流体流动与传热课程设计说明书课程设计模板
化工流体流动和传热教学设计
化工流体流动和传热教学设计一、教学目标本次教学设计旨在让学生掌握以下知识和技能:1.理解化工流体流动和传热的基本概念和原理;2.掌握流量、速度、压力等化工流体流动相关参数的计算方法;3.掌握池、壁、管道等化工设备传热的基本模型和计算方法;4.培养分析解决化工流体流动和传热问题的实践能力;5.提高学生对化工过程中流体流动和传热的认识和理解。
二、教学内容安排1、教学前导简要介绍本次教学设计的重要性和目标,激发学生的学习兴趣,引导学生正确对待本次教学的意义。
2、理论授课2.1 化工流体流动的基本原理和概念介绍流体、流量、速度、压力等相关规律和概念,为后面学生的实践操作打下基础。
2.2 化工传热的基本模型和计算方法介绍池、壁、管道等传热模型的计算方法,重点讲解换热系数、传热面积、温度等参数的计算。
3、实践操作3.1 流体流动实验使用流量计、压力计等实验设备,进行实际的流体流动实验,让学生操作实验设备,并根据实验结果进行数据处理和分析。
3.2 传热实验使用壁温传感器、热流计等实验设备,进行实际的传热实验,让学生操作实验设备,并根据实验结果进行数据处理和分析。
4、实验报告撰写与评估学生根据上述实验进行实验报告的撰写,教师对学生实验报告的操作流程、数据处理和分析、实验过程等方面进行评估。
三、教学方法本教学设计采用“理论+实践”相结合的方法,通过首先讲解相关理论知识,然后进行实验操作,最终进行实验报告撰写和评估的方式,来达到以上教学目标。
四、教学效果评估本次教学设计的评估方式主要为实验报告评分。
通过评估学生实验报告的操作流程、数据处理和分析、实验过程等方面,来评估学生对化工流体流动和传热知识的掌握情况,进而评估本次教学的效果。
同时,教师还可根据实验中学生的操作表现、实验结果等方面进行评估。
《化工原理》授课计划
《化工原理》授课计划一、课程简介《化工原理》是一门重要的专业课程,旨在培养学生掌握化工过程中涉及的基本原理、方法和技术。
本课程涵盖了流体流动、传热、蒸发、过滤等多方面内容,对于化工、生物、环境等领域的应用具有重要意义。
本课程共有32学时,包括实验和课程设计。
授课对象为大学二年级学生。
二、教学目标1. 掌握化工原理的基本概念、原理和方法;2. 学会运用化工原理解决实际工程问题;3. 培养工程意识和创新思维。
三、教学内容与安排第一章流体流动基础第一节流体性质与流体静压强第二节流体流动现象与规律第三节流体流量测量与计算方法第四节流体在管内的流动阻力第五节流体输送设备的选择与计算教学安排:4学时(理论)+ 2学时(实验)第二章传热原理与应用第一节传热基本概念与方式第二节热传导与对流传热第三节热辐射与间壁式换热器第四节热量传递速率计算与设备选择教学安排:6学时(理论)+ 2学时(讨论)第三章蒸发原理与技术第一节蒸发基本原理第二节蒸发设备与选择第三节蒸发过程计算与优化教学安排:4学时(理论)+ 2学时(实验)第四章过滤与分离原理第一节过滤基本原理与过程描述第二节过滤设备与选择第三节过滤过程计算与优化教学安排:3学时(理论)+ 实验+2学时(实践)和指导/答疑时间(x 小时)为其他三部分安排适当的课外活动或实践指导时间。
2个课时建议每周一次或组织相关活动以保持学生的积极性和参与度。
此外,建议在课程结束前一周进行一次总结性的复习和答疑,以便学生更好地理解和掌握课程内容。
在实验部分,应注重安全教育,确保学生正确使用实验设备和器材,并确保实验过程的安全。
在实践环节,应提供必要的指导,帮助学生解决实际问题,并鼓励他们提出自己的见解和创新思路。
同时,应注重课程的考核方式,包括平时作业、实验报告、课堂表现和期末考试等多个方面,以全面评估学生的学习效果和实际应用能力。
最后,为了提高教学效果,建议采用多媒体教学、案例分析、小组讨论等多种教学方式,以激发学生的学习兴趣和积极性,促进他们的主动学习和思考。
2024版化工原理教案
传热过程分析
分析传热过程中的热量传递、温 度分布及热阻等概念,讨论影响 传热效率的因素。
换热器类型、结构及工作原理
换热器类型
介绍常见的换热器类型,如管壳式换 热器、板式换热器、螺旋板式换热器 等,阐述各类换热器的结构特点和适 用场合。
换热器结构
工作原理
阐述换热器的工作原理,包括热量传 递过程、流体流动状态及传热强化措 施等。
干燥过程基本原理及计算
干燥过程的传质传热原理
阐述干燥过程中水分蒸发的传质原理和热量传 递的传热原理,以及两者之间的相互影响。
干燥过程的计算
介绍干燥过程的物料衡算和热量衡算方法,包括干燥 速率、干燥时间、热量消耗等关键参数的计算公式和 求解方法。
干燥曲线和干燥速率曲线
通过实例讲解如何绘制干燥曲线和干燥速率曲 线,以及如何根据曲线分析干燥过程的特性和 影响因素。
性能评价 阐述换热器性能评价的方法和指标,如传热效率、压力降、 泄漏量等,讨论提高换热器性能的途径和措施。
04
蒸馏过程与设备
蒸馏原理及分类
蒸馏原理
利用液体混合物中各组分挥发度的差 异,通过加热使部分组分汽化,再经 冷凝使汽、液两相分离,从而实现液 体混合物分离的过程。
蒸馏分类
简单蒸馏、平衡蒸馏、精馏和特殊精馏。
常见干燥设备类型、结构及工作原理
常见干燥设备类型
介绍常见的干燥设备类型,如厢式干燥器、转筒干燥器、 流化床干燥器、喷雾干燥器等,以及各种设备的适用范围 和特点。
设备结构及工作原理
详细讲解每种干燥设备的结构组成和工作原理,包括加热 方式、物料输送方式、排风方式等,以及设备操作和维护 的注意事项。
设备性能评价
课程安排与考核方式
传热课程设计A
传热课程设计A一、教学目标本课程旨在通过学习传热的基本概念、原理和计算方法,使学生掌握热传导、对流和辐射三种传热方式的规律,能够分析实际问题中的传热现象,并运用传热学知识解决工程问题。
