专题2.22 求导函数及函数在某一点处导数(原卷版)
用导数的定义求下列各函数在指定点的导数
习题2-11、 用导数的定义求下列各函数在指定点的导数: (1) 32)(+=x x f , 求)2('f ,)0('f ; 解:22lim )322(]3)2(2[lim )2()2(lim lim)2(0000'=∆∆=∆+⨯-+∆+=∆-∆+=∆∆=→∆→∆→∆→∆x x xx x f x f x y f x x x x 22lim 3]3)0(2[lim )0()0(lim lim )0(0000'=∆∆=∆-+∆+=∆-∆+=∆∆=→∆→∆→∆→∆x xx x x f x f x y f x x x x .(2) c bx ax x f ++=2)(, 其中c b a ,,为常数, 求)0('f ,⎪⎭⎫⎝⎛21'f ,⎪⎭⎫⎝⎛-a b f 2'. 解:xxb x a xc c x b x a x f x f x y f x x x x ∆∆+∆=∆-+∆+∆=∆-∆+=∆∆=→∆→∆→∆→∆202000'lim)(lim )0()0(lim lim )0( b b x a x =+∆=→∆)(l i m 0,x c ba c xb x a x f x f x y f x x x ∆++-+∆++∆+=∆-∆+=∆∆=⎪⎭⎫ ⎝⎛→∆→∆→∆)24(])21()21([lim )21()21(lim lim 212000' b a b a x a xxb a x a x x +=++∆=∆∆++∆=→∆→∆)(l i m )(l i m020. x c a b a b c x a b b x a b a x a b f x a b f x y a b f x x x ∆+--+∆+-+∆+-=∆--∆+-=∆∆=⎪⎭⎫ ⎝⎛-→∆→∆→∆)24(])2()2([lim )2()2(lim lim2222000' 0)(l i m l i m20=∆=∆∆=→∆→∆x a x x a x x . 2、解:因为23t s =',所以瞬时速度273323=⨯='==t s v 。
导数定义练习题
导数定义练习题首先,让我们回顾一下导数的定义。
在微积分中,导数表示函数在某一点处的变化率。
给定函数 f(x),它在 x 点处的导数可以通过以下定义来计算:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,h 是无限趋近于0的增量。
本文将通过一些练习题来帮助我们更好地理解和应用导数的定义。
1. 求函数 f(x) = 2x^2 在 x = 1 处的导数。
解答:根据导数的定义,我们可以得到:f'(1) = lim(h→0) [f(1+h) - f(1)] / h代入函数 f(x) = 2x^2:f'(1) = lim(h→0) [2(1+h)^2 - 2(1)^2] / h= lim(h→0) [2(1+2h+h^2) - 2] / h= lim(h→0) [2+4h+2h^2-2] / h= lim(h→0) [4h+2h^2] / h= lim(h→0) 4 + 2h= 4所以,函数 f(x) = 2x^2 在 x = 1 处的导数为 4。
2. 求函数 g(x) = sin(x) 在x = π/4 处的导数。
解答:根据导数的定义,我们有:g'(π/4) = lim(h→0) [g(π/4+h) - g(π/4)] / h代入函数 g(x) = sin(x):g'(π/4) = lim(h→0) [sin(π/4+h) - sin(π/4)] / h我们可以利用三角函数的和差公式以及极限的性质来简化计算。
根据三角函数的和差公式,我们有:sin(π/4+h) = sin(π/4)cos(h) + cos(π/4)sin(h)代入该公式,我们可以得到:g'(π/4) = lim(h→0) [(sin(π/4)cos(h) + cos(π/4)sin(h)) - sin(π/4)] / h化简上式,我们得到:g'(π/4) = lim(h→0) [sin(π/4)cos(h)/h + cos(π/4)sin(h)/h - sin(π/4)/h]根据极限的性质,我们知道lim(h→0) sin(h)/h = 1。
高考数学求导知识点
高考数学求导知识点数学作为高考科目之一,求导是其中一个重要的知识点,以下是高考数学求导的相关知识点和公式总结。
一、导数的概念在微积分中,导数是函数的一个概念,描述了函数在某点的变化速率。
对于函数$f(x)$,如果函数在某一点$x_0$处的导数存在,那么导数即为$f(x)$在$x_0$处的变化速率。
二、导数的计算方法1. 导数与极限的关系导数可以通过极限的计算来求得,具体来说,对于函数$f(x)$,其在$x_0$处的导数可以表示为以下极限形式:$$f'(x_0)=\lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$2. 基本求导法则(1)常数的导数:常数的导数为0。
(2)幂函数的导数:对于幂函数$x^n$,其中$n$为常数,其导数为$nx^{n-1}$。
(3)指数函数的导数:对于指数函数$a^x$,其中$a$为常数且$a>0$,其导数为$a^x\ln{a}$。
(4)对数函数的导数:对于对数函数$\log_a{x}$,其中$a$为常数且$a>0$且$a\neq 1$,其导数为$\frac{1}{x\ln{a}}$。
(5)三角函数的导数:- 正弦函数的导数:$\sin{x}$的导数为$\cos{x}$。
- 余弦函数的导数:$\cos{x}$的导数为$-\sin{x}$。
- 正切函数的导数:$\tan{x}$的导数为$\sec^2{x}$。
3. 基本函数的导数(1)多项式函数的导数对于多项式函数$f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0$,其中$a_n,a_{n-1},...,a_1,a_0$为常数,其导数为$f'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+a_1$。
(2)分式函数的导数对于分式函数$f(x)=\frac{g(x)}{h(x)}$,其中$g(x)$和$h(x)$为多项式函数,其导数为$f'(x)=\frac{g'(x)h(x)-g(x)h'(x)}{(h(x))^2}$。
专题2.22 求导函数及函数在某一点处导数(解析版)
求函数的导函数或某一点处的导数 秒杀题型一:求导函数秒杀方法:基本初等函数的导数公式:①若()(f x c =c 为常数),则'()0f x =; ②若()(),f x x Q αα*=∈则'1()f x x αα-=; ③若()sin ,f x x =则'()cos f x x =; ④若()cos ,f x x =则'()sin ;f x x =- ⑤若()x f x a =,则'()ln x f x a a =; ⑥若()x f x e =,则'()x f x e =; ⑦若()log ,a f x x =则'1()ln f x x a=; ⑧若()ln ,f x x =则'1()f x x =。
导数运算法则:①[]'''()()()()f x g x f x g x ±=±;②[])()()()()()('''x g x f x g x f x g x f ⋅+⋅=⋅;③[]'''2()()()()()()()f x f x g x f x g x g x g x ⎡⎤-=⎢⎥⎣⎦。
复合函数的导数:由()y f u =和()u g x =复合而成的函数:(())y f g x =,其导数为:'''x u x y y u =⋅。
快速求导法则:[][])()()(''x f x f e x f e x x+=; [][])()()(''x f x f e x f ex x-=--。
1.(母题)求多项式函数1011()...n n n n f x a x a x a x a --=++++的导数.【解析】:()12110'1)(---+⋅⋅⋅+-+=n n n a x a n x na x f 。
高考数学导函数知识点
高考数学导函数知识点高考是每个中国学生的重要里程碑,而数学是高考中的一门必考科目,其中导数是高考数学的重要知识点之一。
导数是微积分的基础,是求函数的变化率以及切线斜率的重要工具。
本文将对高考数学中的导函数知识点进行讨论。
一、导数的定义导数是函数在某一点的变化率。
具体来说,对于一个函数f(x),在点x处的导数可以通过以下公式来计算:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中lim表示当h趋近于0时的极限,可以理解为无穷小量。
这个公式表示的是函数在x点附近的斜率,也可以理解为在点x处的切线斜率。
二、导函数的求法对于函数f(x),我们可以通过导数来求解导函数,导函数表示的是f(x)的导数。
常见的导函数求法有以下几种:1. 常数的导函数对于一个常数C,其导数为0,即C' = 0。
这是因为常数的变化率为0,没有变化。
2. 幂函数的导函数对于幂函数f(x) = x^n,其中n是常数,其导函数为f'(x) =nx^(n-1)。
这可以通过直接求导的方式来推导出来。
3. 指数函数和对数函数的导函数指数函数和对数函数是互为反函数的关系,其导函数也是互为反函数的关系。
例如,指数函数f(x) = a^x的导函数为f'(x) = a^x * ln(a),对数函数f(x) = loga(x)的导函数为f'(x) = 1 / (x * ln(a))。
4. 三角函数和反三角函数的导函数对于三角函数和反三角函数,其导函数也有一些特定的求导规则。
例如,sin(x)的导函数为cos(x),cos(x)的导函数为-sin(x),tan(x)的导函数为sec^2(x),反三角函数的导函数也可以通过类似的方式求得。
5. 复合函数的导函数对于复合函数f(g(x)),其导函数可以通过链式法则来求解。
链式法则指导函数f(g(x))的导数等于导函数f'(g(x))与g'(x)的乘积。
函数导数的知识点总结
函数导数的知识点总结导数是微积分中一个非常重要的概念,它可以帮助我们研究函数的变化情况,求解最值,以及解决很多实际问题。
在这篇总结中,我们将从导数的定义、性质、求导法则以及应用等方面来详细讨论函数导数的相关知识点。
1. 导数的定义函数的导数可以理解为函数在某一点处的变化率,也可以看作函数在某一点处的斜率。
如果函数y=f(x)在某一点x处可导,则该函数在该点的导数可以表示为:f'(x) = lim(h->0) (f(x+h) - f(x))/h其中f'(x)表示函数f(x)在点x处的导数,h表示自变量x的增量。
这个定义可以帮助我们理解导数的几何意义,即斜率的概念。
2. 导数的性质导数具有一些重要的性质,这些性质为我们进行导数计算提供了便利,也可以帮助我们更好地理解导数的意义。
(1)可导性与连续性:函数可导必然连续,但是连续函数不一定可导。
(2)导数与函数的关系:导数可以帮助我们研究函数的变化情况、求解函数的最值,并且导数还可以帮助我们判断函数的增减性以及函数的凸凹性。
(3)导数的性质:导数具有线性性、乘积规则、商规则等性质,这些性质为我们进行导数计算提供了便利。
3. 求导法则求导法则是求解导数的基本方法,掌握了这些法则可以帮助我们更高效地进行导数计算。
常见的求导法则包括:(1)常数法则:即常数的导数为0。
(2)幂函数法则:求解幂函数的导数。
(3)指数函数法则:求解指数函数的导数。
(4)对数函数法则:求解对数函数的导数。
(5)三角函数法则:求解三角函数的导数。
(6)复合函数法则:求解复合函数的导数。
(7)隐函数法则:求解隐函数的导数。
(8)参数方程法则:求解参数方程的导数。
4. 应用函数导数在实际问题中有着广泛的应用,包括但不限于:(1)求极值:导数可以帮助我们求解函数的最值,得到函数的极小值和极大值。
(2)判断函数的凸凹性:通过函数的二阶导数,可以帮助我们判断函数在某一区间上的凸凹性。
导数专题训练(含答案)
导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。
求导数的方法及例题
求导数的方法及例题
求导数是微积分中的一个重要概念,它是描述函数变化的一种量度,是解决某些物理问题的一种重要方法。
掌握正确的求导数方法,是掌握微积分的重要基础。
一、求导数的概念
求导数是对函数的解析,它可以对函数的每一点进行分析,了解函数围绕某一点变化的情况。
它是一种精确描述函数局部变化的量度,可以表达函数围绕某一点的变化程度以及变化方向。
求导数具有一定的运算规律,熟悉运算规律,能够帮助我们准确地求导,从而掌握微积分。
