八年级数学上册第十二章全等三角形12.1全等三角形课件新版新人教版
合集下载
人教版 八年级数学上册第十二章:全等三角形复习课件(共15张PPT)
O
\ PD = PE
用途:证线段相等
E
角平分线性质的逆定理 到一个角的两边 的距离相等的点, 在这个角的平分线上。
∵ PD OA PE OB
PD = PE
\ OP 是 AOB 的平分线
用途:判定一条射线是角平分线
A C
P B
一、已知:如图∠B=∠DEF,BC=EF,补充条件 求证:ΔABC≌ ΔDEF (1)若要以“SAS”为依据,还缺条件 _A_B=_D_E _; (2) 若要以“ASA”为依据,还缺条件∠_A_CB_= _∠D;FE
E
O
B
C
6. 已知:BD⊥AM于点D,CE⊥AN于点E, BD、CE交于点F,CF=BF, 求证:点F在∠A的平分线上。
CM D
F
A
N EB
7、如图所示,DC=EC,AB∥CD,∠D=90°, AE⊥BC于E,求证:∠ACB=∠BAC.
8. 如图,四边形ABCD中,AC平分∠BAC, CE⊥AB于E,AD+AB=2AE, 求证:∠B与∠ADC互补。
2.如图(2),点D在AB上,点E在AC上, B
D
CD与BE相交于点O,且AD=AE,AB=AC.若 O
A
∠B=20°,CD=5cm,则 ∠C= 20°,BE= 5.说cm说理由.
E C 图(2)
3.如图(3),AC与BD相交于o,若
A
D
OB=OD,∠A=∠C,若AB=3cm3c,m 则
CD=
友情. 说提说示理:由公. 共边,公共角,B
(3) 若要以“AAS”为依据,还缺条件∠_A_=_∠__D ;
AD
B E CF
(4)若∠B=∠DEF=90°BC=EF,要以“HL” 为依据, 还缺条件_A_C=_D_F _
12-1 全等三角形 课件(共26张PPT)
时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△ ≌△ ,指出所有的对应边和对应角.
AB与DC,AC与DB,BC与CB是对应边;
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
【结论】本题考查了全等三角形的性质及
比较角的大小,解题的关键是找到两全等
三角形的对应角、对应边.
80°
.
知识梳理
例题4:如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,
如果∠BAF = 60°,那么∠DAE= 15°
角
例题5:如图,△ ABC ≌△ ADE,则AB = AD ,∠E =
知识梳理
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合
的边叫做对应边,重合的角叫做对应角。例如,图中的△ 和△
全等,记作△ ≌ ,其中点和点,点和点,点
和点是对应顶点;和,和,和是对应边;∠和
∠,∠和∠,∠和∠是对应角.
∠BAE = 130°,∠BAD = 50°,则∠BAC=
。
80°
∠C
,若
知识梳理
例题6:如图,已知△ ABC ≌△ EBF,AB ⊥ CE,ED ⊥ AC,∠A = 24°,
则:(1)AB =
EB ,BC = BF ,∠C = 66 °,∠EFB = 66 °;
(2)若AB = 5cm,BC = 3cm,则AF = 2cm 。
AB和DC是对应边,它们所对的∠ACB和∠DBC是对应
角,余下的一对边和一对角分别是对应边和对应角.
(2)根据书写规范可知点A和点D,点B和点C,点C
知识梳理
例题 1:如图所示,△ ≌△ ,指出所有的对应边和对应角.
AB与DC,AC与DB,BC与CB是对应边;
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
【结论】本题考查了全等三角形的性质及
比较角的大小,解题的关键是找到两全等
三角形的对应角、对应边.
80°
.
知识梳理
例题4:如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,
如果∠BAF = 60°,那么∠DAE= 15°
角
例题5:如图,△ ABC ≌△ ADE,则AB = AD ,∠E =
知识梳理
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合
的边叫做对应边,重合的角叫做对应角。例如,图中的△ 和△
全等,记作△ ≌ ,其中点和点,点和点,点
和点是对应顶点;和,和,和是对应边;∠和
∠,∠和∠,∠和∠是对应角.
