的铅化合物对海洋中二萜异腈抗癌药物的发现。
萜类化合物,包含异氰和异硫氰团体往往在海洋无脊椎动物中发现的次生代谢产物,例如海绵等在过去的15年,海洋天然产物因为他们的生物学活性乎寻常的异类功能化,在科学界很多成员引起了广泛的兴趣,事实上,一个最有力的海洋抗疟药化合物是最初分离的二萜异腈,从热带海绵状物,特点是由amphilectane骨架。
在我们的研究项目的框架中, 被认为是新颖的先导化合物可以视作典型的抗癌试验,加勒比海的海绵化学海绵伪黄色生物进行了研究。
本研究引发了分离了一个二萜异腈化合物(1)和三个已知的类似的(24), 因为不同的数目和位置的异腈官能团和双键,所有这一切都是紧密的联系的。
用比色MTT检测评价生长抑菌浓度IC50(即全球经济增长的一个给定的细胞参与增殖培养了三天的化合物减少50%的浓度)的不同双萜的浓度体外测试。
定量的电子显微镜(即计算捷尔- 辅助相衬显微镜)将被用来检测是否影响细胞性通过细胞毒性或抑制细胞生长的途径。
我们已经成功地完成例如其他类型的化合物的特点包括真菌次级代谢产物, 类固醇治疗,Amar——和yllidaceae生物碱2007 Pawlik在大巴哈马海岸考察的海绵Pseudoaxinella蔺沿的(甜味剂礁)的样品被切成被冻结的小块样本然后运送到实验室用MeOH和CHCl3分别萃取提纯。
松瘤提取物对青年学生精神应激所致自主神经平衡变化的影响
松瘤提取物对青年学生精神压力所致自主神经平衡变化的影响作者:Nobuyuki Yanagihara1,2,*,Miyuki Takada2,Haruna Ariyoshi2,Noriaki Satoh3,Takafumi Horishita4,邵辉5,Masato Tsutsui6,Taizo Kita7and Kagaku Azuma11〒807-8555,福岡県北九州市産業医科大学医学部解剖学講座2〒803-8511,福岡県北九州市九州栄養福祉大学食物栄養学部薬理学研究室3〒807-8555,福岡県北九州市産業医科大学共同利用研究センター4〒807-8555,福岡県北九州市産業医科大学医学部麻酔科5〒651-0087,神戸市徳潤株式会社研究推進部6〒903-0215,沖縄県西原市琉球大学医学部薬理学教室7〒573-0101,大阪府枚方市摂南大学農学部食品科学・人間栄養学科【摘要】据报道,松瘤提取物松康泉(Sho-ko-sen)及其成分SJ-2对乙酰胆碱(一种生理促分泌素)诱导的牛肾上腺髓质细胞分泌儿茶酚胺有抑制作用。
本研究旨在探讨松康泉对健康青年学生精神压力(内田-克雷佩林算术测验)诱导的自主神经活动的影响。
本研究以重复4次、每次15min 的内田-克雷佩林算术测验作为一种急性应激,通过标准六角形雷达图对心率变异性功率谱进行分析来测量自主神经平衡。
结果显示内田-克雷佩林算术测验导致安慰剂组受试者精神压力增加,表现为两个交感神经参数和一个副交感神经参数的升高,而松康泉组受试者的交感神经参数无明显变化,副交感神经参数有不同程度的变化。
本研究通过自主神经平衡试验发现,内田-克雷佩林算术测验引起了安慰剂组学生交感神经和副交感神经活动的增加,而松康泉组受试者的交感神经活动得到了抑制。
【关键词】自主神经平衡,心率变异性,精神压力,松瘤提取物(松康泉;Sho-ko-sen)1、介绍油松或马尾松树皮增生形成的松瘤,又称松瘤,是治疗关节疼痛、风湿病、神经痛、痛经等疾病的有效中药[1]。
不同酶消化法提取猪原代肝细胞的效果比较
532024.4·试验研究0 引言猪圆环病毒(PCV )是Circoviridae 科Circovirus 属的一种无囊膜的单链环状DNA 病毒。
在已知的4个血清型中,PCV2为猪易感的致病性病毒[1]。
PCV2感染会诱导宿主免疫抑制引起猪圆环病毒病(PCVD ),包括断奶仔猪多系统衰竭综合征、新生仔猪先天性脑震颤、皮炎与肾病综合征、猪呼吸道病综合征、母猪繁殖障碍等,给全世界养猪业带来较大的经济损失,是世界各国的兽医与养猪业者公认的造成重大影响的猪传染病[2]。
PCV2的感染在猪生长发育的不同阶段有不同的组织嗜性。
但无论是胎儿阶段还是出生后,肝细胞都是PCV2感染和复制的靶细胞。
因此,PCV2也被视为一种能够诱导猪肝炎的病毒[3]。
且PCV2诱导的肝细胞凋亡在PCV2引发的相关病变和疾病的发病机制中具有关键性作用[4]。
因此,方便、快捷地获取大量有活性的猪肝细胞对于研究PCVD 的致病机制具有重大意义。
目前获取肝细胞常用的方法主要包括机械分离细胞法、非酶分离细胞法、离体酶消化法和酶灌流法等[5]。
因此,本试验采用简便、经济、无需特殊设备、仅需部分肝组织的离体酶消化法,比较不同酶消化分离猪原代肝细胞的效果,为一般实验室提取分离大量有活性的猪肝细胞提供参考。
1 材料与方法1.1 材料1.1.1 主要试剂新鲜猪肝组织,Hank's 平衡盐溶液(HBSS ),磷酸盐缓冲液(无菌PBS ),4%多聚甲醛(PFA ),收稿日期:2024-01-27基金项目:国家自然科学基金项目:复杂器官与组织在脾脏内的功能性再生(32230056)作者简介:周徐倩(1999-),女,汉族,浙江温州人,硕士在读,研究方向:组织工程与再生医学。
*通信作者简介:董磊(1978-),男,汉族,安徽阜阳人,博士,教授,研究方向:组织工程与再生医学、生物材料。
周徐倩,董磊.不同酶消化法提取猪原代肝细胞的效果比较[J].现代畜牧科技,2024,107(4):53-55. doi :10.19369/ki.2095-9737.2024.04.014. ZHOU Xuqian ,DONG Lei .Comparison of the Effect of Different Enzyme Digestion Methods on Extraction of Porcine Primary Hepatocytes[J].Modern Animal Husbandry Science & Technology ,2024,107(4):53-55.不同酶消化法提取猪原代肝细胞的效果比较周徐倩,董磊*(南京大学,江苏 南京 210023)摘要:猪肝细胞是猪圆环病毒的靶细胞,简单快速地提取猪原代肝细胞对于研究猪圆环病毒病的致病机制具有重要意义。
芳烃抽提溶剂环丁砜的劣化及其在线净化技术
39环丁砜[1-3]作为抽提溶剂自20世纪60年代以来广泛应用于芳烃抽提工艺中,与其它抽提溶剂相比,环丁砜溶剂具有芳烃溶解能力强、芳烃选择性好、沸点高、稳定性优良的特点,无论是在液-液抽提工艺还是抽提-蒸馏工艺中大部分都使用其作为溶剂。
某公司85万t/a芳烃抽提装置采用北京石油化工科学研究院SED抽提蒸馏工艺[3],以环丁砜为抽提溶剂,该项目于2014年8月建成投产。
经过一段时间的运行,发现环丁砜溶剂的pH下降、颜色逐渐变深、变得浑浊、氯离子浓度富集,需要添加MEA来调节pH,中和酸性物质。
但是随着运行时间的延长,环丁砜持续劣化,氯离子进一步富集,已经无法通过简单添加MEA来解决问题。
环丁砜劣化生产的酸性物质,以及系统中富集的氯离子给装置带来严重腐蚀问题,换热器等设备被腐蚀发生泄漏,装置多次短期停工检修。
因此,公司决定增设一套环丁砜净化装置,用于脱除溶剂系统中积聚的酸性物质和氯离子,彻底解决环丁砜劣化带来的生产波动和腐蚀问题。
