8-4复合函数求导法则
§8.4 多元复合函数的求导法则与隐函数的求导公式
M
26
机动 目目录录 上上页页 下下页页 返返回回 结结束束
定理2 若函数 F (x, y, z) 满足:
① 在点
的某邻域内具有连续偏导数 ,
② F (x0 , y0, z0) 0 ③ Fz (x0 , y0, z0) 0
则方程
在点
某一邻域内可唯一确
定一个单值连续函数 z = f (x , y) , 满足
机动 目目录录 上上页页 下下页页 返返回回 结结束束
导数的另一求法 — 利用隐函数求导
sin y ex xy 1 0, y y(x) 两边对 x 求导
两边再对 x 求导
y x0
ex y cos y x (0,0)
sin y ( y)2 cos y y
令 x = 0 , 注意此时 y 0 , y 1
8
目录 上页 下页 返回 结束
例3 设 z uv sin t , u et , v cos t , 求全导数 dz .
dt
解 dz z du
z
dt u dt
t
z
vet
cos t
e t (cost sin t) cos t
uvt tt
注意:多元抽象复合函数求导在偏微分方程变形与 验证解的问题中经常遇到, 下列两个例题有助于掌握 这方面问题的求导技巧与常用导数符号.
x y
解 z
z v
x
v x
eu sin v eu cos v 1
z
z
z v
y
v y
eu sin v eu cos v 1
uv x yx y
7
目录 上页 下页 返回 结束
例2 u f (x, y, z) ex2 y2 z2 , z x2sin y, 求 u , u x y
4复合函数的求导法则
求w , 2w . x xz 解: 令 u x y z , v x y z , 则
w , f1 , f2
uv
wf(u,v)
w x
f11f2yz
x y zx y z
f 1 ( x y z ,x y z ) y z f 2 ( x y z ,x y z )
z
uv
t 证: 设 t 取增量△t , 则相应中间变量
t
有增量△u ,△v ,
zzuzv o ( ) ( (u)2(v)2)
u v
zzuzv o ( ) ( (u)2(v)2)
t ut vt t
令t 0, 有 u 0 , v 0 ,
u
x r
r
ux
(2)
2u x2
(( uu ))cos
rx xx
(
u x
)
sin r
r(urcos usinr)cos
r
x yx y
注意利用 已有公式
(urcos
usin)sin
z ,
z .
x y
解:
z z u z v x u x v x
eusinv y eucovs1
z
e x y [y six n y ) (co x y s )( ]u v
z z u z v y u y v y
二、设 z f ( x 2 y 2 , e xy ),(其中f具有一阶连续偏导
为 x2简w z便 起f f1 1 见1 1, y 1 引( fx 入1 2 记z x) 号yf 1 f y1x 2 f2y 2 ufz y ,f z2 [ f1f 221y 2 1f u2 2fvf2,2 xy]
高等数学8-4 多元复合函数的求导法则
故
f f f f f du ( )dx ( )dz x y x y t x y t z z
由全微分定义
u f f f x x y x y t x u f f z y t z z
dz z du z dv . dt u dt v dt
证 设 t 获得增量 t,
则 u ( t t ) ( t ), v ( t t ) ( t );
由于函数 z f ( u, v ) 在点( u, v ) 有连续偏导数
z z z u v 1 u 2 v , u v 当u 0 ,v 0 时, 1 0 , 2 0
解一 变量间的关系如下图所示 x x
x
u
y
t
x
z u f f y f z x x y x z x
y x x t x u f f f x x y x y t x
合函数 z f [ ( x , y ), ( x , y ), w( x , y )] 在对应点
( x , y )的两个偏导数存在,且
z z u z v z w , x u x v x w x z z u z v z w . y u y v y w y
z z dz dx dy x y
z u z v z u z v dx dy u y v y u x v x z u u z v dx dy dx v dy u x y v x y
z z 求 和 . x y
解
复合函数的求导法则,反函数的求导法则
数学分析(上)
2 g ( x ) ln x ,求 f ( x ) x 例10 设 ,
f [ g( x )] f [ g( x )]
解 f ( x ) 2 x
g[ f ( x )] g[ f ( x )]
f [ g( x )] 2 ln x
2 ln x f [ g ( x )] f [ g ( x )] g ( x ) x
2
1 1 1 y 2 2x 2 x 1 3( x 2)
x 1 2 x 1 3( x 2)
数学分析(上)
例8 y x ,求 y .
