2007年高考数学模拟考试卷六
07年高考数学模拟试题(6)-教育文档资料
2007年高考数学知识与能力测试题及答案(6套)(文科)
2007年高考数学知识与能力测试题(一)(文 科)第一部分 选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的).1、设集合{}{}4|N 0)1(|2<<-=x x x x x M =,,则( ). A 、φ=⋂N M B 、M N M =⋂ C 、M N M =⋃ D 、R N M =⋃ 2、化简ii +-13=( ).A 、i 21+-B 、i 21-C 、i 21+D 、i 21--3、等差数列{}为则中,593,19,7a a a a n ==( ). A 、13 B 、12 C 、11 D 、104、原命题:“设2,,ac b a R c b a 则若、、>∈>bc 2”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.A 、0B 、1C 、2D 、45、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角α为( )A 、6π B 、4π C 、3πD 、π1256、如图1,该程序运行后输出的结果为( )A 、1B 、2C 、4D 、16(图1)7、一个正方体的体积是8,则这个正方体的内切球的表面积是( )A 、π8B 、π6C 、π4D 、π8、若焦点在x 轴上的椭圆 1222=+m y x 的离心率为21,则m=( ). A 、23 B 、3 C 、38 D 、329、不等式组⎩⎨⎧≤≤-≥+--+210)1)(1(x y x y x 所表示的平面区域是( )A 、一个三角形B 、一个梯形C 、直角三角形D 、等腰直角三角形10、已知 则实数 时均有 当 且a x f x a x x f a a x ,21)()1,1(,)(,102<-∈-=≠>的取值范围是( )A 、[)∞+⎥⎦⎤ ⎝⎛,,221 0B 、(]4,11,41 ⎪⎭⎫⎢⎣⎡ C 、(]2 11,21, ⎪⎭⎫⎢⎣⎡ D 、[)∞+⎥⎦⎤ ⎝⎛, 441,0第二部分 非选择题(共100分)二、填空题:(本大题共4小题,每小题5分,共20分) 11、函数)0(1ln >+=x x y 的反函数为 12、定义运算=⊕--=⊕6cos6sin,22ππ则b ab a b a13、设n m 、是两条不同的直线,βα、是两个不同的平面,下面给出四个命题;①若n m n m //,////,// 则 且 βαβα; ②若n m n m ⊥⊥⊥⊥ 则 且 ,,βαβα ③若n m n m ⊥⊥ 则 且 ,////,βαβα ④若ββαβα⊥⊥=⊥n m n m 则 且 ,, 其中真命题的序号是14、▲选做题:在下面两道题中选做一题,两道题都选的只计算前一题的得分。
2007高三数学(文科)(校)模拟试卷(附答案).doc
2007年普通高等学校招生全国统一考试数学(文科)试卷 第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+ 如果事件A B ,相互独立,那么()()()P A B P A P B =·· 球的表面积公式24πS R =,其中R 表示球的半径 球的体积公式34π3V R =,其中R 表示球的半径 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2= ( ) A. –4 B. –6 C. –8 D. –102.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( ) A. y=x 3B. y=cosxC. y=1xD. y=lg|x|3. “ m=12 ”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的 ( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条4.函数f(x)=x-1 +1 (x ≥1)的反函数f -1(x)的图象是 ( )A B C D5设集合A={x||4x-1|≥9,x ∈R},B={x|xx+3≥0,x ∈R},则A ∩B= ( )A. (-3,2]B. (-3,-2]∪[0,52 ]C. (-∞,-3]∪[52 ,+∞)D. (-∞,-3)∪[52,+∞)x6.为了得到函数y=sin(2x+π3 )的图象,可以将函数y=cos2x+3的图象沿向量→a 平移,则向量→a的坐标可以是 ( ) A. (- π6 ,-3) B. (π6 ,3) C. (π12 ,-3) D. (- π12,3)7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,已知A=π3 ,a= 3 ,b=1,则c 等于 ( )A. 1B. 2C. 3 –1D. 38.若正数a 、b 的等差中项为12 ,且x=a+1a ,y=b+1b ,则x+y 的最小值为 ( )A. 4B. 5C. 6D. 79.如图,空间有两个正方形ABCD 和ADEF,M 、N 分别为BD 、AE 的中点,则以下结论: ①MN ⊥AD; ② MN 与BF 是一对异面直线;③ MN ∥平面ABF; ④ MN 与AB 所成角为600,其中正确的是( ) A. ①② B. ①③ C. ②④ D. ①②③10.已知两点M(-2,0),N(2,0),点P 为坐标平面内的动点,满足|→MN|·|→MP|+→MN ·→NP=0,则动点P(x,y)的轨迹方程是 ( ) A. y 2=8x B. y 2=-8x C. y 2=4x D. y 2=-4x11.椭圆C 1: x2a2 + y2b2 =1(a >b >0)的左、右焦点分别为F 1、F 2,抛物线C 2以F 1为顶点,以F 2为焦点且过椭圆C 1的短轴端点,则椭圆C 1的离心率等于 ( ) A. 35 B. 14 C. 3 3 D. 1312.用四种不同的颜色给正方体ABCD-A 1B 1C 1D 1的六个面染色,要求相邻两个面涂不同的颜色,且四种颜色均用完,则所有不同的涂色方法共有 ( ) A. 24种 B. 96种 C. 72种 D. 48种第Ⅱ卷 (90分)A BCDFENM二.填空题:本大题共4小题,每小题4分,共16分,将答案填在题后的横线上.13.设动点坐标(x,y)满足⎩⎨⎧(x-y+1)(x+y-4)≥0 x≥3,则x 2+y 2的最小值为 .14.