具体目标如下:1.了解传热的基本概念和分类。
2.掌握热传导、对流和辐射的原理和计算方法。
3.理解传热在工程中的应用和意义。
4.能够运用传热学知识分析实际问题。
5.能够运用数学方法进行传热计算。
6.能够利用实验数据进行传热规律的验证。
情感态度价值观目标:1.培养学生的科学思维和创新能力。
2.增强学生对传热学的兴趣和热情。
3.培养学生对工程问题的敏感性和责任感。
二、教学内容本课程的教学内容主要包括传热的基本概念、传热的方式、传热的计算方法以及传热在工程中的应用。
具体安排如下:1.第一章:传热的基本概念,包括温度、热量和热传递等。
2.第二章:热传导,包括热传导的定律、热传导的计算方法等。
3.第三章:对流,包括对流的类型、对流的计算方法等。
4.第四章:辐射,包括辐射的定律、辐射的计算方法等。
5.第五章:传热在工程中的应用,包括热交换器、热传导材料的选择等。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握传热的基本概念和原理。
2.讨论法:通过小组讨论,培养学生的思考能力和团队协作能力。
3.案例分析法:通过分析实际工程案例,使学生能够将理论知识应用于实际问题。
4.实验法:通过实验操作,使学生能够直观地了解传热现象,并验证传热规律。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《传热学》教材,用于引导学生学习传热的基本概念和原理。
2.参考书:提供相关的参考书籍,供学生深入研究传热学的相关知识。
3.多媒体资料:制作多媒体课件,通过动画和图片等形式,使学生更直观地理解传热现象。
化工原理-流体流动与传热分册教学设计
化工原理-流体流动与传热分册教学设计一、教学目标本课程是针对化工专业学生,旨在让学生掌握流体流动和传热方面的基本知识和计算方法,使其能够在工程实践中熟练运用这些知识解决问题。
二、教学内容1.流体力学基础知识2.流体流动的基本方程和主要性质3.管道内流体流动的压力损失4.流经管道的实用公式计算5.传热基础知识6.传热方式及传热模型7.实际工程中传热器的设计与计算三、教学方法1.讲授:通过课堂讲解、示意图、视频等方式,向学生介绍流体流动和传热知识;2.案例分析:通过实际案例的分析,使学生了解流体流动和传热在实际工程中的应用;3.计算练习:通过课堂示范和课后习题,让学生掌握基本的流体流动和传热计算方法;4.实验教学:通过实验室的实验教学,培养学生的实验操作能力,并巩固理论知识。
四、教学计划教学内容授课时间授课方式流体力学基础知识2小时讲授、案例分析流体流动的基本方程和主要性质3小时讲授、案例分析管道内流体流动的压力损失2小时讲授、案例分析流经管道的实用公式计算3小时计算练习传热基础知识2小时讲授、案例分析传热方式及传热模型3小时讲授、案例分析实际工程中传热器的设计与计算3小时讲授、案例分析、计算练习实验教学4小时实验教学五、教学评估1.期中考试:在第5周进行,主要考察流体流动相关的知识;2.期末考试:在第16周进行,主要考察传热相关的知识;3.实验成绩:在实验课程结束后,按照实验报告的得分进行评估。
六、教材•《化工原理(普通高等教育“十一五”国家级规划教材)》牟策,杨春,机械工业出版社,2009年;•《化工原理及应用(第三版)》马涛等,中国石化出版社,2012年。
七、参考资料•《流体力学导论(第三版)》陈奕龙,同济大学出版社,2004年;•《传热学原理(第六版)》刘献民,高等教育出版社,2015年;•《化工流体力学基础及应用(第二版)》王建锋,北京航空航天大学出版社,2015年。
《化工原理》教案
通过调整操作参数如回流比、进料量、加热量等,实现精馏过程的优化。同时 ,可采用先进的控制策略如自适应控制、智能控制等,提高精馏过程的稳定性 和经济性。
05
吸收过程与设备
Chapter
吸收基本概念及分类
吸收定义
吸收是指气体或液体中的某一组分在 另一不相混溶的液体中的溶解过程。
吸收分类
根据吸收质与吸收剂是否发生化学反 应,可分为物理吸收和化学吸收。
管道压力降计算 管道布置与安装
不同材料的性能特点和使用范围 。
根据管道长度、直径、流量和摩 擦系数计算压力降的方法。
03
传热过程与设备
Chapter
传热基本概念及方式
传热定义
01
热量自发地由高温物体传向低温物体的过程。
传热方式
02
热传导、对流传热、辐射传热。
传热在化工生产中的应用
03
加热、冷却、蒸发、冷凝等。
流体的压力
静压力的概念、单位、表 示方法,以及压力与高度 的关系。
流体静力学方程
推导和应用,包括U型管 压差计的原理和使用方法 。
流体动力学基础
流量与流速
定义、单位、测量方法,以及层流和湍流的判别 。
伯努利方程
推导和应用,包括流速与压力的关系,以及在管 道流动中的应用。
连续性方程
推导和应用,包括管道截面变化对流速和流量的 影响。
干燥方法分类
根据干燥介质与物料的接触方式,将干燥方法分为对流干燥、传导干燥、辐射干燥等,并对每种方法 进行简要介绍。
常见干燥方法及设备介绍
对流干燥方法及设备
详细介绍气流干燥、喷雾干燥、流化床干燥等对流干燥方法及其 相应设备的结构、工作原理和特点。
1 流体流动与传热
流体静压力的计算
如图所示,采用一复式U形压差计测量容器中O点处的压力,两段U形 管A和B中水银柱读数分别为60、70cm,中间一段充满水,求O点处 的压力
pO p2 0.8 w g
200
O
pa
RB=700
' p2 p2 p1' 0.6 Hg g
1 1’ 1’’
RA=600
P+dp
dp
dz
gdz 0