x
解
y x
x
e
x ln x
e
x ln x x ln x x ln x 1 x ln x 1 e
数学分析(上)
注意到:当x 0 时, 由 u ( x ) 的连续性
lim lim 0 可得 u 0, 从而 x 0 u 0
所以,令x 0 , 便有
dy du dy f ( u) ( x ) dx du dx
f [ ( x )] f [ ( x )] ( x )
第二节 §2 复合函数的求导法则 反函数的求导法则 一、复合函数的求导法则 定理1 (链式法则)如果 u ( x ) 在点 x 处可导,而函数 y f ( u) 在对应的点 u 处可 导,则复合函数 y f ( ( x )) 在点 x 处可导, 且
dy f ( u) ( x ) 或 dx
2
1 x 例5 y , 求 y . 1 x
例6 证明双曲函数的求导公式:
大学数学_8_4 复合函数的求导法则
( u 2 v 2 ) 高阶的无穷小,得 z z u z v ( u 2 v 2 )
t 0
lim
u t v t t z du z dv ( u 2 v 2 ) u 2 v 2 lim . 2 2 u dt v dt t 0 t u v z du z dv u dt v dt 所以复合函数 z f [ (t ), (t )] 可导,具有求导公式:
设 u (t ) v (t ) .w (t ) 均 在 点 t 处 可 导 , z f (u , v, w) 在对应点(u , v, w) 处有连续的偏导数, 写出复合 函数 z f [ (t ), (t ), (t )] 的全导数公式. u t 函数的结构图是 z w t v t 由 z 经u , v, w 到 t 有三条途径,故和式中应有三项,所以全 导数为 dz z du z dv z dw . dt u dt v dt w dt dz 例 1 设 z uv , u sin t ,v cos t ,求全导数 . dt dz z du z dv 解 dt u dt v dt v cos t u ( sin t ) cos 2 t sin 2 t cos 2t
例 5 设 z arcsin u, u x 2 y 2 ,求
z z , . x y
解 函数的结构如下: x z u y 所以 z z u 1 2x 2x x u x 1 u2 1 ( x 2 y 2 )2 z dz u 1 2y 2y 2 y du y 1 u 1 ( x 2 y 2 )2
t 0
t
lim(
§8-4__多元复合函数的微分法及偏导数的几何应用
8.4多元复合函数的微分法在一元函数微分学中,复合函数的链式求导法则是最重要的求导法则之一,它解决了很多比较复杂的函数的求导问题.对于多元函数,也有类似的求导法则.8.4.1多元复合函数的求导法则 1.二元复合函数求导法则与一元复合函数求导相比,二元复合函数的求导问题要复杂的多.对于二元函数),(v u f z =,中间变量u 和v 都可以是x 和y 的二元函数;也可以只是某一个变量t 的函数,还可能中间变量u 和v 分别是不同个数自变量的函数,譬如u 是y x ,的函数,而v 只是x 的函数;等等。
下面讨论二元复合函数的求导法则,对二元以上的多元函数的求导法则可类似推出.定理8.4.1设函数),(v u f z =是v u ,的函数,),(),,(y x v y x u ψϕ==.若),(),,(y x y x ψϕ在点),(y x 处偏导数都存在,),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 处关于y x ,的两个偏导数都存在,且yv v z y u u z y z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂⋅∂∂+∂∂⋅∂∂=∂∂, (8-1) 我们借助于复合函数的函数结构图对复合函数求偏导数的过程进行分析.函数)],(),,([y x y x f z ψϕ=的结构图,如图8-4所示.从函数结构图可以看出,z 和x 的函数关系可以由两条路径得到.一条是经中间变量u 到达自变量x ,还有一条是经中间变量v 到达自变量x 的.从公式(1)的第一式可以看出,z 和x 的函数关系有两条路径,对应公式中就有两项,其中每一项由两个因子的乘积表示,两个因子的乘积都是函数关于中间变量的偏导数和中间变量关于自变量的偏导数的乘积构成.例8.4.1设)sin(y x e z xy+=,求x z ∂∂和yz ∂∂. 解:令y x v xy u +==,,则v e z usin = 函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv ∂∂⋅=sin cos uu e v y e v ⋅+ =sin()cos()xy xye x y y e x y +++,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv ∂∂⋅=sin cos uu e v x e v ⋅+=sin()cos()xy xye x y x e x y +++. 例8.4.2设2)(2y x y x z -+=,求x z ∂∂和yz ∂∂. 解:令22,y x v y x u -=+=,则vu z =,函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv∂∂⋅=1ln v v vu u u -+ =2222122()()()ln()x y x yx y x y x y x y ----+++-,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv∂∂⋅=12ln (2)v v vu y u u y -+- =22221222()()2()ln()x y x yy x y x y y x y x y ----+-+-.2.二元复合函数求导法则的推广和变形多元复合函数的中间变量可能是一个,也可能多于一个,同样,自变量的个数可能只有一个,也可能是两个或者更多.我们可以对定理1进行推广和变形,分以下几种情形讨论:(1)当函数z 有两个中间变量,而自变量只有一个,即)(),(),,(t v v t u u v u f z ===.函数结构图,如图8-6所示.因此(8-1)变形成为dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.因为复合结果和中间变量都是t 的一元函数,应该使用一元函数的导数记号;为了与一元函数的导数相区别,我们称复合后一元函数的导数dtdz 为全导数.当函数z 有三个中间变量,而自变量只有一个,即)(),(),(),,,(t w w t v v t u u w v u f z ====.函数结构图,如图8-7所示.因此公式(8-1)可以推广成为 dt dw w z dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂+⋅∂∂=.(2)当函数z 有一个中间变量,而自变量有两个.例如),(),,(y x u x u f z ϕ==.函数结构图,如图8-8所示.此时(8-1)变形成为.yu u f y z x f x u u f x z ∂∂⋅∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂, 在上面第一个式中,xz∂∂表示在复合函数]),,([x y x f z ϕ=中,把y 看作常量,求得的z 对x 的偏导数;xf∂∂表示在复合函数],[x u f z =中,把u 看作常量,求得的z 对x 的偏导数,因此x z ∂∂和xf ∂∂表示的含义不同,在求偏导数是一定要注意,记号上不能混淆. 例如),(),(y x u u f z ϕ==,函数结构图,如图8-9所示.此时(8-1)变形成为.yu du dz y z x u du dz x z ∂∂⋅=∂∂∂∂⋅=∂∂,(3)当函数z 有两个中间变量,而自变量有三个,即),,(),,,(),,(w v u y y w v u x x y x f z ===.函数结构图,如图8-10所示。
复合求导高等数学
(1) y 2 xy b 0
2 2
( 2) xy e e 0
x y
y 答 案 (1) y y x
( 2) y
ex y ey x
例3 求曲线 x y 17上 点(4, 1)处的切线方程.
