卡方检验及SPSS分析
医学统计学之卡方检验SPSS操作
医学统计学之卡方检验SPSS操作卡方检验(Chi-Square Test)是一种常用的统计方法,用于比较两个或多个分类变量的分布是否存在差异。
该方法主要用于处理分类数据,例如比较男女性别和吸烟与否对癌症发生的关系。
在SPSS(Statistical Package for the Social Sciences)软件中,进行卡方检验的操作主要分为数据准备、假设设定和计算步骤。
第一步:数据准备首先,需要在SPSS中导入数据。
假设我们需要在一个样本中比较男女性别和吸烟与否的关系,我们可以将性别和吸烟状况作为两个分类变量,分别用“Male”和“Female”表示性别,“Smoker”和“Non-smoker”表示吸烟状况。
将这些数据输入到SPSS中的一个数据表中。
第二步:假设设定接下来,需要设置假设。
在卡方检验中,我们通常有一个原假设和一个备择假设:-原假设(H0):两个或多个分类变量之间没有显著差异。
-备择假设(H1):两个或多个分类变量之间存在显著差异。
在本例中,原假设可以是“性别和吸烟状况之间没有显著差异”,备择假设可以是“性别和吸烟状况之间存在显著差异”。
第三步:计算步骤进行卡方检验的计算步骤如下:1.打开SPSS软件并导入数据。
2. 选择“分析(Analyse)”菜单,然后选择“非参数检验(Nonparametric Tests)”子菜单,最后选择“卡方(Chi-Square)”选项。
3.在弹出的对话框中选择两个分类变量(性别和吸烟状况),并将它们添加到变量列表中。
4.点击“确定(OK)”按钮,开始进行卡方检验的计算。
5.SPSS将计算卡方统计量的值和相关的P值。
如果P值小于指定的显著性水平(通常为0.05),则可以拒绝原假设,接受备择假设。
这样,就完成了卡方检验的SPSS操作。
需要注意的是,卡方检验是一种只能说明变量之间是否存在关系的方法,不能用于确定因果关系。
此外,在进行卡方检验之前,需要确保样本符合一些假设,例如每个单元格的期望频数应该大于5、如果不满足这些假设,可以考虑使用其他适用的统计方法。
SPSS非参数检验之一卡方检验
SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。
它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。
卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。
卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。
卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。
二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。
原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。
2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。
3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。
4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。
5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。
6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。
三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。
下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。
我们想要检验性别与吸烟习惯之间是否存在关联。
1.打开SPSS软件,导入数据。
2.选择"分析"菜单,点击"拟合度优度检验"。
3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。
4.点击"统计"按钮,勾选"卡方拟合度"。
卡方检验SPSS操作
16
三、行×列表资料的x2检验 第8题,P440
17
其 (SPSS的操作步骤与四格表相同)
步骤一: 定义变量
步骤二: 输入数据
步骤三:对数据按频数进行加权
步骤四:对数据作X2分析
步骤五:分析结果
配对卡方检验专用
药物 A B
T o ta l
药 物 * 药 效 Cross tabulation
Count % within 药 物 Count % within 药 物 Count % within 药 物
药效
有效
无效
73
9
89.0%
11.0%
52
22
70.3%
29.7%
125
31
80.1%
19.9%
无1/5的格子 的理论数大于 1小于5或有 T<1。故不用 合并或改用确 切概率法。直 接选择结果
练习题:
P440: 4、7、8题
23
⑵是否需要校正? 四格表资料检验条件: (1)当n≥40且所有T≥5,用普通X2检验 (2)当n≥40,但1≤T<5时, 用校正的X2检验 (3)当n<40 或 T ≤ 1时,用四格表资料的确切概率法。 2. SPSS不会自动做两两比较
2
卡方检验SPSS操作要领
计数资料(频数表):都是行列表 数据结构: r,c,f(行、列、频数)
.006
Exact Sig. Exact Sig. (2-sided) (1-sided)
Likelihood Ratio
8.758
1
卡方检验SPSS操作
卡方检验SPSS操作卡方检验是一种统计方法,用于比较观察频数与期望频数之间的差异是否显著。
它适用于比较两个或多个分类变量之间的关系,并确定这些变量是否相互独立。
在SPSS中,可以使用交叉表和卡方检验命令来执行卡方检验。
首先,打开SPSS软件并导入待分析的数据文件。
然后,选择“数据”菜单中的“交叉表”选项。
在弹出的交叉表对话框中,将要分析的变量拖拽到“行”和“列”的方框中。
假设我们要比较性别和喜好电影类型之间的关系,那么将性别拖拽到“行”,将电影类型拖拽到“列”。
接下来,在交叉表对话框中,点击“统计”按钮。
在弹出的统计对话框中,选择“卡方”选项,并点击“继续”按钮。
然后,点击“确定”按钮生成交叉表。
SPSS将显示交叉表的结果,包括观察频数、期望频数、卡方值和p值等。
在卡方检验中,我们通过观察频数和期望频数之间的差异来判断两个变量是否相关。
如果差异较大,卡方值较大,p值较小,则说明两个变量之间存在显著关系。
不管是使用交叉表还是描述统计方法进行卡方检验,都需要注意以下几点:1.样本数据应该是随机抽取的,并且足够大。
2.对于交叉表中的每个单元格,期望频数应当大于等于5,以确保卡方检验的可靠性。
3.卡方检验只能检验两个或多个分类变量之间的关系,不能用于比较连续变量。
4.如果卡方检验结果显著,表明两个变量之间存在关联,但不能确定关联的性质或因果关系。
卡方检验在数据分析中有着广泛的应用,可以用于医学研究、市场调查、社会科学等领域。
通过SPSS软件的操作,可以便捷地进行卡方检验,并获取检验结果。
卡方检验及SPSS分析82026
-[Display clustered bar charts 复选框]: 显示复式条 图
-[Suppress table复选框]: 不在输出结果中给出行×列
表。
16
.
