2015四川高考数学理试题及答案解析
高考真题——数学理(四川卷)解析版数学理
2015年普通高等学校招生全国统一考试(四川卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<集合,则A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 【答案】A 【解析】试题分析:{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<,选A.2.设i 是虚数单位,则复数 A.-i B.-3i C.i. D.3i 【答案】C 【解析】试题分析:3.执行如图所示的程序框图,输出S 的值是 A. B. C.- D.【答案】D 【解析】试题分析:4.下列函数中,最小正周期为且图象关于原点对称的函数是A.y cos(2)2.sin(2)2.sin 2cos 2.sin cos x B Y x C Y x x DY x xpp=+=+=+=+【答案】A 【解析】 试题分析:5.过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则 (A ) (B ) (C )6 (D ) 【答案】D 【解析】 试题分析:6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有【答案】B【解析】试题分析:7.设四边形ABCD为平行四边形,,.若点M,N满足,,则(A)20 (B)15 (C)9 (D)6 【答案】【解析】试题分析:8.设a,b都是不等于1的正数,则“”是“”的(A)充要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件【答案】B【解析】试题分析:9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间单调递减,则mn 的最大值为 (A )16 (B )18 (C )25 (D )【答案】B 【解析】 试题分析:10.设直线l 与抛物线相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 (A ) (B ) (C ) (D )【答案】D 【解析】第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.在的展开式中,含的项的系数是(用数字作答).【答案】.【解析】试题分析:12. .【答案】.【解析】考点:13.某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数)。
2015高考数学真题 四川理科解析
2015年普通高等学校招生全国统一考试(卷)理科数学试题解析1. 解析 由题意可得,{}12A x x =-<<,则{}13AB x x =-<<.故选A.2. 解析3222ii i i 2i i i i-=--=-+=.故选C. 3. 解析 解法一:由程序框图可知,第一次循环为:24k =;第二次循环为:34k =;第三次循环为:44k =;第四次循环为: 54k =>.此时循环结束,5π1sin62S ==.故输出S 的值为12. 解法二:k 的初始值为1,每次循环k 值加1.当4k >时跳出循环,故最终5k =. 5π1sin 62=.故输出S 的值为12. 4. 解析 由2πT ω=,可知选项A ,B ,C 的周期都是π,选项D 的周期为2π.通过化简可得,选项A : sin 2y x =-,为奇函数; 选项B 为:cos 2y x =,为偶函数;选项C 为:π24y x ⎛⎫=+ ⎪⎝⎭,为非奇非偶函数.故选A.5. 解析 由题意可得1a =,b =2c =.所以渐近线的方程为y =.将2x =代入渐近线方程,得y =±.则AB =.故选D.6. 解析 由题意可知,万位上只能排4,5.若万位上排4,则有342A 个;若万位上排5,则有343A 个.所以共有33442A 3A 524120+=⨯=(个).故选B.7. 解析34AM AB AD =+,1143NM CM CN AD AB =-=-+, 所以()()114343412AM NM AB AD AB AD =+⨯-=()22116948AB AD -= ()11636916948⨯-⨯=.故选C. 8. 解析 若333ab>>,则1a b >>,所以log 3log 3a b <,故为充分条件;若log 3log 3a b <不一定有1a b >>,比如,13a =,3b =,所以333a b>>不成立. 故选B.9. 解析 当2m ≠时,抛物线的对称轴为82n x m -=--;当2m >时,822n m ---,即212m n +.262m n +,所以18mn .由2m n =且212m n +=,得3,6m n ==;当2m <时,抛物线开口向下,根据题意可得,8122n m ---,即218m n +.292m n +,所以812mn. 由2n m =且218m n +=,得92m =>,故应舍去.要使得mn 取得最大值,应有()2182,8m n m n +=<>.所以()()1821828816mn n n =-<-⨯⨯=.所以最大值为18.故选B.10. 解析 设直线l 的方程为x ty m =+,代入抛物线方程得2440y ty m --=,则216160t m ∆=+>.又中点()22,2Mtm t +,则1MC l k k ⋅=-,即232m t =-.代入21616t m ∆=+,可得230t ->,即203t <<.又由圆心到直线的距离等于半径,可得2d r ====由203t <<,可得()2,4r ∈.故选D.11. 解析 由二项式的展开式的通项公式为()()515C 21rrr r T x -+=-,可知当3r =时,为含2x 的项.所以含2x 的项的系数为()3325C 2140-=-.12. 解析()6sin15sin 75sin15cos152sin 15452+=+=+=. 13. 解析 由题意可得22192e 48e bk b+⎧=⎪⎨=⎪⎩,即11192e 1e2bk ⎧=⎪⎨=⎪⎩.所以当33x =时,()333333111e e e ee 19224.2k b k b k b y +⎛⎫==⋅=⋅=⨯= ⎪⎝⎭故选 C.14. 解析 建立如图所示的空间直角坐标系,设1AB =,()()0,,101M y y ,则11,,02AF ⎛⎫= ⎪⎝⎭,1,0,02E ⎛⎫⎪⎝⎭,1,,12EM y ⎛⎫=- ⎪⎝⎭.由于异面直线所成的角的围为π0,2⎛⎤ ⎥⎝⎦,所以cos θ==21y -()2222214181cos 1545545y y y y y θ-+⎛⎫+=⋅=- ⎪++⎝⎭令81y t +=,19t ,则281161,1814552y y t t+⎡⎤=∈⎢⎥+⎣⎦+-,所以24cos 0,25θ⎡⎤∈⎢⎥⎣⎦,故cos θ的最大值为25,此时0y =. 15. 解析①.由()()1212f x f x m x x -=-得()()1122f x mx f x mx -=-.令()()2xF x f x mx mx =-=-,则()()12F x F x =,故()F x 不单调. 当0m时,()F x 为单调递增函数,不符合题意.当0m >时,()2ln 2xF x m '=-,由于2ln 2x y =是值域为()0,+∞的单调递增函数,故必存在一个0x ,使得()00F x '=.且当()00,x x ∈时,()0F x '<.当()0,x x ∈+∞时,()0F x '>.即()F x 不单调.所以①正确.②.由()()1212g x g x n x x -=-得()()1122g x nx g x nx -=-.令()()()22G x g x nx x ax nx x a n x =-=+-=+-,则()()12G x G x =,即对任意的a ,()G x 不单调.取0a =,则()2G x x nx =-.此时对任意的n ,()G x 都不单调.所以不一定有0n >.②错误.③.若m n =,则()()()()12121212f x f xg x g x x x x x --=--,即()()()()1122f x g x f x g x -=-. 令()()()22x H x f x g x x ax =-=--,则()H x 不单调. 令()2ln 220x H x x a '=--=,得2ln 22xa x =-要有根.令2ln 22,xy x =-则()22ln 22x y '=-,是值域为()2,-+∞的增函数.所以存在0x ,使得()022ln 220x -=.所以2ln 22xy x =-在()0,x -∞单调递减,在()0,x +∞上单调递增,存在最小值.因此,对于任意的a ,2ln 22xa x =-不一定有根.所以③错误.④.若m n =-,则()()()()12121212f x f xg x g x x x x x --=---,即()()()()1122f x g x f x g x +=+. 令()()()22xR x f x g x x ax =+=++,则()R x 不单调.令()2ln 220xR x x a '=++=,得2ln 22xa x =--要有根.而2ln 22x y x =--是值域为(),-∞+∞的减函数,所以2ln 22x a x =--一定会有根.所以对任意的a ,存在不相等的实数12,x x ,使得m n =-.④正确.所以真命题为①,④. 16. 分析利用1n n n a S S -=-及题设可得n a 与1n a -的关系为()*121,nn a a n n -=>∈N ,所以这是一个公比为2的等比数列.再利用1a ,21a +,3a 成等差数列,可求得12a =,从而求得通项公式;(2)由(1)得112n n a =,这仍然是一个等比数列,利用等比数列的前n 项和公式,可求得112n nT =-,代入111000n T -<,即可得使111000n T -<成立的n 的最小值. 解析 (1)由已知12n n S a a =-,可得()*11222,n n n n n a S S a a n n --=-=-∈N ,即()*122,nn a a n n -=∈N .则212a a =,32124a a a ==.又因为1a ,21a +,3a 成等差数列,即()13221a a a +=+. 所以()1114221a a a +=+,解得12a =.所以数列{}n a 是首项为2,公比为2的等比数列.故2nn a =.(2)由(1)可得112n n a =,所以211122111111222212nn n nT ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==--.由111000n T -<,得111121000n --<,即21000n>.因为9102512100010242=<<=,所以10n.所以使111000n T -<成立的n 的最小值为10. 