ln2 sec x .
2
2 2 2 (2) y x csc x ( x )
2 x csc x
2
2
,复合函数 推论 若 y f ( u), u g(v ), v h( x ) 均 可 导 f ( g( h( x )))也 可 导 ,且 dy dy du dv f ( u) g(v )h ( x ) dx du dv dx
练 习4 y
3x 2 , 求 y . (5 2 x )( x 1)
1 3x 2 2 1 3 答 案 y 2 (5 2 x )( x 1) 3 x 2 5 2 x x 1
小结
dy dy du 1. 复合函数求导法则 dx du dx 由外向内, 逐层求导, 求导到底. 2. 隐函数求导法步骤: 先在方程两边对x求导, 然后解出 y . 3. 对数求导法 适用范围 : 幂指函数和大乘大除式 步骤 : 先在函数式两边取对数, 然后利用隐函数 求导法求出 y .
(2) y 1 1 (1 x 2 ) ( 1 x )
2
1 x2
x 1 x2
1 x 1 1 x2 x 1 x2
( 3) y
1 2 1 ln2 x
(1 ln x )
2
第八章 4复合函数求导法则
dz ∂z du ∂z dv = + . dt ∂u dt ∂v dt
上定理的结论可推广到中间变量多于两个的情况. 上定理的结论可推广到中间变量多于两个的情况 如
dz ∂ z du ∂ z dv ∂ z dw = + + dt ∂ u dt ∂ v dt ∂ w dt
z
u v w
t
dz 全导数. 以上公式中的导数 称为全导数. dt 上定理还可推广到中间变量不是一元函数 而是多元函数的情况: 而是多元函数的情况: z = f [φ ( x , y ),ψ ( x , y )].
= 2ye
x2 + y2 +z2
+2ze
x2 + y2 +z2⋅ x2 cos y
= 2( y + x sin y cos y ) e
4
注意:多元抽象复合函数求导在偏微分方程变形与 验证解的问题中经常遇到, 下列例题有助于掌握 这方面问题的求导技巧与常用导数符号.
f 有 阶 例4 设w = f ( x + y + z, xyz), 具 二
此公式可以推广到任意多个中间变量 z 和任意多个自变量的情形
u v w
x
y
u v 例1 设z = e sinv, u = xy, = x + y , 而
∂z ∂z 和 . 求 ∂x ∂y 解 ∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ ∂x ∂u ∂x ∂v ∂x u u = e u ( y sin v + cos v ), = e sin v ⋅ y + e cos v ⋅ 1
函数 z = f [φ ( x , y ),ψ ( x , y ), w( x , y )] 在对应点( x , y ) 两个偏导数存在, 两个偏导数存在,且可用下列公式计算
复合函数的导数求法
幂函数的导数
幂函数是形如$y = x^n$的函数,其 中$n$是实数。
VS
幂函数的导数可以通过幂函数的定义 和极限的定义求得,结果为$y' = nx^{n-1}$。
三角函数的导数
三角函数包括正弦函数、余弦函数和正切函数等。
正弦函数的导数是余弦函数,即$frac{d}{dx}sin x = cos x$;余弦函数的导数是负的正弦函数,即$frac{d}{dx}cos x = -sin x$; 正切函数的导数是正切函数的平方与1的和的倒数,即$frac{d}{dx}tan x = frac{1}{cos^2 x}$。
探讨未来可能的研究方向
复杂复合函数的求导 方法
对于更为复杂的复合函数,如多 层嵌套、多变量复合等,需要进 一步研究更为高效、简洁的求导 方法。这有助于解决实际应用中 更为复杂的数学问题。
复合函数导数的性质 研究
复合函数的导数具有一些独特的 性质,如连续性、可微性等。未 来可以进一步探讨这些性质在复 合函数求导中的应用,以及它们 对导数求解的影响。
对数函数是形如$y = log_a x$的函数,其中$a > 0$且$a neq 1$。
03 复合函数求导举例
简单复合函数求导
举例1
$y = sin(2x)$
分析
这是一个简单的复合函数,其中内层函数是 $2x$,外层函数是$sin u$。
求导过程
根据链式法则,$frac{dy}{dx} = cos(2x) cdot 2 = 2cos(2x)$。
指数函数和对数函数的导数
指数函数的导数是其本身与底数自然对数的乘 积,即$frac{d}{dx}a^x = a^x ln a$。
对数函数的导数是底数的倒数与自变量对数的倒数之 积,即$frac{d}{dx}log_a x = frac{1}{x ln a}$。
复 合 函 数 的 求 导 法 则
复合函数的表示方法
记号表示
复合函数通常用记号F(u)来表示,其 中F表示外部函数,u表示内部函数的 输出。
具体表示
如果y=f(x)且u=g(y),则复合函数可 以表示为z=f(g(y))或z=F(u),其中 z=F(u)表示z是u的函数。
03
链式法则
链式法则的原理
链式法则是复合函数求导的重要法则之一,其原理是将复合 函数分解为多个基本函数,然后对每个基本函数分别求导, 再根据复合函数的复合关系,将各个基本函数的导数相乘, 得到复合函数的导数。
商的求导法则的原理
商的求导法则指出,对于两个函数的商,其 导数等于被除函数的导数除以除函数的导数 。即 (u/v)' = (u'v - uv') / v^2。
这个法则的原理基于函数的商的性质,即当 两个函数同时变化时,其商的变化率满足特
定的关系。
商的求导法则的应用示例