引起环丁砜劣化的原因有很多[4-5],目前最有效的解决办法是通过离子交换法[6-7]脱除其中的酸性物质,该方法是通过阴离子交换树脂将环丁砜中的酸性物质和氯离子交换脱除。
顾侃英等[6]利用阴离子交换树脂来脱除环丁砜中的酸性物质,并通过碱再生树脂达到连续脱除酸性物质和氯离子的目的,取得了很好的效果。
李明玉[7]研究了不同阴离子交换树脂对环丁砜脱除氯离子的影响,认为大孔阴离子交换树脂在一定的条件下具有非常优异的环丁砜脱氯能力。
本文针对某公司85万t/a芳烃抽提装置中环丁砜的劣化现象,在实验室模拟北京思践通科技发展有限公司在线环丁砜净化技术,研究脱除抽提贫液环丁砜中的酸性物质、悬浮物、浮油、氯离子等,指导在线环丁砜净化装置的运行,为芳烃抽提装置平稳运行提供了可靠的保障。
1 试验部分1.1 实验及装置环丁砜样品:取自某公司85万t/a芳烃抽提装置,密闭保存。
小型试验平台:1)活性炭吸附装置,20mm内径的玻璃砂芯层析柱中装入约30mL颗粒活性炭(椰壳,颗粒平均直径2mm),活性炭上方压入玻璃棉和磁珠固定;2)过滤装置,60mm的布氏漏斗中铺设2层0.5μm过滤精度的滤布,滤布包裹整个布氏漏斗内壁,确保过滤精度,用SHZ-Ⅲ型水循环式真空泵抽气过滤;3)离子交换装置,20mm内径的玻璃砂芯层析柱中装入约30mL Eliteru树脂,树脂上方压入玻璃棉和磁珠固定。
异鼠李素对照品
异鼠李素_CAS:480-19-3
异鼠李素是一种黄酮类化合物,属于甲基化代谢产物,具有抗食管癌、健胃消食的功效,它可以从银杏叶、白果、绞股蓝、黄花蒿当中分离取得。
【名称】异鼠李素
【别名】槲皮素3'-甲基醚
【英文名】Isorhamnetin
【英文别名】Quercetin 3'-methyl ether;EINECS 207-545-5
【IUPAC名称】
-3,5,7-三羟基-2-(4-羟基-3-甲氧基苯基)苯并吡喃-4-酮
【Isomeric SMILES】
COC1=C(C=CC(=C1)C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O
【分子式】C16H12O7
【分子量】316.265
【CAS号】480-19-3
【品牌】格利普生物科技
【检测方式】高效液相色谱法HPLC≥98%
【鉴才、定方法】Ms;NMR
【密度】1.662
【沸点】601.2°C
【稳定性】本产品在正常的温度和环境下比较稳定
【性状】本品为黄色颗粒结晶
【功效】抗食管癌、健胃消食
【提取来源】本品来源于银杏叶、白果、绞股蓝、黄花蒿。
迷迭香酸对过氧化氢处理下的皮肤黑色素瘤的抗氧化作用(原文翻译)
迷迭香酸(罗丹酚酸)对H2O2处理过的皮肤黑色素瘤细胞的抗氧化作用Sun Mi Yoo1 and Jeong Ran Kang2*1.韩国光州500-741号东冈大学美容系2.韩国首尔143-701号建国大学生物工程系2009.2.6收到 2009.4.17接收本学科旨在检测迷迭香酸对人工孵育的皮肤黑色素瘤细胞在ROS下的抗氧化作用。
通过XTT比色法,以细胞毒性和抗氧化作用来分析细胞粘附活性,DPPH自由基清除活性以及H2O2处理1-10h和未经处理的两种情况下乳酸脱氢酶的活性。
用20-110 μM 的H2O2处理皮肤黑色素瘤细胞5-7h后,细胞活性的降低呈剂量和时间依赖性。
通过XTT比色法测得H2O2的半抑制浓度(IC50 )为90μM。
同时H2O2增强了LDH细胞的剂量依赖性。
用50-90μM的H2O2处理8h后测得LDH50为60 μM H2O2。
迷迭香酸能增强细胞活性和DPPH自由基清除活性,降低乳酸盐脱氢酶的活性。
细胞的H2O2处理证实了对人工孵育的皮肤黑色素瘤细胞的强抗氧化作用。
通过H2O2的处理,迷迭香酸能在细胞内能增强细胞活性和DPPH 自由基清除活性,降低乳酸盐脱氢酶的活性。
这被认为是迷迭香酸对ROS(ROS)如H2O2的抗氧化作用。
Key words:DPPH-radical scavenging, LDH, rosmarinic acid, XTT assay关键字:DPPH自由基清除活性,乳酸脱氢酶,迷迭香酸,XTT比色法据研究发现,ROS通过氧化应激对细胞的损伤和一些脑部疾病比如帕金森症或心脏疾病例如心肌梗塞之间有很大的关联[Difazio et al., 1992; Delanty and Dichter, 1998].尤其是研究人员认为ROS是皮肤老化的一个主要的因素后,一直试图从ROS方面研究衰老。
[Yokozawa et al., 1998].据研究表明,ROS的氧化应激会通过萎缩细胞引起各种疾病,例如超氧自由基、H2O2(H2O2)或羟基自由基的巯基蛋白反应中断酶的活性,破坏脱氧RMA(DNA)或RMA(RNA),诱导细胞膜脂质过氧化。
开启片剂完整性的窗户(中英文对照)
开启片剂完整性的窗户日本东芝公司,剑桥大学摘要:由日本东芝公司和剑桥大学合作成立的公司向《医药技术》解释了FDA支持的技术如何在不损坏片剂的情况下测定其完整性。
太赫脉冲成像的一个应用是检查肠溶制剂的完整性,以确保它们在到达肠溶之前不会溶解。
关键词:片剂完整性,太赫脉冲成像。
能够检测片剂的结构完整性和化学成分而无需将它们打碎的一种技术,已经通过了概念验证阶段,正在进行法规申请。
由英国私募Teraview公司研发并且以太赫光(介于无线电波和光波之间)为基础。
该成像技术为配方研发和质量控制中的湿溶出试验提供了一个更好的选择。
该技术还可以缩短新产品的研发时间,并且根据厂商的情况,随时间推移甚至可能发展成为一个用于制药生产线的实时片剂检测系统。
TPI技术通过发射太赫射线绘制出片剂和涂层厚度的三维差异图谱,在有结构或化学变化时太赫射线被反射回。
反射脉冲的时间延迟累加成该片剂的三维图像。
该系统使用太赫发射极,采用一个机器臂捡起片剂并且使其通过太赫光束,用一个扫描仪收集反射光并且建成三维图像(见图)。
技术研发太赫技术发源于二十世纪九十年代中期13本东芝公司位于英国的东芝欧洲研究中心,该中心与剑桥大学的物理学系有着密切的联系。
日本东芝公司当时正在研究新一代的半导体,研究的副产品是发现了这些半导体实际上是太赫光非常好的发射源和检测器。
二十世纪九十年代后期,日本东芝公司授权研究小组寻求该技术可能的应用,包括成像和化学传感光谱学,并与葛兰素史克和辉瑞以及其它公司建立了关系,以探讨其在制药业的应用。
虽然早期的结果表明该技术有前景,但日本东芝公司却不愿深入研究下去,原因是此应用与日本东芝公司在消费电子行业的任何业务兴趣都没有交叉。
这一决定的结果是研究中心的首席执行官DonArnone和剑桥桥大学物理学系的教授Michael Pepper先生于2001年成立了Teraview公司一作为研究中心的子公司。
TPI imaga 2000是第一个商品化太赫成像系统,该系统经优化用于成品片剂及其核心完整性和性能的无破坏检测。
罗氟司特
罗氟 司 特 化 合 物 的 专 利 文 献 有 IN2004MU00478、 WO2005026095、WO2004033430、US6822114。
参考文献:
[1] WILLIAMS E L,WU T. Process for production of fluoroalkoxysubstituted benzamides ( roflumilast and intermediates ) : US, 6822114 B1 [P]. 2004 - 11 - 23.