Crosstabs过程祥解
❖ 界面说明
❖精确(Exact)子对话框: 针对2×2以上的行×列表 设计计算确切概率的方法。
❖统计量(Statistics)子对话框: 用于定义所需计算 的统计量
还是降序排列。
19
.
SPSS结果输出
group* effect 交叉制表
group 实验组 计数
期望的计数
对照组 计数
期望的计数
合计
计数
期望的计数
effect
有效
无效
99
5
90.5
13.5
75
21
83.5
12.5
174
26
174.0
26.0
合计 104
104.0 96
96.0 200
200.0
20
❖ 结合例7-1数据(chis01.sav)演示操作过程。
13
.
分类数据录入格式
频数格式: 用数据 加权个案(Weight Cases)过程 以指明反映频数的变量。
枚举格式:
14
.
交叉表(Crosstabs)过程
❖ Crosstabs过程用于对分类资料和有序分类资料进行 统计描述和统计推断。
❖该过程可以产生2维至n 维列联表, 并计算相应的百 分数指标。
28
.
检验步骤:
H 0 : B C H , 1 : B C , 0 .05
b c 12 2 14 40,用校正公式
配对卡方检验spss步骤
配对卡方检验spss步骤配对卡方检验SPSS步骤引言:配对卡方检验是一种常用的统计方法,用于比较两个相关变量之间的关系是否显著。
在SPSS软件中进行配对卡方检验非常方便,本文将详细介绍使用SPSS进行配对卡方检验的步骤。
步骤一:准备数据在进行配对卡方检验之前,首先需要准备数据。
假设我们有两个相关的分类变量X和Y,且每个变量都有两个或多个水平(例如,男性和女性)。
确保数据已经输入到SPSS,每个变量拥有自己的列。
步骤二:导入数据到SPSS打开SPSS软件并选择“文件”选项,然后选择“打开”命令来导入数据文件。
确保选择正确的文件路径,并选择数据文件。
在弹出窗口中选择适当的选项,然后点击“确定”按钮将数据导入到SPSS 软件中。
步骤三:选择配对卡方检验在SPSS软件中,选择“分析”选项,并从下拉菜单中选择“非参数检验”,然后选择“配对样本”和“卡方检验”选项。
步骤四:设定变量在弹出的“配对样本卡方检验”对话框中,将需要进行配对卡方检验的变量移动到“变量对”框中。
确保变量的顺序与数据文件中的顺序一致。
步骤五:设定统计量在同一对话框中,选择“卡方相关系数”以计算配对变量之间的关系强度。
选择“精确度”选项以获取更加精确的结果。
如果选择“对称测验”,则将计算渐近P值,并且结果会更快。
步骤六:运行配对卡方检验点击对话框底部的“确定”按钮来运行配对卡方检验。
SPSS将计算卡方统计量和与之相关的P值。
结果将以表格形式呈现在输出窗口中。
步骤七:解读结果配对卡方检验的结果将显示在输出窗口中的“卡方相关系数”表格中。
首先,关注卡方值(χ^2)的大小。
如果卡方值较大,则意味着两个变量之间的关系较强。
其次,观察P值。
如果P值小于事先设定的显著性水平(通常为0.05),则可以拒绝无关假设,即认为两个变量之间的关系是显著的。
步骤八:结果报告在结果报告中,应包括所进行的配对卡方检验的变量名称、样本数量、卡方值、自由度和P值。
此外,还应说明结果对研究问题的意义和解释。
spss卡方检验
spss卡方检验SPSS卡方检验SPSS(统计软件包 for the Social Sciences)是一种功能强大的统计软件,在社会科学、商业智能和市场调研等领域得到广泛应用。
其中,卡方检验是SPSS中常用的统计方法之一。
本文将介绍SPSS 中使用卡方检验进行数据分析的基本步骤、原理和注意事项。
一、卡方检验的基本概念卡方检验,又称为卡方拟合优度检验,用于比较观察样本与理论预期分布之间的差异。
它基于卡方统计量,可以用于分析分类数据的关联性和独立性。
卡方检验的结果可以帮助研究人员判断观察数据与理论模型之间的差异程度以及独立性。
二、SPSS中进行卡方检验的步骤1. 收集数据并导入到SPSS中。
2. 在SPSS中选择“分析”菜单,点击“描述统计”下的“交叉表”。
3. 在交叉表对话框中,选择需要比较的两个变量。
4. 点击“统计”按钮,选择“卡方”选项。
5. 点击“继续”按钮,然后点击“OK”按钮生成交叉表结果。
三、SPSS卡方检验的原理SPSS中的卡方检验基于卡方统计量,该统计量用于衡量观察值与理论期望值之间的差异。
卡方统计量的计算公式如下:\\[ X^2 = \\sum \\frac{(O-E)^2}{E} \\]其中,O表示观察值,E表示理论期望值。