假设有两个函数 f(x) = x^2 和 g(x) = sin(x),我们需要 求它们的商函数 f(g(x)) = x^2 / sin(x) 的导数。
进一步学习高阶导数、隐 函数求导等更深入的数学 知识,为后续学习打下基 础。
THANKS
感谢观看
乘积法则
在求导过程中,将复合函数的中间变 量与常数相乘,并使用乘积法则进行 求导。
反函数求导法则
对于反函数,使用反函数求导法则进 行求导。
学习建议与展望
熟练掌握复合函数的求导 法则,能够快速准确地求 出复合函数的导数。
了解复合函数在实际问题 中的应用,如经济学、物 理学等领域。
ABCD
在学习过程中,多做练习 题,加深对复合函数求导 法则的理解和掌握。
表示
复合函数求导(链式法则)
复合函数求导(链式法则)(建议阅读原文)预备知识微分若有两个一元函数 f(x) 和 g(x),我们可以把 g 的函数值作为 f 的自变量,得到一个新的函数称为f(x) 和 g(x) 的复合函数,记为 f[g(x)].如果我们已知两个函数 f(x) 和 g(x) 的导函数 f'(x) 和 g'(x),那么我们可以通过以下公式求复合函数 f[g(x)] 的导数.\begin{align}&f[g(x)]' = f'[g(x)]g'(x)&(1)\\\end{align}对于多个函数的复合函数,我们也有类似的公式,例如\begin{align}&f[g(h(x))]' =f'[g(h(x))]g'[h(x)]h'(x)&(2)\\\end{align}例1 基本初等函数的复合函数求导我们已经知道基本初等函数的导数的导函数,下面对它们的一些常见的复合函数进行求导. \sin^2 x 可以看作幂函数 f(x) = x^2 和 g(x) =\sin x 的复合函数,已知 f'(x) = 2x, g'(x) = \cos x,代入式 1 得\begin{align}&(\sin^2 x)' = 2\sin x \cosx&(3)\\\end{align}几何理解为了方便表示,我们把 g 的函数值和 f 的自变量记为 u,把 f 的函数值记为 y.图 1:可以将 \sin^2 x 看做 f(u) = u^2 和 g(x) = \sin x 的复合函数我们可以用类似图 1 的图像来直观地理解复合函数.先画出y = f(u) 和 u = g(x) 的图像,并将 g(u) 的图像逆时针旋转90° 使得两图的 u 轴对齐.这样对于任何定义域中的自变量 x,我们只需要先在 g(x) 的图中画出 u 的位置,再对应到 f(u) 的图像中求出 y 的位置即可.现在我们要讨论的问题是,若已知两函数的导函数 f'(x) 和 g'(u)(假设它们在定义域内处处可导)如何求复合函数 f[g(x)] 的导数.对于给定的 x,我们先来看当 x 增加 \Delta x 时 y 的增量 \Delta y 的大小.我们可以使用与图 1 类似的方法画出图 2 ,然后只需要令 \Delta x \to 0,就可以根据定义求出复合函数的导数\begin{align}&f[g(x)]' =\frac{\mathrm{d}}{\mathrm{d}{x}} f[g(x)] =\lim_{\Delta x\to 0} \frac{\Delta y}{\Deltax}&(4)\\\end{align}图 2:用图 1 中的方法求出任意 \Delta x 对应的 \Delta y在这个过程中,我们在得到 \Delta y 之前先得到了 u 的增量 \Delta u.当 \Delta x 较小时有微分近似(式2 )\begin{align}&\Delta {u} \approx g'(x) \Delta{x}\qquad \Delta{y} \approx f'(u)\Delta{u}&(5)\\\end{align}当 \Delta x \to 0 时对应的微分关系(式 1 )为\begin{align}&\,\mathrm{d}{u} = g'(x) \,\mathrm{d}{x} \qquad \,\mathrm{d}{y} = f'(u)\,\mathrm{d}{u}&(6)\\\end{align}将上式中的左边代入右边得 \begin{align}&\,\mathrm{d}{y} = f'(u) g'(x) \,\mathrm{d}{x} = f'[g(x)]g'(x)\,\mathrm{d}{x}&(7)\\\end{align}而复合函数的微分是 \begin{align}&\,\mathrm{d}{y} =f[g(x)]' \,\mathrm{d}{x}&(8)\\\end{align}对比以上两式(微分和导数的关系)得\begin{align}&f[g(x)]' = f'[g(x)]g'(x)&(9)\\\end{align}这就是复合函数的求导公式.在上面的例子中\begin{align}&g(x) = \sin x \qquad g'(x) = \cos x\qquad f(u) = u^2 \qquad f'(u) = 2u\qquad&(10)\\\end{align}代入上式得\begin{align}&\frac{\mathrm{d}}{\mathrm{d}{x}} \sin^2 x = 2\sin x \cos x&(11)\\\end{align}复合函数的求导公式也叫链式法则,原因是我们可以把以上推导过程用导数的另外一种符号表示如下.