第 21 卷 第 4 期 2011 年 8 月 总 102 期
中国药物化学杂志 Chinese Journal of M edicinal Chemistry
文章编号: 1005 - 0108( 2011) 04 - 0332 - 01
罗氟司特( roflumilas No. 4 p. 332 Aug. 2011 Sum 102
檨檨檨檨殎 新药信息
檨殎
罗氟司特( roflumilast) 是由 Forest Lab 的子公司 Forest Pharmaceuticals 生产上市的磷酸二酯酶-4 ( PDE-4) 抑 制剂,商品名 Daxas。2011 年 2 月 28 日,roflumilast 经美 国 FDA 批准上市,用于慢性阻塞性肺炎( COPD) 的治疗。 罗氟司特的中文化学名称: 3-( 环丙基甲氧基) -N-( 3,5-二 氯吡啶-4-基) -4-( 二氟甲氧基) 苯甲酰胺; 英文化学名称: N-( 3,5-dichloropyridin-4-yl ) -3-cyclopropylmethoxy-4-difluoromethoxybenzamide; 分 子 式: C17 H14 Cl2F2N2O3; 分 子 量: 403. 22; CAS 登记号: 162401-32-3。
凹凸棒土在水处理中应用的研究进展
凹凸棒土在水处理中应用的研究进展王郑;沈巍;林子增;孔宇;王峰;杨铠诚【摘要】凹凸棒土是一种层链状过渡结构的以含水富镁硅酸盐为主的粘土矿物,在水处理领域已经得到初步应用.综述了国内外有关凹凸棒土在水处理中应用的研究进展,为凹凸棒土在水处理领域中的应用提供理论依据和技术参考.%Attapulgite is one kind of clay mineral with layer chain transition structure and rich magnesium silicates. It has been preliminary applied in water treatment field. The research progress on the application of atlapulgite in water treatment hoth at home and abroad was reviewed , which provided theoretical and technical references for the application of attapulgite in water treatment field.【期刊名称】《安徽农业科学》【年(卷),期】2012(040)016【总页数】3页(P9048-9050)【关键词】凹凸棒土;水处理;应用;研究进展【作者】王郑;沈巍;林子增;孔宇;王峰;杨铠诚【作者单位】南京林业大学土木工程学院,江苏南京210037;南京市市政设计研究院有限责任公司,江苏南京210008;南京林业大学土木工程学院,江苏南京210037;南京市市政设计研究院有限责任公司,江苏南京210008;南京市市政设计研究院有限责任公司,江苏南京210008;南京市市政设计研究院有限责任公司,江苏南京210008【正文语种】中文【中图分类】S181.3凹凸棒土简称凹土(attapulgite),又名坡缕石(palygorskite),是一种层链状过渡结构的以含水富镁硅酸盐为主的粘土矿物[1]。
电化学脱合金的英文
电化学脱合金的英文Electrochemical Dealloying: Principles, Applications, and Challenges.Introduction.Electrochemical dealloying is a process that involves the selective removal of one or more constituent metalsfrom a multicomponent metallic alloy by electrochemical means. This process, often referred to as "dealuminization" in the context of aluminum-based alloys, has found widespread applications in materials science, nanotechnology, and energy conversion and storage systems. The primary advantage of electrochemical dealloying lies in its ability to create nanostructured materials with unique physical and chemical properties, such as high surface area, porosity, and conductivity.Principles of Electrochemical Dealloying.The electrochemical dealloying process occurs when an alloy is immersed in an electrolyte solution and apotential is applied between the alloy and a counter-electrode. The applied potential drives the electrochemical reactions at the alloy surface, resulting in thedissolution of one or more constituent metals. The dissolution rate of each metal depends on its electrochemical properties, such as the redox potential and electrochemical activity in the given electrolyte.During the dealloying process, the alloy is typically the anode, and the counter-electrode is the cathode. The anode is connected to the positive terminal of the power source, while the cathode is connected to the negative terminal. When the potential is applied, the alloy begins to dissolve, and the dissolved metal ions migrate towards the cathode. At the cathode, the metal ions are reduced and deposited on the surface, forming a new metal layer.The rate of metal dissolution during electrochemical dealloying is controlled by several factors, including the electrolyte composition, applied potential, temperature,and alloy composition. By optimizing these parameters, researchers can precisely control the morphology, porosity, and composition of the resulting nanostructured materials.Applications of Electrochemical Dealloying.Electrochemical dealloying has found numerous applications in materials science and engineering. Some of the key applications are discussed below:1. Nanoporous Metals: Electrochemical dealloying is widely used to create nanoporous metals with high surface area and porosity. These materials exhibit unique physical and chemical properties that are beneficial in various applications, such as catalysis, sensors, and energy storage.2. Battery Materials: Nanoporous metals produced by electrochemical dealloying have been explored as anode materials for lithium-ion batteries. The high porosity and surface area of these materials enhance the lithium storage capacity and improve the battery's performance.3. Fuel Cells: Electrochemical dealloying has also been used to create nanostructured catalysts for fuel cells. These catalysts exhibit enhanced activity and durability, which are crucial for efficient fuel cell operation.4. Biomedical Applications: Nanoporous metals produced by electrochemical dealloying have potential applicationsin biomedicine, such as drug delivery, tissue engineering, and implant materials. The porous structure of these materials allows for controlled drug release and improved cell adhesion and growth.Challenges and Future Directions.Despite the significant progress made inelectrochemical dealloying, several challenges remain to be addressed. One of the primary challenges is the control of the dealloying process at the nanoscale, as it is crucialfor achieving the desired material properties. Additionally, the development of new electrolytes and optimization of dealloying parameters are ongoing research efforts.Future research in electrochemical dealloying could focus on exploring new alloy systems, optimizing the dealloying process for specific applications, and understanding the fundamental mechanisms underlying metal dissolution and nanostructure formation. Furthermore, the integration of electrochemical dealloying with other nanotechnology approaches, such as lithography and templating, could lead to the development of even more advanced materials with tailored properties.Conclusion.Electrochemical dealloying is a powerful technique for creating nanostructured materials with unique physical and chemical properties. Its applications span multiple fields, including materials science, energy conversion and storage, and biomedicine. While significant progress has been madein this field, there are still numerous challenges and opportunities for further research and development. With the advancement of nanotechnology and materials science, electrochemical dealloying holds promise for enabling thecreation of next-generation materials with improved performance and functionality.。
tetramer四聚体 名词解释
tetramer四聚体名词解释tetramer四聚体是指由四个相同或相似的分子组成的结构单元。
这个术语通常用于描述蛋白质或核酸分子之间的结合形式。
Tetramer (英语解释):A structure composed of four identical or similar molecules. This term is often used to describe the binding form between protein or nucleic acid molecules.以下是21句双语例句:1.这个蛋白质形成了一个tetramer四聚体。
The protein formed a tetramer.2.这种药物通过结合tetramer四聚体来抑制病毒复制。
This medication inhibits virus replication by binding to tetramer.3.研究显示,该核酸分子通过形成tetramer四聚体来进行功能调控。