17. 分析(1)由题意,参加集训的男女生各有6名.“A 中学学至少有1名学生入选代表队”的对立事件为“参赛学生全从B 中学抽取”,“参赛学生全从B 中学抽取”的概率为33343366C C 1C C 100=.因此,A 中学至少有1名学生入选的概率为1991100100-=;(2)由于总共有3名男生,所以X 的最大取值为3,又由于要抽取4人,而女生只有3人,所以至少有1名男生,所以X 的所有可能取值为1,2,3.由古典概型的概率公式可求出其分布列,进而求得其期望.解析 (1)由题意,参加集训的男女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为33343366C C 1C C 100=.因此,A 中学至少1名学生入选的概率为1991100100-=. (2)根据题意,X 的可能取值为1,2,3.()133346C C 11C 5P X ===;()223346C C 32C 5P X ===;()313346C C 13C 5P X ===所以X 的分布列为:因此,X 的期望为()1311232555E X =⨯+⨯+⨯=. 18. 分析 (1)注意ABCD 是底面,将平面展开图还原可得点,,F G H 的位置;(2)根据直线与平面平行的判定定理,应考虑证明MN 平行于平面BDH 的一条直线.连接,O M ,易得MNHO 是平行四边形,从而//MN OH ,进而证得//MN 平面BDH ;(3)要作出二面角A EG M --的平面角,首先要过点M 作平面AEGC 的垂线,然后再过垂足作棱EG 的垂线,再将垂足与点M 连接,即可得二面角A EG M --的平面角. 解析 (1)点F ,G ,H 的位置如图所示.(2)设O 为BD 的中点,连接BD ,OM .因为,M N 分别是BC ,GH 的中点,所以//OM CD ,且12OM CD =, //NH CD ,且12NH CD =,所以=//OM NH ,所以MNHO 是平行四边形,从而//MN OH ,又MN ⊄平面BDH ,OH ⊂平面BDH ,所以//MN 平面BDH . (3)连接AC ,过M 作MP AC ⊥于点P .在正方体ABCD EFGH -中,//AC EG ,所以MP EG ⊥.过P 作PK EG ⊥于点K ,连接KM ,所以EG ⊥平面PKM ,从而KM EG ⊥. 所以PKM ∠是二面角A EG M --的平面角. 设2AD =,则1CM =,2PK =, 在Rt CMP △中,2sin 452PM CM ==.G ECEG在Rt KMP △中,KM ==所以cos PK PKM KM ∠==.即二面角A EG M --.(另外,也可利用空间坐标系求解)19. 分析 (1)首先切化弦得sin2tan 2cos 2AA A=,为了将半角变为单角,可在分子分母同时乘2sin2A,然后逆用正弦与余弦的二倍角公式即可;(2)由题设知,该四边形的两对角互补. 再结合(1)的结果,有22tantan tan tan 2222sin sin A B C D A B+++=+,所以只需求出sin ,sin A B 即可. 由于已知四边,且cos cos C A =-,cos cos D A =-,故考虑用余弦定理列方程组求cos ,cos A B ,从而求出sin ,sin A B .解析 (1)2sin2sin 1cos 22tan 2sin cos 2sin cos 222A A A A A A A A-===. (2)由180A C ∠+∠=,得180C A ∠=-∠,180D B ∠=-∠. 由(1),有tantan tan tan 2222A B C D +++= ()()()()1cos 1801cos 1801cos 1cos sin sin sin 180sin 180A B A B A B A B ------+++=--22sin sin A B +.连接BD ,在ABD △中,有2222cos BD AB AD AB ADA =+-,G E在BCD △中,有2222cos BD BC CD BC CD C =+-所以22222cos 2cos AB AD AB AD A BC CD BC CD A +-=++,则()()2222222265343cos 2265347AB AD BC CD A AB AD BC CD +--+--===+⨯+⨯,所以sin A ===连接AC ,同理可得()()2222222263541cos 22635419AB BC AD CD B AB BC AD CD +--+--===+⨯+⨯, 所以sin19B===.所以tantan tan tan 2222A B C D +++=22sin sin 3A B +==. 20. 分析(1)根据椭圆的对称性,当直线l 与x 轴平行时,()2,1B -,()2,1A ,将这个点的坐标代入椭圆的方程,得22211a b+=.再根据离心率得2c a =,又,三者联立,解方程组即可得2,2a b ==,进而得椭圆的方程为22142x y +=;(2)先利用l 与x 轴平行和垂直这两种特殊情况找出点Q 的坐标为()0,2Q .接下来联立直线与椭圆的方程,利用根与系数的关系证明:对任意的直线l ,均有QA PAQB PB=.设()11,A x y ,()22,B x y ,由图可看出12PA x PBx =,为了证明QA PA QB PB =,只需证明12QA x QB x =,为此作点B 关于y轴对称的点()22,B x y '-,这样将问题转化为证,,Q A B '三点共线. 解析 (1)由已知点)在椭圆E 上.222a b c -=所以222222112a b caa b c ⎧+=⎪⎪⎪=⎨⎪⎪-=⎪⎩,解得2a =,b =所以椭圆E 方程为22142x y +=. (2)当直线l 与x 轴平行时,设直线l 与椭圆相交于,C D 两点. 如果存在定点Q 满足条件,则1QC PCQD PD==,即QC QD =. 所以点Q 在y 轴上,可设点Q 的坐标为()00,y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于,M N 两点.则(M,(0,N ,由QM PM QNPN=,=01y =或02y =. 所以,若存在不同于点P 的定点Q 满足条件,则点Q 的坐标只可能为()0,2Q . 下面证明:对任意的直线l ,均有QA PAQB PB=. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,,A B 的坐标分别为()11,x y ,()22,x y .联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,得()2221420k x kx ++-=.其判别式()22168210k k ∆=++>,, 所以122421k x x k +=-+,122221x x k ⋅=-+.因此121212112x x k x x x x ++==. 易知,点B 关于y 轴对称的点的坐标为()22,B x y '-.又11121QA y k k x x -==-,2221211QB y k k k x x x '-==-+=--, 所以QA QB k k '=,即,,Q A B '三点共线. 所以12QA QA x PAQB QB x PB==='. 故存在与点P 不同的定点()0,2Q ,使得QA PAQB PB=恒成立. 21. 分析(1)首先对函数()f x 求导,得()()222ln 21a g x f x x a x x ⎛⎫'==---+⎪⎝⎭,然后再求导得()222112222242x a a g x x x x⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭'=-+=.利用导数的符号即得其单调性.此题分1204a ⎛⎫-< ⎪⎝⎭和1204a ⎛⎫- ⎪⎝⎭两种情况讨论;(2)要使得()0f x 在区间()1,+∞恒成立,且()0f x =在()1,+∞有唯一解,则这个解0x 应为极小值点,且极小值为0.所以我们应考虑求()f x 的极小值.由()00f x '=,解得0011ln 1x x a x ---=+,代入()f x 得()200000000011001ln 1ln 2ln 211x x x x f x x x x x x x --⎛⎫⎛⎫----=-++-- ⎪ ⎪++⎝⎭⎝⎭2000011001ln 1ln 211x x x x x x --⎛⎫----+ ⎪++⎝⎭.是否存在0x 使得()00f x =呢?为此,令()2111ln 1ln 2ln 211x x x x x x x x x x x ϕ------⎛⎫⎛⎫=-++-- ⎪ ⎪++⎝⎭⎝⎭2111ln 1ln 211x x x xx x ------⎛⎫+ ⎪++⎝⎭. 因为()110ϕ=>,()()211e e 2e 2e 201e 1e ϕ----⎛⎫=--< ⎪++⎝⎭,故存在()01,e x ∈,使得()00x ϕ=.接下来的问题是,此时的a 是否满足()0,1a ∈呢?令000101ln 1x x a x ---=+,()()1ln 1u x x x x =--.由()110u x x'=-知,函数()u x 在区间()1,+∞上单调递增.所以()()()0011101e e 2011111e 1eu u x u a x ----=<=<=<++++,即()00,1a ∈. 当0a a =时,有()00f x '=,()()000f x x ϕ==.由(1)知,函数()f x '在区间()1,+∞上单调递增.故当()01,x x ∈时,有()00f x '<,从而()()00f x f x >=;当()0,x x ∈+∞时,有()00f x '>,从而()()00f x f x >=;所以当()1,x ∈+∞时,()0f x .解析 (1)由已知可得函数()f x 的定义域为()0,+∞.()()222ln 21a g x f x x a x x ⎛⎫'==---+ ⎪⎝⎭,所以()222112222242x a a g x x x x⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭'=-+=. 当104a <<时,()g x在区间10,2⎛- ⎝⎭,12⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增;在区间1122⎛-⎝⎭上单调递减. 当14a时,()g x 在区间()0,+∞上单调递增. (2)由()()22ln 210a f x x a x x ⎛⎫'=---+= ⎪⎝⎭,解得11ln 1x x a x ---=+. ()2211111ln 1ln 1ln 1ln 2ln 221111x x x x x x x x x x x x x x x x x ϕ------------⎛⎫⎛⎫⎛⎫=-++--+ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭. 则()110ϕ=>,()()211e e 2e 2e 201e 1e ϕ----⎛⎫=--< ⎪++⎝⎭. 故存在()01,e x ∈,使得()00x ϕ=.令000101ln 1x x a x ---=+,()()1ln 1u x x x x =--≥由()110u x x'=-知,函数()u x 在区间()1,+∞上单调递增.所以()()()0011101e e 2011111e 1eu u x u a x ----=<=<=<++++,即()00,1a ∈. 当0a a =时,有()00f x '=,()()000f x x ϕ==. 再由(Ⅰ)可知,()f x '在区间()1,+∞上单调递增.故当()01,x x ∈时,有()00f x '<,从而()()00f x f x '>=; 当()0,x x ∈+∞时,有()00f x '>,从而()()00f x f x >=; 所以当()1,x ∈+∞时,()0f x .综上所述,存在()0,1a ∈,使得()0f x 在区间()1,+∞恒成立,且()0f x =在()1,+∞有唯一解.。