∠BAE = 130°,∠BAD = 50°,则∠BAC=
。
80°
∠C
,若
知识梳理
例题6:如图,已知△ ABC ≌△ EBF,AB ⊥ CE,ED ⊥ AC,∠A = 24°,
则:(1)AB =
EB ,BC = BF ,∠C = 66 °,∠EFB = 66 °;
(2)若AB = 5cm,BC = 3cm,则AF = 2cm 。
AB和DC是对应边,它们所对的∠ACB和∠DBC是对应
角,余下的一对边和一对角分别是对应边和对应角.
(2)根据书写规范可知点A和点D,点B和点C,点C
八年级数学12.1全等三角形 (1)优秀课件
C
B
O
A
D
证明:∵△ AOC ≌ △BOD
∴∠A=∠B
∴AC∥BD
思考题:把四边形ABCD纸片沿EF折叠使 点C落在四边形ABCD内部,如图,那么∠C与 ∠1+∠2之间的一种数量关系始终保持不变,这
个规律是( B )
A.∠C=∠1+∠ 2
A
B. 2∠C=∠1+∠2 C.3∠C=∠1+∠2 D.3∠C=2(∠1+∠2)
∠D 与∠C ,∠DAB与∠CEB,
∠ABD与∠EBC是对应角。
例3 如图,△ADE≌△CBF 求证:AE∥CF , DB=FE
AC
DB 证明:∵△ADE ≌ △CBF ∴∠AED=∠CFB , DE=BF ∴AE∥CF ,
DE-BE = BF-BE 即 DB=FE
EF
1、假设△ BCE ≌ △ CBF,那么
B
C′ 12
D
EF
C
△ABD ≌ △EBC ,且 AB=3cm,DE=2cm,求BC的长.
D
2cm
E
解:∵△ABD ≌ △EBC
∴AB=EB,BD=BC
A 3cm B
C ∵AB=3cm
∴EB=3cm
∴BC=BD=DE+BE =2+3=5cm
在找全等三角形的对应元素时一般有什么规律?
A
AB=CD, ∠APB=∠CPD
B
P
BP=DP, ∠A=∠C
D
AP=CP, ∠B=∠D
C
对应角所对的边是对应边;
对应边所对的角是对应角。
寻找对应元素的规律
〔1〕公共边是对应边; 〔2〕公共角是对应角; 〔3〕对顶角是对应角; 〔4〕最大边是对应边,最小边是对应边; 〔5〕最大角是对应角,最小角是对应角; 〔6〕对应角所对的边是对应边; 〔7〕对应边所对的角是对应角。
最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件
追问1 请同学们将问题2 的两个三角形分别 标为△ABC、△DEF,观察这两个三角形有何对 应关系?
点A 与点D、点B 与点E、 点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、 ∠C 与∠F 重合,称为对应角.
追问2 你能用符号表示出这两个全等三角形吗?
练习6 如图,已知△ABE≌△ACD, ∠ADE=∠AED,∠B=∠C,指出其他的对应边 和对应角.若BD=2cm,DE=3cm,你能求出DC的 长吗?
解:AB = AC,AE = AD, BE =CD,∠BAE =∠CAD. DC = BE = BD+DE = 5cm.
随堂演练 基础巩固 1.判断题:
△ABC和△DEF全等, 记作:“△ABC ≌△DEF”, 读作:“△ABC 全等于△DEF”.
问题4 请同学们拿出问题2 准备的素材,按 照教材第32 页图12.1-2 进行平移、翻折、旋转, 变换前后的两个三角形还全等吗?
(1) △ABC ≌△DEF
(2) △ABC ≌△DBC
(3)△ABC ≌△ADE
(2)判断线段EH 与NG 的大小关系,并说明理由.
E
(1)平行;理由略.
H
(2)相等.
M
F
G
N
练习5 如图,△OCA≌△OBD,C和B,A 和D是对应顶点,说出这两个三角形中相等的边 和角.若∠A=20°,∠AOC=75°,你能求出∠B 的度数吗?
解:OC=OB,OA=OD,CA=BD, ∠COA=∠BOD,∠C=∠B,∠A=∠D. ∠B=∠C=180°-∠A-∠AOC=85°.
Thank you!