若(x- 2a x )6的展开式中常数项为 –160,则展开式中各项系数之和为 .15.A 、B 、C 是半径为2的球面上的三点,O 为球心.已知A 、B 和A 、C 的球面距离均为π,B 、C 的球面距离为2π3 ,则二面角A-BC-O 的大小为 .16.给出下列四个命题:① 抛物线x=ay 2(a ≠0)的焦点坐标是(14a ,0); ② 等比数列{a n }的前n 项和S n =2n -1-m,则m=12;③ 若函数f(x)=x 3+ax 在(1,+∞)上递增,则a 的取值范围是(-3,+∞); ④ 渐近线方程为y=±12x 的双曲线方程是 x24- y 2=1.其中正确的命题有 .(把你认为正确的命题都填上)三.解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(12分)设函数f(x)=cos ωx( 3 sin ωx+cos ωx),其中0<ω<2. (1)若f(x)的周期为π,求当 - π6 ≤x ≤π3 时,f(x)的值域;(2)若函数f(x)的图象的一条对称轴为x=π3 ,求ω的值.18.(12分)正项数列{a n }的前n 项和S n 满足: 4S n =a n 2+2a n -3 (n ∈N +).(1) 求数列{a n }的通项公式;(2)设b n =1anan+1 ,求数列{b n }的前n 项和T n .19.(12分)四棱锥P-ABCD 中,底面ABCD 为正方形,侧面PAB 为等边三角形,BC= 2 ,PD=2,点M为PD 的中点,N 为BC 的中点.(1) 求证:面PAB ⊥面ABCD;(2)求直线MN 与平面ABCD 所成的角; (3)求点N 到平面PAD 的距离.20.(12分)某项赛事,在“五进三”的淘汰赛中,需要加试综合素质测试,每位参赛选手需回答3个问题.组委会为每位选手都备有10道不同的题目可供选择,其中有6道艺术类题目,2道文学类题目,2道体育类题目.测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.求: (1) 每位选手抽到3道彼此不同类别题目的概率; (2)每位选手至少有1次抽到体育类题目的概率.21.(12分)已知椭圆x2a2 +y2b2 =1(a >b >0)的离心率e= 6 3 ,过点A(a,0)和B(0,-b)的直线与原点的距离为32.(1)求椭圆的方程;(2)已知定点E(-1,0),D 为OB 的中点,M 、N 为椭圆上的点(点M 在x 轴上方),满足:→ME=λ→EN,且∠DME=∠DNE,求λ的值.22.(14分)二次函数f(x)=ax 2+bx+c 与其导函数f ’(x)的图象交于点A(1,0),B(m,m). (1) 求实数m 的值及函数f(x)的解析式;(2) 若不等式f(x+1)>3(x+t)4(x+1) 对任意的x ∈(0,3)恒成立,求实数t 的取值范围;(3) 若方程f(x+1)= 3(x+t)x+2 有三个不等的实根,求实数t 的取值范围.2007年普通高等学校招生全国统一考试 数学(文科)试卷(参考答案)AB CDPMN一.选择题:1. B a 1(a 1+3d)=(a 1+2d)2,∴3a 1d=4a 1d+4d 2,∴a 1= - 4d= -8, ∴a 2=a 1+d= - 6 . 2. D y=x 2与y=1x 均为奇函数,而y=cosx 在(0,+∞)上非单调.3. B 由(m+2)(m-2)+3m(m=2)=0,∴(m+2)(2m-1)=0,∴m=-2或m=12 .4. C f -1(x)=(x-1)2+1 (x ≥1).5. D 解得A=(-∞,-2)∪[52,+∞],B=(-∞,-3)∪[0,+∞].6. C y=cos2x+3=sin(π2 +2x)+3=sin2(x+π4 )+3右移π12 ,下移3得y=sin(2x+π3 ).7. B 由c 2+1-2·c ·cos π3 =3,∴c 2-c-2=0,(c-2)(c+1)=0,∴c=2 .8. B a+b=1,x+y=1+1ab ≥1+21()2a b=5 .9. B ①取AD 中点Q,则AD ⊥MQ,∴MN ⊥AD;②MN ∥BF;③由MN ∥BF,∴MN ∥面ABF;④MN 与AB 成450角.10. B →MN=(4,0),→NP=(x-2,y),∴4(x+2)2+y2 +4(x-2)=0,∴y 2=-8x,又由2-x ≥0,∴x ≤2. 11. D ∵|PF 2|=a,点P 到抛物线C 2的准线为x=-3c 的距离为3c,依抛物线的定义,a=3c,∴e=13 .12. C 同色有3对,∴共有C 23 A 44 =72种.二.填空题:13. 10 由直线x+y-4=0与x=3的交点P(3,1),∴x 2+y 2的最小值为|0P|2=9+1=10. 14. 1 由T r+1=C r 6 x 6-r ·(- 2a x )r =(-2a)r C r 6 ·x 6-2r ,令6-2r=0,∴r=3,由(-2a)3C 36 =-160,∴-8a 3=-8,∴a=1,∴各项系数之和为(1-2a)6=1.15. arctan 2 3 3∵∠AOB=∠AOC=900 ,∠BOC=600,取BC 中点D,AD=8-1 =7 ,OD= 3 ,∵AD ⊥BC,OD ⊥BC,∴∠ODA 为二面角A-BC-O 的平面角,在Rt △AOD 中,tan ∠ODA=2 33.16. ①② ① y 2=1a x 的焦点坐标(14a ,0);② S n =12 ·2n -m,∴m=12 ;③ f ’(x)=3x 2+a ≥0在[1,+∞)恒成立,∴3+a ≥0得a ≥-3;④渐近线为y=±12 x 的双曲线方程是x24 - y 2=λ(λ≠0)三.解答题: 17.(1)f(x)=3 2 sin2ωx+1+cos2ωx 2 =sin(2ωx+π6 )+12 , ∵T=2π2ω=π ,∴ω=1 , ∴f(x)=sin(2x+π6 )+12 . ∵- π6 ≤x ≤π3 , ∴- π6 ≤2x+π6 ≤5π6 ,∴-12≤sin(2x+π6 )≤1, ∴f(x)的值域为[0,32]. (2) 由 2ωπ3 +π6 =k π+π2 ,∴ω=32k+12 ,∵0<ω<2, ∴ω=12.18.(1)当n=1时,4a 1=a 12+2a 1-3 ,∴a 12-2a 1-3=0 ,(a 1-3)(a 1+1)=0, ∵a 1>0, ∴a 1=3 . 