2015年四川省高考数学试卷(理科)
2015年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.(5分)设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i3.(5分)执行如图所示的程序框图,输出s的值为()A.﹣B. C.﹣D.4.(5分)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx5.(5分)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A. B.2 C.6 D.46.(5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个7.(5分)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.68.(5分)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件9.(5分)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()A.16 B.18 C.25 D.10.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分。
2015年高考理科数学四川卷及答案
数学试卷 第1页(共24页)数学试卷 第2页(共24页)数学试卷 第3页(共24页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.设i 是虚数单位,则复数32i i-=( )A .-iB .-3iC .iD .3i3.执行如图所示的程序框图,输出S 的值为( )A .32- B .32 C .12-D .124.下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .πcos(2)2y x =+ B .πsin(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+5.过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则||AB =( )A .433B .23C .6D .436.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个7.设四边形ABCD 为平行四边形,||=6AB ,||=4AD .若点M ,N 满足=3BM MC ,DN=2NC ,则AM NM = ( )A .20B .15C .9D .68.设a ,b 都是不等于1的正数,则“3>3>3a b ”是“log 3log 3a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件9.如果函数1()(2)(8)10022f x =m x +n x+m n --(≥,≥)在区间1[,2]2上单调递减,那么mn 的最大值为( )A .16B .18C .25D .81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.在5(21)x -的展开式中,含2x 的项的系数是_________(用数字填写答案). 12.sin15+sin75的值是_________.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系y =e kx b +(e 2.718=…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是_________小时.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ 的最大值为_________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数1x ,2x ,都有0m >;(2)对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; (3)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =;(4)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有_________(写出所有真命题的序号). 2213y x -=---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共24页)数学试卷 第5页(共24页) 数学试卷 第6页(共24页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记数列1{}n a 的前n 项和为n T ,求使得1|1| 1 000n T -<成立的n 的最小值.17.(本小题满分12分)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队. (Ⅰ)求A 中学至少有一名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛.记X 表示参赛的男生人数,求X 的分布列和数学期望.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M ,GH 的中点为N .(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)证明:直线MN ∥平面BDH ; (Ⅲ)求二面角A EG M --的余弦值.19.(本小题满分12分)如图A ,B ,C ,D 为平面四边形ABCD 的四个内角. (Ⅰ)证明:1cos tan2sin A AA-=; (Ⅱ)若180A C +=,6AB =,3BC =,4CD =,5AD =,求tantan 22A B++tantan 22C D+的值. 20.(本小题满分13分)2015年普通高等学校招生全国统一考试(四川卷)理科数学答案解析【解析】解:∵四边形ABCD为平行四边形,点M、N满足3BM MC=,2DN NC=,∴根据图形可得:3344AM AB BC AB AD=+=+,2233AN AD DC AD AB=+=+,∴NM AM AN=-,∵2()AM NM AM AM AN AM AM AN=-=-,22239216AM AB AB AD AD=++,22233342AM AN AB AD AB AD=++,||6AB=,||4AD=,∴22131239316AM NM AB AD=-=-=故选;C【提示】根据图形得出3344AM AB BC AB AD=+=+,2233AN AD DC AD AB=+=+,2()AM NM AM AM AN AM AM AN=-=-,结合向量结合向量的数量积求解即可.数学试卷第7页(共24页)数学试卷第8页(共24页)数学试卷第9页(共24页)。
2015年四川高考数学试卷试卷及参考答案(理科)word版
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB =( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32ii- =( ) A.-i B.-3i C.i. D.3i3.执行如图所示的程序框图,输出S 的值是( )A.2-B.2C.-12D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A) (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年高考理科数学四川卷(含答案解析)
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将选答案对应的标号涂黑.第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.设i 是虚数单位,则复数32i i-= ( )A .-iB .-3iC .iD .3i3.执行如图所示的程序框图,输出S 的值为( )A. BC .12-D .124.下列函数中,最小正周期为π且图象关于原点对称的函数是 ( )A .πcos(2)2y x =+ B .πsin(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+5.过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则||AB =( )A.3B. C .6D.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个7.设四边形ABCD 为平行四边形,||=6AB ,||=4AD .若点M ,N 满足=3BM MC ,DN =2NC ,则AM NM =( )A .20B .15C .9D .68.设a ,b 都是不等于1的正数,则“3>3>3a b ”是“log 3log 3a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件9.如果函数1()(2)(8)10022f x =m x +n x+m n --(≥,≥)在区间1[,2]2上单调递减,那么mn 的最大值为( )A .16B .18C .25D .81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.在5(21)x -的展开式中,含2x 的项的系数是_________(用数字填写答案). 12.sin15+sin75的值是_________.