卡方统计量服从自由度为(k-1) × (m-1)的卡方分布,其中k表示列数,m表示行数。
通过计算卡方统计量,可以得到卡方值和P值。
如果P值小于设定的显著性水平(通常为0.05),则认为观察值与理论期望值存在显著差异,拒绝原假设。
四、卡方检验的应用场景卡方检验通常用于以下几种情况:1. 检验分类变量之间的关联性。
例如,研究某一地区的居民性别与吸烟习惯之间的关系。
2. 检验分类变量与某一特定属性的关联性。
例如,研究某个产品的用户满意度与不同年龄段之间的关系。
3. 检验分类变量的分布是否服从某一特定的理论分布。
例如,研究某一地区的选民支持率是否符合某个政党的预期。
SPSS知识6:卡方检验(无序变量)
SPSS知识6:卡方检验(无序变量)卡方检验定义:卡方检验用作分类计数的假设检验方法:检验两个或多个样本率或构成比之间的差别是否有统计学意义→从而推断两个或多个总体率或构成比之间的差别是否有统计学意义。
一、行*列卡方检验(只需要判断最小理论频数即可)SPSS操作:第一步:建立数据文件(group:横标目,type:纵标目-无序变量,f→共3列数据);第二步:对频数f加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→横标目group调入rows,纵标目types调入columns→点击statistics…→激活Chi-square→continue→点击cells…→激活row行百分数→continue→OK);第四步:判断结果(结果有2个图表,根据最小理论频数与5的比较和总例数与40的比较,判断是选用pearson Chi-square还是其他指标,读取对应P值,若P<0.05,则有差异,需要利用行*列分割进行22比较,检验水准也需要变化,因为扩大了第一类错误)。
第五步:两两比较(对group横标目设不同的missing value值后进行行*列分割计算。
)Missing value→重复analyze操作。
二、四格表卡方检验(要根据N和T判断选用四格表卡方专用公式、校正公式、确切概率法?)SPSS操作:第一步:建立数据文件(group:横标目,effect:纵标目-无序变量,f,频数→共计3列数据);第二步:对频数加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→group调入rows,effect调入columns →点击statistics…→激活chi-square→continue→点击cells…→激活rows 百分数→continue→OK);第四步:判断结果(根据N和T判断选用公式→判断P值)。
SPSS中的卡方检验、t检验和方差分析
SPSS中的卡⽅检验、t检验和⽅差分析
⾸先要明⽩两个概念:
计数资料和计量资料
(1)计数资料⼜称为定性资料:是分类型的,统计每个类型有多少数量。
(2)计量资料⼜称为定量资料:⽐如年龄,是有具体的数值。
根据数据的类型,使⽤不同的⽅法:
(1)对于计量资料。
秩和检验在国内的⽂章中很少见到。
当数据只有两组进⾏对⽐的时候,使⽤t检验和⽅差分析都可以。
但是有两组或者两组以上的时候,使⽤⽅差检验。
(2)对于计数资料,使⽤卡⽅分析,卡⽅分析⽤于⽐较,不同组之间,不同数量是否有差异。
⽐如,⽐较两组,男⽣⼈数和⼥⽣⼈数是否有差距。
独⽴样本t检验:两独⽴样本t检验就是根据样本数据对两个样本来⾃的两独⽴总体的均值是否有显著差异进⾏推断;进⾏两独⽴样本t检验的条件是,两样本的总体相互独⽴且符合正态分布;
⽐如:A组和B组,⽐较A组⼈的⾝⾼和B组⼈的⾝⾼是否有差异。
配对样本t检验-:配对样本是指对同⼀样本进⾏两次测试所获得的两组数据,或对两个完全的样本在不同条件下进⾏测试所得到的两组数据;两独⽴样本t检验就是根据样本数据对两个配对样本来⾃的两配对总体的均值是否有显著差异进⾏推断;两配对样本t检验的前提条件:两样本是配对的(数量⼀样,顺序不能变),服从正态分布。
⽐如:实验组A组中,实验前后,变化的对⽐。
卡方检验(2x2)-SPSS教程
卡方检验(2x2)-SPSS教程一、问题与数据学了这么多连续变量的统计分析,那么对于计数资料可咋整。
小伙伴会问了:如果我想看不同患者人群的术后复发率有没有差异,怎么办?这时候就需要欢迎我们的统计小助手——卡方检验闪亮登场啦!卡方检验可是一位重量级选手,凡是涉及到计数资料分布的比较都需要他的帮忙。
和t检验一样,卡方检验也会用在成组和配对设计资料分析中,本期我们一起聊聊独立样本四格表的χ2检验。