p
z
对于不可压缩流体,密度为常数
p
gz 常数
0
1 2
0
p1
gz1
p2
gz2
h z1 z2
p2 p1 g z1 z2
或
p2 p1 gh
注:上式只适用于重力场中静止的不可压缩的单一连续流体; 静压力只与各点的垂直位置有关,而与水平位置无关; 只有在压力变化不大时,气体才可适用上式。
聚合反应器与聚合反应操作
课程的教学内容
化工原理(流体流动与传热) 化学反应工程基础
聚合反应工程分析
搅拌聚合釜内的传递过程 搅拌聚合釜的放大 聚合过程与聚合反应器
第1章
流体流动与传热
1.1 流体流动
泵
水
水 池
水 封
连续介质假定:将流体视为由无数质点组成的、彼 此间没有空隙的连续介质。
R
d
2 1 u1
D
2
u2
1
管道两测点间连接压差计读数代表什么意义?
B
p1 pA gh1 p2
n
lg m xi lg i
i 1
热工流体课程设计方案模板
一、课程概述1. 课程名称:热工流体2. 课程性质:专业基础课程3. 课程目标:使学生掌握热工流体力学的基本理论、基本知识和基本技能,培养学生分析问题和解决实际工程问题的能力。
二、课程内容1. 工程热力学(1)热力学基本概念和基本定律(2)常用工质的热物理性质及基本热力过程(3)气体和蒸汽的流动(4)典型蒸汽动力循环和制冷循环分析计算2. 流体力学(1)流体的基本物理性质(2)流体静力学(3)流体动力学基础(4)黏性流体的有压流动特点及能量损失计算3. 传热学(1)导热、对流传热、辐射传热的基本规律和计算方法(2)传热过程的分析计算方法及优化控制措施(3)换热器的类型和传热计算方法三、教学方法与手段1. 讲授法:教师讲解基本理论、基本知识和基本技能,引导学生理解、掌握课程内容。
2. 案例分析法:通过实际工程案例,引导学生分析、解决问题,提高学生实际应用能力。
3. 讨论法:组织学生分组讨论,激发学生思维,培养学生的团队协作能力。
4. 实验法:通过实验操作,使学生直观地了解理论知识的实际应用。
5. 多媒体教学:利用多媒体技术,丰富教学手段,提高教学效果。
四、教学过程1. 第一阶段:基础知识学习(1)教师讲解课程基本理论、基本知识和基本技能;(2)学生通过自学、课堂讨论,掌握课程内容。
2. 第二阶段:案例分析与实践(1)教师提供实际工程案例,引导学生分析、解决问题;(2)学生分组讨论,提出解决方案;(3)教师点评、总结,指导学生完善方案。
3. 第三阶段:实验操作与报告撰写(1)学生分组进行实验操作,验证理论知识;(2)学生撰写实验报告,总结实验结果。
4. 第四阶段:课程总结与复习(1)教师总结课程重点、难点;(2)学生进行课程复习,巩固所学知识。
五、考核方式1. 平时成绩:包括课堂表现、作业完成情况、实验报告等。
2. 期末考试:笔试,考察学生对课程知识的掌握程度。
3. 课程设计:学生分组完成课程设计,考察学生综合运用所学知识解决实际问题的能力。
流体应用设计教案模板范文
一、教学目标1. 知识与技能:(1)了解流体的基本概念、性质和特点;(2)掌握流体力学的基本原理;(3)学会运用流体力学知识解决实际问题。
2. 过程与方法:(1)通过观察、实验、讨论等方式,培养学生观察能力和动手能力;(2)通过小组合作,培养学生的团队协作精神。
3. 情感态度与价值观:(1)激发学生对流体力学学习的兴趣;(2)培养学生热爱科学、勇于探索的精神。
二、教学重点与难点1. 教学重点:(1)流体力学的基本原理;(2)流体应用实例。
2. 教学难点:(1)流体力学公式的推导和应用;(2)流体应用实例的解析。
三、教学过程1. 导入新课(1)提出问题:什么是流体?流体有哪些性质?(2)引导学生回顾相关知识,为新课做好铺垫。
2. 新课讲授(1)讲解流体的基本概念、性质和特点;(2)介绍流体力学的基本原理,如伯努利方程、连续性方程等;(3)分析流体应用实例,如飞机升力、船舶阻力等。
3. 实验探究(1)组织学生进行流体力学实验,如水流速度测量、流体压强测量等;(2)引导学生分析实验数据,总结实验规律。
4. 小组讨论(1)将学生分成若干小组,每组讨论一个流体应用实例;(2)各小组汇报讨论结果,教师点评并总结。
5. 课堂小结(1)回顾本节课所学内容;(2)总结流体力学在生活中的应用。
6. 作业布置(1)完成课后习题,巩固所学知识;(2)查找资料,了解流体力学在工程领域的应用。
四、教学反思1. 教学过程中,注重启发式教学,激发学生的学习兴趣;2. 通过实验探究和小组讨论,培养学生的观察能力、动手能力和团队协作精神;3. 结合实际生活,让学生了解流体力学在各个领域的应用,提高学生的实际应用能力;4. 注重教学反思,及时调整教学策略,提高教学质量。
化工原理课程设计模板
化工原理课程设计模板一、课程目标知识目标:1. 理解并掌握化工原理中流体流动与传输的基本概念,包括流体性质、流动状态及流体力学方程。
2. 学习并掌握热量传递的三种基本方式,即导热、对流和辐射,及其在化工过程中的应用。
3. 掌握质量传递的基本原理,包括扩散、对流传质和膜分离等,并能应用于化工单元操作中。
4. 分析典型化工单元操作的工作原理和设备结构,理解其工程实践意义。
技能目标:1. 能够运用流体力学原理,解决实际流体流动问题,如流量测量、泵和风机的选型等。
2. 能够运用热量传递原理,分析和解决化工过程中的热量控制问题,如换热器的设计和优化。
3. 能够运用质量传递原理,进行物质的分离和提纯,如吸收、蒸馏等操作。
4. 能够结合单元操作原理,设计简单的化工流程,进行初步的工程计算和设备选型。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热情,激发学生探索科学规律的积极性。