Studies have shown that the nucleic acid moleculeregulates its function by forming tetramers.4.这些相似的蛋白质分子可以形成tetramer四聚体结构。
These similar protein molecules can form tetrameric structures.5.我们成功地解析了这个tetramer四聚体的晶体结构。
We successfully solved the crystal structure of this tetramer.6.这种药物通过干扰tetramer的形成来治疗疾病。
This medication treats the disease by interfering withthe formation of tetramers.7.这个多肽链具有tetramer四聚体的抑制活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Hazardous Materials 165(2009)148–155Contents lists available at ScienceDirectJournal of HazardousMaterialsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j h a z m atSorptive removal of tetracycline from water by palygorskitePo-Hsiang Chang a ,Zhaohui Li a ,b ,∗,Tsai-Luen Yu a ,Sandagdori Munkhbayer a ,Tzu-Hsing Kuo a ,Yu-Chiao Hung a ,Jiin-Shuh Jean a ,Kao-Hung Lin caDepartment of Earth Sciences,National Cheng Kung University,1University Road,Tainan 70101,Taiwan bDepartment of Geosciences,University of Wisconsin-Parkside,900Wood Road,Kenosha,WI 53144,USA cSustainable Environmental Research Center,National Cheng Kung University,Tainan 70101,Taiwana r t i c l e i n f o Article history:Received 10July 2008Received in revised form 22September 2008Accepted 23September 2008Available online 7October 2008Keywords:ClayPalygorskite Pharmaceutical Sorption Tetracyclinea b s t r a c tExtensive use of pharmaceuticals and growth hormone in farm animal and live stocks has resulted in their frequent detection in soils,groundwater,and wastewater.The fate and transport of these compounds are strongly affected by their sorptive behavior to the soil minerals and humic materials.In this research,we conducted the sorption of tetracycline (TC),a common antibiotic,on palygorskite (PFL-1),a fibrous clay mineral of high surface area and high sorptivity towards organic compounds.The results showed that the sorption capacity of TC on PFL-1was as high as 210mmol/kg at pH 8.7.The sorption was relatively fast and reached equilibrium in 2h.Solution pH and ionic strength had significant effects on TC sorption.The sorption of TC by palygorskite is endothermic and the free energy of sorption is in the range of −10to −30kJ/mol,suggesting a strong physical sorption.The X-ray diffraction patterns before and after TC sorption revealed no changes in d -spacing and intensity under different pH and initial TC concentrations,indicating that the sorbed TC molecules are on the external surface of the mineral in contrast to inter-calation of TC into swelling clays,such as montmorillonite.The small positive value of entropy change suggested that TC molecules are in disordered arrangement on palygorskite surfaces.Surface sorption of TC on PFL-1is further supported by the derivative of gravimetric analysis and by the calculation of the amount of TC sorption normalized to the surface area.The results suggest that palygorskite could be a good candidate to remove TC from wastewater containing higher amounts of TC.©2008Elsevier B.V.All rights reserved.1.IntroductionA recent survey in 1999–2000on 139US streams revealed that among the 95organic wastewater contaminants 82were found [1].Of these contaminants,antibiotics and growth hormones became more frequently detected.For example,tetracyclines (TCs),among others,were often detected in the final effluents after treatment from eight wastewater treatment plants (WWTPs)located in five Canadian cities [2].An 80%frequency of detection with aver-age influent concentrations of 48±3and 47±4g/L and average effluent concentrations of 3.6±0.3and 4.2±0.4g/L for TC and oxytetracycline (OTC)were reported from several WWTPs in Wis-consin [3].To remove hydrophobic organic compounds from water,a sor-bent with higher total organic carbon content will achieve a better effect.However,for ionizable compounds,their affinity to solid∗Corresponding author at:Geosciences Department,University of Wisconsin-Parkside,900Wood Road,Box 2000,Kenosha,WI 53144-2000,USA.Tel.:+12625952487;fax:+12625952056.E-mail address:li@ (Z.Li).surface is strongly affected by the solution pH and their hydropho-bicity under different pH conditions.TCs are quite hydrophilic.Their water solubility is in the ranges of g/L [4],which resulted in a lower sorption to activated carbon [5].Furthermore,TCs could have different charges on different site depending on solution pHs (Fig.1).When solution pH is below 3.3,TCs exist as a cation,+00,due to the protonation of dimethylammonium group.At pH between pH 3.3and 7.7,TCs exist as a zwitterion,+−0,due to the loss of a proton from the phenolic diketone moiety.At solution pH greater than 7.7,a monovalent anion,+−−or a divalent anion 0−−,from the loss of protons from the tricarbonyl system and phenolic diketone moiety will prevail [6].Studies of TC sorption on soils and clays began as early as the 1950s [7],but are still limited [8].Recent studies on TC removal were focused on using montmorillonite [6,9],less often on kaoli-nite,oxides,silica,and other soil components [9–12].Palygorskite,formed in arid environment,is a special type of clay mineral made of periodic reversal of the building blocks so that the interlayer space is made of one dimensional channel,thus limiting its expandability.Even though,it is still a good sorbent for a variety of compounds due to its large surface area and moderate cation exchange capac-ity.Although most studies were focused on using palygorskite to0304-3894/$–see front matter ©2008Elsevier B.V.All rights reserved.doi:10.1016/j.jhazmat.2008.09.113P.-H.Chang et al./Journal of Hazardous Materials165(2009)148–155149Fig.1.Molecular structure of TC on an planar view(a)and speciation of TC under different pHs(b).remove heavy metals from water such as Cd[13],Cu[14],Pb,Ni, and Cr(VI)[15],tests on using palygorskite to remove organic compounds were also reported.Spectroscopic studies indicated that most of the sorbed2,2 -bipyridyl molecules are coordinated to Lewis acidic centers of attapulgite as bidentate ligands[16]. Interaction of nicotinamide with palygorskite originated from coor-dination of nicotinamide molecules to surface hydroxyls and/or to Lewis acidic centers by hydrogen bonding interaction through the ring nitrogen lone pairs[17].The most important example of using palygorskite as sorbent is Maya Blue.Sorption of indigo in the palygorskite channel resulted in the longevity of the blue dye[18]. Although extensive studies of using palygorskite as sorbents have been carried out,and palygorskite is also used as additives to phar-maceuticals,there has been no report on the sorptive interaction between TCs and palygorskite.The goal of this research is to study the sorption of TC on