用药物A治疗急性心肌梗死患者198例,24小时内死亡11例,病死率为5.56%,另42例治疗时采用药物B,24小时内死亡6例,病死率为14.29%,提问:两组病死率有无差别?表1. 两种药物急性心肌梗塞患者治疗后24小时内死亡情况二、对问题分析“生存”,还是“死亡”,这是个问题,但更是一个典型的二分类结局指标,我们关注的重点是两种药物治疗后“生存”和“死亡”的分布(或者说病死率)有无差别,由此组成的2*2列联表就是χ2检验中经典的“四格表”(如表1)。
下面一起看看SPSS怎样搞定χ2检验。
三、SPSS操作1. 数据录入(1) 变量视图(2) 数据视图2. 加权个案:选择Data→weight cases→勾选Weight cases by,将频数放入Frequency Variable→OK。
因为本例中数据库每一行代表多个观测对象,所以需要对其进行加权处理。
当然,如果数据是以单个观测对象的形式,即每一行代表1个观测对象,则无需加权(如下图)。
3. 选择Analyze→Descriptive Statistics→Crosstabs4. 选项设置(1) 主对话框设置:将分组变量Drug放入Row(s)框中→将指标变量Outcome 放入Column(s)框中(实际上χ2检验是关注实际和理论频数是否一致,这里Row(s)框和Column(s)框内变量也可以颠倒放,并不影响最终结果)。
(2) Statistics设置:勾选Chi-square,确定使用成组计数资料的卡方检验→Continue(3) Cells设置:Counts中勾选Observed和Expected,输出实际观测频数和理论频数;Percentages中勾选Row,输出每组转归百分比→Continue→OK四、结果解释表2 统计汇总表2中不仅有服用两种药物后患者实际转归(生存/死亡)的频数和相应百分比,还输出了相应的理论频数(所在行列合计数乘积/总例数)。
卡方检验的SPSS实现
卡方检验的SPSS实现简介卡方检验是一种统计方法,用于检验两个或多个分类变量之间是否存在相关性。
它基于观察值与期望值之间的差异,判断两个变量是否独立。
SPSS是一款常用的统计分析软件,提供了强大的功能来执行卡方检验以及其他统计分析任务。
本文将介绍如何使用SPSS进行卡方检验,并提供详细的步骤和示例。
步骤步骤一:导入数据在SPSS软件中,首先需要导入包含要进行卡方检验的数据集。
数据集可以是以.csv、.xlsx或者其他常用格式保存的文件。
1.打开SPSS软件。
2.选择“文件”菜单,然后点击“打开”选项。
3.在弹出的文件选择框中,找到并选择要导入的数据文件。
4.点击“打开”按钮,导入数据文件。
步骤二:选择变量在执行卡方检验之前,需要选择要分析的变量。
1.在SPSS软件中,选择“数据视图”选项卡,显示数据集的表格视图。
2.找到包含要分析的变量的列,将其选中。
可以按住Ctrl键选择多个变量。
3.点击菜单中的“分析”选项,然后选择“描述统计”子菜单。
4.在弹出的描述统计对话框中,选择“交叉表”选项,然后点击“统计量”按钮。
5.在统计量对话框中,选中“卡方”复选框,然后点击“确定”按钮。
步骤三:执行卡方检验选择变量之后,可以执行卡方检验。
1.在描述统计对话框中,点击“OK”按钮,开始执行卡方检验。
2.SPSS将生成一个交叉表,显示各个变量之间的交叉频数和期望频数。
3.检查交叉表中的卡方值和p值。
卡方值表示观察值与期望值之间的差异程度,p值表示该差异是否显著。
4.如果p值小于设定的显著性水平(通常为0.05),则拒绝原假设,即认为两个变量之间存在相关性。
步骤四:解读结果根据执行卡方检验的结果,可以得出一些结论。
1.如果卡方值较小,且p值较大,说明观察值与期望值之间的差异较小,两个变量之间可能独立。
2.如果卡方值较大,且p值较小,说明观察值与期望值之间的差异较大,存在一定程度的相关性。
需要注意的是,卡方检验只能判断两个变量之间是否存在相关性,不能说明变量之间的因果关系。
(完整word版)卡方检验的spss操作
卡方检验在教育实证研究中,经常遇到以下问题不同文化程度的人对某一政策的态度或工作业绩是否相关?不同专业背景的学生与他们对某一问题的看法否相关?不同家庭经济背景毕业生与其择业岗位是否相关?上述问题称为品质相关问题,其特征是每个个体至少有两个特征(变量).每个特征(变量)的取值,可以使顺序型,只能比较大小,不能作加减运算;也可以是名义型的,连大小都不能比较,只是区别所取的“值”是不同的。