二、求导数的方法
1、基础函数求导:当函数由多项式、三角函数等基本函数的乘积、商、复合等形式构成时,可以利用求导的基本法则和求导的运算规律,从而准确求出函数的求导式。
2、一阶变化率:求导数时,有时可以利用函数的一阶变化率来
求出该函数的求导式,在函数围绕某点的变化量有限的情况下,可以将函数的一阶变化率求出来,用变化率/自变量的变化量来求出求导式。
3、极限方法:求导数时,也可以利用极限的方法,将函数的变
化量求取一定的极限,两边取极限,再求出极限,即可得到求导式。
三、求导数的例题
例1、求以下函数的求导式:y=x^2+x
解:用基本函数求导法:
y=2x+1
例2、求以下函数的求导式:y=3x^4-4x^3+5x^2
解:用基本函数求导法:
y=12x^3-12x^2+10x
例3、求以下函数的求导式:y=sin(x)
解:用基本函数求导法:
y=cos(x)
四、总结
以上是求导数的基本方法和一些例题的解答,求导数的方法有基本函数求导法、一阶变化率法、极限法等,了解基本的求导规律,解决问题时可以根据具体情况灵活运用各种求导方法,从而更准确的求解求导数。
导数有关知识点总结、经典例题及解析、近年高考题带答案
导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
【知识梳理】一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
导数的应用与极值例题和知识点总结
导数的应用与极值例题和知识点总结导数是微积分中的重要概念,它在数学、物理学、工程学等众多领域都有着广泛的应用。
特别是在研究函数的性质、求解极值问题方面,导数发挥着关键作用。
下面我们将通过一些具体的例题来深入探讨导数的应用与极值,并对相关知识点进行总结。
一、导数的定义和基本公式导数的定义为函数在某一点的瞬时变化率,即函数的导数值等于函数在该点的切线斜率。
常见函数的导数公式有:1、常数函数的导数为0,即若\(f(x) =C\)(\(C\)为常数),则\(f'(x) = 0\)。
2、幂函数的导数,若\(f(x) = x^n\),则\(f'(x) = nx^{n 1}\)。
3、正弦函数和余弦函数的导数,\((sin x)'= cos x\),\((cos x)'= sin x\)。
4、指数函数的导数,若\(f(x) = e^x\),则\(f'(x) = e^x\)。
5、对数函数的导数,若\(f(x) = ln x\),则\(f'(x) =\frac{1}{x}\)。
二、导数的几何意义导数的几何意义是函数在某一点处的切线斜率。
通过求导,可以得到函数图像在某一点的斜率,从而能够判断函数的单调性和极值情况。
例如,对于函数\(f(x) = x^2\),其导数为\(f'(x) = 2x\)。
当\(x = 1\)时,导数\(f'(1) = 2\),这意味着函数在\(x = 1\)处的切线斜率为 2。
三、导数与函数的单调性若函数的导数在某个区间内大于零,则函数在该区间单调递增;若导数小于零,则函数在该区间单调递减。
例 1:求函数\(f(x) = x^3 3x^2 + 2\)的单调区间。
首先求导:\(f'(x) = 3x^2 6x\)令\(f'(x) > 0\),即\(3x^2 6x > 0\),解得\(x < 0\)或\(x> 2\)。
令\(f'(x) < 0\),即\(3x^2 6x < 0\),解得\(0 < x < 2\)。
导数的概念及其几何意义(原卷版)
3.导函数
对于函数y=f(x),当x=x0时,f′(x0)是一个确定的数,则当x变化时,f′(x)便是一个关于x的函数,我们称它为函数y=f(x)的导函数(简称导数), 即f′(x)=y′= .
知识点一.割线的定义:
函数y=f(x)在[x0,x0+Δx]的平均变化率为 ,它是过A(x0,f(x0))和B(x0+Δx,f(x0+Δx))两点的直线的斜率,这条直线称为曲线y=f(x)在点A处的一条割线.
∴切点坐标为 , .
故所求切线方程为 或 ,
即 或 .
【例4】已知函数 的图象如图所示, 是函数 的导函数,则下列数值排序正确的是()
A.
B.
C.
D.
【答案】A
【详解】
解:由函数 的图象知,当 时, 单调递增,
,
函数图象切线斜率逐渐增大,
单调递增,
,
,
,
,
故选:A.
【例5】已知曲线y1=2- 与y2=x3-x2+2x在x=x0处的切线的斜率之积为3,则x0的值为()
(2)过曲线外的点P(x1,y1)求曲线的切线方程的步骤
①设切点为Q(x0,y0);
②求出函数y=f(x)在点x0处的导数f′(x0);
利用Q在曲线上和f′(x0)=kPQ,解出x0,y0及f′(x0);
根据直线的点斜式方程,得切线方程为y-y0=f′(x0)(x-x0).
大招3 求切点坐标
【方法总结】求切点坐标的一般步骤
第五章 《一元函数的导数及其应用》
导数的概念及其几何意义
[核心素养·学习目标]
学习目标
核心素养
1.了解导函数的概念,理解导数的几何意义.
导数高中试题及解析答案
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
函数的导数知识点及例题解析
函数的导数知识点及例题解析函数的导数是微积分中的重要概念之一。
本文将介绍基本的导数定义和求导法则,并通过例题解析加深理解。
导数的定义函数的导数描述的是函数在某一点的变化率。
对于函数y=f(x),其导数可以通过以下定义进行求解:导数 = lim(h→0)[f(x+h) - f(x)] / h求导法则求导法则是一些计算导数的常用规则,以下为几个基本的求导法则:1. 常数法则:若c为常数,则导数为0,即 dy/dx = 02. 幂法则:对于函数y = x^n,其中n为常数,则导数为 dy/dx = nx^(n-1)3. 和差法则:对于两个函数u(x)和v(x),则导数的和差为(d(u+v)/dx = du/dx + dv/dx4. 乘积法则:对于两个函数u(x)和v(x),导数的乘积为d(uv)/dx = u * dv/dx + v * du/dx例题解析例题1:求函数y = 2x^3的导数。
求函数y = 2x^3的导数。
根据幂法则,导数为 dy/dx = 3 * 2x^(3-1) = 6x^2例题2:求函数y = 3x^2 + 2x的导数。
求函数y = 3x^2 + 2x 的导数。
根据和差法则,导数为 dy/dx = d(3x^2)/dx + d(2x)/dx = 6x + 2例题3:求函数y = (x^2 + 3x)(2x + 1)的导数。
求函数y =(x^2 + 3x)(2x + 1)的导数。
根据乘积法则,导数为 dy/dx = (x^2 + 3x) * d(2x + 1)/dx + (2x + 1) * d(x^2 + 3x)/dx= (x^2 + 3x) * 2 + (2x + 1) * (2x + 3)= 2x^2 + 6x + 4x^2 + 6x + 2化简后,导数为 dy/dx = 6x^2 + 12x + 2通过以上例题解析,可以看到导数的计算方法和不同函数的求导规则。
掌握了这些知识点,可以更好地理解函数的变化率和斜率,从而应用到实际问题中。
导数的应用与极值例题和知识点总结
导数的应用与极值例题和知识点总结在数学的广袤领域中,导数无疑是一个极为重要的工具。
它不仅能够帮助我们描绘函数的变化趋势,还能在解决各种实际问题中发挥关键作用。
接下来,让我们一起深入探讨导数的应用与极值,通过具体的例题来加深对相关知识点的理解。
一、导数的定义与几何意义导数的定义为函数在某一点的瞬时变化率。
如果函数$y = f(x)$在点$x_0$ 处可导,那么其导数记为$f'(x_0)$,表示函数在$x_0$ 处的切线斜率。
从几何意义上看,导数就是函数图像在某一点处切线的斜率。
当导数大于零,函数单调递增;当导数小于零,函数单调递减;当导数等于零,可能是函数的极值点。
二、导数的计算对于常见的基本函数,如幂函数、指数函数、对数函数等,都有相应的求导公式。
例如,对于幂函数$y = x^n$ ,其导数为$y' = nx^{n 1}$;对于指数函数$y = e^x$ ,其导数仍为$y' = e^x$ ;对于对数函数$y =\ln x$ ,其导数为$y' =\frac{1}{x}$。
三、利用导数求函数的单调性例 1:求函数$f(x) = x^3 3x^2 + 2$ 的单调区间。
首先,对函数求导:$f'(x) = 3x^2 6x$令$f'(x) = 0$ ,即$3x^2 6x = 0$ ,解得$x = 0$ 或$x =2$ 。
当$x < 0$ 时,$f'(x) > 0$ ,函数单调递增;当$0 < x < 2$ 时,$f'(x) < 0$ ,函数单调递减;当$x > 2$ 时,$f'(x) > 0$ ,函数单调递增。
所以,函数的单调递增区间为$(\infty, 0)$和$(2, +\infty)$,单调递减区间为$(0, 2)$。
四、利用导数求函数的极值例 2:求函数$g(x) = 2x^3 9x^2 + 12x 3$ 的极值。
对函数求导:$g'(x) = 6x^2 18x + 12$令$g'(x) = 0$ ,即$6x^2 18x + 12 = 0$ ,化简得$x^2 3x+ 2 = 0$ ,解得$x = 1$ 或$x = 2$ 。
第1章导数及其应用专解1 求函数在某点的导数-人教A版高中数学选修2-2专题考点训练(必备知识点)
【必备知识点】1.基本初等函数的导数公式2.导数的运算法则:3.复合函数的导数(1)复合函数的定义:对于函数[()]y f x ϕ=,令()u x ϕ=,则()y f u =是中间变量u 的函数,()u x ϕ=是自变量x 的函数,则函数[()]y f x ϕ=是自变量x 的复合函数.例如,函数()=ln sin y x 是由=ln y u 和=sin u x 复合而成的.(2)复合函数的求导法则设函数()u x ϕ=在点x 处可导,''()x u x ϕ=,函数()y f u =在点x 的对应点u 处也可导''()u y f u =,则复合函数[()]y f x ϕ=在点x 处可导,并且'''x u x y y u =⋅,或写作'[()]'()'()x f x f u x ϕϕ=⋅4.切线方程的求法曲线()x f y =的切线有以下两种不同类型:(1)点P (x 0,y 0)在函数()x f 的图像上,过该点的切线有两种情况:①若点P 是“切点”,此时切线方程为()()00'y x x x f y +-=;②若点P 不是“切点”,此时需先设出切点,然后利用导数的几何意义求出切点坐标,最后求得切线方程.(2)点P (x 0,y 0)不在函数()x f 的图像上,求过该点的曲线()x f y =的切线,求法同上述中的第②种情况.【典例展示】例1:求曲线21y x =+在点()12P ,处的切线方程.【解析】先求导数x y 2'=: 由条件可知2|'1==x y ,由点斜式可得,过点P 的切线方程为:22(1)y x -=-,即2y x =.例2(湖南)曲线21-cos sin sin x x x y +=在点M ⎪⎭⎫⎝⎛0,4π处的切线的斜率为()A.21-B.21C 22- D.22解析:∵21cos sin sin -+=x x x y ,∴()()x x x x x x x x x y 2sin 11cos sin )sin (cos sin cos sin cos '2+=+--+=, 将4π=x 代入得21|'4==πx y .答案:B例3:(新课标)曲线()1ln 3+=x x y 在点(1,1)处的切线方程为_________.解析:∵()4ln 331ln 3'+=⋅++=x xx x x f , ∴该函数在点(1,1)的切线斜率为k=4,∴切线方程为()141--=x y ,即()03434=---=y x x y 或.答案:()03434=---=y x x y 或例4(广东)曲线33+-=x x y 在点(1,3)处的切线方程为____________,解:∵33+-=x x y , ∴13'2-=x y , ∴y 在点(1,3)处的切线斜率21132=-⨯=k ,∴切线方程为012=+-y x . 答案:012=+-y x【思路总结与方法】1. 思路:求函数在某点的导数的关键是求该函数的导函数,一半是利用基本初等函数的导数公式和导数运算法则来求导函数.此外复合函数的求导法则也是求函数导函数的一中途径,求出导函数后再将已知点的横坐标代入即可.2. 解题步骤:①将()x f 写成函数的四则运算或复合形式. ②利用导数公式求出导函数.③将x 0代入求出()0'x f【巩固练习】1.