palygorskite under different physical and chemical conditions in conjunction with X-ray diffraction(XRD),Fourier transform infrared(FTIR),and thermogravimetric(TG)analyses in order to evaluate the feasibility and applicability of using palygorskite as a potential sorbent to treat wastewater containing higher amounts of TCs.2.Experimental2.1.MaterialsThe palygorskite used is a reference clay PFL-1obtained from the Source Clay Minerals Repository,Purdue University,West Lafayette, IN,and was used as received.X-ray powder diffraction revealed trace amount of smectite in it.Scanning electron microscope showed shortfibers for palygorskite(∼0.1m wide and1–2m long).The CEC measured by an ammonia electrode method is 165meq/kg compared to175meq/kg as reported for reference clay [19].The surface area measured by single point BET was126m2/g.Tetracycline hydrochloride was purchased from Calbiochem (Darmstadt,Germany).It has a formula weight of480.9g/mol,p K a1, p K a2,p K a3values of3.3,7.7,9.7,respectively[6],and log K ow value of−2.2to−1.3[20,21].2.2.Batch experimentFor all batch experiments,the amount of PFL-1used was0.10g, while the volume of solution used was20mL.They were com-bined in50mL centrifuge tubes and mixed on a reciprocal shaker at150rpm.For batch kinetic study,the initial TC concentration was200mg/L while pH was maintained at5–6.The mixtures were shaken for0.25,0.5,1.0,2.0,4.0,8.0,and24.0h.For pH sorption edge experiment,the initial TC concentration was200mg/L,while the pH varied from3.5to11with a0.5increment.For ionic strength experiment,the initial TC concentration was200mg/L,while the ionic strength of the solution was adjusted with0.001,0.01,and 0.1M of NaCl.For temperature dependent sorption,the initial TC concentration was200mg/L,the pH was5–6,while the temper-ature was maintained at298,313,and328K.For batch sorption study,the initial concentrations were50,100,200,400,600,and 800mg/L,while the pH was adjusted to pH1,5–6,8.7,and11with either HCl or NaOH.Under these pHs,the TC will be a cation,+00,a zwitterion,+−0,an anion,+−−,and a divalent anion0−−(Fig.1).During mixing and storage processes,the centrifuge tubes were wrapped with aluminum foils to prevent light induced decomposi-tion.After mixing,samples were centrifuged at7600rpm for20min and the supernatant analyzed for equilibrium TC concentrations by an HPLC method.All experiments were run in duplicate.The amount of TC sorbed was determined by the difference between initial and equilibrium concentrations.2.3.Methods of analysesThe TC was quantified by an HPLC method.A GBC1202 pump was used for mobile phase delivery,a GBC LC1205UV–vis detector at a wavelength of254nm was used for TC detection, while an Asahipak ODP-504E column(Shodex)was used for species separation.The mobile phase is made of0.01M phospho-ric acid/acetonitrile(75:25)with afinal pH of2.5.At aflow rate of 1.5mL/min,the retention time of TC is6min.The standards were adjusted to the same pH as the experiments.Calibration was made with5standards between5and100mg/L with an r2no less than 0.99.The metal cations desorbed were analyzed by ion chromatogra-phy(Dionex100)with an IonPac Cs12A column(4mm×250mm) and a mobile phase made of1.922mL of20mM methanesulfonic acid in1L of water.At aflow rate of1mL/min,the retention time for Na+,K+,Mg2+,and Ca2+was3.2,4.4,5.2,and6.0min,respectively.Powder XRD analyses were performed on a Rigaku D/Max-IIIa diffractometer with Ni-filtered Cu K␣radiation at35kV and20mA. Samples were scanned from2◦to30◦2Âat1◦/min with a scanning step of0.01◦/step.A1◦divergent slit and scatter slit and0.3mm receiving slit were used.The FTIR spectra were acquired on a Spectrum GX spectrom-eter(PerkinElmer)using KBr pressing method.The spectra were obtained by accumulating256scans at a resolution4cm−1in the range of4000–400cm−1.The TG analyses were performed on a Pryis Diamond TG/DTA (PerkinElmer).The heating rate was10◦C/min under air condition. The initial sample weight was between5and9mg.150P.-H.Chang et al./Journal of Hazardous Materials165(2009)148–155Fig.2.Sorption kinetics of TC on palygorskite.The solid line is pseudo-second-order fit to the observed data.Insert is the linear plot of Eq.(1).3.Results and discussion3.1.TC sorption kineticsPrevious results of TC sorption on rectorite showed that24h were needed to reach equilibrium[22].For this reason,TC kinetic study was conductedfirst.The results are plotted in Fig.2andfit-ted to several kinetic models.The pseudo-second-order kinetics model,which was used to describe chemisorption and has been widely applied to the sorption of pollutants from aqueous solutions in recent years,fits the experimental data best.The integrated rate law of the pseudo-second-order kinetics model is[23]:q t=kq2e t1+kq e t(1)where k(g/mg-h)is the rate constant of sorption,q e(mg/g)the amount of TC sorbed at equilibrium,and q t(mg/g)is the amount of TC sorbed on the surface of the sorbent at any time,t.Eq.(1)can be re-arranged into a linear form[24,25]t q t =1kq2e+1q et(2)where kq2e is the initial rate(mg/g-h).The coefficient of determina-tion r2is0.9992,the initial rate is120mg/g-h,the rate constant is 0.145g/mg-h,and the q e is29mg/g,when the kinetic data arefitted to Eq.(2).By just visualize the data in Fig.2one could see that the sorption reached equilibrium in2h,which is much faster than TC sorption on rectorite[22].Although an equilibrium could be estab-lished quickly,in subsequent experiments the equilibration time was set for24h.3.2.TC sorption isothermSorption of TC on PFL-1under pH1.5,5–6,8.7and11are plotted in Fig.3.The experimental data werefitted well by the Langmuir type isotherm:S=K L S m C L1+K L C L(3)where C S is the amount of TC sorbed on solid at equilibrium(mg/g), C L the equilibrium solute concentration(mg/L),S m the apparent sorption capacity or sorption maximum(mg/g),and K L is the Lang-muir coefficient(L/mg).Eq.