解决此类问题一般采用卡方检验.一、一般卡方检验本次调查为了了解四川省青川县教师在信息技术问题上花费的时间对提高应用信息技术能力的作用,为此做实证研究,抽样调查138名教师平时在技术问题上花费的时间和在教学过程中应用信息技术的能力情况,如表1所示,问时间与技术应用能力之间的关系是否有显著差异?表1 教师在技术问题上花费的时间与信息技术应用能力情况建立数据库取名为“教师培训。
sav”,如图2所示.图1 数据文件统计分析过程图2 选择命令图3 交叉表对话框图4 交叉表:统计量对话框图5 交叉表:单元显示对话框图6 交叉表:表格格式对话框结果表2 观测量统计结果表3 分层统计结果表4 检验结果如果理论频数小于5的cells(格子)比例超过20%,你就不能使用ASYMP.sig的结果,此时应该在SPSS卡方检验中选择使用Exact Test(确切概率法),以Exact Test的结果为准(软件也同时显示ASYMP.sig的结果)。
二、配对卡方的一致性检验把每一份样本平均分成两份,分别用两种方法进行化验,比较此两种化验方法的结果(两类计数资料)是否有本质的不同;或者分别采用甲、乙两种方法对同一批病人进行检查,比较此两种检查方法的结果(两类计数资料)是否有本质的不同,此时要用配对卡方检验.操作方法:单击【Statistics钮】,在弹出的Statistics对话框中选择McNemanr复选框,进行McNemanr检验。
即配对卡方检验,只能针对方形表格进行。
SPSS数据分析—卡方检验
SPSS数据分析—卡方检验卡方统计量是基于卡方分布的一种检验方法,根据频数值来构造统计量,是一种非参数检验方法。
SPSS中在交叉表和非参数检验中,都可调用卡方检验。
卡方检验的主要有两类应用一、拟合度检验1.检验单个无序分类变量各分类的实际观察次数和理论次数是否一致此类问题为单变量检验,首先要明确理论次数,这个理论次数是根据专业或经验已知的,原假设为观察次数与理论次数一致例】:随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人,问对分科的意见是否有显著的差异。
分析:如果意见没有差异,那么赞成反对的人数应该各半,即30次,因此理论次数为30例】:一周内各日患忧郁症的人数漫衍如下表所示,请检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1例】:一个骰子投掷120次,记录掷得每个点数的次数,问该骰子是否存在问题如果骰子是正常的,那么每个点数掷得的概率应该相等,操作方法和前面一样,也使用非参数检验过程,选择默认的所有类别相等卡方检验主要用于分类变量,但是也可以用于对连续变量的拟合度检验上,此类问题的基本思想是:将总体X的取值范围分成k个互不重叠的小区间A1.A2.Ak,把落入第i个小区间的样本值个数作为实际频数,所有实际频数之和等于样本容量,根据理论分布,可以算出总体X的值落入每个小区间Ai的概率Pi,于是nPi就是落入Ai的样本值的理论频数。
有了实际频数和理论频数,就可以计算卡方统计量并进行卡方检验了。
二、独立性检验独立性检验分析两变量之间是否相互独立或有无分歧,也可以在控制某种因素之后,分析两变量之间是否相互独立或有无分歧。
原假设为两变量相互独立或两变量间的相互作用没有分歧。
对于两变量一般采用列联表的形式记录观察数据,分为四格表和R*C列联表,根据卡方统计量和分类变量的类型,又衍生出一些相关系数,这在相关分析中已经讲过。
例】:为了解男女在公开场合禁烟上的态度,随机调查100名男性和80名女性。
卡方检验检验SPSS实现
结果解释
数据准备
定义变量名4个(store: sex: 1=男性,2=女性; contact:1=寻求,2=不寻求;freq ,) 加权频数( Data菜单选Weight Cases,点击 Freq使之进入Frequency Variable框)
统计分析
分析 描述统计 交叉表 sex进入行框, contact进入列框, Store进入分层框 选择统计量(cochran’and MantelHaenszel ) 确定
轻度
5
中度
2
重度
0
合计
31
轻度
中度 重度
4
1 1
18
3 2
2
18 5
1
2 12
25
24 20
合计
302827Fra bibliotek15100
练习五
月份 新病例数
63 78 140 117
某地收集了 5年中各月份 的脊髓灰质炎 新病例数资料 见表,,问发 病各月有无差 别?
1 2 3 4
5
6 7
105
101 144
8
9
127
79
10
11 12
87
58 48
定义变量名3个(顾问1:1=差,2=中, 3=好; 顾问2: 1=差,2=中, 3=好;freq ,) 加权频数( Data菜单选Weight Cases,点击 Freq使之进入Frequency Variable框)