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系y =e kx b +(e 2.718=…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是_________小时.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ 的最大值为_________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数1x ,2x ,都有0m >;(2)对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; (3)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; (4)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有_________(写出所有真命题的序号).2213y x -=---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记数列1{}n a 的前n 项和为n T ,求使得1|1| 1 000n T -<成立的n 的最小值.17.(本小题满分12分)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队. (Ⅰ)求A 中学至少有一名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛.记X 表示参赛的男生人数,求X 的分布列和数学期望.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M ,GH 的中点为N .(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)证明:直线MN ∥平面BDH ; (Ⅲ)求二面角A EG M --的余弦值.19.(本小题满分12分)如图A ,B ,C ,D 为平面四边形ABCD 的四个内角.(Ⅰ)证明:1cos tan 2sin A AA-=;(Ⅱ)若180A C +=,6AB =,3BC =,4CD =,5AD =,求tantan 22A B++tantan 22C D+的值. 20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b=>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点.当直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 (Ⅰ)求椭圆E 的方程;(Ⅱ)在平面直角坐标系xOy 中是否存在与点P 不同的定点Q ,使得||||||||QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,说明理由.21.(本小题满分14分)已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >. (Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(四川卷)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】∵集合{|(1)(2)0}A x x x =+-<,集合B={x|1<x <3},∴集合{|12}A x x =-<<, ∵A ∪B={x|﹣1<x <3},故选:A【提示】求解不等式得出集合{|12}A x x =-<<,根据集合的并集可求解答案 【考点】并集及其运算 2.【答案】C【解析】∵i 是虚数单位,则复数32i i -,∴4i 2121i i i i--==-=,故选:C【提示】通分得出4i 2i-,利用i 的性质运算即可【考点】复数代数形式的乘除运算 3.【答案】D【解析】解:模拟执行程序框图,可得1k =,2k = 不满足条件4k >,3k = 不满足条件4k >,4k = 不满足条件4k >,5k =满足条件4k >,5π1sin62S ==,输出S 的值为12. 故选:D .【提示】模拟执行程序框图,依次写出每次循环得到的k 的值,当5k =时满足条件4k >,计算并输出S 的值为12【考点】程序框图 4.【答案】A【解析】解:πcos 2sin 22y x x ⎛⎫=+=- ⎪⎝⎭,是奇函数,函数的周期为:π,满足题意,所以A 正确 πsin 2cos22y x x ⎛⎫=+= ⎪⎝⎭,函数是偶函数,周期为:π,不满足题意,所以B 不正确;πsin 2cos224y x x x ⎛⎫=+=+ ⎪⎝⎭,函数是非奇非偶函数,周期为π,所以C 不正确;πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭,函数是非奇非偶函数,周期为2π,所以D 不正确;故选:A .【提示】求出函数的周期,函数的奇偶性,判断求解即可 【考点】两角和与差的正弦函数,三角函数的周期性及其求法 5.【答案】D【解析】解:双曲线2213yx -=的右焦点(2,0),渐近线方程为y =,过双曲线2213y x -=的右焦点且与x 轴垂直的直线,2x =,可得A y =,B y =-,∴||AB =故选:D .【提示】求出双曲线的渐近线方程,求出AB 的方程,得到AB 坐标,即可求解||AB . 【考点】双曲线的简单性质 6.【答案】B【解析】解:根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个; 分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有3424A =种情况,此时有32472⨯=个,②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有3424A =种情况,此时有22448⨯=个,共有7248120+=个.故选:B【提示】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案. 【考点】排列、组合及简单计数问题 7.【答案】C【解析】解:∵四边形ABCD 为平行四边形,点M 、N 满足3BM MC =,2DN NC =,∴根据图形可得:3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,∴NM AM AN =-,∵2()AM NM AM AM AN AM AM AN =-=-,22239216AM AB AB AD AD =++, 22233342AM AN AB AD AB AD =++,||6AB =,||4AD =,∴22131239316AM NM AB AD =-=-=故选;C【提示】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+, 2()AM NM AM AM AN AM AM AN =-=-,结合向量结合向量的数量积求解即可.【考点】平面向量数量积的运算 8.【答案】B【解析】解:A 、B 都是不等于1的正数,∵333a b >>,∴1a b >>,∵l og 3l og 3a b <,∴3311log log a b <,即lg lg 0lg lg b a a b -<,lg lg 0lga lgb 0b a -<⎧⎨>⎩或lg lg 0lga lgb 0b a ->⎧⎨<⎩ 求解得出:1a b >>,10a b >>>或1b >,01a <<根据充分必要条件定义得出:“333a b >>”是“log 3log 3a b <”的充分不必要条件,故选:B .【提示】求解333a b >>,得出1a b >>,log 3log 3a b <,lg lg 0lga lgb 0b a -<⎧⎨>⎩或lg lg 0lga lgb 0b a ->⎧⎨<⎩数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)根据对数函数的性质求解即可,再利用充分必要条件的定义判断即可. 【考点】必要条件、充分条件与充要条件的判断 9.【答案】B【解析】解:∵函数21()(2)(8)1(0,0)2f x m x n x m n =-+-+≥≥在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,∴①2m =,8n <对称轴82n x m -=--, ②20822m n m ->⎧⎪-⎨-≥⎪-⎩即22120m m n >⎧⎨+-≤⎩ ③208122m n m -<⎧⎪-⎨-≤⎪-⎩即22180m n m <⎧⎨+-≤⎩ 设22120x x y >⎧⎨+-≤⎩,22180x y x <⎧⎨+-≤⎩或28x y =⎧⎨<⎩设k y x =,2ky x '=-,当切点为00()x y ,,k 取最大值. ①202k x -=-,202k x =,00212y x +=-,2000022x y x x ==,可得03x =,06y =,∵32x =>∴k 的最大值为3618⨯=②2012k x =,10200012x y x x ==,002180y x -+=,解得:09x =,092y =∵02x < ∴不符合题意.③2m =,8n =,16k mn ==综合得出:3m =,6n =时k 最大值18k mn ==,故选;B【提示】根据二次函数的单调性得出①2m =,8n <对称轴82n x m -=--,②20822m n m ->⎧⎪-⎨-≥⎪-⎩③208122m n m -<⎧⎪-⎨-≤⎪-⎩构造函数22120x x y >⎧⎨+-≤⎩或22180x y x <⎧⎨+-≤⎩或28x y =⎧⎨<⎩运用导数,结合线性规划求解最大值.【考点】二次函数的性质10.【答案】D【解析】解:设11()A x y ,,22()B x y ,,00()M x y ,,则斜率存在时,设斜率为k ,则2114y x =,2224y x =,利用点差法可得02ky =,因为直线与圆相切,所以0015y x k=--,所以03x =,即M 的轨迹是直线3x =,代入抛物线方程可得y =±所以交点与圆心(50),的距离为4,所以24r <<时,直线l 有2条;斜率不存在时,直线l 有2条;所以直线l 恰有4条,24r <<,故选:D .【提示】先确定M 的轨迹是直线3x =,代入抛物线方程可得y =±(50),的距离为4,即可得出结论.【考点】抛物线的简单性质,直线与圆的位置关系第Ⅱ卷二、填空题 11.【答案】40-【解析】解:根据所给的二项式写出展开式的通项,515(2)(1)rrr r T C x -+=-;要求2x 的项的系数,∴52r -=,∴3r =,∴2x 的项的系数是2335()2140C =--. 故答案为:40-.