人教版八年级上册数学第十二章 全等三角形复习课件
先在过点B的AB的垂线上取两点C、D,使得CD=
BC,再在过点D的垂线上取点E,使A、C、E三点
在一条直线上,可以证明△EDC≌△ABC,所以测
得ED的长就是A、B两点间的距离,这里判定
△EDC≌△ABC的理由是( C )
A.SAS
B.SSS
C.ASA
D.AAS
第十二章 全等三角形
16.如图,AB,CD表示两根长度相等的铁条,若 O是AB,CD的中点,经测量AC=15cm,则容器的
在△AOD和△BO
第十二章 全等三角形
9.如图,已知AB∥CD,AE⊥BD,CF⊥BD,垂 足分别E,F,BF=DE. 求证:AB=CD. ∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°. ∵BF=DE,∴BF+FE=DE+EF,即BE=DF, ∵AB∥CD,∴∠D=∠B.
∵BE=CF,∴BE+EF=CF+EF,即BF=CE,
在△ABF和△DCE中,
,
∴△ABF≌△DCE(SAS).
第十二章 全等三角形
8.如图,已知AD=BC,AC=BD,求证: (1)△ADB≌△BCA; (2)△AOD≌△BOC.
(1) 在△ADB与△BCA中,
,
∴△ADB≌△BCA(SSS); (2) ∵由(1)得△ADB≌△BCA,∴∠D=∠C,
第十二章 全等三角形
22.如图:已知BD=CD,BF⊥AC, CE⊥AB,求证:AD平分∠BAC.
∵BF⊥AC,CE⊥AB, ∴∠BED=∠CFD=90°,
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS),∴DE=DF, 又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC.
感谢聆听
内径长为( D )
12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)
新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形
全
对应边相等
等 三
基本性质
对应角相等
角
长对长,短对短,中对中
形
对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A
人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)
今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A
D
随堂练习:
B
CE
F
第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,
《12.1 全等三角形》课件(3套)
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
DDDDDDDDD
B
规律五:一对最大的角是对应角 一对最小的角是对应角
已知△A0B≌△COD 指出图中 两三角形的对应边和对应角
A
D O B
C
已知△ABC≌△DCB 指出图 中两三角形的对应边和对应角
A B
D O
C
找一找:请指出下列全等三角形的对应边和对应角
解:在△ABC中,∠ACB=180°-30°-50°= 100°.∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EC =BF=2
10.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下 列结论中错误的是( D )
A.△ABC≌△DEF B.∠DEF=90° C.AC=DF D.EC=CF
1.不能准确确定全等三角形的对应关系. 2.对应关系考虑不全面而出错.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合 思 考 能够完全重合的两个图形叫做全等形
观察下面两组图形,它们是不是全等图形?为什么?与同伴进行交流。
形状
1
相同
大小 相同
2
全等图形的特征: 全等图形的形状和大小都相同
3.如图,将△ABC沿CB方向平移得到△DFE,则△ABC≌△__D_F_E, ∠ABC的对应角是 ∠DFE,∠C的对应角是 ∠DEF,BC的对应边是 _F__E_.
4.如图,将△ABC绕点A顺时针方向旋转得到△ADE,那么∠BAC的 对应角是∠__D_A_,E ∠B的对应角是_∠__D_,AC的对应边是__A_E_,BC的对应边 是__D_E_.
典型例题
例3:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,则下列
DDDDDDDDD
B
规律五:一对最大的角是对应角 一对最小的角是对应角
已知△A0B≌△COD 指出图中 两三角形的对应边和对应角
A
D O B
C
已知△ABC≌△DCB 指出图 中两三角形的对应边和对应角
A B
D O
C
找一找:请指出下列全等三角形的对应边和对应角
解:在△ABC中,∠ACB=180°-30°-50°= 100°.∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EC =BF=2
10.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下 列结论中错误的是( D )
A.△ABC≌△DEF B.∠DEF=90° C.AC=DF D.EC=CF
1.不能准确确定全等三角形的对应关系. 2.对应关系考虑不全面而出错.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合 思 考 能够完全重合的两个图形叫做全等形
观察下面两组图形,它们是不是全等图形?为什么?与同伴进行交流。
形状
1
相同
大小 相同
2
全等图形的特征: 全等图形的形状和大小都相同
3.如图,将△ABC沿CB方向平移得到△DFE,则△ABC≌△__D_F_E, ∠ABC的对应角是 ∠DFE,∠C的对应角是 ∠DEF,BC的对应边是 _F__E_.
4.如图,将△ABC绕点A顺时针方向旋转得到△ADE,那么∠BAC的 对应角是∠__D_A_,E ∠B的对应角是_∠__D_,AC的对应边是__A_E_,BC的对应边 是__D_E_.