统计分析
分析 描述统计 交叉表 顾问1进入行框,顾问2进入列框 选择统计量(Kappa) 确定
结果解释
Chi-Square过程
主要功能
调用此过程可对样本数据的分布进行卡 方检验。主要用于分析实际频数与某理 论频数是否相符。
卡方检验spss操作流程
卡方检验spss操作流程The chi-square test is a statistical method used to determine if there is a significant association between categorical variables. In SPSS, conducting a chi-square test is a relatively straightforward process. 卡方检验是一种用于确定分类变量之间是否存在显著关联的统计方法。
在SPSS中,进行卡方检验是一个相对简单的过程。
To start, you will need to have your data in SPSS and open the Data View. Once your data is open, go to the Analyze menu at the top of the screen and select "Descriptive Statistics." First, click on "Crosstabs" to open the Crosstabs dialog box. 首先,您需要在SPSS中打开数据视图。
一旦您的数据打开,转到屏幕顶部的分析菜单,然后选择“描述性统计”。
首先,点击“交叉表”以打开交叉表对话框。
In the Crosstabs dialog box, you will need to select the variables you want to analyze. This means choosing the categorical variables that you believe may be related. For example, you may want to see if there is a relationship between gender and job satisfaction. Once your variables are selected, click on the arrow button to move them into the "Row(s)" and "Column(s)" box. 在交叉表对话框中,您需要选择要分析的变量。
SPSS学习之——相关分析(Pearson、Spearman、卡方检验
SPSS学习笔记之——相关分析(Pearson、Spearman、卡方检验一、相关分析方法的选择及指标体系(一)两个连续变量的相关分析1、Pearson相关系数最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。
该系数的计算和检验为参数方法,适用条件如下:(1)两变量呈直线相关关系,如果是曲线相关可能不准确。
(2)极端值会对结果造成较大的影响(3)两变量符合双变量联合正态分布。
2、Spearman秩相关系数对原始变量的分布不做要求,适用范围较Pearson相关系数广,即使是等级资料,也可适用。
但其属于非参数方法,检验效能较Pearson系数低。
(二)有序分类变量的相关分析有序分类变量的相关性又称为一致性,即行变量等级高的列变量等级也高,如果行变量等级高而列变量等级低,则称为不一致。
常用的统计量有:Gamma、Kendall的tau-b、Kendall的tau-c等。
(三)无序分类变量的相关分析最常用的为卡方检验,用于评价两个无序分类变量的相关性。
根据卡方值衍生出来的指标还有列联系数、Phi、Cramer的V、Lambda系数、不确定系数等。
OR、RR也是衡量两变量之间的相关程度的指标。
二、SPSS相关操作SPSS的相关分析散布在交叉表和相关分析两个模块中。
(1)交叉表过程如下图:以上的指标很全面,解释如下:(1)“卡方”复选框:为常用的卡方检验,适用于两个无序分类变量的检验。
(2)“相关性”复选框:适用于两个连续性变量的相关分析,给出两变量的Pearson相关系数和Spearman相关系数。
(3)“有序”复选框组:包含了一组反映有序分类变量一致性的指标,只能用于两变量均为有序分类变量的情况。