【提示】根据所给的二项式,利用二项展开式的通项公式写出第1r +项,整理成最简形式,令x 的指数为2求得r ,再代入系数求出结果 【考点】二项式定理的应用 12.【解析】解:sin15sin 75sin15cos15cos45cos15sin 45)60︒+︒=︒+︒=︒︒+︒︒=︒=.. 【提示】利用诱导公式以及两角和的正弦函数化简求解即可. 【考点】两角和与差的正弦函数;三角函数的化简求值. 13.【答案】24【解析】解:由题意可得,0x =时,192y =;22x =时,48y =. 代入函数e kx by +=,可得e 192b =,22e 48k b +=,即有111e 2k =,e 192b =,则当33x =时,331e 192248k b y +==⨯=. 故答案为:24.【提示】由题意可得,0x =时,192y =;22x =时,48y =.代入函数e kx by +=,解方程,可得k ,b ,再由33x =,代入即可得到结论. 【考点】函数与方程的综合运用 14.【答案】25【解析】解:根据已知条件,AB ,AD ,AQ 三直线两两垂直,分别以这三直线为x ,y ,z 轴,建立如图所示空间直接坐标系,设2AB =,则:(000)A ,,,(100)E ,,,(210)F ,,;M 在线段PQ 上,设(0,,2)M y ,02y ≤≤;∴(1,,2)EM y =-,(2,1,0)AF =;∴cos |cos ,55EMAF θ==;数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)∴22244cos =5(y 5)y y θ-++,设22445(y 5)y y t -+=+,整理得:2(51)42540t y y t -++-=①,将该式看成关于y 的方程;(1)若15t =,则14y =-,不符合02y ≤≤,即这种情况不存在;(2)若15t ≠,①便是关于y 的一元二次方程,该方程有解;∴164(51)(254)0t t =---≥△;解得4025t ≤≤;∴t 的最大值为425;∴2cos θ的最大值为425,cos θ最大值为25.故答案为:25.【提示】首先以AB ,AD ,AQ 三直线为x ,y ,z 轴,建立空间直角坐标系,并设正方形边长为2,(02)M y ,,,从而可求出向量EM ,AF 的坐标,由cos cos ,EM AF θ=得到22244cos 5(5)y y y θ-+=+,可设22445(5)y y t y -+=+,可整理成关于y 的方程,根据方程有解即可求出t 的最大值,从而求出cos θ的最大值. 【考点】异面直线及其所成的角 15.【答案】①④【解析】解:对于①,由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则①正确;对于②,由二次函数的单调性可得()g x 在,2a ⎛⎫-∞- ⎪⎝⎭递减,在2a ⎛⎫+∞ ⎪⎝⎭,递减,则0n >不恒成立,则②错误;对于③,由m n =,可得1212()()()()f x f x g x g x -=-,考查函数2()2x h x x ax =+-,()22ln 2xh x x a '=+-,当a →-∞,()h x '小于0,()h x 单调递减,则③错误;对于④,由m n =-,可得1212[()()()(])f x f x g x g x -=--,考查函数2()2xh x x ax =++,()22ln 2x h x x a '=++,对于任意的a ,()h x '不恒大于0或小于0,则④正确.故答案为:①④.【提示】运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数2()2xh x x ax =+-,求出导数判断单调性,即可判断③; 通过函数2()2xh x x ax =++,求出导数判断单调性,即可判断④.【考点】命题的真假判断与应用 三、解答题16.【答案】(Ⅰ)2n na = (Ⅱ)10【解析】解:(Ⅰ)由已知12n n S a a -=,有1122(2)n n n n n a S S a a n ≥-==﹣﹣﹣,即12(2)n n a a n ≥=﹣, 从而212a a =,32124a a a ==,又∵1a ,21a +,3a 成等差数列,∴11142(21)a a a ++=,解得:12a =.∴数列{}n a 是首项为2,公比为2的等比数列.故2n na =;(Ⅱ)由(Ⅰ)得:112n n a =,∴1122212[1()]1111122212nn n n T -=+++==--. 由1|1|1000n T -<,得111121000n --<,即21000n >.∵9102512100010242=<<=,∴10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【提示】(Ⅰ)由已知数列递推式得到12(2)n n a a n ≥=﹣,再由已知1a ,21a +,3a 成等差数列求出数列首项,可得数列{}n a 是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,再由等比数列的前n 项和求得n T ,结合1|1|1000n T -<求解指数不等式得n 的最小值. 【考点】数列的求和. 17.【答案】(Ⅰ)99100(Ⅱ)2【解析】解:(Ⅰ)由题意,参加集训的男、女学生个有6人,参赛学生全从B 中抽出(等价于A 中没有学生入选代表队)的概率为:333433661100C C C C =,因此A 中学至少有1名学生入选代表队的概率为:1991100100-=; (Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数,则X 的可能取值为:1,2,3,2333461(1)5C C P X C ===,2333463(2)5C C P X C ===,3133461(3)5C C P X C ===.则数学期望11232555EX =⨯+⨯+⨯=.【提示】(Ⅰ)求出A 中学至少有1名学生入选代表队的对立事件的概率,然后求解概率即可;(Ⅱ)求出X 表示参赛的男生人数的可能值,求出概率,得到X 的分布列,然后求解数学期望.【考点】离散型随机变量的期望与方差,离散型随机变量及其分布列 18.【答案】(Ⅰ)如图 (Ⅱ)见解析 (Ⅲ)3【解析】解:(Ⅰ)F 、G 、H 的位置如图;证明:(Ⅱ)连接BD ,设O 是BD 的中点,∵BC 的中点为M 、GH 的中点为N ,∴数学试卷 第16页(共21页) 数学试卷 第17页(共21页)数学试卷 第18页(共21页)OM CD ∥,12OM CD =,HN CD ∥,12HN CD =,∴OM HN ∥,OM HN =,即四边形MNHO 是平行四边形,∴MN OH ∥,∵MN BDH ⊄平面;OH BDH ⊂面,∴MN BDH 直线∥平面;(Ⅲ)方法一:连接AC ,过M 作MH AC ⊥于P ,则正方体ABCD EFGH -中,AC EG ∥,∴MP EG ⊥,过P 作PK EG ⊥于K ,连接KM ,∴KM PKM ⊥平面则KM EG ⊥,则PKM ∠是二面角A EG M --的平面角,设2AD =,则1CM =,2PK =,在Rt CMP △中,sin 45PM CM =︒=,在R t P K M △中,KM ,∴cos 3PK PKM KM ∠==,即二面角A EG M --的余弦值为3. 方法二:以D 为坐标原点,分别为DA ,DC ,DH 方向为x ,y ,z 轴建立空间坐标系如图:设2AD =,则(120)M ,,,(0,2,2)G ,(2,0,2)E ,(1,1,0)O ,则(2,2,0)GE =-,(1,0,2)MG =-,设平面EGM 的法向量为(x,y,z)n =,则00n GE n MG ⎧=⎪⎨=⎪⎩,即22020x y x z -=⎧⎨-+=⎩,令2x =,得(2,2,1)n =,在正方体中,DO AEGC ⊥平面,则(1,1,0)n DO ==是平面AEG 的一个法向量,则cos ,3||||9m n m n m n ====⨯.二面角A EG M --.【提示】(Ⅰ)根据展开图和直观图之间的关系进行判断即可; (Ⅱ)利用线面平行的判定定理即可证明直线MN BDH ∥平面; (Ⅲ)法一:利用定义法求出二面角的平面角进行求解. 法二:建立坐标系,利用向量法进行求解即可.【考点】二面角的平面角及求法,直线与平面平行的判定. 19.【答案】(Ⅰ)见解析 【解析】证明:(Ⅰ)222222sin 2sin 1cos tan cos2sin cos sin A AA A AAA A -===.等式成立.(Ⅱ)由180A C +=︒,得180C A =︒-,180D B =︒-,由(Ⅰ)可知:tantan tan tan 2222A B C D +++ 1cos 1cos 1cos(180)1cos(180)sin sin sin(180)sin(180)A B A B A B A B ---︒--︒-=+++︒-︒-22sin sin A B =+连结BD ,在ABD △中,有2222cos BD AB AD AB AD A -=+,6AB =,3BC =,4CD =,5AD =,在BCD △中,有2222cos BD BC CD BC CD C -=+,所以22222cos 2cos AB AD AB AD A BC CD BC CD C +=-+-,则:2222222265343cos 2(AB AD BCCD)2(6534)7AB AD BC CD A +--+--===+⨯+÷. 于是sin A ==AC , 同理可得:2222222263542(AB CD)2(63541)1cos 9AB BCAD CD BC ADF B +--+--==+⨯+÷=, 于是sin B=所以tan tantan tan2222A B C D +++22sin sin A B =+=【提示】(Ⅰ)直接利用切化弦以及二倍角公式化简证明即可.(Ⅱ)通过180A C +=︒,得180C A =︒-,180D B =︒-,利用(Ⅰ)化简22tantan tan tan 2222sin sin A B C D A B+++=+,连结BD ,在ABD △中,利用余弦定理求出sin A ,连结AC ,求出sin B ,然后求解即可【考点】三角函数恒等式的证明20.【答案】(Ⅰ)22142x y +=(Ⅱ)存在与点P 不同的定点(0,2)Q,使得QA PA QBPB=恒成立【解析】解:(Ⅰ)∵直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 ∴点在椭圆E , ∴22222211c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得2a =,b =,∴椭圆E 的方程为:22142x y +=;(Ⅱ)结论:存在与点P 不同的定点(0,2)Q,使得||||||||QA PA QB PB =恒成立. 