(3)can be rearranged to a linear formC L C S =1K L S m+C LS m(4)Fig.3.Sorption isotherm of TC on palygorskite.The lines are Langmuirfit to theobserved data.Table1Langmuir sorption coefficient and TC sorption capacity on PFL-1.pH K L(L/mg)S m(mg/g)Area occupied/molecule(Å2)r21.50.033611620.985–60.032561700.9978.70.027991000.96110.033234170.97so that K L and S m can be determined by a linear regression.TheLangmuir sorption parameters together with the regression coeffi-cient r2are listed in Table1.TC sorption maxima are61,59,99,and23mg/g,corresponding to130,120,210,and50mmol/kg at pH1.5,5–6,8.7and11.Thefirst two values are slightly less than the CEC,the third value is greater than the CEC,while the last one is muchsmaller than the CEC of the mineral.At pH1.5,TC is in its cationic form of TCH3+.If cation exchangeis the only mechanism for TC sorption by PFL-1,the TC sorp-tion maximum should be the highest at low pH.At pH5–6,theTC is in its zwitterionic form TCH20.Even though,the amountof metal cations desorbed is positively correlated to the amountof TC sorbed(Fig.4).The amount of K+,Na+,and Mg2+releasedare low and are almost invariable with respect to the amount ofTC sorbed.The major cation desorbed is Ca2+and the amountof Ca2+desorbed is much larger than that of TCsorbed(Fig.4).The desorption of exchangeable cations with TC uptake confirmsthat cation exchange still played an important role even if theTC molecules are in zwitterionic form[22].On the other hand,Fig.4.Amount of Na( ),K( ),Mg(♦)Ca( ),and total cation( )desorbed asaffected by TC sorption on palygorskite.P.-H.Chang et al./Journal of Hazardous Materials 165(2009)148–155151the extra Ca 2+desorption associated with TC sorption could be attributed to the replacement of H +for Ca 2+as the TC used is in HCl form.At pH 8.7,although the TC is in its anionic form TCH −,its sorption reached a maximum of 210mmol/kg,much higher than the CEC of the clay minerals.Due to the presence of pos-itively charged functional group of dimethylammonium (Fig.1),cation exchange may still play a role.However,the two negative charges need to be balanced by the metal cations in solution or could be interacting with the Lewis acid sites on palygorskite sur-faces.At pH 11,the positively charged dimethylammonium group is no longer present.Therefore,the sorption maximum is reduced to 50mmol/kg.A search using tetracycline and palygorskite on Scopus returned zero result.Thus,these values cannot be compared to the same sorbate on the same sorbent.However,they are much lower than 800mg/g determined for OTC sorption on montmorillonite [6],but slight higher than 27mg/g for OTC sorption on a similar montmoril-lonite [9].These values are also lower than TC sorption on rectorite that is made of a regular 1:1interstratification of an illite layer and a montmorillonite layer [22].TC sorption on PFL-1reached the high-est at pH 8.7compared to pH 5on montmorillonite [9]and pH 4–5on rectorite [22].3.3.Effect of pH on TC sorption edgeThe amount of TC sorbed varied from 17to 27mg/g or 42to 93%at an initial concentration of 200mg/L and a liquid/solid ratio of 200,and reached maximum at pH 8–9.5(Fig.5).The trend in TC sorption as affected by pH agrees well with the TC sorption isotherm study.The pH effect on TC sorption on PFL-1is completely different from TC sorption on Na-bentonite,on which higher amounts of TC sorption is associated with low pH [9,26].On the other hand,a similar observation was found for OTC sorption on iron oxide with the contaminant distribution coefficient (K d )maximized at pH 8[10].3.4.Effect of ionic strength on TC sorptionThe amount of TC sorbed is inversely proportional to the loga-rithmic concentration of the background ionic strength as indicated by the NaCl concentration (Fig.6).At an ionic strength of 0.001M NaCl,82%of the input TC was removed from water.On the con-trary,only 56%of input TC sorbed on PFL-1at an ionic strength of 0.1M NaCl.The competing of present ion against TC for sorption sites shows that part of the TC sorption was due to ion exchange mechanism,same as that observed for TC sorption on other clays [6,9,22].Fig.5.Sorption of TC on palygorskite as affected by solutionpH.Fig.6.Sorption of TC on palygorskite as affected by solution ionic strength.The line is a linear fit on a semi-log scale showing reverse relationship between TC sorbed and solution ionic strength.3.5.Effect of temperature on TC sorptionThe sorption of TC on PFL-1under different pH and tempera-ture conditions can be seen in Fig.7.The relationship between K d ,which is the ratio of the amount of TC sorbed to the equilibrium TC concentration,and the thermodynamic parameters of sorption is expressed as ln K d =−H RT + SR(5)where H is the change in enthalpy, S is the change in entropy,Ris the gas constant,and T is the reaction temperature in K.The free energy of sorption can be determined by G = H −T S(6)The calculated thermodynamic parameters are listed in Table 2.The negative G value indicates attractive interaction between TC and PFL-1,thus the sorption of TC on PFL-1is spontaneous.The posi-tive H value suggests that TC sorption on PFL-1is an endothermic process.Therefore,increases in temperature should facilitate the sorption of TC onto PFL-1.As the K d value for TC sorption on paly-gorskite is much greater than 1and the H is positive,which will results in a positive S .The small positive S indicates that the sorption is spontaneous due to an increase in system randomness as TC molecules remove themselves from water onto solid surfaces.It may also suggest that the sorbed TC molecules might adopt a randomly oriented manner instead of arranging themselves in an orderly pattern on the external surface of palygorskite.ComparedFig.7.Influence of temperature on TC sorption on palygorskite.The lines are fitted to the observed data based on Eq.(5).152P.-H.Chang et al./Journal of Hazardous Materials 165(2009)148–155Table 2Thermodynamic values of TC sorption on PFL-1at different pHs.pHln(K d )(L/kg) G (kJ/mol) H ◦(kJ/mol)S ◦(kJ/mol-K)298K313K 328K 298K 313K 328K 1.5 6.757.8810.62−16.0−22.1−28.1104.10.406 6.458.429.21−16.4−21.0−25.675.30.318.7 6.957.387.79−17.2−19.2−21.222.80.13114.674.886.51−11.0−14.0−17.149.40.20to the G value of −8kJ/mol for TC sorption on silica [11],the more negative values of G for TC sorption on PFL-1indicate that TC had stronger affinity for PFL-1than for silica.3.6.XRD analysesThe XRD patterns of PFL-1after sorbing TC at an input concentra-tion of 800mg/L are plotted in Fig.8.The most important character is the location of the first strong peak at 8.4◦(2Â),which has a d 110spacing of 10.53Å.This peak showed no shift in peak location after sorbing 30–90mg/g of TC.Not only this peak,but also other peaks at 6.39,5.38and 4.46Åall remained at the same location after TC sorption.Furthermore,the amount of TC sorbed had no effect on the locations of PFL-1diffraction peaks (Fig.9).These results are completely different from those of TC sorption on montmorillonite [6,27],on soils [12],and on rectorite [22],in which the d -spacing expanded after sorbing TC or OTC,indicating that TC or OTC interca-lated into the interlayer position of these minerals.The invariability of d -spacing after sorbing different amounts of TC at different pH conditions suggest that the uptake of TC by palygorskite is on the external surface.3.7.FTIR analysesThe FTIR spectra of raw PFL-1andPFL-1with absorbed TC under different pH conditions