(4)“名义”复选框组:包含一组分类变量相关性的指标,有序和无序分类时都可使用,但变量为有序时,检验效能没有“有序”复选框组中的统计量高。
(5)Kappa:为内部一致性系数。
(6)风险:给出OR或RR值。
卡方检验spss操作流程
卡方检验spss操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 打开 SPSS 软件,选择“文件”菜单,点击“打开”,选择要分析的数据文件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Crosstabs过程祥解
界面说明 单元格(Cells)子对话框:用于定义列联表单元格 中需要计算的指标。 -Counts复选框:是否输出实际观察数(Observed) 和理论频数(Expected) -Percentages复选框:是否输出行百分数(Row)、 列百分数(Column)以及合计百分数(Total) -Residuals复选框:选择残差的显示方式 格式(Format)子对话框:用于选择行变量是升序 还是降序排列。
Crosstabs过程祥解
界面说明
-[行Rows框]用于选择行×列表中的行变量。 -[列Columns框]用于选择行×列表中的列变量。
-[层Layer框]指定分层变量,即控制变量。如果要指定 不同的分层变量做分析,则将其选入Layer框,并 用Previous和Next钮设为不同层。
Crosstabs
统计量Statistics: √ McNemar
一致性检验:计算Kappa系数 Kappa系数:为吻合度测量(measure of agreement) 系数,用以测量两个观测者或两观测设备之间的吻 合程度,取值在-1至+1之间,取值越大,说明吻合 程度越高。该系数利用了列联表的全部信息,包括 表格中的数据a和d。 Kappa≥0.75一致性好 0.75>Kappa ≥0.4一致性一般 Kappa<0.4一致性较差
计算理论频数: T n R nc RC 2 n 统计量 2. 计算
2
(99 90.48) 90.48
2
(5 13.52) 13.52
2
(75 83.52) 83.52
2
(21 12.48) 12.48
2
12.86
(2 1)( 2 1) 1
很大且a与d的数值很大(即两法的一致率较高),b
与c的数值相对较小时,即便是检验结果有统计学意义,
其实际意义往往也不大。
检验步骤:
H 0 : B C , H 1 : B C , 0.05
b c 12 2 14 40 ,用校正公式
SPSS结果输出
卡 方检 验 精确 Sig. (双侧) .013 a 58 值 McNemar 检验 有效案例中的 N a. 使用的二项式分布。
对 称度 量 值 一致性度量 有效案例中的 N a. 不假定零假设。 b. 使用渐进标准误差假定零假设。 Kappa .455 58 渐进标准误差
方法的检测结果有无差别?
表7-3 两种方法的检测结果
免疫荧光法 + + - 合计 11( a) 2 ( c) 13 乳胶凝集法 - 12( b) 33( d) 45 23 35 58 合计
上述配对设计实验中,就每个对子而言, 两种处理的结果不外乎有四种可能:
SPSS结果输出
g r o u p * e f f e c t 交 叉制 表 effect 有效 group 实验组 计数 期望的计数 对照组 计数 期望的计数 合计 计数 期望的计数 99 90.5 75 83.5 174 174.0 无效 5 13.5 21 12.5 26 26.0 合计 104 104.0 96 96.0 200 200.0
枚举格式:
交叉表(Crosstabs)过程
Crosstabs过程用于对分类资料和有序分类资料进行 统计描述和统计推断。 该过程可以产生2维至n 维列联表,并计算相应的百 分数指标。 统计推断包括了常用的x2检验、Kappa值,分层X2 (X2M-H),以及四格表资料的确切概率(Fisher’s Exact Test)值。
2
(b c) bc
2
, 1
2 c
( b c 1) bc
2
, =1
注意:
本法一般用于样本含量不太大的资料。因为它仅
考虑了两法结果不一致的两种情况(b, c),而未考虑样
本含量n和两法结果一致的两种情况(a, d)。所以,当n
x 值计算
Pearson卡方值:
2
2
(A T) T
2
自由度: ( R 1)(C 1)
x 分布
2Leabharlann x2实例分析
例7-1 某院欲比较异梨醇口服液(试验组)和氢氯噻嗪+地塞
3.