当n ≥2时,4S n-1=a n-12+2a n-1-3 ,∴4a n =a n 2-a n-12+2a n -2a n-1 ,∴(a n +a n-1)(a n -a n-1-2)=0, ∵a n >0, ∴a n -a n-1=2,∴数列{a n }是以a 1=3为首项,以2为公差的等差数列,∴a n =2n+1. (2)∵b n =1(2n+1)(2n+3) =12(12n+1 - 12n+3),∴T n =12[(13 -15 )+(15 -17)+…+(12n+1 - 12n+3 )]=12(13 - 12n+3 )=n 3(2n+3) .19.(1)∵正方形ABCD,∴DA ⊥AB,∵AD=PA= 2 ,PD=2,∴PA 2+AD 2=PD 2,∴DA ⊥PA, ∵AB ∩PA=A,∴DA ⊥面PAD,∵DA 面ABCD, ∴面PAB ⊥面ABCD.(3) 取AB 中点E,∵△PAB 为正三角形,∴PE ⊥AB, ∴PE ⊥面ABCD. 取ED 的中点F,∵M 为PD 的中点, ∴MF ∥PE, ∴MF ⊥面ABCD,∴∠MNF 为MN 与面ABCD 所成的角.在梯形EBCD 中,NF=12( 2 2 + 2 )=34 2 ,而MF=12PE= 6 4,∴tan ∠MNF= 64342 =3 3,∴∠MNF=300 ,∴直线MN 与平面ABCD 所成的角为300. (3)∵AD ⊥面PAB,∴面PAB ⊥面PAD,取PA 的中点H,则BH ⊥面PAD.又∵BN ∥AD,∴BN ∥面PAD,ABCDPMNHE F∴点N 到平面PAD 的距离等于点B 到平面PAD 的距离,∵BH=3 2 · 2 = 6 2, ∴点N 到面PAD 的距离为6 2. 20.(1)设事件“抽到3道彼此不同类别题目”为A,依题有P(A)=C 16C 12C 12C 310 =15 ;答: 抽到3道彼此不同类别题目的概率为15;(2) 设事件“至少有1次抽到体育类题目”为B,依题有P(B)=1-C 38C 310=1- 115 =815 ; 答: 至少有1次抽到体育类题目的概率为815 .21.(1)由C=6 3 a,∴b 2=a 2- 23 a 2=13a 2 , 又直线AB: x a - yb =1,即bx-ay-ab=0,∴d=ab b2+a2 = 32 ,∴ab 43a 2= 3 2 ,∴b=1 ,a 2=3 ,∴所求椭圆方程为: x23 +y (3) 设M(x 1,y 1),N(x 2,y 2),(y 1>0),由→ME=λ→EN,∴y 1+λy 2=0. 设直线MN: x=my-1 , 消x 得: (m 2+3)y 2-2my-2=0 ,△=4m 2+8(m 2+3)>0,y 1+y 2=2m m2+3 ,∴MN 的中点为(- 3m2+3 ,m m2+3) ∴MN 的中垂线方程为: y - m m2+3 = - m(x+ 3m2+3) ,将OB 的中点D 的坐标(0,- 12 )代入得:- 12 - m m2+3 = - 3m m2+3 ,∴m 2-4m+3=0 , (m-1)(m+3)=0, ∴m=1或m=3 . 当m=1时,2y 2-y-1=0 ,(2y+1)(y-1)=0,∵y 1>0,∴y 1=1,y 2=- 12 ,∴λ=y1-y2=2 ;当m=3时,6y 2-3y-1=0 ,y=3±33 12 ,∴y 1=3+33 12, y 2=3-33 12 ,∴λ=y1-y2 =6+33 4.综合得,λ=2或λ=6+334.22.(1)f ’(x)=2ax+b ,∴⎩⎨⎧a+b+c=02a+b=0am2+bm+c=m 2am+b=m∴c=a,b=-2a ,代入得: am 2-2am+a=2am-2a ,∵a ≠0 ,∴m 2-4m+3=0 ,(m-1)(m-3)=0, 当m=1时,2a+b=1与2a+b=0矛盾,∴m=3 . ∴6a+b=3得a=34 ,b=-32 ,c=34 ,∴f(x)=34 x 2-32 x+34 =34 (x-1)2.(2) 由34 x 2>3(x+t)4(x+1)x ∈(0,3),∴t <x 3+x 2-x .记g(x)=x 3+x 2-x ,g ’(x)=3x 2+2x-1=(3x-1)(x+1), 令g ’(x)=0 ,∴x=13 或x=-1 ,∴g(x)在(0,3)内的最小值为g(13 )= - 527 .∴t < - 527 .(3) 由34 x 2=3(x+t)(x+2) ,当x+2≠0时,方程化为 : x 3+2x 2-4x-4t=0 ,记F(x)=x 3+2x 2-4x-4t .∵ F ’(x)=3x 2+4x-4=(3x-2)(x+2) ,令F ’(x)=0 ,∴x=23 或x=-2 ,F 极大值(x)=F(-2)=8-4t ; F 极小值(x)=F(23 )=- 4027-4t;要使方程f(x+1)= 3(x+t)x+2 有三个不等的实根,只要⎩⎨⎧F 极大值(x)>0F 极小值(x)<0 ,即⎩⎪⎨⎪⎧8-4t >0- 4027 -4t <0 ,∴⎩⎪⎨⎪⎧t <2t >- 1027 , ∴ t 的取值范围是( - 1027 ,2) .。
2007年高考数学模拟试题(文科)(全国卷)
第Ⅰ卷 ( 选择题 共 60 分 )
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个 选项中,只有一项是符合题意要求的 .
1. 已知映射 f: A
B , 其中 A B R , 对应法则 f: x
y
2
x
2x
2,若对实数
k B , 在集合 A 中不存在原象 , 则 k 的取值范围是
2,或 2 x 2
C. x | 2 x
22
,或
x2
2
2
D. x | 2 x 2,且 x 0
11. 用正偶数按下表排列 第1列
第2列
第 3列
第 4列
第5列
第一行
2
4
6
8Leabharlann 第二行1614
12
10
第三行
18
20
22
24
…
…
28
26
则 2006 在第
行第
列.
A.第 251 行第 3 列
B.第 250 行第 4 列
()
A. 无法确定
B
.
36
C
.
18
8.已知直线 ax by 1 0 ( a,b 不全为 0 )与圆 x2 y 2
D
.
12
50 有公共点 ,且公共点的横、纵
坐标均为整数 ,那么这样的直线有
()
A.66 条
B.72 条
C.74 条
D.78 条
9. 从 8 名女生, 4 名男生中选出 6 名学生组成课外小组,如果按性别比例分层抽样,则不
3
(1)求证: GE∥侧面 AA1B1B ; (2)求平面 B1GE与底面 ABC所成锐二面角的大小 .