理由如下:当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点,如果存在定点Q 满足条件,数学试卷 第19页(共21页)数学试卷 第20页(共21页)数学试卷 第21页(共21页)则有||||||||QA PA QB PB =,即||||QC QD =. ∴Q 点在直线y 轴上,可设0(0,)Q y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M 、N 两点,则M 、N的坐标分别为、(0,,又∵||||||||QM PM QN PN ==,解得01y =或02y =. ∴若存在不同于点P 的定点Q 满足条件,则Q 点坐标只能是(0,2).下面证明:对任意直线l ,均有||||||||QA PA QB PB =. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,A 、B 的坐标分别为11)(,A x y 、22)(,B x y ,联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 并整理得:22(12)420k x kx ++-=,∵22(4)8(12)0k k =++>△, ∴122412k x x k +=-+,122212x x k-=+, ∴121212112x x k x x x x ++==, 已知点B 关于y 轴对称的点B '的坐标为22(,)x y -, 又11111211AQ y kx k k x x x --===-,2222212111OB y kx k k K x x x x --===-+=---, ∴AO QB k k =,即Q 、A 、B '三点共线,∴12QAQA x PA QB QB x PB==='. 故存在与点P 不同的定点(0,2)Q ,使得QA PA QBPB=恒成立.【提示】(Ⅰ)通过直线l 平行于x 轴时被椭圆E截得的线段长为,2,计算即得结论;(Ⅱ)通过直线l 与x 轴平行、垂直时,可得若存在不同于点P 的定点Q 满足条件,则Q 点坐标只能是(02),.然后分直线l 的斜率不存在、存在两种情况,利用韦达定理及直线斜率计算方法,证明对任意直线l ,均有QA PAQB PB=即可. 【考点】直线与圆锥曲线的综合问题,椭圆的标准方程 21.【答案】(Ⅰ)见解析 (Ⅱ)见解析【解析】解:(Ⅰ)由已知,函数()f x 的定义域为(0,)+∞,()()2()2ln 21a g x f x x a x x ⎛⎫'==---+ ⎪⎝⎭,∴21124222()2()22()2x a a g x x x x -+-'=-+=. 当104a <<时,()g x在10,2⎛ ⎝⎭,12⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在区间⎝⎭上单调递减;当14a ≥时,()g x 在(0,)+∞上单调递增. (Ⅱ)由()2()2ln 210a f x x a x x ⎛⎫'=---+= ⎪⎝⎭,解得11ln 1x x a x ---=+,令2211111ln 1ln 1ln 1ln ()2ln 221111x x x x x x x x x x x x x x x x x ϕ------------⎛⎫⎛⎫⎛⎫=-++--+ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, 则(1)10ϕ=>,211(2)2()2011e e e e e e ϕ----⎛⎫=--< ⎪++⎝⎭. 故存在0(1,)x e ∈,使得0(0)x ϕ=.令000101ln 1x x a x ---=+,()1ln (1)u x x x x =--≥,由1()10u x x '=-≥知,函数()u x 在(1,)+∞上单调递增.∴0011100()(1)()20111111u x u u e e a x e x ----=<=<=<++++. 即0(0,1)a ∈,当0a a =时,有0()0f x '=,00()()0f x x ϕ==.由(Ⅰ)知,()f x '在(1,)+∞上单调递增,故当0(1,)x x ∈时,()0f x '<,从而0()()0f x f x >=; 当0(,)x x ∈+∞时,()0f x '>,从而0()()0f x f x >=. ∴当(1,)x ∈+∞时,()0f x ≥.综上所述,存在(0,1)a ∈,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.【提示】(Ⅰ)求出函数()f x 的定义域,把函数()f x 求导得到()g x 再对()g x 求导,得到其导函数的零点,然后根据导函数在各区间段内的符号得到函数()g x 的单调期间; (Ⅱ)由()f x 的导函数等于0把a 用含有x 的代数式表示,然后构造函数2211111ln 1ln 1ln 1ln ()2ln 221111x x x x x x x x x x x x x x x x x ϕ------------⎛⎫⎛⎫⎛⎫=-++--+ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭,由函数零点存在定理得到0(1,)x e ∈,使得0(0)x ϕ=.令000101ln 1x x a x ---=+,()1ln (1)u x x x x =--≥,利用导数求得0(0,1)a ∈,然后进一步利用导数说明当0a a =时,若(1,)x ∈+∞,有()0f x ≥,即可得到存在(01)a ∈,,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.【考点】利用导数研究函数的单调性,利用导数求闭区间上函数的最值。
四川省2015年高考理科数学试题及答案(word版)
四川省2015年高考理科数学试题与答案(word 版)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名,准考证号填写在答题卡。
2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{x/(x+1)(2)0},A x =-<集合{x/1<x<3}B =,则A B =(A ){X/-1<X<3} (B ){X/-1<X<1} (C ){X/1<X<2} (D ){X/2<X<3}2. 设i 是虚数单位,则复数32i i-= (A)-i (B )-3i (C )i. (D )3i 3. 执行如图所示的程序框图,输出S 的值是(A)2- (B )2 (C )-12 (D )124. 下列函数中,最小正周期为π,且图象关于原点对称的函数是(A ) cos(2)2y x π=+ (B ) sin(2)2y x π=+(C ) sin 2cos 2y x x =+ (D ) sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =(B ) (C )6 (D )6. 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有 (A )144个 (B )120个 (C )96个 (D )72个7. 设四边形ABCD 为平行四边形, 6AB =,4AD =,若点M ,N 满足3BM MC =, 2D N N C =, 则AM NM ⋅=(A )20 (B )15 (C )9 (D )68. 设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A)充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9. 如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为(A )16 (B )18 (C )25 (D )81210. 设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷(非选择题 共100分)二、 填空题:本大题共5小题,每小题5分,共25分。
2015年四川高考数学试卷试卷及参考答案(理科)word版
绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
满分150分。
考试时间120分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32i i- =( ) A.3.执行如图所示的程序框图,输出S 的值是( ) A.32 B.3212D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A) (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015高考数学四川(理工科类)试卷真题与答案解析
2015 年四川省高考数学(理)试卷真题答案及解析一、选择题1.设集合 A { x |(x1)( x2) 0} ,集合 B { x |1 x 3} ,则 A BA.{ x | 1 x 3}B. { x | 1 x 1}C. {x|1 x 2}D. { x | 2 x 3} 【答案】A【解析】 A { x | 1 x 2} ,且 B { x |1 x 3}A B x x ,故选 A{ | 1 3}2.设i 是虚数单位,则复数i 3 2iA. iB. 3iC. iD. 3i【答案】C2 2i【解析】3i i i2i i,故选 C3.执行如图所示的程序框图,输出S 的值是A. 32B.32B. C. 12D.12【答案】D【解析】进入循环,当k 5时才能输出 k 的值,则5 1S sin ,故选 D6 24.下列函数中,最小正周期为且图象关于原点对称的函数是A. y cos(2 x )B. y sin(2 x )2 2C. y sin 2x cos 2xD. y sin x cos x 【答案】A【解析】1 / 20A. y cos(2 x ) sin 2x 可知其满足题意2kB. y sin(2 x ) cos 2x 可知其图像的对称中心为( ,0)( k Z),最小正2 4 2周期为C. sin 2 cos 2 2 sin(2 )y x x x 可知其图像的对称中心为4k( ,0)( k Z),最小正周期为2 8D. sin cos 2 sin( )y x x x 可知其图像的对称中心为(k,0)( k Z)小4 4正周期为 25.过双曲线2y2 1x 的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线3于A 、B 两点,则| AB |A. 4 33B. 2 3C. 6D. 4 3【答案】D【解析】由题可知渐近线方程为y 3x ,右焦点 (2,0) ,则直线x 2 与两条渐近线的交点分别为A(2,2 3) , B (2, 2 3) ,所以| AB | 4 36.用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比40000 大的偶数共有(A)144 个(B)120 个(C)96 个(D)72 个【答案】 B【解析】分类讨论2 / 20①当5 在万位时,个位可以排0、2、4 三个数,其余位置没有限制,故有 1 3C A3 472种。