are shown in Fig.10.The vibration of the backbone of the silicate structureof PFL-1before and after TC sorp-tion showed no apparent change,indicating that the sorbed TC did not alter the structure (Table 3),similar to that of XRD observation.The most characteristic peaks of TC are those in 1200–1700cm −1with their vibration frequencies listed in Table 4.The TC vibrationsFig.8.X-ray diffraction patterns of palygorskite after treated with TC at an initial concentration of 800mg/L at different pHs.Fig.9.X-ray diffraction patterns of palygorskite after treated with TC at differentinitial concentrations at neutral pH.were much weaker compared to those sorbed to montmorillonite [6]and rectorite [22],indicating that less amount of TC sorbed on PFL-1.At a solution pH of 1.5,the bands at 1311,1456,1524,1579and 1616cm −1all shifted about 10–15cm −1to higher frequencies (Fig.11),in contrast to shifting to lower frequencies as reported for montmorillonite [6,27].A shift to higher frequencies resulted fromFig.10.FTIR spectra of palygorskite after equilibrated with TC at an initial concen-tration of 800mg/L at different pHs.P.-H.Chang et al./Journal of Hazardous Materials 165(2009)148–155153Table 3FTIR band positions (cm −1)for palygorskite without and with TC sorption.PFL-1pH 1.5pH 6pH 8.7pH 11Possible band assignment [36]36163615361636153614OH stretching of structural hydroxyl groups 35483547354735473547OH stretching of water coordinated to A1,Mg 34093409341234123409OH stretching of adsorbed and zeolitic water 16581656165816581658OH deformation of water 11981196119611971197Si–O stretching 10331034103010301030Si–O stretching 986984984984983Si–O stretchingFig.11.FTIR spectra of palygorskite after equilibrated with TC at an initial concen-tration of 800mg/L at different pHs in the range of 1250–1750cm −1.strong interaction between rectorite surface and the intercalated TC molecules [22].3.8.Derivative of thermogravimetric (DTG)analysesThe DTG curve of PFL-1has three decomposition tempera-tures at 83,220,and 420◦C [28].The first two corresponded to dehydration temperature while the third one is dehydroxylation temperature [29].They represent the temperature of removal of superficial water,zeolitic water from fiber channels,and water linked to octahedral ions and water from hydroxyl groups [30].The DTG curve of pure TC showed a peak decomposition temper-ature (T peak )at 230◦C with a mass loss of 25%(Fig.12).ThereafterTable 4FTIR band positions (cm −1)for crystalline TC and TC sorbed on PFL-1at pH 1.5.Crystalline TC pH 1.5Possible band assignment [37]16161630(CO1),(amid-CO),␦(amid-NH),(CO3),(C2C3),␦(OH10,12)15791588␦(Amid-NH),␦(amine-NH),(Amid-CO),(C2C3),(CO3)1524153814561473␦(OH10,12),␦(CH7,8,9),(D),(CO10,CO11),(C11C11a,C11aC12),␦(OH12a),␦(CH36)13561400(Amid-C,C2),(C3,C4),␦(CH4a,5),␦(CH36),␦(OH12a),␦(amid-NH),(amid-CN),␦(OH10),(C6aC10a,C6aC7)13111322␦(OH10,12),␦(CH4,4a,5,5a),(C5aC11a),(C1C2),(C9C10,C10C10a,C10aC11),(CO11,12),(CO3),␦(CH7,8,9)slow but gradual weight loss lasted until 600◦C,at which 55%of the initial mass had lost.The results are in agreement with a previous report [31],in which a mass loss of 20.3%at 235◦C and a total loss of 36%at 350◦C were obtained.In this study,the T peak for the removal of zeolitic water from raw PFL-1is at 214◦C.It decreased to about 205◦C after sorb-ing TC at an initial concentration of 800mg/L (Fig.12).In the study of TC sorption on rectorite,it was found that the TC inter-calated into the interlayer of the montmorillonite component of the rectorite had a higher decomposition temperature compared to crystalline TC [22].If the T peak at 205◦C is thought as a com-posite peak made of 214◦C for the removal of zeolitic water and the decomposition of TC at a slightly lower temperature,the ther-mal stability of the TC sorbed on PFL-1is less stable compared to crystalline TC.This result is completely opposite to that of TC decomposition from the interlayer space of rectorite [22].This opposite trend in TC thermal stability may again indicate that the sorbed TC is on the external surface of PFL-1as revealed by XRD analyses,in contrast to the intercalation into rectorite [22].TC can adapt different conformations through tautomerism in response to various chemical environments and 64different possi-ble tautomers can be considered [32].However,generally accepted conformations for TC are extended and twisted ones.The for-mer exists in basic solution,when the dimethylamino group lies belowthe plane spanned by the ring system [33],while the latter is present in acidic to neutral solutions,in which the dimethy-lamino group lies above ring system [32–34].The dimension of totally protonated TC is 12.9Ålong,6.2Åhigh and 7.5Åthick in twisted conformation [35].On the other hand,the empty chan-nel dimension of palygorskite is 7.3Å×6.3Å[18].Therefore,the TC molecules are slightly large to get into the internal channel of palygorskite,restricting the uptake of TC on external surfaces.Fig.12.Derivative of thermogravimetric analysis of raw PFL-1,and PFL-1with TC adsorbed at an initial concentration of 800mg/L at pH 1.5,pH 6,and pH 8.7.Also drawn is the DTG of crystalline TC,whose vertical scale is reduced by 50%.154P.-H.Chang et al./Journal of Hazardous Materials165(2009)148–155When the ring is parallel to the surface,it occupies an area of 97Å2[35].With the long axis of the molecule perpendicular to the surface,it would occupy an area of47Å2.With a specific surface area of126m2/g,at sorption maxima,the surface area occupied per molecules varied from100Å2at pH8.7to417Å2at pH11 (Table1).Therefore,the specific surface area is larger enough to accommodate any type of conformations.The results further con-firm that the uptake of TC by PFL-1is restricted only to the external surfaces in contrast to the intercalation of TC into montmoril-lonite interlayer[6,27].For rectorite,at TC sorption maxima,the amount of TC sorbed corresponded to6–15Å2,suggesting that much of the sorbed TC is in the interlayer position of rectorite [22].Previous studies showed that cation exchange was responsible for TC sorption at pH less than its p K a1value,when the TCs were in cationic form[6,9,12,27].At neutral pH,surface complexation of zwitterion forms could be responsible for TC uptake[9,27].FTIR study also revealed that hydrophobic interaction be responsible for the sorption of OTC in its zwitterion form by montmorillonite [6].The positive correlation between the desorption of exchange-able cations and the sorption of TC confirmed that cation exchange is still responsible for part of the TC uptake by PFL-1.However, compared to the CEC value of165–175meq/kg,the amounts of TC sorbed