2007届高考数学模拟试题理
2007届江苏省高考数学模拟试题(理科)10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰有 一项是符合题目要求的。
等于(4.已知函数yf (x)的反函数f 1(x)log 1 (x21-),则方程 2f (x ) 1的解集是 A. {1} B.{2} C . {3}D . { 4}5.设等比数列{ a n }的前n 项和为s ,若S 6 : S 3 1:2,则 S 9 :S 3( )A. 1:2 B .2:3 C. 3:4D. 1:3充要条件 .既不充分又不必要条件C. D在等差数列{a n }中, n 项和s n 的最小值为6 . S8,则前 )a 1、选择题:本大题共 1. 满足条件 1, 2M = 1,2,3 的所有集合 M 的个数是(A.如果复数 2 bi(b R )的实部和虚部互为相反数,则 b 的值等于(A.若条件p : x 1 条件 q :X 2 5x 6,则 p 是 q 的( ) A. 必要不充分条件.充分不必要条件25, S 3A.80767574 已知|a|2、、2 ,a 与b 的夹角为一,如果p42b , q2aA. 2.13.,53.3.6 490,a1),若f(4)g( 4)0,则 yf (x), y g(x)在同一坐标系内的图象大致是()Jy1 1・ I111f■ n A2 xoB12 ' xlog |x| (aa 8 .已知 f (x) a x 2,g(x)9•设函数f(x)是奇函数,并且在R上为增函数,若0 < w—时,f (m sin )+ f (1—2m >0恒成立,则实数m的取值范围是 ( )1A(0,1) B.(―汽0) C. (—3 1) D. (21 x10•关于函数f (x) lg ,有下列三个命题:1 x①对于任意x ( 1,1),都有f (x) f( x) 0 ;② f (x)在(1,1)上是减函数;③对于任意x1, x2 ( 1,1),都有f (x-1 ) f (x2) f( 一);1 x1x2其中正确命题的个数是( )A • 0B • 1C • 2D • 3二、填空题:本大题共6小题,每小题5分,共30分。
2007年高考数学模拟考试卷六
2007年高考数学模拟考试卷六第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)化简得 ( )(A) (B)(C)1 (D)-1(2)双曲线的一个焦点是(0,-3),则k的值是 ( )(A)1 (B)-1 (C) (D)-(3)已知过点(3,5),g(x)与f(x)关于直线x=2对称,则y=g(x)必过点 ( )(A)(-1,3) (B)(5,3) (C)(-1,1) (D)(1,5)(4)已知复数,则 ( )(A) (B)- (C) (D)(5)(理)曲线上有且仅有三点到直线的距离为1,则r属于集合 ( )(A)(B) (C) (D){9}(文)已知两条直线,其中a为实数,当这两条直线的夹角在内变动时,a的取值范围是 ( )(A)(0,1) (B) (C) (D)6.半径为2cm的半圆纸片卷成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( )(A)4cm (B)2cm (C) (D)7.(理)的值等于 ( )(A) (B) (C) (D)(文)函数的最小正周期为 ( )(A) (B) (C) (D)28.某校有6间电脑室,每晚至少开放2间,则不同安排方案的种数为 ( )① ②③ ④其中正确的结论为 ( )(A)仅有① (B)有②和③ (C)仅有② (D)仅有③9.正四棱锥P—ABCD的底面积为3,体积为E为侧棱PC的中点,则PA与BE所成的角为 ( )(A) (B) (C) (D)10.给出四个函数,分别满足① ②③ ④又给出四个函数的图象则正确的配匹方案是 ( )(A)①—M ②—N ③—P ④—Q (B)①—N ②—P ③—M ④—Q(C)①—P ②—M ③—N ④—Q (D)①—Q ②—M ③—N ④—P11.P是双曲线左支上一点,F1、F2分别是左、右焦点,且焦距为2c,则的内切圆的圆心横坐标为 ( )(A) (B) (C) (D)12.某债券市场发行的三种值券:甲种面值为100元,一年到期本利共获103元;乙种面值为50元,半年期本利共50.9元;丙种面值为100元,但买入时只付97元,一年到期拿回100元,这三种投资收益比例从小到大排列为 ( )(A)乙,甲,丙 (B)甲、丙、乙 (C)甲、乙、丙 (D)丙、甲、乙第Ⅱ卷 (非选择题)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.一个球的内接长方体的长、宽、高分别为1,2,3,则这个球的表面积是 .14.若展开式中的x3项的系数为20,则非零实数a= .15.△ABC顶点在以x轴为对称轴,原点为焦点的抛物线上,已知A(-6,8),且△ABC的重心在原点,则过B、C两点的直线方程为 .16.设正数数列{a n}的前n项和为S n,且存在正数t,使得对于所有的自然数n,有成立,若,则t的取值范围是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)设复数且.求的值.18.(理)(本题满分共12分)已知正三棱柱ABC—A1B1C1的每条棱长均为a,M为棱A1C1上的动点.(Ⅰ)当M在何处时,BC1//平面MB1A,并证明之;(Ⅱ)在(I)下,求平面MB1A与平面ABC所成的二面角的大小;(Ⅲ)求B—AB1M体积的最大值.18.(文)(图同理18,本题满分12分)已知正三棱柱ABC—A1B1C1的每条棱长均为a,M为棱A1C1的中点(Ⅰ)求证BC1//平面MB1A;(Ⅱ)求平面MB1A与平面ABC所成的二面角的正切值;(Ⅲ)求B—AMB1的体积.19.(理)(本题满分12分)设常数不等式的解集为M(Ⅰ)当ab=1时,求解集M;(Ⅱ)当M=(1,+∞)时,求出a,b应满足的关系.19.(文)(本题满分12分)已知函数 (其中a>0,且a≠1),解关于x的不等式20.(本题满分12分)一家企业生产某种产品,为了使该产品占有更多的市场份额,拟在2001年度进行一系列的促销活动,经过市场调查和测算,该产品的年销量x万件与年促销费用t万元之间满足:3-x与t+1(t≥0)成反比例,如果不搞促销活动,该产品的年销量只能是1万件,已知2001年生产该产品的固定投资为3万元,每生产1万件该产品需再投资32万元,当该产品的售价g(x)满足时,则当年的产销量相等.(Ⅰ)将2001年的利润y表示为促销费t万元的函数;(Ⅱ)该企业2001年的促销费投入多少万元时,企业的年利润最大?(注:利润=收入-生产成本-促销费)21.(本题满分12分)A、B是两个定点,且|AB|=8,动点M到A点的距离是10,线段MB的垂直平分线l交MA于点P,若以AB所在直线为x轴,AB的中垂线为y轴建立直角坐标系.(Ⅰ)试求P点的轨迹c的方程;(Ⅱ)直线与点P所在曲线c交于弦EF,当m变化时,试求△AEF的面积的最大值.22.(本题满分14分)已知函数f(x)在(-1,1)上有定义,且满足x、y∈(-1,1)有.(Ⅰ)证明:f(x)在(-1,1)上为奇函数;(Ⅱ)对数列求;(Ⅲ)(理)求证(文)求证[参考答案]一、选择题(理)CBACD DCBCD AB(文)CBACD DCBCD AB二、填空题(13)14π (14)5 (15) (16)三、解答题17.