人教版高一数学试题
高一数学人教版必修一第一章《集合与函数概念》单元测试题(含答案)
三、解答题 :每小题 12 分,共 60 分
16、设 A { x Z || x | 6} , B 1,2,3 , C
3,4,5,6 ,求:
(题目有错漏,需修改,要么改为① A { x Z x 6} ,要么改为② C { 3,4,5} )
( 1) A (B C ) ;( 2) A C A (B C )
的元素 ( 1,2) 对应的 B 中的元素为(
A)
(A ) ( 3,1)
( B) (1,3)
( C) ( 1, 3)
(D ) (3,1)
5、下列各组函数 f ( x)与 g (x) 的图象相同的是( D )
(A ) f ( x) x, g( x) ( x ) 2
(B ) f ( x) x2 , g(x) (x 1) 2
第一章 《集合与函数概念》单元测试题
姓名:
班别:
学号:
一、选择题:每小题 4 分,共 40 分
1、在“①高一数学课本中的难题;②所有的正三角形;
2
③方程 x 2 0 的实数解”中,能够
表示成集合的是 ( A )
(A )② ( C )②③
( B)③ ( D)①②③
2、若 A x | 0 x 2 , B x |1 x 2 ,则 A B ( D )
元?
解: 设每天从报社买进 x 份,每月所获的利润为 f( x),则
① 当每天购入少于或等于 250 份的报纸的时候,全部都卖光了,则
f( x) =( 1-0.9) *30*x
故 f ( x)在 x
x 0 的值域为
,2
综上得, f ( x)的值域为 2,
,2
19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份
人教版经典高一数学必修一试题1
高一数学必修一检测试卷第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( )①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是 ( )A.3a -≤B.3a -≥C.a ≤5D.a ≥55.下列各组函数是同一函数的是 ( ) ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A.①②B.①③C.③④D.①④6.函数243,[0,3]y x x x =-+∈的值域为 ( )A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]7. 若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A. 3个B. 5个C. 7个D. 8个8. 若a <12,则化简42a -12的结果是 () A.2a -1 B .-2a -1C.1-2a D .-1-2a9.函数]1,0[在x a y =上的最大值与最小值的和为3,则=a ( )A .21B .2C .4D .41 10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )A.( 1,5 )B.( 1, 4)C.( 0,4)D.( 4,0)第Ⅱ卷(非选择题 共100分)二、填空题:本大题5小题,每小题5分,共25分. 把正确答案填在题中横线上.11. 若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________12.函数()1,3,x f x x +⎧=⎨-+⎩ 1,1,x x ≤>则()()4f f = . 13.函数24++=x x y 的定义域为 . 14. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = _________________.15.()⎩⎨⎧>-≤+=,0,2,0,12x x x x x f 若()10=x f ,则 x= . 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题12分)已知集合{}{}19123|,73|<-<=≤≤=x x B x x A ,求:(1)求B A ⋃ (2)求B A C R ⋂)(17.(本小题12分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围。
人教版高一数学上学期期中考试试题及详细答案解析全文
人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
人教版高一上册数学第一章集合与常用逻辑用语 测试题
集合与常用逻辑用语(时间:120分钟,满分:150分)班级:____________ 姓名:____________ 分数:____________一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={1,2,3},B ={x |-1<x <2,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}2.已知全集U =R ,设集合A ={x |x ≥1},集合B ={x |x ≥2},则A ∩(∁U B )=( )A .{x |1≤x ≤2}B .{x |1<x <2}C .{x |1<x ≤2}D .{x |1≤x <2}3.“⎩⎨⎧>>00y x ”是“01>xy ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.命题“关于x的方程ax2-x-2=0在(0,+∞)上有解”的否定是()A.∃x∈(0,+∞),ax2-x-2≠0B.∀x∈(0,+∞),ax2-x-2≠0C.∃x∈(-∞,0),ax2-x-2=0D.∀x∈(-∞,0),ax2-x-2=05.若集合A={-3,-2,-1,0,1,2},集合B={y|y=|x+1|,x∈A},则B=()A.{1,2,3} B.{0,1,2}C.{0,1,2,3} D.{-1,0,1,2,3}6.2019年文汇高中学生运动会,某班62名学生中有一半的学生没有参加比赛,参加比赛的学生中,参加田赛的有16人,参加径赛的有23人,则田赛和径赛都参加的学生人数为()A.7B.8C.10D.127.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}8.