\begin{align}&\,\mathrm{d}{y} =\frac{\mathrm{d}{y}}{\mathrm{d}{u}} \,\mathrm{d}{u} = \frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{x}}\,\mathrm{d}{x}&(12)\\\end{align}得 \begin{align}&\frac{\mathrm{d}{y}}{\mathrm{d}{x}} = \frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{x}}&(13)\\\end{align}这种书写方式让人不禁想把 \mathrm{d}{y}/\mathrm{d}{x} 看做是 \,\mathrm{d}{y} 和 \,\mathrm{d}{x} 相除,这样的符号分割是错误的,尤其是在以后学习高阶导数和偏导数时.多重复合函数要对多重复合函数如 f[g(h(x))] 求导,可以先对 g[h(x)] 求导得 g'[h(x)]h'(x) 再得到\begin{align}&f[g(h(x))]' =f'[g(h(x))]g'[h(x)]h'(x)&(14)\\\end{align}令 v = h(x),用微分符号可以表示为\begin{align}&\frac{\mathrm{d}{y}}{\mathrm{d}{x}} =\frac{\mathrm{d}{y}}{\mathrm{d}{u}}\frac{\mathrm{d}{u}}{\mathrm{d}{v}}\frac{\mathrm{d}{v}}{\mathrm{d}{x}}&(15)\\\end{align}任意多重的复合函数求导同理可得.例2 对函数求导\begin{align}&\frac{1}{\sqrt{x^2+a^2}}&(16)\\\end{alig n}首先令 f(x) = 1/\sqrt{x} 再令 g(x) = x^2+a^2,上式等于 f[g(x)].由基本初等函数的导数, \begin{align}&f'(x) = -\frac{1}{2\sqrt{x^3}} \qquad g'(x) =2x&(17)\\\end{align}代入式 9 ,得\begin{align}&\frac{\mathrm{d}}{\mathrm{d}{x}}\frac{1}{\sqrt{x^2+a^2}} = f'[g(x)] g'(x) = -\frac{x}{\sqrt{(x^2+a^2)^3}}&(18)\\\end{align}一种较灵活的情况是,当三个变量只有一个自由度1时,任何一个变量都可以看做任何另外两个变量的函数2,这时可以根据需要灵活运用链式法则,如例 3 .例3 加速运动公式假设质点做一维运动,位移,速度和加速度分别记为 x(t), v(t) = \mathrm{d}{x}/\mathrm{d}{t},a(t) = \mathrm{d}{v}/\mathrm{d}{t},但若把速度 v 看做复合函数 v[x(t)],根据链式法则有\begin{align}&a = \frac{\mathrm{d}{v}}{\mathrm{d}{t}} = \frac{\mathrm{d}{v}}{\mathrm{d}{x}}\frac{\mathrm{d}{x}}{\mathrm{d}{t}} =\frac{\mathrm{d}{v}}{\mathrm{d}{x}} v&(19)\\\end{align}写成微分表达式,有 a \,\mathrm{d}{x} = v\,\mathrm{d}{v}.注意到 \,\mathrm{d}\left(v^2 \right) = 2v \,\mathrm{d}{v},代入得\begin{align}&\,\mathrm{d}\left(v^2 \right) = 2a\,\mathrm{d}{x}&(20)\\\end{align}若质点做匀加速运动,该式的物理意义是在任何一段微小时间内,速度平方的增量正比于这段时间内的位移增量.在一段时间 [t_1,t_2] 内把这些增量累加起来,就得到高中熟悉的运动学公式 \begin{align}&v_2^2-v_1^2 = 2a(x_2-x_1)&(21)\\\end{align}其中 x_1,v_1 和 x_1,v_1 分别是 t_1,t_2 时刻的位置和速度.1. 即任何一个变量值确定后,另外两个变量也随之确定2.姑且假设不会出现一个自变量对应两个函数值的情况。
第八章4复合函数求导法则
x x(r, ), y y(r, )
均满足复合函数求偏导数的条件 计算 w , w
(两重复合问题)
r
解 由链式法则 u
x
r
w
v
y
w w u w v u u x u y r u r v r r x r y r
v v x v y r x r y r
故
w w (u x u y) w (v x v y) r u x r y r v x r y r
复合函数求导法则
先回忆一下一元复合函数的微分法则
若y f (u)而u ( x)可导 则复合函数
y f [( x)] 对 x 的导数为 dy dy du
dx du dx
这一节我们将把这一求导法则推广到多元函 数的情形,主要介绍多元复合函数的微分法和隐 函数的微分法。我们知道,求偏导数与求一元函 数的导数本质上并没有区别,对一元函数适用的 微分法包括复合函数的微分法在内,在多元函数 微分法中仍然适用,那么为什么还要介绍多元
一、链式法则
定理 如果函数u (t) 及v (t ) 都在t点 可
导,函数 z f (u,v) 在对应点(u,v) 具有连续偏
导数,则复合函数z f [ (t ), (t )]在对应t点 可
导,且其导数可用下列公式计算:
dz z du z dv . dt u dt v dt
上定理的结论可推广到中间变量多于两个的情况.