解: (2分)即 即即 (6分)(8分)即 (12分)18.(理)解:(I)当M在A1C1中点时,BC1//平面MB1A∵M为A1C1中点,延长AM、CC1,使AM与CC1延长线交于N,则NC1=C1C=a连结NB1并延长与CB延长线交于G,则BG=CB,NB1=B1G (2分)在△CGN中,BC1为中位线,BC1//GN又GN平面MAB1,∴BC1//平面MAB1 (4分)(II)∵△AGC中, BC=BA=BG ∴∠GAC=90°即AC⊥AG 又AG⊥AA1(6分)∴∠MAC为平面MB1A与平面ABC所成二面角的平面角∴所求二面角为 (8分)(Ⅲ)设动点M到平面A1ABB1的距离为h M.即B—AB1M体积最大值为此时M点与C1重合. (12分)18.(文)(Ⅰ)同(理)解答,见上(Ⅱ)同理科解答:设所求二面角为θ,则(Ⅲ)19.(理)解:(I)首先即即(3分)得解得(舍去)或(6分)(II)令,先证时为单调递增函数得证 (8分)欲使解集为(1,+∞),只须f(1)=1即可,即a-b=1,∴a=b+1 (12分)19.(文)解:可知0<a<1 (4分)∴不等式(8分)∴原不等式的解集为{x|0<x<1} (12分 )20.解:(I)由题意得 (2分)从而生产成本为万元,年收入为(4分)(6分)∴年利润为y (8分)(II)y(万元)当且仅当 (12分)∴当促销费定为7万元时,利润最大.21.解(I)以AB所在直线为x轴,AB中垂线为y轴,则A(-4,0),B(4,0)|PA|+|PB|=|PA|+|PM|=10 (2分)∴2a=10 2c=8 ∴a=5,c=4∴P点轨迹为椭圆 (4分)(II)过椭圆右焦点B(4,0)整理得 (6分)*(8分)∵m为直线的斜率,∴可令m=tgθ代入*得当且仅当即时,(12分)22.证:(I)令则令则 为奇函数 (4分)(II),是以-1为首项,2为公比的等比数列.(4分)(III)(理)而(6分) (III)(文)。
天君一中2007年高考数学模拟试题(含答案)(
2007年高考数学模拟试卷(理科)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目用铅笔填写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上. 3. 考试结束,监考员将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅球的体积公式如果事件A 在一次试验中发生的概率是p ,那 34π3V R =么在n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)kkn kn n P k C p p -=-第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数i 215+的共轭复数为A.-31035-iB.-i 31035+ C.1-2iD.1+2i2、过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是A.y =3xB.y =-3xC.y =33x D.y =-33x3、已知函数f (x )=⎩⎨⎧≤>)0(3)0(log 2x x x x ,则f [f (41)]的值是A.9B.91 C.-9 D.-914、数列{a n }中,a 1=1,S n 是其前n 项和.当n ≥2时,a n =3S n ,则31lim1-++∞→n n n S S 的值是A.-31B.-2C.1D.-545、若nx x )2(-二项展开式的第5项是常数项,则自然数n 的值为A.6B.10C.12D.156、已知α、β、γ是三个平面,a 、b 是两条直线。
有下列三个条件:①a //γ,b ⊂β ②a //γ,b //β ③b ⊂β,a ⊂γ若命题“α∩β= a ,b ⊂γ且 ,则a //b ”为真命题,则可以填在横线上的条件是A .①B .①或②C .①或③D .② 7、已知,x y 满足约束条件50,0,3,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2z x y =+的最小值为A .-3B .3C .-5D . 5 8、记函数x x x f sin 3)(2+=在区间[-2,2]上的最大值为M ,最小值为m ,那么M + m 的值为A.0B.3C.6D.89、某足球队共有11名主力队员和3名替补队员参加一场足球比赛,其中有2名主力和1名替补队员不慎误服违禁药物,依照比赛规定,比赛后必须随机抽取2名队员的尿样化验,则能查到服用违禁药物的主力队员的概率为 A .6191B .2591C .391D .339110、设函数)(x f 的定义域为D ,如果对于任意的1x ∈D ,存在唯一的2x ∈D ,使2)()(21x f x f +=C(C 为常数)成立,则称函数y =)(x f 在D 上的均值为C ,下面给出四个函数:①y =3x , ②y =4sin x ,③y =lg x ,④y =2x .则满足在其定义域上均值为2的所有函数是 A.①② B.③④ C.①③④ D.①③第Ⅱ卷(非选择题 共100分)二、填空题(本大题 共4小题,每小题4分,共16分,把答案填在题中横线上) 11、设)(1x f-是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b fa f,则f (a +b )的值为 .12、.将边长为1的正三角形ABC 沿高AD 折叠成直二面角B-AD-C ,则直线AC 与直线AB 所成角的余弦值是 。
2007年高考数学综合模拟试卷(二)
2007年高考数学综合模拟试卷(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共分12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、(理科做)定义运算a c ad bcb d =-,复数z 满足11z ii i=+,则复数在的模为 A.1 BCD.1-(文科做)已知U 是全集,M 、N 是U 的两个子集,若M N U ≠ ,M N φ≠ ,则下列选项中正确的是A .U C M N =B .UC N M = C .()()U U C M C N φ=D . ()()U U C M C N U = 2、若条件p :14x +≤,条件q :23x <<,则q ⌝是p ⌝的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分条件也非必要条件3、已知,x y 满足约束条件50,0,3,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2z x y =+的最小值为A .-3B .3C .-5D . 5 4、(理科做)已知在函数()3xf x Rπ=图像上,相邻的一个最大值点与一个最小值点恰好在222x y R +=上,则()f x 的最小正周期为A .1B .2C .3D . 4 (文科做)若函数()3sin()f x x ωϕ=+对任意实数x 都有()()66f x f x ππ+=-,则()6f π=A .0B .3C .