are130,120,210,and50mmol/kg at pH1.5,5–6,8.7 and11.Except at pH8.7the TC sorption maxima are less than the CEC of the clay,suggesting cation exchange may not be the major mechanism for TC uptake.Considering the larger specific surface area of PFL-1and the XRD results,it is not surprised to conclude that sorption sites of TC on PFL-1are on the external surfaces.4.ConclusionsFrom the results of TC sorption on PFL-1at different experimen-tal conditions,we can draw the following conclusions:1.Sorption of TC on palygorskite followed a pseudo-second-orderkinetics.Sorption equilibrium could be reached in2h.2.Sorption of TC on palygorskite followed a Langmuir sorptionisotherm with the sorption maximum reached to99mg/g,or 210mmol/kg at pH8.7.3.Solution pH and ionic strength had strong effects on TC uptakeby palygorskite.4.Sorption of TC on palygorskite is an endothermic reaction,and thus,increasing temperature will enhance the uptake of TC by palygorskite.The moderate negative G indicates that physisorption or surface complexation may be the dominant mechanism.The small positive S suggests that the sorbed TC molecules adopted a random arrangement on palygorskite sur-faces.5.XRD analyses showed no d-spacing changes at different pH val-ues or different sorption amounts,further suggesting that the sorption is on the external surfaces.AcknowledgementsFunding from National Cheng Kung University(NCKU),Taiwan, for the project of Promoting Academic Excellence&Developing World Class Research Centers to support Li’s sabbatical stay in NCKU is greatly appreciated.References[1]D.W.Kolpin,E.T.Furlong,M.T.Meyer,E.M.Thurman,S.D.Zaugg,L.B.Barber,H.T.Burton,Pharmaceuticals,hormones,and others organic wastewater con-taminants in U.S.streams,1999–2000:a national reconnaissance,Environ.Sci.Technol.36(2002)1202–1211.[2]X.S.Miao,F.Bishay,M.Chen,C.D.Metcalfe,Occurrence of antimicrobials in thefinal effluents of wastewater treatment plants in Canada,Environ.Sci.Technol.38(2004)3533–3541.[3]K.G.Karthikeyan,M.T.Meyer,Occurrence of antibiotics in wastewatertreatment facilities in Wisconsin,USA,Sci.Total Environ.361(2006) 196–207.[4]J.Tolls,Sorption of veterinary pharmaceuticals in soils:a review,Environ.Sci.Technol.35(2001)3397–3406.[5]T.Polubesova,D.Zadaka,L.Groisman,S.Nir,Water remediation by micelle–claysystem:case study for tetracycline and sulfonamide antibiotics,Water Res.40 (2006)2369–2374.[6]P.Kulshrestha,R.F.Giese Jr.,D.S.Aga,Investigating the molecular interactionsof oxytetracycline in clay and organic matter:insights on factors affecting its mobility in soil,Environ.Sci.Technol.38(2004)4097–4105.[7]E.G.Jefferys,The stability of antibiotics in soils,J.Gen.Microbiol.7(1952)295–312.[8]S.Sassman,L.Lee,Sorption of three tetracyclines by several soils:assessingthe role of pH and cation exchange,Environ.Sci.Technol.39(2005)7452–7459.[9]R.A.Figueroa,A.Leonard,A.A.MacKay,Modeling tetracycline antibiotic sorp-tion to clays,Environ.Sci.Technol.38(2004)476–483.[10]R.A.Figueroa,A.A.Mackay,Sorption of oxytetracycline to iron oxides and oxide-rich soils,Environ.Sci.Technol.39(2005)6664–6671.[11]I.Turku,T.Sainio,E.Paatero,Thermodynamics of tetracycline adsorption onsilica,Environ.Chem.Lett.5(2007)225–228.[12]J.R.Pils,ird,Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays,humic substances,and clay–humic complexes,Environ.Sci.Technol.41(2007)1928–1933.[13]M.Shirvani,H.Shariatmadari,M.Kalbasi,F.Nourbakhsh,B.Najafi,Sorptionof cadmium on palygorskite,sepiolite and calcite:equilibria and organic lig-and affected kinetics,Colloids Surf.A:Physicochem.Eng.Aspects287(2006) 182–190.[14]H.Chen,Y.Zhao, A.Wang,Removal of Cu(II)from aqueous solution byadsorption onto acid-activated palygorskite,J.Hazard.Mater.149(2007) 346–354.[15]J.H.Potgieter,S.S.Potgieter-Vermaak,P.D.Kalibantonga,Heavy metals removalfrom solution by palygorskite clay,Miner.Eng.19(2006)463–470.[16]S.Akyuz,T.Akyuz,J.Eric,D.Davies,Adsorption of2,2 -bipyridyl onto sepiolite,attapulgite and smectite group clay minerals from Anatolia:the FT-IR and FT-Raman spectra of surface and intercalated species,J.Incl.Phenom.Mol.Recog.Chem.18(1994)123–135.[17]S.Akyuz,T.Akyuz,Study on the interaction of nicotinamide with sepiolite,loughlinite and palygorskite by IR spectroscopy,J.Mol.Struct.744–747(2005) 47–52.[18]G.Chiari,R.Giustetto,G.Ricchiardi,Crystal structure refinements of paly-gorskite and Maya Blue from molecular modelling and powder synchrotron diffraction,Eur.J.Miner.15(2003)21–33.[19]D.Borden,R.F.Giese,Baseline studies of the clay minerals society source clays:cation exchange capacity measurements by the ammonia-electrode method, Clay Clay Miner.49(2001)444–445.[20]J.L.Collaizzi,P.R.Klink,pH partition behavior of tetracyclines,J.Pharm.Sci.58(1969)1184–1189.[21]ler,H.L.Smith,W.L.Rock,S.Hedberg,Antibacterial structure–activityrelationships obtained with resistant microorganisms.I.Inhibition of R-factor resistant Escherichia coli by tetracyclines,J.Pharm.Sci.66(1977)88–92. [22]P.-H.Chang,J.-S.Jean,W.-T.Jiang,Z.Li,Removal of tetracycline from water byrectorite,Colloids Surf.A:Physicochem.Eng.Aspects,in review.[23]G.Blanchard,M.Maunaye,G.Martin,Removal of heavy-metals from waters bymeans of natural zeolites,Water Res.18(1984)1501–1507.[24]Y.S.Ho,D.A.J.Wase,C.F.Forster,Batch nickel removal from aqueous solution bysphagnum moss peat,Water Res.29(1995)1327–1332.[25]Y.S.Ho,G.McKay,Pseudo-second order model for sorption processes,ProcessBiochem.34(1999)451–465.[26]B.B.Sithole,R.D.Guy,Models for tetracycline in aquatic environment.1.Inter-action with bentonite clay systems,Water Air Soil Pollut.32(1987)303–314.[27]L.S.Porubcan,C.J.Serna,J.L.White,S.L.Hem,Mechanism of adsorption ofclindamycin and tetracycline by montmorillonite,J.Pharm.Sci.67(1978) 1081–1087.[28]S.Guggenheim,A.F.K.van Groos,Baseline studies of the clay minerals societysource clays:thermal analysis,Clay Clay Miner.49(2001)433–443.[29]R.L.Frost,Z.Ding,Controlled rate thermal analysis and differential scanningcalorimetry of sepiolites and palygorskites,Thermochim.Acta397(2003) 119–128.[30]C.Viseras,A.Lopez-Galindo,Pharmaceutical applications of some spanish clays(sepiolite,palygorskite,bentonite):some preformulation studies,Appl.Clay Sci.14(1999)69–82.[31]N.S.Fernandes,M.A.S.C.Filho,R.A.Mendes,M.Ionashiro,Thermal decomposi-tion of some chemotherapic substances,J.Braz.Chem.Soc.10(1999)459–462.[32]H.A.Duarte,S.Carvalho,E.B.Paniago,A.M.Simas,Importance of tautomers inthe chemical behavior of tetracyclines,J.Pharm.Sci.88(1999)111–120. [33]J.M.Wessels,W.E.Ford,W.Szymczak,S.Schneider,The complexation of tetra-cycline and anhydrotetracycline with Mg2+and Ca2+:a spectroscopic study,J.Phys.Chem.B102(1998)9323–9331.。