典型例题
例3:如图,若ΔABC≌ΔAEF, AB=AE,∠B=∠E,则下列
12.1全等三角形 课件-人教版数学八年级上册
第十二章 全等三角形
12.1 全等三角形
1 课时讲解 全等形
全等三角形 全等三角形的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 全等形
知1-讲
1. 定义:能够完全重合的两个图形叫做全等形. 全等形的特征:“两相同”与“两无关”. (1)“两相同”:①形状相同;②大小相同. (2)“两无关”:①与位置无关;②与方向无关.
全等用“≌”表示,读作“全等于”∽: 表示形状相同;=:表示大小相同
记两个三角形全等时,通常把表示对应顶 点的字母写在对应的位置上
2. 常见三角形的全等变换 平移变换
翻折变换
知2-讲
旋转变换
知2-讲
特别提醒:1. 全等三角形是全等形中的特例. 2 . 平移、翻折、旋转只改变图形的位置,不改变 图形的形状和大小.
知1-练
解题秘方:根据全等形的定义和特征进行判断.
解:上述图形中,⑤和⑦形状相同,但大小不同; ⑥和⑩大小、形状都不同. ① 和⑨、② 和③、 ⑪和⑫ 尽管方向不同,但大小、 形状完全相同,所以它们是全等形; ④和⑧都是五角星,大小、形状都相同,是全等形.
知1-练
方法点拨:确定两个图形全等的方法 1. 条件判断法:(1)形状相同;(2)大小相同,是 不是全等形与位置无关. 2 . 重合判断法:通过平移、翻折、旋转等方法 把两个图形叠合在一起,看它们能否完全重合.
知2-练
3-1. 如图,将△ ABC沿直线BC 向右平移,得到△ DEF,△ ABC ≌△ DEF. 请指出这对全等三角形的对应边和对应 角.
知2-练
解 : 对 应 边 : AB 和 DE , AC 和 DF , BC 和 EF;对应角:∠A和∠D,∠B和∠DEF, ∠ACB和∠F.
12.1 全等三角形
1 课时讲解 全等形
全等三角形 全等三角形的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知识点 1 全等形
知1-讲
1. 定义:能够完全重合的两个图形叫做全等形. 全等形的特征:“两相同”与“两无关”. (1)“两相同”:①形状相同;②大小相同. (2)“两无关”:①与位置无关;②与方向无关.
全等用“≌”表示,读作“全等于”∽: 表示形状相同;=:表示大小相同
记两个三角形全等时,通常把表示对应顶 点的字母写在对应的位置上
2. 常见三角形的全等变换 平移变换
翻折变换
知2-讲
旋转变换
知2-讲
特别提醒:1. 全等三角形是全等形中的特例. 2 . 平移、翻折、旋转只改变图形的位置,不改变 图形的形状和大小.
知1-练
解题秘方:根据全等形的定义和特征进行判断.
解:上述图形中,⑤和⑦形状相同,但大小不同; ⑥和⑩大小、形状都不同. ① 和⑨、② 和③、 ⑪和⑫ 尽管方向不同,但大小、 形状完全相同,所以它们是全等形; ④和⑧都是五角星,大小、形状都相同,是全等形.
知1-练
方法点拨:确定两个图形全等的方法 1. 条件判断法:(1)形状相同;(2)大小相同,是 不是全等形与位置无关. 2 . 重合判断法:通过平移、翻折、旋转等方法 把两个图形叠合在一起,看它们能否完全重合.
知2-练
3-1. 如图,将△ ABC沿直线BC 向右平移,得到△ DEF,△ ABC ≌△ DEF. 请指出这对全等三角形的对应边和对应 角.
知2-练
解 : 对 应 边 : AB 和 DE , AC 和 DF , BC 和 EF;对应角:∠A和∠D,∠B和∠DEF, ∠ACB和∠F.
人教版《全等三角形》优秀课件
全等三角形的性质的运用
边AB 与DE、边BC 与EF、
∠ABC=∠DBC,
已知:如图,△ABC ≌△DEF. ∴相等的边为:OC=OB,OA=OD,
3 cm,求MN和HG的长度.
请观察下面两组图形,它们是不是全等图形?为什么?与同伴进行交流。
(1)若DF =10 cm,则AC 的长为 (1)写出相等的线段与角.