2. 培养学生的工程意识,使其认识到化工原理在国民经济发展中的重要地位和作用。
3. 培养学生的团队协作精神和沟通能力,使其在解决实际问题时能够与他人合作,共同完成任务。
4. 培养学生的创新思维,使其在遇到问题时能够主动思考,寻求解决方案。
本课程针对高年级本科生,结合化工原理的学科特点,以理论知识与工程实践相结合的方式进行教学。
课程目标旨在使学生在掌握基本理论知识的基础上,能够运用所学知识解决实际问题,并培养其工程素养和创新能力,为未来从事化工领域的工作打下坚实基础。
二、教学内容1. 流体流动与传输:包括流体性质、流体静力学、流体动力学、流体流动阻力与能量损失、泵与风机等章节内容。
- 流体性质:密度、粘度、表面张力等。
- 流体静力学:压力、压强、流体静力平衡。
- 流体动力学:连续性方程、伯努利方程、动量方程。
- 流体流动阻力与能量损失:摩擦阻力、局部阻力、雷诺数。
- 泵与风机:类型、工作原理、性能参数。
2. 热量传递:涵盖导热、对流、辐射及换热器设计等内容。
流体流动与传热课程设计说明书课程设计模板
流体流动与传热课程设计说明书题目名称:列管式换热器(原油预热器)的设计系部:专业班级:学生姓名:学号:指导教师:完成日期:新疆工程学院课程设计评定意见设计题目列管式换热器(原油预热器)的设计系部_________________ 专业班级学生姓名_________________ 学生学号评定意见:评定成绩:指导教师(签名):年月日新疆工程学院化学与环境工程系(部)课程设计任务书13/14 学年下学期2014年1月15日教研室主任(签名)系(部)主任(签名)摘要随着科技的发展,化工行业也在不断的发展,而换热器是许多工业部门的通用设备,在化工生产中可用作加热器、冷却器、冷凝器、蒸发器等。
此次我们设计的主要是换热器,根据冷热交换的方式进行,用原油冷却温度过高的柴油,使生产能够顺利安全合理的进行,满足生产要求,设计的原油预热器。
设计换热器,首先根据它的温差、物性来初估它的传热系数,再算出它的面积,来选择换热器的样式或规格,通过核算它的传热系数与传热面积,并且要计算它的压强将是否在允许的范围内,再来选择合适的换热器。
通过这次的设计我们对换热器有了一定的了解。
关键词:换热器,设计,传热系数目录1.设计任务书 (1)1.1设计题目 (1)1.2设计条件 (1)1.3设计内容 (1)1.4设计评述 (1)2.设计方案简介评述 (2)2.1换热器的发展及分类 (2)2.2列管式换热器的分类 (3)2.3设计背景及设计要求 (6)3.换热器设计理论计算 (8)3.1试算并初选换热器规格 (8)3.2核算总传热系数K o (9)3.3计算压强降 (11)4.换热器主要结构尺寸 (13)4.1管子的规格和排列方法 (13)4.2管程和壳程数的确定 (13)4.3外壳直径的确定 (13)4.3折流板形式的确定 (14)4.5主要附件的尺寸设计 (14)5.工艺设计计算结果汇总表 (16)参考文献 (17)后记 (18)1.设计任务书1.1设计题目列管式换热器(原油预热器)的设计1.2设计条件某炼油厂用柴油将原油预热。
流体输送课程设计
流体输送课程设计一、教学目标本节课的教学目标是让学生掌握流体输送的基本原理和方法,包括流体的性质、流动类型和输送设备。
知识目标要求学生能够理解流体的密度、粘度和表面张力等基本性质,掌握层流和湍流的区别,了解不同类型的流体输送设备及其工作原理。
技能目标要求学生能够运用流体输送原理解决实际问题,如计算流体流动的速度和压力,选择合适的输送设备等。
情感态度价值观目标要求学生培养对流体输送技术的兴趣,认识到流体输送在工程和日常生活中的重要性,增强环保意识。
二、教学内容本节课的教学内容主要包括流体的性质、流动类型和输送设备。
首先,介绍流体的基本性质,如密度、粘度和表面张力,通过实例让学生了解这些性质在实际中的应用。
其次,讲解流体的流动类型,包括层流和湍流,分析两种流动的特点和区别。
然后,介绍常用的流体输送设备,如泵、风机和压缩机,讲解其工作原理和应用场景。
最后,通过案例分析,让学生运用所学知识解决实际问题,如选择合适的输送设备、计算流体流动的速度和压力等。
三、教学方法为了激发学生的学习兴趣和主动性,本节课采用多种教学方法相结合。
首先,采用讲授法,系统地讲解流体输送的基本原理和知识。
其次,运用讨论法,让学生分组讨论流体流动类型和输送设备的选择,促进学生之间的交流与合作。
然后,采用案例分析法,引导学生运用所学知识解决实际问题,提高学生的应用能力。
最后,进行实验演示,让学生直观地了解流体输送设备的工作原理,增强学生的实践操作能力。
四、教学资源为了支持教学内容和教学方法的实施,本节课准备了一系列教学资源。
教材方面,选用《流体力学》作为主教材,辅助以《流体输送技术与应用》等参考书。
多媒体资料方面,制作了流体流动类型和输送设备的工作原理演示PPT,以及相关实验视频。
实验设备方面,准备了流体输送实验装置,让学生能够亲自动手操作,加深对流体输送原理的理解。
此外,还提供了网络资源,如流体输送技术的最新研究动态和相关论坛,供学生课外拓展学习。
化工原理-流体流动与传热分册教学设计 (2)
化工原理-流体流动与传热分册教学设计简介本教学设计主要针对化工工程专业的本科生开展。
本教学分册主要介绍流体流动与传热的基本原理和计算方法,使学生能够掌握流体流动、传热的基本理论和分析方法,并能够运用所学知识解决实际工程问题。
教学内容1.流体静力学2.流体动力学3.流体传热基础4.流动与传热工程教学目标1.熟练掌握流体静力学,理解流体压力、重力、浮力的作用及其计算方法。
2.理解流体动力学基本原理,掌握流体动量守恒和能量守恒原理及其应用。