设全集U={x||x|<4,且x∈Z},S={-2,1,3},若P⊆U,(∁U P)⊆S,则这样的集合P共有()A.5个B.6个C.7个D.8个二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列命题正确的是()A.存在x<0,x2-2x-3=0B.对于一切实数x<0,都有|x|>xC.∀x∈R,2x=xD .已知a n =2n ,b m =3m ,对于任意n ,m ∈N *,a n ≠b m10.命题“∀1≤x ≤3,x 2-a ≤0”是真命题的一个充分不必要条件是( )A .a ≥9B .a ≥11C .a ≥10D .a ≤1011.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有两个子集,则a 的值是( )A .1B .-1C .0D .212.设P 是一个数集,且至少含有两个元素.若对任意的a ,b ∈P ,都有a +b ,a -b ,ab ,ba ∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是一个数域,有下列说法,其中正确的是( )A .数域必含有0,1两个数B .整数集是数域C .若有理数集Q ⊆M ,则数集M 必为数域D.数域必为无限集三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.命题“∀x∈R,x2-2x+1≥0”的否定是________.14.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N⃘M,则a的取值为________.15.已知p:-1<x<3,q:-1<x<m+1,若q是p的必要不充分条件,则实数m的取值范围是________.16.(一题两空)已知集合A={x|-3<x≤6},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.(1)A∩M=________;(2)若B∪(∁U M)=R,则实数b的取值范围为________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)下列命题中,判断p是q的什么条件,并说明理由.(1)p:|x|=|y|,q:x=y;(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线互相平分,q:四边形是矩形.18.(本小题满分12分)若一个数集中任何一个元素的倒数仍是该数集中的元素,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集;(2)试写出一个含3个元素的可倒数集.19.(本小题满分12分)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求满足下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.20.(本小题满分12分)已知集合A={x|a≤x≤a+3},B={x|x<-6或x>1}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B=B,求a的取值范围.21.(本小题满分12分)已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.22.(本小题满分12分)已知集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,x∈R},若B⊆A,求实数a的取值范围.。
高一数学人教版试卷
高一数学人教版试卷考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知函数,则A.1 B.2 C.3 D.42.已知,则直线与直线的位置关系是()A.平行; B.相交或异面; C.异面; D.平行或异面。
3.设集合,,则()A. B. C. D.4.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是()A.甲的极差是29B.甲的中位数是24C.甲罚球命中率比乙高D.乙的众数是215.设A为圆周上一点,在圆周上等可能地任取一点与A连接,则弦长超过半径倍的概率是()A. B. C. D.6.不等式表示的平面区域在直线的()A.左上方 B.左下方 C.右上方 D.右下方7.下列函数中,最小值是的函数是()8.已知函数是定义在上的偶函数,在上有单调性,且,则下列不等式成立的是()A.B.C.D.9.工人月工资y(元)与劳动生产率x(千元)变化的回归直线方程为,下列判断正确的是()A.劳动生产率为1000元时,月工资为130元B.劳动生产率提高1000元,则月工资提高80元C.劳动生产率提高1000元,则月工资提高130元D.当月工资为210元时,劳动生产率为2000元10.如果点位于第三象限,那么角所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥312.已知为非零实数,且,则下列命题成立的是 ()A. B. C. D.13.的内角的对边分别为,若,,则等于()A. B.2 C. D.14.在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.115.已知函数唯一的零点在区间(1,3),(1,4),(1,5)内,那么下列命题不正确的是A.函数f (x)在区间(1,2)或[2,3)内有零点B.函数f (x)在(3,5)内无零点C.函数f (x)在(2,5)内一定有零点D.函数f (x)在(2,4)内不一定有零点16.直线被圆截得的弦长等于()A. B. C. D.17.函数是A.周期为的奇函数B.周期为的偶函数C.周期为的奇函数D.周期为的偶函数18.已知及所在平面一点,符合条件:,且,则的形状为()A.正B.等腰C.直角D.等腰直角19.下列函数中,既是奇函数,又在定义域内为减函数的是()A .B .C .D .20.已知定义在上上的奇函数满足,且在区间上是增函数,则( )A .B .C .D .二、填空题21.若真函数的图像过点,则________. 22.函数是函数的反函数,则函数的图象过定点 .23.设且,则的最小值为________.24. 函数 的定义域为 . 25.直线与圆交于E 、F 两点,则弦长EF=26.