∴相等的边为:AB=DB,BC=BC,
∠A 与∠D、∠B 与∠E、
∠AOC=∠DOB. (3)有对顶角的,对顶角是对应角.
AC=DC.
解:∵△ABC≌△DBF.
∴相等的角为:∠BAC=∠BDC, ∠C 与∠F 重合,称为对应角.
活动一:请同学们和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?
∠ACB=∠DCB.
的度数为
能够完全重合 的两个图形叫做全等形.
___5_0_°________. C.58° D.50°
如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是( )
如图,已知△EFG≌△NMH,∠F与∠M
点A 与点D、点B 与点E、 解:∵△ABC≌△DBC.
A
D
∵ △ABC ≌△DEF,
注意:书写全等式时要求把对应顶点字母放在对应的位置上。
全等三角形的定义: 能够完全重合的两个三角形叫做全等三角形.
点A 与点D、点B 与点E、
A
点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、
B
C
边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、
∠C 与∠F 重合,称为对应角.
D
你能用符号表示出这两个全等三角形吗?
人教版八年级数学上册全等三角形精品课件PPT
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
•
5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级上(初二上)数学课件:十二章全等三角形
∴BD=CD
AB AC, BD CD, AD AD.
在△ABD和△ACD中
∴△ABD≌△ACD(SSS).
【评析】符号“∵”表示“因为”,“∴”表示 “所以”;从例1可以看出,•证明是由题设(已知) 出发,经过一步步的推理,最后推出结论(求证)正 确的过程.书写中注意对应顶点要写在同一个位置上,
例题讲解
【例2】如课本图所示有一池塘,要测池塘两侧A、 B的距离,可先在平地上取一个可以直接到达A和B 的点,连接AC并延长到D,使CD=CA,连接BC并延 长到E,•使CE=CB,连接DE,那么量出DE的长就是
A、B的距离,为什么?
分析:如果能够证明△ABC≌△DEC,就可以得 出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE,如
∠EOA=∠DOA,•而要证∠B=∠C可以进一步考查 △OBE≌△OCD,而由上可知OE=OD,∠BOE=∠COD (对顶角),∠BEO=∠CDO(等角的补角相等),
则可证得OBF≌△OCD,事实上,得到 ∠AEO=∠AOD•之后,又有∠BOE=∠COD,由外角的
关系,可得出∠B=∠C,这样更进一步简化了思 路.
的图形,放在一起也能够完全重合吗?
结论:
可以看到,形状、大小相同的图形放在一起能够 完全重合。
定义:
能够完全重合的两个图形叫做全等图形。 能够完全重合的两个三角形叫做全等三角形。
讨论与思考
思考: 在图12.1-2(1)中,把ABC沿直线BC平移,得到DEF。 在图12.1-2(2)中,把ABC沿直线BC翻折1800,得到DBC。
在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF (课本图12.2─9),△ABC与△DEF全等吗?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
追问1 请同学们将问题2 的两个三角形分 别标为△ABC、△DEF,观察这两个三角形有何 对应关系?
点A 与点D、点B 与点E、 点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、 ∠C 与∠F 重合,称为对应角.
追问2 你能用符号表示出这两个全等三角形吗?
追问 你能说出它们的对应顶点、对应边 和对应角吗?
(1) 对应点:点A 和点D ,点B 和点E,点C 和点F; 对应边:AB 和 DE,BC 和 EF,AC 和 DF; 对应角:∠A 和∠D,∠B和∠E,∠C和∠F.
问题5 全等三角形的对应边和对应角有何 大小关系?
全等三角形的性质: 全等三角形的对应边相等、 对应角相等.
△ABC和△DEF全等, 记作:“△ABC ≌△DEF”, 读作:“△ABC 全等于△DEF”.
问题4 请同学们拿出问题2 准备的素材,按 照教材第32 页图12.1-2 进行平移、翻折、旋转, 变换前后的两个三角形还全等吗?
(1) △ABC ≌△DEF
(2) △ABC ≌△DBC
(3)△ABC ≌△ADE
问题5 全等三角形的对应边和对应角有何 大小关系?
用几何语言表述: ∵ △ABC ≌△DEF, ∴ AB =DE,BC =EF,AC =DF
(全等三角形的对应边相等), ∠A =∠D,∠B =∠E,∠C =∠F
(全等三角形的对应角相等).