确定 P 值,作出推论:
2
2
结论: 由于 > x( 0.05,1) 3.84 ,按 0.05 检验水准 拒绝 H 0 ,接受 H 1 ,可以认为两组降低颅内压总体 有效率不等, 即可认为异梨醇口服液降低颅内压的有 效率高于氢氯噻嗪+地塞米松的有效率。
SPSS结果输出(续)
卡 方检 验 渐进 Sig. (双侧) 1 1 1 .000 .001 .000 .001 12.793 200 1 .000 .000 精确 Sig. (双侧) 精确 Sig. (单侧)
值 Pearson 卡方 连续校正 似然比 Fisher 的精确检验 线性和线性组合 有效案例中的 N a. 仅对 2x2 表计算
a
df
b
12.857 11.392 13.588
b. 0 单元格(.0%) 的期望计数少于 5。最小期望计数为 12.48。
结论:x2=12.857, df=1,双侧P<0.01,按照α=0.05检验水准,可 认为两组总体有效率差异显著,即试验组的疗效优于对照组。
①建立数据文件:chis03.sav 数据格式:包括4行3列的频数格式,三个变量分别为行变量、 列变量和频数变量。 ②说明频数变量:数据 Data
加权个案
Weight Cases
③ x2检验:从菜单选择 分析
描述统计
交叉表
Analyze
Descriptive Statistics
√ Kappa
a
近似值 T
米松(对照组)降低颅内压的疗效。将200例颅内压增高症患
者随机分为两组,结果见表7-1。问两组降低颅内压的总体有 效率有无差别? 表7-1 两组降低颅内压有效率的比较
χ 检验基本步骤
1. 建立检验假设
2
H0 : 两总体阳性率相等
H1 : 两总体阳性率不等
1 2 pc 1 2
值的校正
2
四格表 检验的条件:
2
1) n 40且T 5, 用不校正的 公式;
2
1 2) n 40且至少 个格子1 T 5, 用校正的 公式;
2
3) n 40或T 1, 需用确切概率法
校正公式:
2
( A T 0.5) T
2
2
( ad bc n / 2) n
结果中的其他检验方法
连续性校正的卡方检验 Continuity Correction Fisher’s确切概率法 Fisher’s Exact Test 似然比卡方 Likelihood Ratio 线性相关性检验 Linear-by-Linear Association:仅 用于当两变量均为等级变量的资料。 注意检查样本例数n和理论频数T是否满足条件: N≥40且理论频数T≥5。
( 12 2 1) 12 2
2
c
2
5.79
1
,查 2 界值表得 0.01 P 0.025 。
按 0.05 检验水准拒绝 H 0 ,接受 H 1 ,可 以认为两种方法的检测结果不同,免疫荧 光法的阳性检测率较高。
SPSS操作过程
第一节 四格表资料的 检验
2
x2 test of fourfold data
目的:推断两个总体率(构成比)是否有差 别(和率的u检验等价) 要求:两样本的两分类个体数排列成四格表 资料
一、x 检验的基本思想
2
2
(a b)(c d )( a c)(b d )
SPSS操作过程
①建立数据文件:chis01.sav
数据格式:包括4行3列的频数格式,3个变量即行变量 (group)、列变量(effect)和频数变量(freq)。
②说明频数变量:数据
Data Analyze
Crosstabs过程祥解
界面说明 -Kappa复选框:计算Kappa值,即内部一致性系数, 介于0~0.7071之间; -Risk复选框:计算比数比OR值、RR值; -McNemanr复选框:进行配对卡方检验的McNemanr 检验(一种非参数检验) -Cochran’s and Mantel-Haenszel statistics复选框: 计算X2M-H统计量、X2CMH,可在下方输出H0假设的 OR值,默认为1。
交叉表(Crosstabs)过程 (一)四格表(fourfold data)资料的x2检验 (二)配对(paired data)资料的x2检验 (三)R×C表资料的x2检验 (四)两分类变量有无关联分析及列联系数C 卡方(Chi-Square)过程 (五)拟合问题-比较样本与已知总体的分布
卡方检验及SPSS分析
Chi-Square Test
主要内容
第一节 第二节 第三节 第四节 第五节 四格表资料的 检验 2 检验 配对四格表资料的 四格表资料的Fisher确切概率法 2 检验 行×列表资料的 多个样本率间的多重比较
2
SPSS统计分析
①两种检测方法皆为阳性数(a); ②两种检测方法皆为阴性数(d); ③免疫荧光法为阳性,乳胶凝集法为 阴性数(b); ④乳胶凝集法为阳性,免疫荧光法为 阴性数(c)。