3.掌握传热的基本理论,了解传热的三种方式及其计算方法。
4.能够运用所学知识解决流体流动、传热工程问题。
教学方法1.理论讲授:采用讲授、演示、分析等教学方法,让学生了解基本原理和公式,掌握方法和技巧。
2.实验教学:进行实验教学,让学生亲身体验和了解流体流动、传热。
3.讨论:开展课堂讨论,让学生运用所学知识解决实际问题。
教学内容和课时安排章节教学内容讲授时间实验时间第一章流体静力学 4 学时 2 学时第二章流体动力学 6 学时 4 学时第三章流体传热基础 4 学时 2 学时第四章流动与传热工程 6 学时 4 学时教学评估方法1.作业:布置作业,督促学生巩固所学知识。
2.期末考试:考核学生对流体流动、传热相关知识是否掌握。
3.实验报告:要求学生提交实验报告,评估学生的实验能力。
教学资料1.教材:《化工原理-流体流动与传热分册》2.课件:PPT3.实验手册:详细介绍实验流程、注意事项和操作方法。
总结通过该教学设计,化工工程专业的本科生可全面了解流体流动和传热相关知识,理解流体力学和热学的基本原理和计算方法,能够分析和解决实际工程问题,达到培养学生的专业实践能力和综合素质的目的。
流体力学与传热课程设计 (2)
流体力学与传热课程设计一、课程背景流体力学与传热作为热力学的重要分支领域,是现代工程技术中不可或缺的一部分,对于热能的转换与利用起着至关重要的作用。
本课程旨在引导学生深入了解流似流体静力学、稳态传热、传质以及非稳态传热等内容,为学生提供基础知识和实践技能培训,为工程技术人员的职业道路奠定坚实基础。
二、课程设置1. 课程大纲•流体静力学•稳态传热•传质热物理性质•非稳态传热•应用实验2. 课程教学材料教材:《流体力学与传热》(第三版),作者:陈致中参考书籍:《传热学基础》(第二版),作者:YY Zhu实验指导书:《流体力学与传热实验》,作者:某某教授3. 教学方法该课程采用授课、实验和讨论相结合的教学方法,鼓励学生积极参与课堂讨论和实验操作。
在讲解理论知识的同时,引导学生深入思考实际应用中的问题,培养学生解决问题和创新的能力。
三、课程实践1. 实验设计流体力学与传热课程中的实验设计需要根据课程大纲,重点讲解实践方法和实验步骤,以真实案例为例,让学生更好地理解和掌握相关知识。
实验1:流体静力学实验该实验旨在通过测量压力、流量、速度等关键参数,研究流体的静力学特性。
学生将学会如何使用流量计测量流体流量,如何使用压力计测量系统压力,并且通过数据分析获得相关知识。
实验2:稳态传热实验该实验旨在研究热传导的特性和规律。
学生通过实验探究传热过程中的影响因素,如热辐射、对流传热、传热系数等,学会建立热传导模型和计算传热效率。
2. 实验要求•安全第一:学生在实验室实验前必须穿戴防护服和安全鞋,其他安全措施需要由实验教师作出决定。
•实验数据及时记录:学生进行实验时应及时记录每次实验的数据和观测结果,并保持实验的稳定状态。
•实验结果分析:学生应该对实验数据进行仔细分析,并根据实验结果总结归纳研究结论。
四、课程考核该课程采用多种方式进行考核,包括评分、论文写作、实验报告等方式。
具体考核内容和权重如下:•期末考试:60%•论文写作:20%•实验报告:20%学生参加该课程需要严格按照教学要求完成考核要求,同时教师将积极引导学生通过奋斗、探索和创新提高学习成果。
流体输送教案设计说明模板
一、教学目标1. 知识目标:(1)了解流体输送的基本概念、原理和流程;(2)掌握流体输送设备的种类、工作原理和选用方法;(3)熟悉流体输送过程中的安全操作规程。
2. 能力目标:(1)培养学生分析流体输送过程中可能出现的问题,并提出解决方案的能力;(2)提高学生动手操作、实践操作能力,培养团队协作精神。
3. 情感目标:(1)激发学生对流体输送领域的研究兴趣,培养学生热爱专业、勇于创新的精神;(2)培养学生的环保意识,提高对流体输送过程中环境保护的认识。
二、教学内容1. 流体输送的基本概念和原理;2. 流体输送设备的种类、工作原理和选用方法;3. 流体输送过程中的安全操作规程;4. 流体输送系统的设计、计算和优化。
三、教学方法1. 讲授法:系统讲解流体输送的基本概念、原理和流程;2. 案例分析法:通过实际案例,让学生了解流体输送设备的应用和操作;3. 实验教学法:组织学生进行流体输送设备的操作实验,提高实践能力;4. 讨论法:引导学生对流体输送过程中可能出现的问题进行讨论,培养解决问题的能力。
四、教学过程1. 导入新课:通过提问、展示图片等方式,激发学生对流体输送领域的兴趣;2. 讲解流体输送的基本概念和原理,使学生掌握相关知识;3. 介绍流体输送设备的种类、工作原理和选用方法,通过案例分析,让学生了解实际应用;4. 组织学生进行流体输送设备的操作实验,让学生亲身体验流体输送过程;5. 讨论流体输送过程中可能出现的问题,引导学生提出解决方案;6. 总结课程内容,强调流体输送过程中的安全操作规程;7. 布置课后作业,巩固所学知识。
五、教学评价1. 课堂表现:观察学生在课堂上的学习态度、参与度等;2. 实验操作:评估学生在实验操作过程中的熟练程度和解决问题的能力;3. 课后作业:检查学生对课程内容的掌握程度。
六、教学资源1. 教材:流体输送相关教材;2. 实验设备:流体输送设备、实验器材等;3. 案例资料:实际流体输送案例;4. 教学课件:制作相关教学课件,便于学生理解和掌握知识。
热工基础及流体力学课程设计
热工基础及流体力学课程设计一、课程背景热工基础及流体力学是机械工程专业本科生必修的一门课程,主要介绍了流体静力学、流体动力学和热力学等方面的基本理论及其应用。