(2014•上海三模)已知数列{a n }的通项公式是,其前n 项和是S n ,对任意的m ,n ∈N *且m <n ,则S n ﹣S m 的最大值是 .27.工人师傅在如图1的一块矩形铁皮的中间画了一条曲线,并沿曲线剪开,将所得的两部分卷成圆柱状,如图2,然后将其对接,可做成一个直角的“拐脖”,如图3.对工人师傅所画的曲线,有如下说法:(1)是一段抛物线; (2)是一段双曲线; (3)是一段正弦曲线; (4)是一段余弦曲线; (5)是一段圆弧. 则正确的说法序号是 . 28.设是从到的映射,下列判断正确的有 .①集合中不同的元素在中的像可以相同;②集合中的一个元素在中可以有不同的像;③集合中可以有元素没有原像.29.如图,在中,已知,是边上的一点,,,,则.30.函数的单调递减区间为三、解答题31.已知集合,集合,若A=B,求的值.32.已知等比数列中,,求其第4项及前5项和.33.(本小题满分12分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是(万元)和(万元),它们与投入资金(万元)的关系有经验公式:。
人教版高一数学(必修1)基础知识试题选及答案
必修 1 高一数学基础知识试题选说明:本试卷分第Ⅰ 卷和第Ⅱ 卷两部分.第Ⅰ卷60分,第Ⅱ 卷60分,共120分,答题时间 90 分钟 .第Ⅰ卷(选择题,共60 分)一、选择题:(每题 5 分,共 60 分,请将所选答案填在括号内)1.已知会合 M{4,7,8}, 且 M 中至多有一个偶数,则这样的会合共有()(A)3 个(B)4个(C) 5个(D)6个2.已知 S={x|x=2n,n∈ Z}, T={x|x=4k ± 1,k∈ Z},则()(A)S T(B) T S(C)S≠ T(D)S=T3.已知会合 P= y | y x22, x R, Q=y | y x 2, x R ,那么PI Q 等()(A)( 0,2),( 1, 1)(B){( 0,2),( 1, 1) } (C){1, 2}(D) y | y24.不等式ax2ax40的解集为 R,则a的取值范围是()(A) 16a0(B) a16(C)16 a0(D) a05. 已知f ( x) =x5(x6),则 f (3) 的值为()f ( x4)( x 6)(A)2(B)5(C)4( D)36.函数y x24x 3, x[0,3] 的值域为()(A)[0,3](B)[-1,0](C)[-1,3](D)[0,2]7.函数 y=(2k+1)x+b 在 (-∞ ,+∞ )上是减函数,则()111(D).k<1(A)k>(B)k<(C)k>22228.若函数 f(x)= x2+2(a-1)x+2 在区间(, 4] 内递减,那么实数 a 的取值范围为()(A)a≤-3(B)a≥-3(C)a≤5(D)a≥ 39.函数y(2a23a2)a x是指数函数,则a的取值范围是()(A)a0, a1(B) a 1(C) a1( D) a1或 a122 10.已知函数 f(x)4a x1的图象恒过定点p,则点 p 的坐标是()(A)( 1, 5 )(B)( 1, 4)( C)( 0,4)( D)( 4, 0)11.函数y log 1 (3x2)的定义域是()2(A)[1,+](B)(32,)(C) [ 32,1](D) ( 32,1]12.设 a,b,c 都是正数,且3a4b 6c,则以下正确的选项是()(A)111(B)221122(D)212 c a b C a b(C) C a b c a b第Ⅱ 卷(非选择题,共60 分)二、填空题:4 分,共 16 分,答案填在横线上)(每题13.已知( x,y)在映照 f 下的象是 (x-y,x+y),则 (3,5)在 f 下的象是,原象是。
高一数学集合练习题及答案(人教版)-百度文库
高一数学集合练习题及答案(人教版)-百度文库一、单选题1.已知集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈,则A B =( ) A .{}5,9,11B .{}5,9,11,17C .{}5,13,17D .{}5,9,13,172.设集合{}14A x x =<<,集合{}2230B x x x =--≤,则A B ⋃=( ) A .[1,4)- B .()1,4- C .(]1,3 D .()1,33.已知集合{}23250A x x x =--<,{}B x x a =>,若A B B ⋃=,则实数a 的取值范围为( )A .5,3⎛⎤-∞ ⎥⎝⎦B .5,3⎛⎫-∞ ⎪⎝⎭C .(],1-∞-D .(),1-∞-4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则U A 所表示的平面区域的面积为( )A .1πBC .1D .π5.已知集合{}24A x x =≤,{}1B y y =≥-,则A B =( ) A .∅ B .[]1,2- C .[)2,-+∞ D .[)1,2- 6.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 7.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8} B .{2,3,6,8} C .{2} D .{2,6,8}8.已知集合{}{}220,1A x x x B x x =+-<=<-,则()U A B =( )A .{}11x x -<<B .{}11x x -≤<C .{}21x x -<<-D .{}12x x -≤<9.已知集合{}24A x x =<,401x B x x ⎧⎫-=≤⎨⎬+⎩⎭,则()R A B ⋂=( ) A .()2,0- B .()2,2- C .()2,1-- D .(]2,1--10.已知集合{2,1,0,1,2}A =--,{}220B x x x =--<,则A B =( ) A .{2,1,0,1}-- B .{1,0,1,2}- C .{0,1} D .{1,0}- 11.已知集合()(){}160M x x x =--<,{}1,2,3,5N =,则MN =( ) A .{}1,2,3,5 B .{}3,5 C .{}2,3,5 D .{}1,3,512.已知集合{}|10A x ax =-=,{}*|14B x x =∈≤<N ,且A B B ⋃=,则实数a 的所有值构成的集合是( )A .11,2⎧⎫⎨⎬⎩⎭B .11,23⎧⎫⎨⎬⎩⎭C .111,,23⎧⎫⎨⎬⎩⎭D .110,1,,23⎧⎫⎨⎬⎩⎭ 13.