-3D . 3或-35、在OAB ∆中,OA a = ,OB b = ,OD 是AB 边上的高,若AD AB λ=,则实数λ等于A .2()a b a a b⋅-- B .2()a a b a b⋅-- C .()a b a a b ⋅-- D .()a ab a b⋅--6、(理科做)已知8a x x ⎛⎫- ⎪⎝⎭展开式中的常数项为1 120,其中实数a 式常数,则展开式中各项系数的和为A .82B .83C .1或83D .1或82 (文科做)()()()()()543215410110151x x x x x -+-+-+-+-等于A .5x B .51x - C .51x + D .5(1)1x --7、设双曲线22169144x y -=的右焦点为2F ,M 是双曲线上任意一点,点A 的坐标为()9,2,则235MA MF +的最小值为 A .9 B .365 C .425 D .5458、已知方程()()22220x mx x nx -+-+=的四个根组成一个首项为12的等比数列,则m n -=A .1B .32 C .52 D .929、(理科做)在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥S ABC -外接球的表面积是A .12πB .32πC .36πD .48π (文科做)已知棱长为a 的正四面体ABCD 右内切球O ,经过该棱锥A BCD -的中截面为M ,则O 到平面M 的距离为A .4a B .6a C .12a D .8a 10、(理科做)设()f x 为可导函数,且满足()()12lim12x f x f x x→--=-,则过曲线()y f x =上点()()1,1f 处的切线率为A .2B .-1C .1D .-2(文科做)垂直于直线2610x y -+=,且与曲线3231y x x =+-相切的直线方程是 A .320x y ++= B .320x y -+= C .320x y +-= D .320x y --= 11、(理科做)设随机变量的分布列为下表所示且 1.6E ξ=,则a b -=A .0.2B .0.1C .-0.2D .-0.4(文科做)老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为A .150B .110C .15D .1412、如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧 AP 的长为l ,弦AP 的长为d ,则函数()d f l =的图像大致是第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2007年高考理科数学摸拟试题解析样本7
2007年高考理科数学摸拟试题解析样本7本试卷分第Ⅰ卷(选择题 共60分)和第Ⅱ卷(非选择题 共90分),考试时间为120分钟,满分为150分.第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)与β A.|z |<8 B.|z |≤|-4-3i | C.2≤|z |≤8 D.5≤|z |≤88.在100件产品中,有60件正品,40件次品,从中有放回地抽取3次,每次抽取1件,那么恰有2次抽到正品的概率是A.0.024B.0.144C.0.236D.0.4329.已知cot α=2,tan(α-β)=-52,则tan(β-2α)的值是A.41 B.-121 C.81D.-8110.直线l :x +2y -3=0与圆C :x 2+y 2+x -6y +m =0有两个交点A 、B ,O 为坐标原点,若⊥,则m 的值是A.2B.3l 1,B ∈l 已知函数f (x )=3sin x cos x -cos 2x +21,x ∈R ,求函数f (x )的最小正周期. 18.(本小题满分12分){a n },{b n }都是各项为正数的数列,对任意的自然数n ,都有a n 、b n 2、a n +1成等差数列,b n 2、a n +1、b n +12成等比数列.(1)试问{b n }是否是等差数列?为什么?(2)求证:对任意的自然数p ,q (p >q ),b p -q 2+b p +q 2≥2b p 2成立;(3)如果a 1=1,b 1=2,S n =na a a 11121+++ ,求n n S ∞→lim .19.(本小题满分12分)已知:正三棱柱A 1B 1C 1—ABC 中,AA 1=AB =a ,D 为CC 1的中点,F 是A 1B 的中点,A 1D 与AC 的延长线交于点M ,年y (x )理由.参考答案一、选择题(每小题5分,共60分) 1.B2.解析:使x 2-ax -3在(-∞,-1)上单减且在(-∞,-1)上恒为正, 故令2a≥-1,(-1)2-a (-1)-3≥0. 答案:C 3.C 4.Cn +1, ∴2b n =b n -1+b n +1(n ≥2), ∴{b n }是等差数列. 4分 (2)因为{b n }是等差数列,∴b p -q +b p +q =2b p . ∴b p -q 2+b p +q 2≥2222)(p q p q p b b b =++-.7分(3)由a 1=1,b 1=2及①②两式易得a 2=3,b 2=223,∴{b n }中公差d =22, ∴b n =b 1+(n -1)d =22(n +1), ∴a n +1=1(n +1)(n +2).③∴AF ⊥面A 1BD ,∴AF ⊥BD . 8分(Ⅲ)解:∵CD ∥AA 1, ∴CD =21AA 1,D 为A 1M 中点, 又F 为A 1B 中点,∴DF ∥BM .由(Ⅱ)知DF ⊥面AA 1B ,∴BM ⊥面AA 1B ,∴BM ⊥A 1B ,BM ⊥AB .∴∠A 1BA 为平面A 1BM 与面ABC 所成二面角的平面角.即∠A 1BA 为平面A 1BD 与平面ABC 所成的二面角的平面角. ∵A 1ABB 1为正方形,∴∠A 1BA =45°即为所求二面角大小.20.解:设f (n )=910n (n +2)(18-n ), (1)第一个月的销售量为f (1)=3170<130,当n ≥2时,第n 个月的销售量∵|f (x )-g (x )|≤1恒成立,∴|log a (x -3a )(x -a )|≤1恒成立..1)2(,10,1])2[(log 12222aa a x a a a a x a ≤--≤⇔⎩⎨⎧<<≤--≤-⇔对x ∈[a +2,a +3]上恒成立,令h (x )=(x -2a )2-a 2,其对称轴x =2a .2a <2,2<a +2,∴当x ∈[a +2,a +3]时,h (x )min =h (a +2),h (x )max =h (a +3).