课程内容涉及热力学基础概念、热力学第一、第二定律、热力学循环、杆材力学、流体静力学及动力学、粘性流体流动等方面,内容丰富、实用性强,为学生今后掌握流体流动基本理论,开展流体流动的模拟与实验研究,以及工程设备设计与改进打下坚实的基础。
二、课程设计目标本次课程设计的主要目标是帮助学生通过实践学习热工基础及流体力学相关知识,提高学生的应用能力。
通过对某一设备或工艺过程进行热工基础和流体力学的分析和计算,促进学生自主学习和自主创新的能力提升。
三、课程内容与任务3.1 课程内容本次课程设计分为两个部分,第一部分是热工基础分析,第二部分是流体力学分析。
3.1.1 热工基础分析主要内容包括:•热力学基础知识,包括状态方程、热力学第一定律和第二定律、熵和熵增、焓等。
•处理某种设备或过程的热工性质,包括压力、温度、比容等的计算。
•热力学循环分析,掌握热力学循环分析的方法,比如卡诺循环和布雷顿循环等。
3.1.2 流体力学分析主要内容包括:•流体静力学,处理某种流体系统的平衡状态、大气压力、液位等基础概念。
•流体动力学,掌握包括雷诺数、黏性系数、雷诺应力等流体动力学的基本概念,通过流体力学方程分析流体宏观运动规律。
•流量控制和传热分析,掌握某种设备或过程的流量分析和传热分析的方法及应用。
3.2 课程任务选定工业中一个设备或过程,对其手动计算热工和流体力学相关参数,并用流体模拟软件进行计算和模拟,以比较手动计算与模拟结果的差异。
四、课程教学方法4.1 在线学习学生在课前通过网络学习相关基础理论和知识,包括热力学基础和流体动力学等内容,同时了解计算机工具和软件的应用方法,为实验做好相关准备。
4.2 课堂教学课堂教学分为授课和实验报告两个部分,授课主要是针对一些难点问题进行讲解和重点强调,实验报告则是鼓励学生积极参与实验和模拟计算,并对所得结果做出评价和总结。
流体相关课程设计方案模板
一、课程名称【课程名称】二、课程背景随着我国城市化进程的加快,流体力学在建筑、交通、能源等领域的应用越来越广泛。
为了提高学生对流体力学基本理论、计算方法和工程应用的理解,特设计本课程。
三、课程目标1. 理解流体力学的基本概念、原理和规律;2. 掌握流体力学的基本计算方法和实验技术;3. 培养学生解决实际工程问题的能力;4. 提高学生的创新意识和团队协作能力。
四、课程内容1. 流体力学基本概念- 流体定义、性质、分类- 连续介质假设、牛顿流体与非牛顿流体- 流体力学基本方程2. 流体运动基本方程- 质量守恒方程、动量守恒方程、能量守恒方程- 伯努利方程、欧拉方程、纳维-斯托克斯方程3. 流体流动基本理论- 层流与湍流、流线、速度场、压力场- 稳定流动与不稳定流动、定常流动与非定常流动- 薄膜理论、边界层理论4. 流体流动计算方法- 有限元法、有限差分法、有限体积法- 数值模拟与实验验证5. 流体力学工程应用- 建筑给排水系统、空调通风系统、城市给水排水系统- 交通流体力学、能源流体力学五、教学方法与手段1. 理论教学:采用多媒体课件、板书等方式,讲解流体力学基本理论、计算方法和工程应用;2. 实验教学:设置流体力学实验课程,让学生动手操作,掌握实验原理、实验方法和实验技巧;3. 案例教学:选取实际工程案例,引导学生分析问题、解决问题,提高学生的实践能力;4. 讨论与交流:组织课堂讨论、小组讨论,激发学生的学习兴趣,培养学生的团队协作能力。
六、课程考核1. 平时成绩:包括课堂出勤、课堂讨论、实验报告等;2. 期末考试:笔试,考察学生对流体力学基本理论、计算方法和工程应用的理解;3. 案例分析:选取实际工程案例,要求学生分析问题、提出解决方案,并进行答辩。
七、课程进度安排1. 第1-4周:流体力学基本概念、流体运动基本方程;2. 第5-8周:流体流动基本理论;3. 第9-12周:流体流动计算方法;4. 第13-16周:流体力学工程应用;5. 第17-18周:课程总结与考核。
传热设计的课程设计
传热设计的课程设计一、课程目标知识目标:1. 理解并掌握传热的基本原理,包括导热、对流和辐射。
2. 学习并能够运用传热公式进行简单传热问题的分析与计算。
3. 掌握不同材料热导率的特点及其在传热设计中的应用。
技能目标:1. 能够运用图形和计算工具对传热问题进行模拟和计算。
2. 培养解决实际工程传热问题的能力,进行基本的传热设计。
3. 通过小组合作,提高团队协作能力和项目设计、执行、展示的沟通技巧。
情感态度价值观目标:1. 培养学生对传热科学的好奇心与探索精神,激发学习物理的兴趣。
2. 强化学生的环保意识,认识到传热设计在节能减排中的重要性。
3. 增强学生的工程伦理观念,理解传热设计在工程实践中的应用及其对环境和社会的影响。
课程性质分析:本课程属于物理学科,旨在通过理论与实验相结合的方式,让学生深入理解传热现象及其在实际工程中的应用。
学生特点分析:考虑到学生所在年级,课程将结合学生的抽象思维能力,逐步引导他们从具体实例中发现传热规律,并能进行一定程度的理论分析和应用。
教学要求:1. 结合教材,深入浅出地讲解传热原理,确保学生能够掌握基础知识。
2. 设计实践环节,让学生在实际操作中深化理解,培养解决实际问题的能力。
3. 强调学习过程中的合作交流,提高学生的表达能力和团队协作能力。
二、教学内容1. 传热基本原理:导热、对流和辐射的基本概念与数学描述,热传导方程的推导及应用。
- 教材章节:第一章 导热理论基础,第二章 对流传热,第三章 辐射传热。
2. 传热计算与分析方法:传热系数的计算,热阻分析,稳态和非稳态传热问题求解。
- 教材章节:第四章 传热问题的数学描述与解析方法。
3. 材料热导率特性:常见材料的热导率数据,热导率测量实验,影响热导率的因素。
- 教材章节:第五章 材料热物理性质。
4. 传热设计实践:结合实际案例,学习传热设计的基本步骤,进行简单的传热系统设计。