知识点2 全等三角形的性质的运用
例 已知:如图,△ABC ≌△DEF. (1)若DF =10 cm,则AC 的长为 10 cm ; (2)若∠A =100°,则∠D 的度数为 100° ;
点A与点D是对应点,则下列结论错误的是( D ).
(A) ∠COA =∠BOD ;
(B) ∠A =∠D ;
C
B
(C) CA =BD ;
(D) OB =OA .
O
A
D
练习2 △ABN ≌△ACM, ∠ABN 和
∠ACM 是对应角,AB 和AC 是对应边.则下列 结论错误的是( C ).
(A)∠AMC =∠ANB ; (B)∠BAN =∠CAM ; A (C)BM =MN ; (D)AM =AN .
C.∠A+∠ABD =∠C+∠CBD D.AD∥BC,且AD = BC
课堂小结 能够完全重合的两个三角形叫做全等三角形.
(1)
(2)
(3)
全等三角形的性质:
全等三角形的对应边相等、对应角相等.
推进新课
问题2 请同学们用复写纸画出两个三角形, 并用剪刀剪下其中一个三角形,观察这两个三角 形有何关系?
知识点1 全等形、全等三角形及其有关概念
问题3 请同学用语言归纳出问题1 和问题2 中 两个图形有何关系?
全等形的定义: 能够完全重合的两个图形叫做全等形. 全等三角形的定义: 能够完全重合的两个三角形叫做全等三角形.
BM
NC
练习3 如图,△ABC ≌△CDA,AB 与CD,
BC 与DA AC =∠ DCA ;
(B)AB∥DC ;
B
(C)∠ BCA =∠ DCA ;
D
(D)BC∥DA .
C
练习4 如图,△EFG ≌△NMH,∠F 和∠M 是对应角.
(1)FG 与MH 平行吗?为什么?
A
D
B
CE
F
例 已知:如图,△ABC ≌△DEF.
(3)若∠A =100°,∠B =30°,求∠F 的度数.
解:∵ ∠A =100°,∠B =30°,
∴ ∠C =180°-∠A -∠B
=50°.
B
∵ △DEF ≌△ABC ,
∴ ∠F =∠C =50°
A
C D
(全等三角形的对应角相等).E
F
练习1 如图,△OCA ≌△OBD,点C 和点B,
第十二章 全等三角形 12.1 全等三角形
新课导入
生活中的全等形 问题1 观察这些图片,你能找出形状、大小
完全一样的几何图形吗?
你能再举出生活中的一些类似例子吗?
• 学习目标: 1.知道全等形及全等三角形的概念. 2.能够准确辨认全等三角形的对应元素. 3.知道全等三角形的性质,并能灵活运用全等 三角形的性质解决相应的几何问题.
(1)全等三角形的对应边相等,对应角相等.(√ ) (2)全等三角形的周长相等,面积也相等.(√ ) (3)面积相等的三角形是全等三角形.( × ) (4)周长相等的三角形是全等三角形.( × )
综合应用
2.如图,△ABC≌△ADE,则AB = __A__D___, ∠E = __∠__C___.若∠BAE = 120°,∠BAD = 40°,则∠BAC = __8_0_°___.
3.在△ABC中,∠B = ∠C,与△ABC全等 的三角形有一个角是100°,那么在△ABC中与 100°角对应相等的角是( A )
A.∠A
B.∠B
C.∠C
D.∠B或∠C
拓展延伸 4.如图所示,△ABD≌△CDB,下面四个结
论中,不正确的是( C ) A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等
练习6 如图,已知△ABE≌△ACD, ∠ADE=∠AED,∠B=∠C,指出其他的对应边 和对应角.若BD=2cm,DE=3cm,你能求出DC的 长吗?
解:AB = AC,AE = AD, BE =CD,∠BAE =∠CAD. DC = BE = BD+DE = 5cm.
随堂演练 基础巩固 1.判断题:
(2)判断线段EH 与NG 的大小关系,并说明理由.
E
(1)平行;理由略.
H
(2)相等.
M
F
G
N
练习5 如图,△OCA≌△OBD,C和B,A 和D是对应顶点,说出这两个三角形中相等的边 和角.若∠A=20°,∠AOC=75°,你能求出∠B 的度数吗?
解:OC=OB,OA=OD,CA=BD, ∠COA=∠BOD,∠C=∠B,∠A=∠D. ∠B=∠C=180°-∠A-∠AOC=85°.