函数3()3f x x x =-的图象上一点(2,2)A -的切线方程是A .0x y -=B .9160x y +-=C .9160x y +-=或0x y -=D .9160x y +-=或2y =-答案:D 2,曲线12x y e =在点2(4,)e 处的切线与坐标轴所围成的三角形的面积为( )A .292e B . 24e C .22e D . 2e【解析】12211'()')'22xx xxxy e e ===⋅==,曲线在点2(4,)e 处的切线斜率为241'2x=y =e , 所以切线方程为221(4)2y e e x -=-, 令0x =得2y e =-;令0y =得2x =, 所以22122S e e ∆=⨯=. 答案:D3.函数2(1)(1)y x x =+-在1x =处的导数等于( ) A .1 B .2 C .3 D .4 【答案】D法一: 22'[(1)]'(1)(1)(1)'y x x x x =+-++- 222(1)(1)(1)321x x x x x =+⋅-++=+-∴=1'|4x y =.法二:∵22(1)(1)(1)(1)y x x x x =+-=-+321x x x =+--∴322'()'()''1'321y x x x x x =+--=+- ∴=1'|4x y =.4.曲线()sin cos x x f x =+在点(0,()0)f 处的切线方程为 A .10x y -+= B .10x y --= C .10x y +-=D .10x y ++=【答案】A5.曲线在点处的切线方程为________________. 【答案】【解析】由题可得,所以切线的斜率,故所求的切线方程为.【课后练习】一、选择题1.下列运算中正确的是( )A .22()()()ax bx c a x b x '''++=+B .22(sin 2)(sin )2()x x x x ''''-=-C .222sin (sin )()()x x x x x''-'= D .(cos sin )(sin )cos (cos )cos x x x x x x '''⋅=+2.质点做直线运动的方程是s =m 时间单位:s ),则质点在t=3时的速度是( ) A/s B/s C/s D/s3.下列结论:①若y=cos x ,则'sin y x =-;②若y =,则'y =;③若21y x =,则=32'|27x y =-中,正确的个数为( ) A .0 B .1 C .2 D .34.已知曲线2ln (0)4x y x x =->的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D .125.函数4538y x x =+-的导数是( )A .3543x + B .3425(43)(38)x x x ++- C .0 D .3425(43)(38)x x x +-+- 二、填空题6. 31sin x x '⎛⎫-= ⎪⎝⎭___________,()2sin 25x x '+=⎡⎤⎣⎦____________. 7.曲线sin y x =在点,12π⎛⎫⎪⎝⎭处的切线方程为________. 8.在曲线y =24x 上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________.9. 在平面直角坐标系xOy 中,点P 在曲线3103C y x ―x =+:上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________. 三、解答题 10.求函数的导数.(1)y =(2)tan y x x =⋅;(3)42log a x y x=+.11.已知()cos f x x =,()g x x =,求适合'()'()0f x g x +≤的x 的值.12. 求曲线22)3(1x x y +=在点)161,1(处的切线方程.【课后练习答案】、1.【答案】A【解析】 由求导的四则运算法则可以判断. 2.【答案】A【解析】14s t ==,则341'4s t -=,当t=3时,341'34s -=⋅=.3.【答案】D【解析】 ①②③正确.4. 【答案】D 【解析】 由12111x y x x +==+--,求导得22'(1)y x =--,所以切线斜率31'|2x k y ===-, 则直线ax+y+1=0的斜率为2,所以―a=2,即a=―2.5.【答案】D【解析】 4538y x x =+-,则3425(43)'(38)x y x x +=-+-. 8. 【答案】2323sin (1)cos sin x x x xx--, 2sin(25)4cos(25)x x x +++【解析】 323213sin (1)cos sin sin x x x x xx x '⎛⎫---= ⎪⎝⎭; ()2sin 252sin(25)4cos(25)x x x x x '+=+++⎡⎤⎣⎦;9. 【答案】y=1【解析】 (sin )'cos x x =,2'|0x k y π===,从而切线方程为y=1.10. 【答案】(2,1)【解析】设P (x 0,y 0),y ′=24()'x=(4x -2)′=-8x -3, ∴tan135°=-1=-830x -. ∴x 0=2,y 0=1.11.【答案】(―2,15)【解析】 2'310y x =-,令2'24y x =⇒=,P 在第二象限⇒x=―2⇒P (―2,15).12. 【解析】(1)∵21y x==-,∴222(1)'2'(1)(1)x y x x --==-- (2)sin '()'tan (tan )'tan 'cos x y x x x x x x x ⎛⎫=+=+⋅⎪⎝⎭2222cos sin tan tan (cos 0)cos cos x x xx x x x x x+=+⋅=+≠. (3)4324(2log )ln '(2log )a a x x x x a y x +-=+333284log ln (2log )a a x x x x a x +-=+32184log lg (2log )a a x a x x -+=+. 13.【解析】'()sin f x x =-,'()1g x =,则sin 10x -+≤,sin 1x ≥,即sin 1x =. ∴2()2x k k Z ππ=+∈.14. 【解析】22)3(-+=x x y ,则32)3(232'x x xy ++⋅-= 325452|'31-=⋅-==x y . ∴切线方程为)1(325161--=-x y即53270x y +-=.。
导数典型例题(含答案)回顾【创意版】
导数典型例题导数作为考试内容的考察力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最〔极〕值等等,考察的题型有客观题〔选择题、填空题〕、主观题〔解答题〕、考察的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考察成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim 0=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=〔-1〕〔-2〕…〔-100〕=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,那么f '(0)= a 1,而a 1=〔-1〕〔-2〕…〔-100〕=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四那么运算求导法那么使问题获解.【例2】 函数f (x )=nn n k k nn n nx c nx c k x c x c c 11212210++++++ ,n ∈N *,那么 xx f x f x ∆∆--∆+→∆)2()22(lim 0= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim 0=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim 0=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k kn n n x c x c x c c ,∴f '(2)=21〔2nn n k n k n n c c c c 222221+++++ 〕=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx 〞有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim ,也可以是00)()(lim x x x f x f x --→∆〔令Δx =x -x 0得到〕,此题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,那么圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的〔R 是中间变量〕,此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s 〞的错误.此题考察导数的物理意义及复合函数求导法那么,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考察导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,那么直线l 的倾斜角的范围是A.⎥⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎥⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.应选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点〔x 0,f (x 0)〕处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.此题假设不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点〔0,1〕,且过点〔0,1〕的切线有两条,求实数a 的值.解 ∵点〔0,1〕不在曲线上,∴可设切点为〔m ,m 3-am 2〕.而y '=3x 2-2ax , ∴k 切=3m 3-2am ,那么切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过〔0,1〕,∴2m 3-am 2+1=0.(*)设〔*〕式左边为f (m ),∴f (m )=0,由过〔0,1〕点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0〞.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 此题解答关键是把“切线有2条〞的“形〞转化为“方程有2个不同实根〞的“数〞,即数形结合,然后把三次方程〔*〕有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0〞.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最〔极〕值有关的问题【例6】以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,应选C.点评f'(x)>0〔或<0〕只是函数f'(x)在该区间单递增〔或递减〕的充分条件,可导函数f'(x)在(a,b)上单调递增〔或递减〕的充要条件是:对任意x∈(a,b),都有f'(x)≥0(或≤0)且f'(x)在(a,b)的任意子区间上都不恒为零.利用此充要条件可以方便地解决“函数的单调性,反过来确定函数解析式中的参数的值域范围〞问题.此题考察函数的单调性可谓新颖别致.【例7】函数y=f(x)定义在区间〔-3,7〕上,其导函数如下图,那么函数y=f(x)在区间〔-3,7〕上极小值的个数是个.解如图,A、O、B、C、E这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O点、C点是极小值点,故在区间〔-3,7〕上函数y=f(x)的极小值个数是2个.点评导数f'(x)=0的点不一定是函数y=f(x)的极值点,如使f'(x)=0的点的左、右的导数值异号,那么是极值点,其中左正右负点是极大值点,左负右正点是极小值点.此题考察函数的极值可以称得上是匠心独运.【例8】设函数f(x)与数列{a n}满足关系:①a1>α,其中α是方程f(x)=x的实数根;②a n+1=f(a n),n∈N*;③f(x)的导数f'(x)∈〔0,1〕.