2015年四川省高考数学试题及答案(理科)【解析版】
2015年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)(2015•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=2.(5分)(2015•四川)设i是虚数单位,则复数i3﹣=()通分得出,==3.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()C﹣的值为.,的值为2x+2x+)sin)sin5.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的2﹣=1,2.6.(5分)(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比400007.(5分)(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()=+==,•=﹣,,∴根据图形可得:==,===•()2﹣2=222||2a b或<或9.(5分)(2015•四川)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()([[[,(([][[((n([,②③即或或y=,=k=2x,=.,=10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围,,相减,得(因为直线与圆相切,所以,所以,,∴,二、填空题:本大题共5小题,每小题5分,共25分。
11.(5分)(2015•四川)在(2x﹣1)5的展开式中,含x2的项的系数是﹣40(用数字填写答案).=12.(5分)(2015•四川)sin15°+sin75°的值是.(sin60=故答案为:.13.(5分)(2015•四川)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是24小时.,×14.(5分)(2015•四川)如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为.,从而可求出向量=,对函数=;)取到最大值故答案为:.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).)递减,在(﹣三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
2015年四川省高考数学试卷真题及答案(理科)
2015年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.(5分)设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i3.(5分)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣ D.4.(5分)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+) B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx5.(5分)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2 C.6 D.46.(5分)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个7.(5分)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.68.(5分)设a、b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件9.(5分)如果函数f(x)=(m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在区间[]上单调递减,那么mn的最大值为()A.16 B.18 C.25 D.10.(5分)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3) B.(1,4) C.(2,3) D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分。
2015高考数学四川(理工科类)试卷真题与答案解析
2015 年四川省高考数学(理)试卷真题答案及解析一、选择题1. 设集合A { x |(x1)( x2) 0} ,集合B { x |1 x 3} ,则A BA.{ x | 1 x 3}B. { x | 1 x 1}C. {x|1 x 2}D. { x | 2 x 3} 【答案】A【解析】 A { x | 1 x 2} ,且B { x |1 x 3}A B x x ,故选A{ | 1 3}2. 设i 是虚数单位,则复数i 3 2iA. iB. 3iC. iD. 3i 【答案】C2 2i【解析】3i i i2i i,故选C3. 执行如图所示的程序框图,输出S 的值是A.32B.32B. C. 12D.12【答案】D【解析】进入循环,当k 5时才能输出k 的值,则5 1S sin ,故选D6 24. 下列函数中,最小正周期为且图象关于原点对称的函数是A. y cos(2 x)B. y sin(2 x )2 2C. y sin 2x cos 2xD. y sin x cos x【答案】A【解析】1/ 20A. y cos(2 x ) sin 2x 可知其满足题意2kB. y sin(2 x ) cos 2x 可知其图像的对称中心为( ,0)( k Z),最小正2 4 2周期为C. sin 2 cos 2 2 sin(2 )y x x x 可知其图像的对称中心为4k( ,0)( k Z),最小正周期为2 8D. sin cos 2 sin( )y x x x 可知其图像的对称中心为(k,0)( k Z)小4 4正周期为25.过双曲线2y2 1x 的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线3于A 、B 两点,则| AB |A. 4 33B. 2 3C. 6D. 4 3【答案】D【解析】由题可知渐近线方程为y 3x ,右焦点(2,0) ,则直线x 2 与两条渐近线的交点分别为 A (2,2 3) ,B (2, 2 3) ,所以| AB | 4 36.用数字0,1,2,3,4,5 组成没有重复数字的五位数,其中比40000 大的偶数共有(A)144 个(B)120 个(C)96 个(D)72 个【答案】 B【解析】分类讨论2/ 20①当5 在万位时,个位可以排0、2、4 三个数,其余位置没有限制,故有 1 3C A3 4 72种。
2015年四川省高考数学试题及标准答案(理科)【解析版】
2015年四川省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.(5分)(2015•四川)设集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},则A∪B=()A. {x|﹣1<x<3} B.{x|﹣1<x<1}C.{x|1<x<2} D. {x|2<x<3}考点: 并集及其运算.专题:函数的性质及应用.分析:求解不等式得出集合A={x|﹣1<x<2},根据集合的并集可求解答案.解答:解:∵集合A={x|(x+1)(x﹣2)<0},集合B={x|1<x<3},∴集合A={x|﹣1<x<2},∵A∪B={x|﹣1<x<3},故选:A点评:本题考查了二次不等式的求解,集合的运算,属于容易题.2.(5分)(2015•四川)设i是虚数单位,则复数i3﹣=()A. ﹣i B.﹣3i C. i D.3i考点: 复数代数形式的乘除运算.专题: 计算题.分析:通分得出,利用i的性质运算即可.解答:解:∵i是虚数单位,则复数i3﹣,∴===i,故选;C点评:本题考查了复数的运算,掌握好运算法则即可,属于计算题.3.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B. C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.4.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+) B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx考点: 两角和与差的正弦函数;三角函数的周期性及其求法.专题: 三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.。
2015四川高考理科数学真题答案+解析
2015年四川省高考数学(理)试卷真题答案及解析一、选择题1. 设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ⋃= A.{|13}x x -<< B. {|11}x x -<< C. {|12}x x << D. {|23}x x << 【答案】A【解析】{|12}A x x =-<< ,且{|13}B x x =<<{|13}A B x x ∴⋃=-<<,故选A2. 设i 是虚数单位,则复数32i i-= A.i - B. 3i - C. i D. 3i 【答案】C 【解析】3222ii i i i i-=--=,故选C 3. 执行如图所示的程序框图,输出S 的值是A. B. C.12- D. 12【答案】D【解析】进入循环,当5k =时才能输出k 的值,则51sin62S π==,故选D 4. 下列函数中,最小正周期为且图象关于原点对称的函数是 A.cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+D. sin cos y x x =+ 【答案】A 【解析】 A.cos(2)sin 22y x x π=+=-可知其满足题意B. sin(2)cos 22y x x π=+=可知其图像的对称中心为(,0)()42k k Z ππ+∈,最小正周期为πC. sin 2cos 2)4y x x x π=+=+可知其图像的对称中心为(,0)()28k k Z ππ-∈,最小正周期为πD. sin cos )4y x x x π=+=+可知其图像的对称中心为(,0)()4k k Z ππ-∈小正周期为2π5. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则||AB =A.3B. C.6 D. 