复合函数的微分法和隐函数的微分法呢?
这主要是对于没有具体给出式子的所谓抽象函数
如 z f ( x2 y2, xy) 它是由 z f (u,v)
及u x2 y2,v xy 复合而成的 由于 f 没有具体给出 在求 z , z 时
x y
0804多元复合函数的求导法则
w x
f1 1
f2yz
f(x y z ,x y z ) y z f ( x y z ,x y z )
1
2
2w
xz
f1fxy
11
12
y
f 2
yz[f 1 21
f22xy]
为简便 起f 见1 ,1 y 引( x 入 记z ) 号f 1 f12 x y 2 z uff ,2 f12 y 2f 2 u2fv,
练习3 u f(x ,y ,z ) e x 2 y 2 z 2 ,z x 2 sy i,n 求 u , u x y
解: u f f z x x z x
2xex2y2z2 2zex2y2z22xsiny
u
2 x (1 2 x 2 s2 iy ) n e x 2 y 2 x 4 s2 iy n x y z
( 3 ) s f [ u ( x , y , z ) v ( x , y , z ) w ( x , , y , z )],
s f u f v f w , x u x v x w x
s y
f u f v u y v y
f w , w y
s f u f v f w . z u z v z w z
二、全微分形式不变性*: 若 zf(u,v)关于自 u,v具 变有 量连续 , 偏导 则z的全微 dz分 f duf dv; u v 若又 u u (x 有 ,y)v , v(x ,y)关 x ,y 于 偏导 , 数 则 z 对 f[ u (x ,y )于 v ( ,x ,y )有 ]dzzdxzdy x y
t ut vt t
令t0, 则 u 有 0 , v 0 ,
udu, vdv t dt t dt
z
8复合函数求导法则
故
w w (u x u y) w (v x v y) r u x r y r v x r y r
同理可得
w w (u x u y ) w (v x v y )
中的 y 看作不变而对x 的偏导数 变而对x 的偏导数
注 此公式可以推广到任意多个中间变量和任
意多个自变量的情形
如 z f (u1,u2,,um ) ui ui ( x1, x2,, xn )
(i 1,2,,m)
则
z m z ui ,( j 1,2,,n)
上定理的结论可推广到中间变量多于两个的情况.
如 dz z du z dv z dw dt u dt v dt w dt
u
zv
t
w
以上公式中的导数
dz dt
称为全导数.
上定理还可推广到中间变量不是一元函数
而是多元函数的情况: z f [( x, y), ( x, y)].
uv
同理有 f2, f11, f22 .
w f u f v x u x v x
f1 yzf2;
2w xz
( z
f1
yzf2)
f1 z
yf2
yz f2; z
f1 z
f1 u f1 v u z v z
复合函数的微分法和隐函数的微分法呢?
这主要是对于没有具体给出式子的所谓抽象函数
如 z f ( x2 y2, xy) 它是由 z f (u,v)
及u x2 y2,v xy 复合而成的 由于 f 没有具体给出 在求 z , z 时
8-4复合函数求导法则
uv
w f (u, v)
w x
f2 yz
x y zx y z
y z f2 (x y z, xyz)
2w xz
f12 xy
f22 x y
为简便 起f11见
,y引(x入 z记) f号12
f1xy
2zf u
f,22f12yf2u2fv
,
二、全微分形式不变性
设函数z f (u,v)具有连续偏导数,则有全微分 dz z du z dv ; u v
应用全微分形式不变性求 z ,z 。
x y
解
d z z d u z d v u v
与 d z z d x z d y 比较, 得 x y
eu sin v( y d x x d y) eu cos v(d x d y)
exy[ y sin(x y) cos(x y)] d x
exy[x sin(x y) cos(x y)] d y
复合函数
因此,求它们关于 x , y 的偏导数时必须使链式法则
一、多元复合函数求导的链式法则
定理. 若函数 处偏导连续, 则复合函数
在点 t 可导, 且有链式法则
d z z d u z dv d t u d t v d t
( 全导数公式 )
z f (u,v)
z
.