〔1〕证明:a n>α,n∈N*;〔2〕判断a n与a n+1的大小,并证明你的结论.〔1〕证明:〔数学归纳法〕当n=1时,由题意知a1>α,∴原式成立.假设当n=k时,a k>α,成立.∵f'(x)>0,∴f(x)是单调递增函数.∴a k+1= f(a k)> f(α)=α,〔∵α是方程f(x)= x的实数根〕即当n=k+1时,原式成立.故对于任意自然数N *,原式均成立.〔2〕解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由〔1〕知,a n >α,∴a n >f (a n )=a n+1.点评 此题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比拟A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),那么f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,那么当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A 〔x =0时等号成立〕.点评 运用导数比拟两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),那么只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用屡次,2004年全国卷Ⅱ的压轴题就考察了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.〔1〕求y =f (x )的解析式及定义域;〔2〕求出产品的增加值y 的最大值及相应的x 值. 解:〔1〕由,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a·42a ,∴k =8,那么f (x )=8-(a -x )x 2.∵0<)(2x a x -≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at.〔2〕∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,那么x =0〔舍去〕,32ax=,当0<x <32a 时,f '(x )>0,此时f (x )在〔0,32a 〕上单调递增; 当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a . 点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。
导数27个专题学生版
目录专题1:切线问题 1专题2:函数的图像 3专题3:单调性问题 9专题4:函数的极值问题 11专题5:函数的最值 14专题6:三次函数 18专题7:零点问题 20专题8:恒成立与存在性问题 26专题9:构造函数解不等式 30专题10:有关距离问题 34专题11:参数的值或范围问题 36专题12:分离参数法 40专题13:数形结合法 44专题14:构造函数 45专题15:不等式放缩法 48专题16:卡根法专题 50专题17:数列不等式 53专题18:极值点偏移问题 61专题19:双变量问题 64专题20:凹凸反转问题 68专题21:与三角函数有关题 70专题22:隐零点设而不求 74专题23:端点效应专题 77专题24:最大最小函数问题 81专题25:恒成立专题 83专题26:筷子夹汤圆专题 87专题27:找点专题 91专题1:切线问题1.若函数f (x )=ln x 与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是()A.ln 12e,+∞ B.(-1,+∞)C.(1,+∞)D.(-ln2,+∞)2.已知直线y =2x 与曲线f x =ln ax +b 相切,则ab 的最大值为()A.e4B.e2C.eD.2e3.已知P 是曲线C 1:y =e x 上任意一点,点Q 是曲线C 2:y =ln x x上任意一点,则PQ 的最小值是()A.1-2ln 2B.1+ln22C.2D.24.若曲线y =ax +2cos x 上存在两条切线相互垂直,则实数a 的取值范围是()A.[-3,3]B.[-1,1]C.(-∞,1]D.[-3,1]5.已知关于x 不等式ae x ≥x +b 对任意x ∈R 和正数b 恒成立,则a b 的最小值为()A.12B.1C.2D.26.若存在实数a ,b ,使不等式2e ln x ≤ax +b ≤12x 2+e 对一切正数x 都成立(其中e 为自然对数的底数),则实数a 的最大值是()A.eB.2eC.2eD.27.若对函数f x =2x -sin x 的图象上任意一点处的切线l 1,函数g x =me x +m -2 x 的图象上总存在一点处的切线l 2,使得l 1⊥l 2,则m 的取值范围是()A.-e 2,0 B.0,e 2C.-1,0D.0,18.若过点P 1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是()A.-5e2,0 B.-5e2,e C.0,+∞D.-3e2,-1e9.已知y =kx +b 是函数f x =ln x +x 的切线,则2k +b 的最小值为______.10.存在k >0,b >0使kx -2k +b ≥x ln 对任意的x >0恒成立,则b k的最小值为________.11.若直线y =kx +b 是曲线y =e x 的切线,也是曲线y =x +2 ln 的切线,则k =.12.已知直线y =kx +b 与函数y =e x 的图像相切于点P x 1,y 1 ,与函数y =x ln 的图像相切于点Q x 2,y 2 ,若x 2>1,且x 2∈n ,n +1 ,n ∈Z ,,则n =_________.13.若直线y =kx +b 既是曲线y =x ln 的切线,又是曲线y =e x -2的切线,则b =______.14.已知实数a ,b ,c ,d ,满足aln b =2c d -1=1,那么a -c 2+b -d 2的最小值为.15.若直线y =kx +b 与曲线y =x ln +2相切于点P ,与曲线y =x +1 ln 相切于点Q ,则k =.专题2:函数的图像1.已知函数f (x )=ax 3+bx 2+c ,其导数f ′(x )的图象如图所示,则函数f (x )的极大值是()121OxyA.a +b +cB.8a +4b +cC.3a +2bD.c2.设函数y =f (x )可导,y =f (x )的图象如图所示,则导函数y =f ′(x )可能为()OxyA.Oxy B.Oxy C.Oxy D.Oxy3.函数y =sin2x 1-cos x的部分图象大致为()A.Oxy-π11π B.Oxy-π11πC.Oxy-π11π D.Oxy-π11π4.若函数f (x )的图象如图所示,则f (x )的解析式可能是()11O xyA.f (x )=x2ln |x |B.f (x )=ln |x |-x 2C.f (x )=1x+ln |x |D.f (x )=x ln |x ||x |5.函数f (x )=x ln |x |x 2+1的图象大致为()A.OxyB.OxyC.OxyD.Oxy6.函数f (x )=x ln x x 2+1,x >0x ln (-x )x 2+1,x <0的图象大致为()A.OxyB.OxyC.OxyD.Oxy7.函数f (x )=x ln |x ||x |的大致图象是()A.O xyB.O xyC.OxyD.Oxy8.函数f (x )=x -1xcos x (-π≤x ≤π且x ≠0)的图象可能为()A.Oxy-ππ B.Oxy-ππ C.Oxy-ππ D.Oxy-ππ9.已知f (x )=14x 2+sin π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是()A.OxyB.OxyC.OxyD.Oxy10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是()OxyOxyOxyOxyA.①②B.③④C.①③D.①④11.已知R 上的可导函数f (x )的图象如图所示,则不等式(x -2)f (x )>0的解集为()2121O xyA.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,1)∪(2,+∞)D.(-1,1)∪(2,+∞)12.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22等于()Oxyx 1x 2-12A.89 B.109 C.169D.28913.如图是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 1+x 2=()Oxyx 1x 2-12A.23 B.109 C.89 D.28914.函数f (x )=ax +b (x +c )2的图象如图所示,则下列结论成立的是()OxyA.a <0,b >0,c <0B.a >0,b <0,c <0C.a >0,b <0,c >0D.a <0,b >0,c >015.函数f (x )=ax +b (x +c )2的图象大致如图所示,则下列结论正确的是()OxyA.a >0,b >0,c >0B.a <0,b >0,c <0C.a <0,b <0,c >0D.a >0,b >0,c <016.函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是()OxyA.a >0,b <0,c >0,d >0B.a >0,b <0,c <0,d >0C.a <0,b <0,c >0,d >0D.a >0,b >0,c >0,d <017.函数y =x 2sin x(2x 2-e |x |)在[-2,2]的图象大致为()A.1111O xyB.1111O xyC.1111OxyD.1111O xy18.函数y =2x 2-2|x |在[-2,2]的图象大致为()A.O xy-2-112-4B.OxyC.Oxy-2-1124D.Oxy 19.已知函数f (x )的图象如图所示,则f (x )的解析式可能是()Oxy 1A.f (x )=ln |x |-x 2B.f (x )=ln |x |-|x |C.f (x )=2ln |x |-x 2D.f (x )=2ln |x |-|x |21111OxA.f (x )=ln |x |-1x B.f (x )=ln |x |+1x C.f (x )=1x-ln |x |D.f (x )=ln |x |+1|x |21.函数f (x )的图象如图所示,则它的解析式可能是()212111OxyA.f (x )=x 2-12x B.f (x )=2x (|x |-1) C.f (x )=|ln |x || D.f (x )=xe x -122.已知函数f (x )的图象如图所示,则该函数的解析式可能是()O xyA.f (x )=ln |x |e xB.f (x )=e x ln |x |C.f (x )=ln |x |xD.f (x )=(x -1)ln |x |23.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是()96342423OxyA.f (x )=2xln |x |B.f (x )=2|x |ln |x |C.f (x )=1x 2-1D.f (x )=1|x |-1|x |14321321321OxA.f (x )=e |x |∙cos xB.f (x )=ln |x |∙cos xC.f (x )=e |x |+cos xD.f (x )=ln |x |+cos x25.已知函数f (x )的局部图象如图所示,则f (x )的解析式可以是()13π2ππ23π2ππ21OxyA.f (x )=e 1|x |∙sin π2xB.f (x )=e 1|x |∙cos π2xC.f (x )=ln |x |∙sin π2xD.f (x )=ln |x |∙cos π2x专题3:单调性问题1.已知函数f (x )=ln x +ln (a -x )的图象关于直线x =1对称,则函数f (x )的单调递增区间为()A.(0,2)B.[0,1)C.(-∞,1]D.(0,1]2.