∴⎪⎩⎪⎨⎧-≥-≤⇔⎪⎩⎪⎨⎧≥≤,691,44,)(1,)(max min a a a a x h ax h a 125790-≤<⇒a .12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年高考数学模拟考试卷六第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)化简︒--︒︒︒-160cos 120cos 20cos 20sin 212得 ( )(A )︒-40sin 1 (B )︒-︒20sin 20cos 1(C )1 (D )-1(2)双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是( )(A )1 (B )-1 (C )315(D )-315 (3)已知)(1x f y -=过点(3,5),g (x )与f (x )关于直线x =2对称,则y =g (x )必过 点 ( )(A )(-1,3) (B )(5,3) (C )(-1,1) (D )(1,5) (4)已知复数3)1(i i z -⋅=,则=z arg( )(A )4π (B )-4π (C )47π(D )45π(5)(理)曲线r =ρ上有且仅有三点到直线8)4cos(=+πθρ的距离为1,则r 属于集合( )(A )}97|{<<r r (B )}9|{≥r r(C )}9|{≤r r(D ){9}(文)已知两条直线0:,:21=-=y ax l x y l ,其中a 为实数,当这两条直线的夹角 在)12,0(π内变动时,a 的取值范围是( )(A )(0,1) (B ))3,33( (C ))3,1( (D ))3,1()1,33(6.半径为2cm 的半圆纸片卷成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( )(A )4cm(B )2cm(C )cm 32 (D )cm 3 7.(理))4sin arccos(-的值等于( )(A )42-π(B )234π-(C )423-π(D )4+π (文)函数23cos 3cos sin 2-+=x x x y 的最小正周期为( ) (A )4π (B )2π (C )π(D )2π8.某校有6间电脑室,每晚至少开放2间,则不同安排方案的种数为( ) ①26C②665646362C C C C +++③726- ④26P 其中正确的结论为( )(A )仅有① (B )有②和③ (C )仅有② (D )仅有③9.正四棱锥P —ABCD 的底面积为3,体积为,22E 为侧棱PC 的中点,则PA 与BE 所成 的角为( )(A )6π (B )4π (C )3π (D )2π 10.给出四个函数,分别满足①)()()(y f x f y x f +=+ ②)()()(y g x g y x g ⋅=+③)()()(y x y x ϕϕϕ+=⋅ ④)()()(y x y x ωωω⋅=⋅又给出四个函数的图象则正确的配匹方案是( )(A )①—M ②—N ③—P ④—Q (B )①—N ②—P ③—M ④—Q (C )①—P ②—M ③—N ④—Q(D )①—Q ②—M ③—N ④—P11.P 是双曲线)0,0(12222>>=-b a by a x 左支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则21F PF ∆的内切圆的圆心横坐标为( )(A )a - (B )b -(C )c - (D )c b a -+12.某债券市场发行的三种值券:甲种面值为100元,一年到期本利共获103元;乙种面值为50元,半年期本利共50.9元;丙种面值为100元,但买入时只付97元,一年到 期拿回100元,这三种投资收益比例从小到大排列为 ( ) (A )乙,甲,丙 (B )甲、丙、乙 (C )甲、乙、丙 (D )丙、甲、乙第Ⅱ卷 (非选择题)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.一个球的内接长方体的长、宽、高分别为1,2,3,则这个球的表面积是 . 14.若26)1()1(ax x -+展开式中的x 3项的系数为20,则非零实数a = .15.△ABC 顶点在以x 轴为对称轴,原点为焦点的抛物线上,已知A (-6,8),且△ABC的重心在原点,则过B 、C 两点的直线方程为 .16.设正数数列{a n }的前n 项和为S n ,且存在正数t ,使得对于所有的自然数n ,有2nn a t tS +=成立,若t a S nn n <∞→lim,则t 的取值范围是 . 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)设复数)23(sin cos 1πθπθθ<<+-=i z 且24arg θπ=-z .求2sin 21)4cos(2πθ--的值.18.(理)(本题满分共12分)已知正三棱柱ABC —A 1B 1C 1的每条棱长均为a ,M 为ABA 11MQN N棱A 1C 1上的动点.(Ⅰ)当M 在何处时,BC 1//平面MB 1A ,并证明之; (Ⅱ)在(I )下,求平面MB 1A 与平面ABC 所成的二 面角的大小;(Ⅲ)求B —AB 1M 体积的最大值. 18.(文)(图同理18,本题满分12分)已知正三棱柱ABC —A 1B 1C 1的每条棱长均为a ,M 为 棱A 1C 1的中点(Ⅰ)求证BC 1//平面MB 1A ;(Ⅱ)求平面MB 1A 与平面ABC 所成的二面角的正切值; (Ⅲ)求B —AMB 1的体积. 19.(理)(本题满分12分)设常数,01>>>b a 不等式0)lg(>-xxb a 的解集为M (Ⅰ)当ab =1时,求解集M ;(Ⅱ)当M=(1,+∞)时,求出a ,b 应满足的关系. 19.(文)(本题满分12分)已知函数)1(log )(x a a x f -= (其中a >0,且a ≠1),解关于x 的不等式)1()1(log 1->-f a x a20.(本题满分12分)一家企业生产某种产品,为了使该产品占有更多的市场份额,拟在2001年度进行一系列的促销活动,经过市场调查和测算,该产品的年销量x 万件与年促销费用t 万元之间满足:3-x 与t +1(t ≥0)成反比例,如果不搞促销活动,该产品的年销量只能是1万件,已知2001年生产该产品的固定投资为3万元,每生产1万件该产品需再投资32万元,当该产品的售价g (x )满足x tx x g 2)332(23)(++=时,则当年的产销量相等.(Ⅰ)将2001年的利润y 表示为促销费t 万元的函数;(Ⅱ)该企业2001年的促销费投入多少万元时,企业的年利润最大? (注:利润=收入-生产成本-促销费) 21.(本题满分12分)AA 、B 是两个定点,且|AB|=8,动点M 到A 点的距离 是10,线段MB 的垂直平分线l 交MA 于点P ,若以AB 所在直线为x 轴,AB 的中垂线为y 轴建立直角坐标系.(Ⅰ)试求P 点的轨迹c 的方程;(Ⅱ)直线)(04R m m y mx ∈=--与点P 所在曲线c 交于弦EF ,当m 变化时,试求△AEF 的面积的最大值.22.(本题满分14分)已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满足x 、y ∈(-1,1) 有)1()()(xyyx f y f x f ++=+.(Ⅰ)证明:f (x )在(-1,1)上为奇函数; (Ⅱ)对数列,12,21211nn n x x x x +==+求)(n x f ; (Ⅲ)(理)求证;252)(1)(1)(121++->+++n n x f x f x f n (文)求证.2)(1)(1)(121->+++n x f x f x f[参考答案]一、选择题(理)CBACD DCBCD AB (文)CBACD DCBCD AB 二、填空题(13)14π (14)5 (15)084=-+y x (16)),22(3+∞三、解答题17.