- 教材章节:第六章 传热设备的设计与优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体流动与传热课程设计说明书题目名称:列管式换热器(原油预热器)的设计系部:专业班级:学生姓名:学号:指导教师:完成日期:新疆工程学院课程设计评定意见设计题目列管式换热器(原油预热器)的设计系部_________________ 专业班级学生姓名_________________ 学生学号评定意见:评定成绩:指导教师(签名):年月日新疆工程学院化学与环境工程系(部)课程设计任务书13/14 学年下学期2014年1月15日教研室主任(签名)系(部)主任(签名)摘要随着科技的发展,化工行业也在不断的发展,而换热器是许多工业部门的通用设备,在化工生产中可用作加热器、冷却器、冷凝器、蒸发器等。
此次我们设计的主要是换热器,根据冷热交换的方式进行,用原油冷却温度过高的柴油,使生产能够顺利安全合理的进行,满足生产要求,设计的原油预热器。
设计换热器,首先根据它的温差、物性来初估它的传热系数,再算出它的面积,来选择换热器的样式或规格,通过核算它的传热系数与传热面积,并且要计算它的压强将是否在允许的范围内,再来选择合适的换热器。
通过这次的设计我们对换热器有了一定的了解。
关键词:换热器,设计,传热系数目录1.设计任务书 (1)1.1设计题目 (1)1.2设计条件 (1)1.3设计内容 (1)1.4设计评述 (1)2.设计方案简介评述 (2)2.1换热器的发展及分类 (2)2.2列管式换热器的分类 (3)2.3设计背景及设计要求 (6)3.换热器设计理论计算 (8)3.1试算并初选换热器规格 (8)3.2核算总传热系数K o (9)3.3计算压强降 (11)4.换热器主要结构尺寸 (13)4.1管子的规格和排列方法 (13)4.2管程和壳程数的确定 (13)4.3外壳直径的确定 (13)4.3折流板形式的确定 (14)4.5主要附件的尺寸设计 (14)5.工艺设计计算结果汇总表 (16)参考文献 (17)后记 (18)1.设计任务书1.1设计题目列管式换热器(原油预热器)的设计1.2设计条件某炼油厂用柴油将原油预热。
柴油和原油的有关参数如下表, 两侧的污垢热阻均可取1.72×10-4m2.K/W,要求两侧的阻力损失均不超过53.0 Pa。
101.3设计内容①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。
②换热器的工艺计算:确定换热器的传热面积。
③换热器的主要结构尺寸设计。
④主要辅助设备选型。
1.4设计评述换热器是许多工业生产中常用的设备,尤其是石油、化工生产应用更为广泛。
在化工厂中换热器、冷却器、冷凝器、蒸发器和再沸器等。
换热器的类型很多,性能各异,个具特点,可以适应绝大多数工艺过程对换热器的要求。
进行换热器的设计,首先是根据工艺要求选用适当的类型,同时计算完成给定生产任务所需的传热面积,并确定换热器的工艺尺寸。
换热器类型虽然很多,但计算传热面积所依据的传热基本原理相同,不同之处仅是在结构上需根据各自设备特点采用不同的计算方法而已。
2.设计方案简介评述2.1换热器的发展及分类在化工、石油、动力、制冷、食品等行业中广泛使用各换热器,且它们是这些行业的通用设备,并占有十分重要的地位。
随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。
换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。
在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
它是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。
由于制造工艺和科学水平的限制,早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。
随着制造工艺的发展,逐步形成一种管壳式换热器,它不仅单位体积具有较大的传热面积,而且传热效果也较好,长期以来在工业生产中成为一种典型的换热器。
二十世纪20年代出现板式换热器,并应用于食品工业。
以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。
30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。
30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。
在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。
60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。
此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。
70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。
一般换热器都用金属材料制成,其中碳素钢和低合金钢大多用于制造中、低压换热器;不锈钢除主要用于不同的耐腐蚀条件外,奥氏体不锈钢还可作为耐高、低温的材料;铜、铝及其合金多用于制造低温换热器;镍合金则用于高温条件下;非金属材料除制作垫片零件外,有些已开始用于制作非金属材料的耐蚀换热器,如石墨换热器、氟塑料换热器和玻璃换热器等。
换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。