若函数f (x )的定义域为D 内的某个区间I 上是增函数,且F (x )=f (x )x在I 上也是增函数,则称y =f (x )是I 上的“完美函数”,已知g (x )=e x +x -ln x +1,若函数g (x )是区间m 2,+∞ 上的“完美函数”,则正整数m 的最小值为()A.1B.2C.3D.43.设函数f (x )=e 2x +ax 在(0,+∞)上单调递增,则实数a 的取值范围为()A.[-1,+∞)B.(-1,+∞)C.[-2,+∞)D.(-2,+∞)4.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间[k -1,k +1]内不是单调函数,则实数k 的取值范围是()A.[1,2)B.(1,2)C.1,32D.1,325.若函数f (x )=ln x +ax 2-2在区间12,2 内存在单调递增区间,则实数a 的取值范围是()A.(-∞,-2]B.(-2,+∞)C.-2,-18D.-18,+∞6.若函数f (x )=ln x +(x -b )2(b ∈R )在区间12,2上存在单调递增区间,则实数b 的取值范围是()A.-∞,32B.-∞,94C.-32,94D.32,+∞ 7.设1<x <2,则ln x x 、ln x x 2、ln x 2x 2的大小关系是()A.ln x x 2<ln x x <ln x 2x2B.ln x x <ln x x 2<ln x 2x 2C.ln x x 2<ln x 2x2<ln x x D.ln x 2x2<ln x x 2<ln x x8.已知函数y =f (x -1)的图象关于直线x =1对称,且当x ∈(0,+∞)时,f (x )=ln x x .若a =f -e 2,b=f (2),c =f 23 ,则a ,b ,c 的大小关系是()A.b >a >cB.a >b >cC.a >c >bD.c >b >a9.下列命题为真命题的个数是()①e 2e >2;②ln2>23;③lnππ<1e ;④ln22<lnππ.A.1B.2C.3D.410.下列命题为真命题的个数是()①ln3<3ln2;②lnπ<πe;③215<15;④3e ln2<42A.1B.2C.3D.411.已知函数f (x )=e x ln x -ae x (a ∈R ),若f (x )在(0,+∞)上单调递增,则实数a 的取值范围是.12.已知函数f (x )=e -x -2,x ≤02ax -1,x >0(a >0),对于下列命题:(1)函数f (x )的最小值是-1;(2)函数f (x )在R 上是单调函数;(3)若f (x )>0在12,+∞ 上恒成立,则a 的取值范围是a >1,其中真命题的序号是.13.已知函数f (x )=ln x +(x -a )2(a ∈R )在区间12,2上存在单调递增区间,则实数a 的取值范围是14.设函数f (x )=3x 2+ax e x(a ∈R ),f (x )在[3,+∞)上为减函数,则a 的取值范围是.专题4:函数的极值问题1.若函数f(x)=e x(x-3)-13kx3+kx2只有一个极值点,则k的取值范围为()A.(-∞,e)B.[0,e]∪12e2C.(-∞,2)D.(0,2]2.已知函数f(x)=e x x-k12x2-1x,若x=1是函的f(x)的唯一一个极值点,则实数k的取值范围为() A.(-∞,e] B.-∞,-1eC.-∞,-1e∪{0} D.-∞,-1e∪{0,e}3.已知函数f(x)=e x(x2-4x-4)+12k(x2+4x),x=-2是f(x)的唯一极小值点,则实数k的取值范围为() A.[-e2,+∞) B.[-e3,+∞) C.[e2,+∞) D.[e3,+∞)4.已知函数f(x)=x2-2x+a ln x有两个极值点x1,x2,且x1<x2,则()A.f(x1)<3+2ln24 B.f(x1)<-1+2ln24C.f(x1)>1+2ln24 D.f(x1)>-3+2ln245.已知函数f(x)=x2-2x+1+a ln x有两个极值点x1,x2,且x1<x2,则()A.f(x2)<-1+2ln24 B.f(x2)<1-2ln24C.f(x2)>1+2ln24 D.f(x2)>1-2ln246.已知t为常数,函数f(x)=(x-1)2+t ln x有两个极值点a、b(a<b),则()A.f(b)>1-2ln24 B.f(b)<1-2ln24 C.f(b)>1+2ln24 D.f(b)<1-3ln247.若函数y=ae x+3x在R上有小于零的极值点,则实数a的取值范围是()A.(-3,+∞)B.(-∞,-3)C.-13,+∞D.-∞,-138.若函数f (x )=e x -ax -b 在R 上有小于0的极值点,则实数a 的取值范围是()A.(-1,0)B.(0,1)C.(-∞,-1)D.(1,+∞)9.已知函数f (x )=x ln x -ax 2有两个极值点,则实数a 的取值范围为()A.(-∞,0)B.(0,+∞)C.0,12D.(0,1)10.已知函数f (x )=x ln x -12ax 2-x +3a 3-4a 2-a +2(a ∈R )存在两个极值点.则实数a 的取值范围是()A.(0,+∞)B.0,1eC.1e,+∞ D.1e,e 11.若函数f (x )=e x (e x -4ax )存在两个极值点,则实数a 的取值范围为()A.0,12B.(0,1)C.12,+∞ D.(1,+∞)12.若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间12,1 内有极大值,则a 的取值范围是()A.1e,+∞ B.(1,+∞) C.(1,2) D.(2,+∞)13.已知f (x )=a 2x 2-(1+2a )x +2ln x (a >0)在区间(3,4)有极小值,则实数a 的取值范围是()A.(4-1,3-1)B.(3,4)C.(3-1,4)D.(4-1,3)14.已知a ∈R ,函数f (x )=-32x 2+(4a +2)x -a (a +2)ln x 在(0,1)内有极值,则a 的取值范围是()A.(0,1)B.(-2,0)∪(0,1)C.-2,-12 ∪-12,1D.(-2,1)15.已知函数f (x ),对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为一个三角形的三边长,则称f (x )为“三角形函数”,已知函数f (x )=m cos 2x +m sin x +3是“三角形函数”,则实数m 的取值范围是()A.-67,1213B.-2,1213C.0,1213D.(-2,2)16.已知x=0是函数f(x)=(x-2a)(x2+a2x+2a3)的极小值点,则实数a的取值范围是.17.已知x=1是函数f(x)=(x-2)e x-k2x2+kx(k>0)的极小值点,则实数k的取值范围是.18.若函数f(x)在区间A上,对∀a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=x ln x+m在区间1e2,e上是“三角形函数”,则实数m的取值范围为.专题5:函数的最值1.已知函数f (x )=e x -3,g (x )=12+ln x 2,若f (m )=g (n )成立,则n -m 的最小值为()A.1+ln2B.ln2C.2ln2D.ln2-12.已知函数f x =x +ln x -1 ,g x =x ln x ,若f x 1 =1+2ln t ,g x 2 =t 2,则x 1x 2-x 2 ln t 的最小值为().A.1e2B.2eC.-12eD.-1e3.若对任意x ∈0,+∞ ,不等式2e 2x -a ln a -a ln x ≥0恒成立,则实数a 的最大值为()A.eB.eC.2eD.e 24.已知函数f (x )=ln x x,g (x )=xe -x ,若存在x 1∈(0,+∞),x 2∈R ,使得f (x 1)=g (x 2)=k (k <0)成立,则x 2x 1 3e k的最小值为()A.-1e2B.-4e2C.-9e3D.-27e 35.已知函数f (x )=-1x ,x <0e 2x,x ≥0,若关于x 的方程f (x )-a =0(a ∈R )恰有两个不等实根x 1,x 2,且x 1<x 2,则e x 2-x 1的最小值为()A.12ln2+12B.2+eC.2eD.2e6.已知函数f x =e xx-ax +ln x (1)a =1时,求函数f (x )的极值;(2)若a ∈1,e 24+12,求f (x )的最小值g (a )的取值范围.7.已知函数f x =e x -x +t 2x 2(t ∈R ,e 为自然对数的底数),且f x 在点1,f 1 处的切线的斜率为e ,函数g x =12x 2+ax +b a ∈R ,b ∈R .(1)求f x 的单调区间和极值;(2)若f x ≥g x ,求b a +12的最大值.8.已知函数f x =x -a ln x +1(a ∈R ).(1)讨论函数f (x )的单调性;(2)当1<a <e 时,记函数f (x )在区间1,e 的最大值为M .最小值为m ,求M -m 的取值范围.9.已知函数f (x )=x 2-ax +2ln x (a ∈R )两个极值x 1,x 2x 1<x 2 点.(1)当a =5时,求f x 2 -f x 1 ;(2)当a ≥2e +2e时,求f x 2 -f x 1 的最大值.10.已知函数f(x)=ln x x+1x+a.(1)当a=-1时,求f x 的最大值;(2)对任意的x>0,不等式f(x)≤e x恒成立,求实数a的取值范围.11.已知函数f x =xe x(其中e为自然对数的底数).(1)求函数f x 的最小值;(2)求证:f x >e x+ln x-12.12.已知函数f(x)=ax2-x+(1+b)ln x(a、b∈R).(1)当a=1,b=-4时,求y=f(x)的单调区间;(2)当b=-2,x≥1时,求g(x)=|f(x)|的最小值.13.已知函数f (x )=12(x +a )2+b ln x ,a ,b ∈R .(1)若直线y =ax 是曲线y =f (x )的切线,求a 2b 的最大值;(2)设b =1,若函数f (x )有两个极值点x 1与x 2,且x 1<x 2,求f x 2x 1的取值范围.14.已知函数f x =ae x -x .(1)求f x 的极值;(2)求f x 在0,1 上的最大值.15.已知函数f x =14x 3-x 2+x .(1)当x ∈-2,4 时,求证:x -6≤f x ≤x ;(2)设F x =f x -x +a a ∈R ,记F x 在区间-2,4 上的最大值为M a .当M a 最小时,求a 的值.专题6:三次函数1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =()A.-7B.-2C.-7和-2D.以上答案都不对2.已知函数f (x )=x 3-3x 2+5,g (x )=m (x +1)(m ∈R ),若存在唯一的正整数x 0,使得f (x 0)<g (x 0),则实数m 的取值范围是()A.0,54B.13,54C.13,54D.0,133.设函数f (x )=x 3-3x 2-ax +5-a ,若存在唯一的正整数x 0,使得f (x 0)<0,则a 的取值范围是()A.0,13B.13,54C.13,32D.54,324.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是()A.(-∞,-3]∪[3,+∞)B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3)5.若函数f (x )=x 33-a 2x 2+x +1在区间12,3上有极值点,则实数a 的取值范围是()A.2,52B.2,52C.2,103D.2,1036.若f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则b a 的值为()A.-32或-12B.-32或12C.-32D.-127.如果函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在(6,+∞)上为增函数,则实数a的取值范围是()A.a ≤5B.5≤a ≤7C.a ≥7D.a ≤5或a ≥78.已知函数f (x )=13x 3-12ax 2+x 在区间12,3上既有极大值又有极小值,则实数a 的取值范围是()A.(2,+∞)B.[2,+∞)C.2,52D.2,1039.已知函数f (x )=a 3x 3-12x 2-x (a ≥0)在区间(0,1)上不是单调函数,则实数a 的取值范围是()A.(0,2)B.[0,1)C.(0,+∞)D.(2,+∞)10.函数f (x )=13x 3-12(m +1)x 2+2(m -1)x 在(0,4)上无极值,则m =.11.