1) 中间变量多于两个的情形. 例如, z f (u,v, w) ,
f11
f21
z
uv
z z u z v y u y v y
f12 f2 2
x yx y
又如, z f (x,v), v (x, y)
当它们都具有可微条件时, 有
z f
z x
f x
复合函数链式求导法则
思考题解答
不相同. 不相同
的函数, 等式左端的 z 是作为一个自变量x 的函数,
而 等 式 右 端 最 后 一 项 f 是 作 为 u , v, x 的 三 元 函 数 ,
写出来为
dz dx
x
∂f = ∂u
du ∂f ( u ,v , x ) ⋅ x + dx ∂v
dv ( u ,v , x ) ⋅ dx
u v w
x
y
特殊地 z = f ( u, x , y ) 其中 u = φ ( x , y ) 即 z = f [φ ( x , y ), x , y ], 令 v = x ,
w = y,
∂v = 1, ∂x
∂w = 0, ∂x
∂v = 0, ∂y
∂w = 1. ∂y
区 别 类 似
∂ z ∂f ∂ u ∂ f = ⋅ + , ∂x ∂u ∂ x ∂ x
dz 三、设 z = arctan(xy ) ,而 y = e ,求 . dx
x
四、设 z = f ( x 2 − y 2 , e xy ), (其中f具 有一阶连续偏导
∂z ∂z 数),求 , . ∂ x ∂y ,(其 五、设 u = f ( x + xy + xyz ) ,(其中f具 有一阶连续偏导 ∂u ∂u ∂u ),求 数),求 , , . ∂x ∂y ∂z x ,(其 有二阶连续偏导数), ),求 六、设 z = f ( x , ) ,(其中f具 有二阶连续偏导数),求 y ∂2z ∂2z ∂2z , , 2. 2 ∂x ∂x∂y ∂y
∂2z 八、 2 = φ 11 (1 + ϕ ′ ) 2 + φ 1ϕ ′′, ∂x ∂2z = φ 11 (ϕ ′ ) 2 − φ 12ϕ ′ + φ 1ϕ ′′ − φ 21ϕ ′ + φ 22 . ∂y 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回
链式法则如图示
u
x
z
v
y
∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ , ∂x ∂u ∂x ∂v ∂x
∂z ∂z ∂u ∂z ∂v ⋅ = + ⋅ . ∂y ∂u ∂y ∂v ∂y
上页 下页 返回
推广, 定理 2 推广,设 u = φ ( x , y ) 、 v = ψ ( x , y ) 、
上页
、 无论 z是自变量 u、v的函数或中间变量 u、v下页 、 返回 的函数,它的全微分形式是一样的. 的函数,它的全微分形式是一样的
例 4 已知e
− xy
∂z ∂z − 2 z + e = 0 ,求 和 . ∂x ∂y
z
z
解
∵ d (e
− xy
− 2 z + e ) = 0,
− xy
∴ e − xy d ( − xy ) − 2dz + e z dz = 0,
上页 下页 返回
dz 三、设 z = arctan(xy ) ,而 y = e ,求 . dx
x
四、设 z = f ( x 2 − y 2 , e xy ), (其中f具 有一阶连续偏导
∂z ∂z 数),求 , . ∂ x ∂y ,(其 五、设 u = f ( x + xy + xyz ) ,(其中f具 有一阶连续偏导 ∂u ∂u ∂u ),求 数),求 , , . ∂x ∂y ∂z x ,(其 有二阶连续偏导数), ),求 六、设 z = f ( x , ) ,(其中f具 有二阶连续偏导数),求 y ∂2z ∂2z ∂2z , , 2. 2 ∂x ∂x∂y ∂y
∂z ∂z dz = du + dv ;当u = φ ( x , y ) 、v = ψ ( x , y ) 当 ∂u ∂v ∂z ∂z 时,有dz = dx + dy . ∂x ∂y
具有连续偏导数, 设函数 z = f ( u, v )具有连续偏导数,则有全微分
全微分形式不变形的实质: 全微分形式不变形的实质: 实质
上页 下页 返回
y 其中为可导函数, , 其中为可导函数, 2 2 f (x − y ) 1 ∂z 1 ∂z z 验证: 验证: + = 2. x ∂x y ∂y y 具有二阶导数, 八、设 z = φ [ x + ϕ ( x − y ), y ], 其中 φ , ϕ 具有二阶导数,求 ∂2z ∂2z , 2. 2 ∂ x ∂y
上页 下页 返回
思考题解答
不相同. 不相同
的函数, 等式左端的 z 是作为一个自变量 x 的函数,
而 等 式 右 端 最 后 一 项 f 是 作 为 u , v, x 的 ∂f = ∂u
du ∂f ( u ,v , x ) ⋅ x + dx ∂v
dv ( u ,v , x ) ⋅ dx
(e − 2)dz = e
z
( xdy + ydx )
− xy
ye xe dz = z dx + z dy ( e − 2) ( e − 2) ∂z ye − xy ∂z xe − xy , = z . = z ∂x e − 2 ∂y e − 2
− xy
上页 下页 返回
二、小结
分三种情况) 求导法则(分三种情况) (特别要注意课中所讲的特殊情况) 特别要注意课中所讲的特殊情况)
第四节 多元复合函数的 求导法则
一、多元复合函数求导法则 二、小结 思考题
一、多元复合函数的求导法则