【答案】D 【解析】由题可知渐近线方程为y =,右焦点(2,0),则直线2x =与两条渐近线的交点分别为A ,B (2,-,所以||AB =6. 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有 (A )144个 (B )120个 (C )96个 (D )72个 【答案】B【解析】分类讨论① 当5在万位时,个位可以排0、2、4三个数,其余位置没有限制,故有133472C A =种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年四川省高考数学(理)试卷真题答案及解析一、选择题1. 设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ⋃= A.{|13}x x -<< B. {|11}x x -<< C. {|12}x x << D. {|23}x x << 【答案】A【解析】{|12}A x x =-<< ,且{|13}B x x =<<{|13}A B x x ∴⋃=-<<,故选A2. 设i 是虚数单位,则复数32i i-= A.i - B. 3i - C. i D. 3i 【答案】C 【解析】3222ii i i i i-=--=,故选C 3. 执行如图所示的程序框图,输出S 的值是 A. 3 B. 3 C. 12- D. 12【答案】D【解析】进入循环,当5k =时才能输出k 的值,则51sin62S π==,故选D 4. 下列函数中,最小正周期为且图象关于原点对称的函数是 A. cos(2)2y x π=+B. sin(2)2y x π=+ C. sin 2cos 2y x x =+ D. sin cos y x x =+ 【答案】A 【解析】 A. cos(2)sin 22y x x π=+=-可知其满足题意B. sin(2)cos 22y x x π=+=可知其图像的对称中心为(,0)()42k k Z ππ+∈,最小正周期为πC. sin 2cos 2)4y x x x π=+=+可知其图像的对称中心为(,0)()28k k Z ππ-∈,最小正周期为πD. sin cos )4y x x x π=+=+可知其图像的对称中心为(,0)()4k k Z ππ-∈小正周期为2π5. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则||AB =A.43B. 23C. 6D. 43【答案】D 【解析】由题可知渐近线方程为3y x =±,右焦点(2,0),则直线2x =与两条渐近线的交点分别为A (2,23),B (2,23)-,所以||43AB = 6. 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有 (A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】分类讨论① 当5在万位时,个位可以排0、2、4三个数,其余位置没有限制,故有133472C A =种。
② 当4在万位时,个位可以排0、2两个数,其余位置没有限制,固有132448C A =种,综上:共有120种。
故选B 。
7. 设四边形ABCD 为平行四边形,6,4AB AD == .若点M,N 满足3BM MC =,2DN NC =,则AM NM ⋅= ( )(A )20 (B )15 (C )9 (D )6【解析】C.本题从解题方式方法上可有两种思路。
方法①:这个地方四边形ABCD 为平行四边形,可赋予此四边形为矩形,进而以A 为坐标原点建立坐标系。
由0,06,34,4A (),M ()N (),进而(6,3)AM =,(2,1)NM =-,⋅=9AM NM 。
方法②:这个地方可以以AB ,AD 为基底向量,利用三角形法则将AM ,NM分别用基底向量表示可得=+34AM AB AD ,=-1134NM AB AD 则()2231113943434AM NM AB AD AB AD ABAD ⎛⎫⎛⎫⎛⎫⎛⎫⋅=+-=-=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭。
综合两种方法,显然方法①更具备高考解题的准确性和高效性。
8. 设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B【解析】条件333ab>>等价于1a b >>。
当1a b >>时,33log log 0a b >>。
所以,3311log log a b<,即log 3log 3a b <。
所以,“333a b>>”是“log 3log 3a b <”的充分条件。
但1,33a b ==也满足log 3log 3a b <,而不满足1a b >>。
所以,“333a b >>”是“log 3log 3a b <”的不必要条件。
故,选B 。
9. 如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为(A )16 (B )18 (C )25 (D )812【错误解析】由()f x 单调递减得:()0f x '≤,故()280m x n -+-≤在122⎡⎤⎢⎥⎣⎦,上恒成立。
而()28m x n -+-是一次函数,在122⎡⎤⎢⎥⎣⎦,上的图像是一条线段。
故只须在两个端点处()10,202f f ⎛⎫''≤≤ ⎪⎝⎭即可。
即 ()()()()1280,122280,2m n m n ⎧-+-≤⎪⎨⎪-+-≤⎩,由()()212⨯+得:10m n +≤。
所以,2252m n mn +⎛⎫≤≤ ⎪⎝⎭. 选C 。
【错误原因】mn 当且仅当5m n ==时取到最大值25,而当5m n ==,,m n 不满足条件()()1,2。
【正确解析】同前面一样,m n 满足条件()()1,2。
由条件()2得:()1122m n ≤-。
于是,()211121218222n n mn n n +-⎛⎫≤-≤= ⎪⎝⎭。
mn 当且仅当3,6m n ==时取到最大值18。
经验证,3,6m n ==满足条件()()1,2。
故选B 。
10. 设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是(A )()13, (B )()14, (C )()23, (D )()24, 【答案】D【解析】当直线l 与x 轴垂直的时候,满足条件的直线有且只有2条。
当直线l 与x 轴不垂直的时候,由对称性不妨设切点()5cos ,sin M r r θθ+()0θπ<<,则切线的斜率为:cos sin AB k θθ=-。
另一方面,由于M 为AB 中点,故由点差法得:2sin AB k r θ=。
故2cos r θ=-,2r >。
由于()5cos ,sin M r r θθ+在抛物线内,所以满足24y x <。
代入并利用cos 2r θ=-化简得到4r <。
故24r <<。
当24r <<时,由2cos r θ=-知满足条件且在x 轴上方的切点M 只有1个。
从而总的切线有4条。
故选D 。
二、填空题11.在()821x -的展开式中,含2x 的项的系数是________(用数字填写答案)〖答案〗-40〖解析〗由题意知2x 的系数为:3235(1)40C x -=-12. °°sin15sin 75+的值是________〖答案〗2〖解析〗sin15sin(4530)sin 45cos30cos 45sin 30︒︒︒︒︒︒︒=-=-1=22224-=sin75sin(4530)sin 45cos30cos45sin30︒︒︒︒︒︒︒=+=+32216222224=+=6sin15sin 75︒︒+=13.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:°C )满足函数关系kx by e +=( e=2.718⋅⋅⋅为自然对数的底数,k ,b 为常数)。
若该食品在°0C 的保鲜时间是192小时,在23°C 的保鲜时间是48小时,则该食品在33°C 的保鲜时间是________小时。
〖答案〗24 〖解析〗0+22ln 4192ln192,4822k b k b e b e k ⨯⨯+-=⇒==⇒=故当33x =时,ln 433ln192ln 242224e e -⨯+==14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面相互垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________〖答案〗25〖解析〗AB 为x 轴,AD 为y 轴,AQ 为z 轴建立坐标系,设正方形边长为22cos 55m θ=+令[]2()0,2)525f m m m =∈+22(2)105252525()m mm m f m -⨯-+-+'=[]0,2,()0m f m '∈∴<max 2()(0)5f m f ==,即max 2cos 5θ=15.已知函数)()(,2)(f 2R a ax x x g x x∈+==其中。
对于不相等的实数1x ,2x ,设2121)()(x x x f x f m --=,2121)()(n x x x g x g --=。
现有如下命题:(1) 对于任意不相等的实数1x ,2x ,都有0m >;(2) 对于任意a 的及任意不相等的实数1x ,2x ,都有0n >; (3) 对于任意的a ,存在不相等的实数1x ,2x ,使得n =m ; (4) 对于任意的a ,存在不相等的实数1x ,2x ,使得n m -=. 其中的真命题有_________________(写出所有真命题的序号)。
〖答案〗(1) (4) 〖解析〗(1)设1x >2x ,函数x2单调递增,所有1x 2>2x 2,1x -2x >0, 则2121)()(x x x f x f m --==21x 2122x x x -->0,所以正确;(2)设1x >2x ,则1x -2x >0,则2121)()(n x x x g x g --=a x x x x a x x x x x x x x a x x ++=-++-=--+-=2121212121212221))(()(,可令1x =1,2x =2,a=—4,则n=—1<0,所以错误;(3)因为n =m ,由(2)得:2121)()(x x x f x f --a x x ++=21,分母乘到右边,右边即为)()(21x g x g -,所以原等式即为)()(21x f x f -=)()(21x g x g -,即为)()(21x g x f -=)()(f 21x g x -,令)()()(x g x f x h -=,则原题意转化为对于任意的a ,函数)()()(x g x f x h -=存在不相等的实数1x ,2x 使得函数值相等,ax x x h x--=22)(,则a x n x x--='22l 2)(h ,则22l 2)(h -='')(n x x,令()"0h x = ,且12x << ,可得()'h x 为极小值。