设函数f (x )=x 3+(1+a )x 2+ax 有两个不同的极值点x 1,x 2,且对不等式f (x 1)+f (x 2)≤0恒成立,则实数a 的取值范围是.12.若函数f (x )=x 33-a 2x 2+x +1在区间12,3上单调递减,则实数a 的取值范围是.13.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是.14.已知函数f (x )=13x 3-12(a +1)x 2+ax +1,a ∈R .若函数f (x )在区间(-1,1)内是减函数,则实数a 的取值范围是.专题7:零点问题1.设函数f (x )=x 2-2ex -ln x x+a (其中e 为自然对数的底数,若函数f (x )至少存在一个零点,则实数a的取值范围是()A.0,e 2-1eB.0,e 2+1eC.e 2-1e ,+∞D.-∞,e 2+1e2.设函数f (x )=x 3-2ex 2+mx -ln x ,记g (x )=f (x )x,若函数g (x )至少存在一个零点,则实数m 的取值范围是()A.-∞,e 2+1eB.0,e 2+1eC.e 2+1e,+∞ D.-e 2-1e ,e 2+1e3.已知函数f (x )=me x2与函数g (x )=-2x 2-x +1的图象有两个不同的交点,则实数m 取值范围为()A.[0,1)B.[0,2)∪-18e 2C.(0,2)∪-18e 2D.[0,2e )∪-18e 24.已知函数f (x )的定义域为R ,且对任意x ∈R 都满足f (1+x )=f (1-x ),当x ≤1时,f (x )=ln x ,0<x ≤1e x ,x ≤0 .(其中e 为自然对数的底数),若函数g (x )=m |x |-2与y =f (x )的图象恰有两个交点,则实数m 的取值范围是()A.m ≤0或m =eB.0<m ≤32C.32<m <eD.m >e5.定义:如果函数y =f (x )在区间[a ,b ]上存在x 1,x 2(a <x 1<x 2<b ),满足f ′(x 1)=f (b )-f (a )b -a,f ′(x 2)=f (b )-f (a )b -a,则称函数y =f (x )在区间[a ,b ]上的一个双中值函数,已知函数f (x )=x 3-65x 2是区间[0,t ]上的双中值函数,则实数t 的取值范围是()A.35,65B.25,65C.25,35D.1,656.定义:如果函数y =f (x )在定义域内给定区间[a ,b ]上存在(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.则下列叙述正确的个数是()①y =x 2是区间[-1,1]上的平均值函数,0是它的均值点;②函数f (x )=-x 2+4x 在区间[0,9]上是平均值函数,它的均值点是5;③函数f (x )=log 2x 在区间[a ,b ](其中b >a >0)上都是平均值函数;④若函数f (x )=-x 2+mx +1是区间[-1,1]上的平均值函数,则实数m 的取值范围是(0,2)A.1B.2C.3D.47.若存在正实数m ,使得关于x 的方程x +a (2x +2m -4ex )[ln (x +m )-ln x ]=0有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是()A.(-∞,0)B.0,12eC.(-∞,0)∪12e,+∞ D.12e,+∞ 8.已知函数u (x )=(2e -1)x -m ,υ(x )=ln (x +m )-ln x 若存在m ,使得关于x 的方程2a ∙u (x )∙υ(x )=x 有解,其中e 为自然对数的底数则实数a 的取值范围是()A.(-∞,0)∪12e,+∞ B.(-∞,0)C.0,12eD.(-∞,0)∪12e ,+∞9.若关于x 的方程x e x +e x x +e x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e 为自然对数的底数,则x 1e x 1+1 2x 2e x 2+1 x3e x 3+1 的值为()A.1+mB.eC.m -1D.110.若关于x 的方程|e x -1|+2|e x-1|+1+m =0有三个不相等的实数解x 1、x 2、x 3,(x 1<0<x 2<x 3)其中m ∈R ,e =2.71828⋯,则(|e x 1-1|+1)∙(|e x 2-1|+1)∙(|e x 3-1|+1)2的值为()A.eB.4C.m -1D.m +111.已知函数f (x )=-2x ,x <0-x 2+2x ,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是()A.0,34B.0,34C.0,916D.0,91612.已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e ),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是()A.5e ,2B.-52e ,-83e2 C.-12,-83e2 D.-4e ,-52e13.已知函数f (x )=ln (x +1)-ax x +a,a 是常数,且a ≥1.(Ⅰ)讨论f (x )零点的个数;(Ⅱ)证明:22n +1<ln 1+1n <33n +1,n ∈N +.14.已知函数f (x )=ae 2x +(a -2)e x -x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.15.已知函数f (x )=(ex -e )e x +ax 2,a ∈R .(Ⅰ)讨论f (x )的单调性;(Ⅱ)若f (x )有两个零点,求a 的取值范围.16.已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.17.已知函数f(x)=e x[ax2+(a-2)]-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.18.已知函数f(x)=x3+ax+14,g(x)=-ln x(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.19.已知函数f(x)=-x2+a-14x(a∈R),g(x)=ln x x.(1)当a为何值时,x轴为曲线y=f(x)的切线,(2)用max{m,n}表示m,n中的最大值,设函数h(x)=max{xf(x),xg(x)}(x>0),当0<a<3时,讨论h(x)零点的个数.20.已知函数f(x)=-x2+a-14x.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)设函数g(x)=xf(x),讨论g(x)在区间(0,1)上零点的个数.21.已知函数f(x)=2x2-1x-a ln x(a∈R).(1)讨论f(x)的单调性;(2)设g(x)=e x-sin x,若h(x)=g(x)(f(x)-2x)且y=h(x)有两个零点,求a的取值范围.22.已知函数f(x)=ae x-ln(x+1)+ln a-1.(1)若a=1,求函数f(x)的极值;(2)若函数f(x)有且仅有两个零点,求a的取值范围.专题8:恒成立与存在性问题1.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是()A.-32e ,1B.-32e ,34C.32e ,34D.32e ,12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在两个整数x 1,x 2,使得f (x 1),f (x 2)都小于0,则a 的取值范围是()A.53e 2,32eB.-32e ,32eC.53e 2,1 D.32e ,1 3.已知函数f (x )=(x 2-a )ln x ,曲线y =f (x )上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A.-1e2,0 B.(-1,0)C.-1e2,+∞ D.(-1,+∞)4.已知函数f (x )=x a -1ex ,曲线y =f (x )上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A.(-e 2,+∞)B.(-e 2,0)C.-1e2,+∞ D.-1e2,0 5.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f (x 1)-f (x 2)x 1-x 2≥2恒成立,则a的取值范围是()A.(1,+∞)B.[1,+∞)C.(0,1]D.(0,1)6.已知f (x )=a ln x +12x 2,若对任意两个不等的正实数x 1,x 2都有f (x 1)-f (x 2)x 1-x 2>0成立,则实数a 的取值范围是()A.[0,+∞)B.(0,+∞)C.(0,1)D.(0,1]7.已知函数f(x)=a ln(x+1)-x2,若对∀p,q∈(0,1),且p≠q,有f(p+1)-f(q+1)p-q>2恒成立,则实数a的取值范围为() A.(-∞,18) B.(-∞,18] C.[18,+∞) D.(18,+∞)8.已知函数f(x)=a ln(x+1)-12x2,在区间(0,1)内任取两个数p,q,且p≠q,不等式f(p+1)-f(q+1)p-q>3恒成立,则实数a的取值范围是()A.[8,+∞)B.(3,8]C.[15,+∞)D.[8,15]9.设函数f(x)=e x(x3-3x+3)-ae x-x(x≥-2),若不等式f(x)≤0有解,则实数a的最小值为()A.2e-1B.2-2eC.1-1eD.1+2e210.设函数f(x)=x(ln x)3-(3x+1)ln x+(3-a)x,若不等式f(x)≤0有解,则实数a的最小值为()A.2e-1B.2-2eC.1+2e2D.1-1e11.设函数f(x)=e x x3+32x2-6x+2-2ae x-x,若不等式f(x)≤0在[-2,+∞)上有解,则实数a的最小值为()A.-32-1eB.-32-2eC.-34-12eD.-1-1e12.已知函数f(x)=ln x+(x-b)2x(b∈R),若存在x∈12,2,使得f(x)>-x∙f′(x),则实数b的取值范围是() A.(-∞,-2) B.-∞,32C.-∞,94D.(-∞,3)13.已知f (x )=xe x ,g (x )=-(x +1)2+a ,若存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围为()A.1e ,+∞ B.-1e ,+∞ C.(0,e )D.-1e ,0 14.设过曲线g (x )=ax +2cos x 上任意一点处的切线为l 1,总存在过曲线f (x )=-e x -x 上一点处的切线l 2,使得l 1⎳l 2,则实数a 的取值范围为()A.[1,+∞)B.[1,+∞]C.(-∞,-3]D.(-∞,-3)15.设函数f (x )=x 2+4x ,g (x )=xe x ,若对任意x 1,x 2∈(0,e ],不等式g (x 1)k +1≤f (x 2)k恒成立,则正数k 的取值范围为()A.4e e +1,1eB.(e ,4]C.0,e e +14-eD.0,4e e +1-416.设e 表示自然对数的底数,函数f (x )=(e x -a )24+(x -a )2(a ∈R ),若关于x 的不等式f (x )≤15有解,则实数a 的值为.17.已知f (x )=a ln x +12x 2+x ,若对任意两个不等的正实数x 1,x 2,都有f (x 1)-f (x 2)x 12-x 22<1恒成立,则a 的取值范围是.18.(1)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是.(2)已知f (x )=xe x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围.19.当x∈(0,+∞)时,不等式c2x2-(cx+1)ln x+cx≥0恒成立,则实数c的取值范围是.20.若关于x的不等式(ax+1)(e x-aex)≥0在(0,+∞)上恒成立,则实数a的取值范围是.21.关于x的不等式(ax-1)(ln x+ax)≥0在(0,+∞)上恒成立,则实数a的取值范围是.22.已知关于x的不等式ax3+x2+x≤ln x+1x在(0,+∞)上恒成立,则实数a的取值范围是.23.