解:)24()(arg 24arg θπθπ+=∴+=tg z tg z (2分) 即2121cos 1sin θθθtg tg-+=- 即212121θtgtg tg -+=即012222=-+θθtg tg (6分)212±-=∴θtg 2124322--=∴<<θπθπtg(8分))1(22cos )sin (cos 222sin 21)4cos(2θθθθθπθtg +=+=--∴2])21(1)21(21[22)21221(2222=------=-+=θθtg tg即22sin 21)4cos(2=--θπθ (12分) 18.(理)解:(I )当M 在A 1C 1中点时,BC 1//平面MB 1A∵M 为A 1C 1中点,延长AM 、CC 1,使AM 与CC 1延 长线交于N ,则NC 1=C 1C=a连结NB 1并延长与CB 延长线交于G , 则BG=CB ,NB 1=B 1G (2分) 在△CGN 中,BC 1为中位线,BC 1//GN又GN ⊂平面MAB 1,∴BC 1//平面MAB 1 (4分) (II )∵△AGC 中, BC=BA=BG ∴∠GAC=90° 即AC ⊥AG 又AG ⊥AA 1 A AC AA = 1AM AG ACC A AG ⊥⊥∴11平面 (6分)∴∠MAC 为平面MB 1A 与平面ABC 所成二面角的平面角221==∠∴a a MAC tg∴所求二面角为.2arg tg (8分) (Ⅲ)设动点M 到平面A 1ABB 1的距离为h M . 3221232361213131111a a a h a h S V VM M ABB B AB M MAB B =⋅≤⋅=⋅==∆-- 即B —AB 1M 体积最大值为.1233a 此时M 点与C 1重合. (12分) 18.(文)(Ⅰ)同(理)解答,见上(Ⅱ)同理科解答:设所求二面角为θ,则2=θtg (Ⅲ)3224323213111a a a V V ABB M AMB B =⋅⋅==--19.(理)解:(I )首先,0>-x x b a 即xx b a >即0,11)(>>∴>x baba x 得由.1)1(1>-∴>-x x x x aa b a (3分)得01)(2>--x x a a 解得251-<x a (舍去)或251+>x a251log +>∴a x ),251(log +∞+=∴aM (6分)(II )令x x b a x f -=)(,先证),0()(+∞∈x x f 在时为单调递增函数)212112212211()()()(,0x x x x x x x x b b a a b a b a x f x f x x -+-=+--=-+∞<<< 0,,0,,,011212212121<-∴<<-<∴<>>>x x x x x x x x b b b b a a a a x x b a).()(21x f x f <∴得证 (8分)欲使解集为(1,+∞),只须f (1)=1即可,即a -b=1,∴a =b+1 (12分)AA 1G19.(文)解:)1(log )1().1(log )(11a f a x fa x a -=-=--由可知0<a <1 (4分)∴不等式)0()1(log )1(log )1()1(log 1>->->--a a a f a a x a x a 即为(8分)10101110101<<⇒⎪⎩⎪⎨⎧><<<⇒⎪⎩⎪⎨⎧-<->->-∴x aa a a a a a a x x xx∴原不等式的解集为{x |0<x <1} (12分 )20.解:(I )由题意得21,0,13===+=-k x t t k x 代入得将 (2分)123+-=∴t x从而生产成本为3)123(32++-t 万元,年收入为]2)332(23[)(xtx x x xg ++= (4分) ]3)123(32[]2)332(23[]3)123(32[)(++--++⋅=++--=∴t xt xx t x xg y (6分))0()1(235982≥+++-=t t t t∴年利润为y )0()1(235982≥+++-=t t t t (8分)(II )y 4216250)13221(50)1(235982=-≤+++-=+++-=t t t t t (万元)当且仅当42713221max ==+=+y t t t 时即 (12分)∴当促销费定为7万元时,利润最大.21.解(I )以AB 所在直线为x 轴,AB 中垂线为y 轴,则A (-4,0),B (4,0) |PA|+|PB|=|PA|+|PM|=10 (2分) ∴2a =10 2c=8 ∴a =5,c=4∴P 点轨迹为椭圆192522=+y x (4分)(II )04=--m y mx 过椭圆右焦点B (4,0))0(192541925)4(2222≠⎪⎪⎩⎪⎪⎨⎧=++=⇒⎪⎪⎩⎪⎪⎨⎧=+-=m y x m yx y x x m y092525)1681(9222=⨯-+++∴y y m y m整理得08172)259(22=-++y my m(6分) 2591814259724)(||2222122121+⨯⨯+⎪⎪⎪⎪⎭⎫ ⎝⎛+=-+=-∴m m m y y y y y y 2222190925m m m m +⨯+=*(8分) ∵m 为直线的斜率,∴可令m=tg θ代入*得 )0sin (|sin |1sin 25cos 9sin 90|sec |25990192590||22222222221>⋅+=+=++=-θθθθθθθθθθθθθ tg tg tg tg tg tg tg y y.4152490916290sin 9sin 1690sin 169sin 902==⨯≤+=+=θθθθ当且仅当169sin sin 9sin 162==θθθ即 即43sin =θ时,.415||max 21=-y y().15415821max =⨯⨯=∴∆AEF S (12分) 22.证:(I )令,0==y x 则0)0(),0()0(2=∴=f f f令,x y -=则)()(,0)0()()(x f x f f x f x f -=-∴==-+ 为奇函数 (4分)(II )1)21()(1-==f x f , )(2)()()1()12()(21n n n n n n n nn n x f x f x f x x xx f x xf x f =+=⋅++=+=+ )}({.2)()(1nn n x f x f x f 即=∴+是以-1为首项,2为公比的等比数列.12)(--=∴n n x f (4分) (III )(理))2121211()(1)(1)(11221-++++-=+++n n x f x f x f2212)212(21121111->+-=--=---=--n n n 而.2212)212(252-<+--=++-=++-n n n n 252)(1)(1)(121++->+++∴n n x f x f x f n (6分)(III )(文))2121211()(1)(1)(11221-++++-=+++n n x f x f x f.2212)212(2121111->+-=--=---=--n n n。