换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。
其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等)2.2列管式换热器的分类换热器种类繁多,形式各异,如列管式、釜式、板式、板翅式、螺旋板式、空冷器、套管式、蛇管式等。
由于列管式换热器(亦称管壳式)易于制造、适应性强、处理量大、成本较低可供选用的材料范围广泛,仍是当前应用最广(约占70%),理论研究和设计技术最完善,运行可靠性良好的一类换热器。
热管换热器是由壳体、热管和隔板组成的。
热管作为主要的传热元件,是一种具有高导热性能的传热装置。
热管的传热特点是热管中的热量传递通过沸腾汽化、蒸汽流动和蒸汽冷凝三步进行。
由于沸腾和冷凝的对流传热程度都很大,而蒸汽流动阻力损失又较小,因此热管两端温度差可以很小,即能在很小的温差下传递很大的热流量。
因此特别适用于低温差传热及某些等温性要求较高的场合。
热管换热器具有结构简单、使用寿命长、工作可靠、应用范围广等优点,可用于气--气、气--液和液--液之间的传热过程。
在不同温度的流体间传递热能的装置称为热交换器,简称换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
在工程实践中有时也会存在两种以上流体参加换热的换热器,但它的原理与前一种情形并无本质上的差别。
列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:(1)固定管板式换热器固定板式式换热器是用焊接的方式将连接管束的管板固定在壳体两端。
它的主要特点是制造方便、紧凑,造价较低。
但由于管板和壳体间的结构原因,使得管外侧不能进行机械清洗。
另外当管壁与壳体壁温之差较大时,会产生很大的热应力,严重时会毁坏换热器。
固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。
当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。
特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。
固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。
固定管板式换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束内根据换热管的长度设置了若干块折流板。
这种换热器管程可以用隔板分成任何程数。
固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格范围广,故在工程上广泛应用。
壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。
当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。
固定管板式换热器的特点是:1、旁路渗流较小;2、造价低;3、无内漏;4、固定管板式换热器的缺点是,壳体和管壁的温差较大,易产生温差力,壳程无法清洗,管子腐蚀后连同壳体报废,设备寿命较低,不适用于壳程易结垢场合。
为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。
但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。
一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。
其结构如下图所示:(2)浮头式换热器浮头式换热器是用法兰把管束一端的管板固定到壳体上,另一端可以在壳体内自由伸缩,并在该端管板上一顶盖后称为‘浮头’。
这类换热器的应用范围广,能在较高的压力下工作,适用于壳体壁温与管壁温差较大或壳程易结垢的场合。
浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两张介质的温差较大时,管束和壳体之间不产生温差应力。
浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。
(也可设计成不可拆的)。
这样为检修、清洗提供了方便。
但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。
因此在安装时要特别注意其密封。
浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。
在设计时必须考虑浮头管板的外径Do。
该外径应小于壳体内径Di,一般推荐浮头管板与壳体内壁的间隙b1=3~5mm。
这样,当浮头出的钩圈拆除后,即可将管束从壳体内抽出。
以便于进行检修、清洗。
浮头盖在管束装入后才能进行装配,所以在设计中应考虑保证浮头盖在装配时的必要空间。
钩圈对保证浮头端的密封、防止介质间的串漏起着重要作用。
随着幞头式换热器的设计、制造技术的发展,以及长期以来使用经验的积累,钩圈的结构形式也得到了不段的改进和完善。
钩圈一般都为对开式结构,要求密封可靠,结构简单、紧凑、便于制造和拆装方便。
浮头式换热器以其高度的可靠性和广泛的适应性,在长期使用过程中积累了丰富的经验。
尽管近年来受到不断涌现的新型换热器的挑战,但反过来也不断促进了自身的发展。
故迄今为止在各种换热器中扔占主导地位。
其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。