已知函数f(x)=x-1-a ln x(a<0),g(x)=4x,若对任意x1,x2∈(0,1]都有|f(x1)-f(x2)|≤|g(x1)-g(x2)|成立,则实数a的取值范围为.24.若f(x)=x-1-a ln x,g(x)=exe x,a<0,且对任意x1,x2∈[3,4](x1≠x2),|f(x1)-f(x2)|<1 g(x1)-1 g(x2)的恒成立,则实数a的取值范围为.25.设过曲线f(x)=-e x-x+3a上任意一点处的切线为l1,总存在过曲线g(x)=(x-1)a+2cos x上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为.26.设函数f(x)=e2x2+1x,g(x)=e2xe x,对任意x1、x2∈(0,+∞),不等式f(x1)k+1≥g(x2)k,恒成立,则正数k的取值范围是.27.已知函数f(x)=x-1-a ln x(a∈R),g(x)=e x x,当a<0时,且对任意的x1,x2∈[4,5](x1≠x2),|f(x1)-f(x2)|<|g(x1)-g(x2)|恒成立,则实数a的取值范围为.专题9:构造函数解不等式1.设函数f (x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf (x)-f(x)>0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(-1,0)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)2.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f (x)<1,则不等式e x f(x)>e x+1的解集为() A.{x|x>0} B.{x|x<0}C.{x|x<-1,或x>1}D.{x|x<-1,或0<x<1}3.已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导函数f′(x)>x-1,则不等式f(x)<12x2-x+1的解集为() A.{x|-2<x<2} B.{x|x>2} C.{x|x<2} D.{x|x<-2或x>2}4.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为() A.(-∞,0) B.(0,+∞) C.(-∞,e4) D.(e4,+∞)5.已知定义在R上的可导函数f(x)的导函数f′(x),满足f′(x)<f(x),且f(x+2)=f(x-2),f(4)=1,则不等式f(x)<e x的解集为()A.(0,+∞)B.(1,+∞)C.(4,+∞)D.(-2,+∞)+1(e为自然对数的底数6.若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>3e x)的解集为() A.(0,+∞) B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(0,+∞)D.(3,+∞)7.已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)> 2f′(x)若2<a<4则() A.f(2a)<f(3)<f(log2a) B.f(log2a)<f(3)<f(2a)<f(3)<f(2a)C.f(3)<f(log2a)<f(2a)D.f(log2a)<f(2a)<f(3)8.已知函数y=f(x)对于任意的x∈-π2,π2满足f′(x)cos x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式不成立的是()A.2fπ3 <fπ4B.2f-π3<f-π4C.f(0)<2fπ4D.f(0)<2fπ39.已知函数y=f(x)对于任意的x∈-π2,π2满足f (x)cos x+f(x)sin x>0(其中f (x)是函数f(x)的导函数),则下列不等式成立的是()A.2f-π3>f(0) B.f(0)>2fπ4 C.f(-1)>f(1) D.f(1)>f(0)cos110.函数f(x)的导函数为f′(x),对∀x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2,则不等式f(x)>e x2的解是()A.x>1B.0<x<1C.x>ln4D.0<x<ln411.函数f(x)的导函数f′(x),对∀x∈R,都有f′(x)>f(x)成立,若f(2)=e2,则不等式f(x)>e x的解是()A.(2,+∞)B.(0,1)C.(1,+∞)D.(0,ln2)12.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf′(x)-f(x)x2<0恒成立,则不等式xf(x)>0的解集是() A.(-2,0)∪(2,+∞) B.(-2,0)∪(0,2)C.(-∞,-2)∪(0,2)D.(-∞,-2)∪(2,+∞)13.已知一函数满足x>0时,有g′(x)=2x2>g(x)x,则下列结论一定成立的是()A.g(2)2-g(1)≤3 B.g(2)2-g(1)≥2 C.g(2)2-g(1)<4 D.g(2)2-g(1)≥414.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则()A.8<f(2)f(1)<16 B.4<f(2)f(1)<8 C.3<f(2)f(1)<4 D.2<f(2)f(1)<315.已知函数f(x)的定义域为(-∞,0)∪(0,+∞),图象关于y轴对称,且当x<0时,f′(x)>f(x)x恒成立,设a>1,则4af(a+1)a+1,2a f(2a),(a+1)f4aa+1的大小关系为()A.4af(a+1)a+1>2a f(2a)>(a+1)f4aa+1B.4af(a+1)a+1<2a f(2a)<(a+1)f4aa+1C.2a f(2a)>4af(a+1)a+1>(a+1)f4aa+1D.2a f(2a)<4af(a+1)a+1<(a+1)f4aa+116.已知函数f(x)的导函数为f′(x),若∀x∈(0,+∞),都有xf′(x)<2f(x)成立,则()A.2f(3)>3f(2)B.2f(1)<3f(2)C.4f(3)<3f(2)D.4f(1)>f(2)17.已知函数f(x)的导函数为f (x),若f(x)<xf (x)<2f(x)-x对x∈(0,+∞)恒成立,则下列不等式中,一定成立的是()A.f(2)3+12<f(1)<f(2)2 B.f(2)4+12<f(1)<f(2)2C.3f(2)8<f(1)<f(2)3+12 D.f(2)4+12<f(1)<3f(2)818.若a=67 -14,b=76 15,c=log278,定义在R上的奇函数f(x)满足:对任意的x1,x2∈[0,+∞)且x1≠x2都有f(x1)-f(x2)x1-x2<0,则f(a),f(b),f(c)的大小顺序为()A.f(b)<f(a)<f(c)B.f(c)>f(b)>f(a)C.f(c)>f(a)>f(b)D.f(b)>f(c)>f(a)19.设定义在R上的奇函数f(x)满足,对任意x1,x2∈(0,+∞),且x1≠x2,都有f(x2)-f(x1)x2-x1<1,且f(3)=3,则不等式f(x)x>1的解集为()A.(-3,0)∪(0,3)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(3,+∞)20.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2015)3f(x+2015)+27f(-3)>0的解集是.21.设函数f(x)在R上存在导数f′(x),∀x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是.22.已知定义在R上函数f(x)满足f(2)=1,且f(x)的导函数f′(x)<-2,则不等式f(ln x)>5-2ln x的解集为.23.若定义在R上的函数f(x)满足f(x)+f (x)<1,f(0)=4,则不等式e x[f(x)-1]>3(e为自然对数的底数)的解集为.24.定义在R上的函数f(x)满足:f(x)>1-f′(x),f(0)=0,f′(x)是f(x)的导函数,则不等式e x f(x)>e x-1(其中e为自然对数的底数)的解集为.25.函数f(x),g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)<f(x)g′(x),f(-3)=0,则不等式f(x)g(x)<0的解集为26.设f(x)是定义在R上的奇函数,且f(-1)=0,若不等式x1f(x1)-x2f(x2)x1-x2<0对区间(-∞,0)内任意两个不相等的实数x1,x2都成立,则不等式xf(2x)<0解集是.专题10:有关距离问题1.设点P在曲线y=12e x上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2)2.设点P在曲线y=e2x上,点Q在曲线y=12ln x上,则|PQ|的最小值为()A.22(1-ln2)B.2(1-ln2)C.2(1+ln2)D.22(1+ln2)3.设点P在曲线y=x上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为()A.1-ln22 B.22(1-ln2) C.1+ln22 D.2(1+ln2)24.设动直线x=m与函数f(x)=x3,g(x)=ln x的图象分别交于点M、N,则|MN|的最小值为()A.13(1+ln3)B.13ln3C.13(1-ln3)D.ln3-15.设动直线x=m与函数f(x)=e x,g(x)=ln x的图象分别交于点M,N,则|MN|最小值的区间为()A.12,1B.(1,2)C.2,52D.52,36.已知直线y=a分别与函数y=e x+1和y=x-1交于A,B两点,则A,B之间的最短距离是()A.3-ln22 B.5-ln22 C.3+ln22 D.5+ln227.若实数a,b,c,d满足|b+a2-4ln a|+|2c-d+2|=0,则(a-c)2+(b-d)2的最小值为()A.3B.4C.5D.68.已知函数f(x)=e x-1,x≤012x-1,x>0,若m<n且f(m)=f(n),则n-m的最小值为()A.2ln2-1B.2-ln2C.1+ln2D.29.已知函数f (x )=x 3+sin x ,g (x )=12x +1,x <0ln (x +1),x ≥0,若关于x 的方程f (g (x ))+m =0有两个不等实根x 1,x 2,且x 1<x 2,则x 2-x 1的最小值是()A.2B.3-ln2C.4-2ln2D.3-2ln210.已知函数f (x )=-32x +1,x ≥0e -x-1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是()A.23,ln2B.23,ln 32+13C.ln2,ln 32+13D.ln2,ln 32+1311.已知点M 在曲线y =3ln x -x 2上,点N 在直线x -y +2=0上,则|MN |的最小值为.12.已知直线y =b 与函数f (x )=2x +3和g (x )=ax +ln x 分别交于A ,B 两点,若AB 的最小值为2,则a +b =.13.若实数a ,b ,c ,d 满足2a 2-ln a b =3c -2d=1,则(a -c )2+(b -d )2的最小值为.14.若实数a 、b 、c 、d 满足a 2-2ln a b =3c -4d=1,则(a -c )2+(b -d )2的最小值为.15.已知实数a ,b ,c ,d 满足a -2e a b =1-c d -1=1,则(a -c )2+(b -d )2的最小值为.专题11:参数的值或范围问题1.已知函数f (x )=x -ln x ,g (x )=x 2-ax .(1)求函数f (x )在区间[t ,t +1](t >0)上的最小值m (t );(2)令h (x )=g (x )-f (x ),A (x 1,h (x 1)),B (x 2,h (x 2))(x 1≠x 2)是函数h (x )图象上任意两点,且满足h (x 1)-h (x 2)x 1-x 2>1,求实数a 的取值范围;(3)若∃x ∈(0,1],使f (x )≥a -g (x )x成立,求实数a 的最大值.2.已知函数f (x )=x ln x ,g (x )=-x 2+ax -3.