在一元函数微分学中, 在一元函数微分学中,复合函数的求导法则 起着重要的作用. 起着重要的作用 现在我们把他推广到多元复合函数的情形. 现在我们把他推广到多元复合函数的情形
上页
下面按照多元复合函数不同的复合情形, 下面按照多元复合函数不同的复合情形, 三种情况进行讨论 情况进行讨论. 分三种情况进行讨论
∂ ∂f1′ ∂f 2′ ∂ w ( f1′ + yzf 2′) = ; + yf 2′ + yz = ∂z ∂z ∂x∂z ∂z ∂f1′ ∂f1′ ∂u ∂f1′ ∂v ′′ ′′ ⋅ + ⋅ = f11 + xyf12 ; = ∂u ∂z ∂v ∂z ∂z
2
∂f 2′ ∂f 2′ ∂u ∂f 2′ ∂v ′′ ′′ = f 21 + xyf 22 ; = ⋅ + ⋅ ∂u ∂z ∂v ∂z ∂z ∂ 2w ′′ ′′ ′′ ′′ = f11 + xyf12 + yf 2′+ yz( f 21 + xyf 22 ) 于是 ∂x∂z
七、设 z =
上页 下页 返回
练习题答案
一、1、
cos y (cos x + x sin x ) x cos x ( y sin y + cos y ) ,− ; 2 2 2 y cos x y cos x 2x 3x2 2、 , 2、 2 ln( 3 x − 2 y ) + 2 y (3 x − 2 y ) y 2x2 2x2 ; − 3 ln( 3 x − 2 y ) − 2 y (3 x − 2 y) y 3(1 − 4 t 2 ) 3、 . 3、 3 2 1 − ( 3t − 4t )
下页 返回
1.复合函数的中间变量均为一元函数的情形 1.复合函数的中间变量均为一元函数的情形
定理 1 如果函数 u = φ (t ) 及 v = ψ (t ) 都在点 t 可 导,函数 z = f ( u, v ) 在对应点( u, v ) 具有连续偏导 可导, 数, 则复合函数 z = f [φ ( t ),ψ ( t )]在对应点 t 可导, 且其导数可用下列公式计算: 且其导数可用下列公式计算:
u v w
x
y
上页 下页 返回
例 2 设 z = e u sin v ,而 u = xy , v = x + y ,
∂z ∂z 和 . 求 ∂x ∂y
解
∂z ∂z ∂u ∂z ∂v = ⋅ + ⋅ ∂x ∂u ∂x ∂v ∂x
= e u sin v ⋅ y + e u cos v ⋅ 1 = e u ( y sin v + cos v ),
的偏导数, 的偏导数 , 函数 v = ϕ ( y ) 在 点 y 可 导 , 且函数
z = f ( u , v ) 在对应点 ( u , v ) 具有连续偏导数 , 则 具有连续偏导数,
复合函数 z = f [φ ( x , y ),ψ ( y )] 在 点 ( x , y ) 的两个偏 导数存在 , 导数 存在, 且可用下列公式计算 存在
,
具有连续偏导数, 在对应点 ( u , v ) 具有连续偏导数 , 则复合函数
z = f [φ ( x , y ),ψ ( x , y )]在对应点 ( x , y ) 的两个
偏导数存在, 偏导数存在 , 且可用下列公式计算
∂z ∂z ∂u ∂ z ∂v ∂z ∂z ∂u ∂z ∂v = + = + ∂x ∂u ∂x ∂v ∂x ∂y ∂u ∂y ∂v ∂y
解 令 u = x + y + z, 记
v = xyz;
∂f ( u , v ) f1′ = , ∂u ′′ f11 ,
∂ 2 f ( u, v ) ′′ f12 = , ∂ u∂ v ′′ f 22 .
上页 下页 返回
同理有 f 2′,
∂w ∂f ∂u ∂f ∂v = ⋅ + ⋅ = f1′ + yzf 2′; ∂x ∂ u ∂ x ∂ v ∂ x
′′ ′′ ′′ = f11 + y( x + z ) f12 + xy 2 zf 22 + yf 2′.
上页 下页 返回
3.复合函数的中间变量既有一元函数又有 3.复合函数的中间变量既有一元函数又有 多元函数的情形 定理 3 如果 u = φ ( x , y ) 在点 ( x , y ) 具有对 x 和 y
t t
上页 下页 返回
= e (cos t − sin t ) + cos t .
t
2.复合函数的中间变量均为多元函数的情形 2.复合函数的中间变量均为多元函数的情形
定理 2 如果 u = φ ( x , y ) 及 v = ψ ( x , y ) 都在点
( x , y ) 具有对 x 和 y 的偏导数 , 的偏导数, 且函数 z = f ( u , v )
u v w
t
上页 下页 返回
例 1 设 z = uv + sin t ,而 u = e t , v = cos t ,
dz 求全导数 . dt
解
dz ∂z du ∂z dv ∂z = ⋅ + ⋅ + dt ∂u dt ∂v dt ∂t
= ve − u sin t + cos t
t
= e cos t − e sin t + cos t
全微分形式不变性
(理解其实质) 理解其实质)
上页 下页 返回
思考题
设 z = f ( u, v , x ) ,而u = φ ( x ) ,v = ψ ( x ) ,
dz ∂f du ∂f dv ∂f = + + , 则 dx ∂u dx ∂v dx ∂x dz ∂f 是否相同?为什么? 试问 与 是否相同?为什么? dx ∂x
∂z ∂ z ∂u = ∂x ∂u ∂x
∂z ∂z ∂u ∂z dv = + ∂y ∂u ∂y ∂v dy
上页 下页 返回
链式法则如图示
u
x
z
v
∂z ∂z ∂u , = ⋅ ∂x ∂u ∂x