(Ⅰ)求f (x )在[t ,t +2](t >0)上的最小值;(Ⅱ)若存在x ∈1e ,e(e 是常数,e =2.71828⋯)使不等式2f (x )≥g (x )成立,求实数a 的取值范围;(Ⅲ)证明对一切x ∈(0,+∞)都有ln x >1ex -2ex 成立.3.已知函数f (x )=x ln x ,g (x )=-x 2+ax -2(Ⅰ)求函数f (x )在[t ,t +2](t >0)上的最小值;(Ⅱ)若函数y =f (x )+g (x )有两个不同的极值点x 1,x 2(x 1<x 2)且x 2-x 1>ln2,求实数a 的取值范围.4.已知函数f(x)=ln x,g(x)=12x2-bx+1(b为常数).(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;(2)若b=0,h(x)=f(x)-g(x),∃x1、x2[1,2]使得h(x1)-h(x2)≥M成立,求满足上述条件的最大整数M;(3)当b≥2时,若对于区间[1,2]内的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g (x2)|成立,求b的取值范围.5.设函数f(x)=ax2-a-ln x,g(x)=1x-e⋯为自然对数的底数.e x,其中a∈R,e=2.718(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.6.已知函数f(x)=x+a ln x在x=1处的切线与直线x+2y=0垂直.(Ⅰ)求实数a的值;(Ⅱ)函数g(x)=f(x)+12x2-bx,若函数g(x)存在单调递减区间,求实数b的取值范围;(Ⅲ)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥72,求g(x1)-g(x2)的最小值.7.已知函数f (x )=a ln x +a +12x 2+1(1)当a =12时,求f (x )在区间1e ,e上的最值(2)讨论函数f (x )的单调性(3)当-1<a <0时,有f (x )>1+2aln (-a )恒成立,求a 的取值范围.8.已知函数f (x )=ax +x ln x 的图象在点x =e (e 为自然对数的底数)处的切线的斜率为3.(Ⅰ)求实数a 的值;(Ⅱ)若f (x )≤kx 2对任意x >0成立,求实数k 的取值范围;(Ⅲ)当n >m >1(m ,n ∈N *)时,证明:nm m n>m n .9.已知函数f (x )=x -ln (x +a )的最小值为0,其中a >0.设g (x )=ln x +m x,(1)求a 的值;(2)对任意x 1>x 2>0,g (x 1)-g (x 2)x 1-x 2<1恒成立,求实数m 的取值范围;(3)讨论方程g (x )=f (x )+ln (x +1)在[1,+∞)上根的个数.10.设函数f(x)=ln x+a(1-x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.专题12:分离参数法1.已知函数f x =e x -ae -x ,若f (x )≥23恒成立,则实数a 的取值范围是.2.已知函数f x =ln x -a x ,若f x <x 2在1,+∞ 上恒成立,则a 的取值范围是.3.若对任意x ∈R ,不等式3x 2-2ax ≥x -34恒成立,则实数a 的范围是.4.设函数f (x )=x 2-1,对任意的x ∈32,+∞ ,f x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是.5.若不等式x 2+2+x 3-2x ≥ax 对x ∈0,4 恒成立,则实数a 的取值范围是.6.设正数f x =e 2x 2+1x ,g x =e 2x ex ,对任意x 1,x 2∈0,+∞ ,不等式g x 1 k ≤f x 2 k +1恒成立,则正数k 的取值范围是.7.已知函数f x =ax 2-2a +1 x +ln x ,a ∈R ,g x =e x -x -1,若对于任意的x 1∈0,+∞ ,x 2∈R ,不等式f x 1 ≤g x 2 恒成立,求实数a 的取值范围.8.若不等式x +22xy ≤a x +y 对任意正数x ,y 恒成立,则正数a 的最小值是()A.1B.2C.2+12D.22+19.已知函数f x =1+ln x x ,如果当x ≥1时,不等式f x ≥k x +1恒成立,求实数k 的取值范围.10.已知函数f x =x +x ln x ,若k ∈Z ,且k <f x x -1对任意x >1恒成立,则k 的最大值为________.。
高中数学导数的计算精选题目(附答案)
高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f(x)±g(x)]′=f′(x)±g′(x);②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);#当g(x)=c时,[cf(x)]′=cf′(x).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;!(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1./3.(1)y =x 3·e x ;(2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ;(3)y =1+x 1-x +1-x1+x; …(4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ; (3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1);8.求下列函数的导数.(1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6; (6)f (x )=co S 2x .9.求下列函数的导数.&(1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2;(4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.[12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x .(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1?=S i n 2x 2+2S i n x 2co S x 2+co S 2x2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.·(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x .3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.:(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.—6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x )=12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.!(4)设y =5log 2u ,u =2x +1,则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2.…(4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 【所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x , ∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3.(3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x.11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数的导函数或某一点处的导数
秒杀题型一:求导函数
秒杀方法:基本初等函数的导数公式:
①若()(f x c =c 为常数),则'()0f x =; ②若()(),f x x Q αα*=∈则'1()f x x αα-=;
③若()sin ,f x x =则'()cos f x x =; ④若()cos ,f x x =则'()sin ;f x x =-
⑤若()x f x a =,则'()ln x f x a a =; ⑥若()x f x e =,则'()x f x e =;
⑦若()log ,a f x x =则'1()ln f x x a =; ⑧若()ln ,f x x =则'1
()f x x =。
导数运算法则:
①[]'''()()()()f x g x f x g x ±=±;
②[])()()()()()('''x g x f x g x f x g x f ⋅+⋅=⋅; ③[]'
''2()()()()(
)
()()f x f x g x f x g x g x g x ⎡⎤-=⎢⎥⎣⎦。
复合函数的导数:
由()y f u =和()u g x =复合而成的函数:(())y f g x =,其导数为:'''
x u x y y u =⋅。
快速求导法则:
[][])()()(''x f x f e x f e x x +=;
[][])()()(''x f x f e x f e x x -=--。
1.(母题)求多项式函数1
011()...n n n n f x a x a x a x a --=++++的导数.
2.(母题)求tan y x =的导数.
3.(母题)求tan x y e x =的导数。
4.(母题)求sin ln 2x y x x e x =+-的导数。
5.(母题)设3(),()f x x f a bx =-的导数等于 ( )
A.3()a bx -
B.223()b a bx --
C.23()b a bx - D .23()b a bx --
6.(母题)求下列函数的导数:(1)sin(3)6y x π=-
; (2)2x y xe =;
(3)2ln(15)x y x =+-;
(4)cos3x y e
x -=
7.(母题)求下列函数的导数:(1)43sin 3cos 4y x x =; (2)222()x x y e e
-=+.
8.(母题)求下列函数的导数:(1)2(ln sin )y x x x =+; (2)2cos x x y x
-=
.
9.(高考题改编)设0()sin f x x =,1()f x ='0()f x ,'21()()f x f x =…,'1()()n n f x f x +=n N ∈,则)(2020x f =
( )
A.sin x
B.sin x -
C.cos x
D.cos x -
秒杀结论:偶函数的导数是奇函数;奇函数的导数是偶函数。
10.(高考题)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满 足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= ( )
A.()f x
B.()f x -
C.()g x
D.()g x -
11.(高考题)若42()f x ax bx c =++,满足2)1('=f ,则)1('-f = ( )
A.4-
B.2-
C.2
D.4
秒杀题型二:求函数在某一点处的导数
秒杀方法:求出导函数,代入自变量即可。
1.(高考题)等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---L ,则()'
0f = ( )
A.62
B.92
C.122
D.152
2.(2008年新课标全国卷)设()ln f x x x =,若2)(0'=x f ,则0x = ( )
A.2e
B.e
C.ln 2
2 D.ln 2
3.(高考题)设函数32sin ()tan ,32f x x x θ
θ
θ=++其中50,12πθ⎡⎤
∈⎢⎥⎣⎦,则导数)1('f 的取值范围是
( )
A.[]2,2-
B.
C.⎤⎦
D.⎤⎦
4.(高考题)已知函数x x f x f sin cos )4()('+=π,则()4f π
的值为 .
5.(高考题)设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则)1('
f = .。