已知集合A ={1,2,3,4,5},集合B ={1,2},若集合C 满足:B C A ⊆,则集合C 的个数为( )A .6个B .7个C .8个D .9个14.设集合{}{}1,2,20A B x ax ==-=,若B A ⊆,则由实数a 组成的集合为( ) A .{1} B .{2} C .{1,2} D .{0,1,2}15.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( )A .4-B .2-C .2D .4二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.已知(){},21A x y y x ==+,(){},3B x y y x ==+,则A B =___________. 18.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.19.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________. 20.集合A =[1,6],B ={x |y x a -,若A ⊆B ,则实数a 的范围是________________. 21.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 22.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 23.设不等式2220x ax a -++≤的解集为A ,若{}13|A x x ⊆≤≤,则a 的取值范围为________.24.设P 、Q 为两个非空实数集合,定义集合{},,b P Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.25.若集合{}2A x x =<,101B x x ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R 这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值;(2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).27.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.28.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣. (1)求A B ;(2)若A C C =,求实数m 的值取范围.30.为完成一项实地测量任务,夏令营的同学们成立了一支“测绘队”,需要24人参加测量,20人参加计算,16人参加绘图.测绘队的成员中很多同学是多面手,有8人既参加了测量又参加了计算,有6人既参加了测量又参加了绘图,有4人既参加了计算又参加了绘图,另有几人三项工作都参加了.试问这支测绘队至少有多少人?【参考答案】一、单选题1.D【解析】【分析】根据交集的定义计算即可.【详解】因为集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈,所以{5,9,13,17}A B =,故选:D.2.A【解析】【分析】利用集合的并集运算求解.【详解】 解:因为集合{}14A x x =<<,集合{}{}223013B x x x x x =--≤=-≤≤, 所以A B ⋃=[1,4)-,故选:A3.C【解析】【分析】先求出A 集合,再根据集合的包含关系求出a 的值即可【详解】 依题意{}{}253250(35)(1)013A x x x x x x x x ⎧⎫=--<=-+<=-<<⎨⎬⎩⎭,而A B B ⋃=,故A B ⊆,得1a ≤-故选:C4.D【解析】求出原点到直线(系)的距离,即可判断集合A ,从而得到U A ,即可求出所表示的平面区域的面积;【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合,所以(){}22,|1U A x y x y =+<,则U A 所表示的平面区域的面积为π;故选:D5.B【解析】【分析】求出集合A ,利用交集的定义可求得集合A B .【详解】 因为{}{}2422A x x x x =≤=-≤≤,所以[]1,2A B ⋂=-. 故选:B.6.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .7.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.8.B【解析】先化简集合A ,在求集合A 与集合B 补集的交集【详解】220x x +-<()()210x x ⇒+-<21x ⇒-<<所以{}|21A x x =-<<{}|1B x x =<-{}U |1B x x ⇒=≥- 所以(){}U |11AB x x =-≤< 故选:B9.D【解析】【分析】 求出集合A 、B ,利用补集和交集的定义可求得集合()R A B .【详解】 因为{}{}2422A x x x x =<=-<<,{}40141x B x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭, 则{R 1B x x =≤-或}4x >,因此,()(]R 2,1A B =--. 故选:D.10.C【解析】【分析】 根据交集概念求解即可. 【详解】{}{}220=12B x x x x x =--<-<<, 则{}0,1A B =.故选:C11.C【解析】【分析】求出集合M ,利用交集的定义可求得结果. 【详解】()(){}{}16016M x x x x x =--<=<<,因此,{}2,3,5M N =.故选:C.12.D【解析】【分析】根据A B B ⋃=,对a 进行分类讨论,由此求得a 的所有值构成的集合.【详解】{}1,2,3B =,当0a =时,A =∅,满足A B B ⋃=,只有D 选项符合.当0a ≠时,1|A x x a ⎧⎫==⎨⎬⎩⎭, 要使A B B ⋃=,则11a =或12a =或13a =,即1a =或12a =或13a =, 所以实数a 的所有值构成的集合是110,1,,23⎧⎫⎨⎬⎩⎭. 故选:D13.B【解析】【分析】根据集合间的关系写出所有满足条件的集合C 可得出答案.【详解】根据B C A ⊆,集合C 可写成如下形式:{}{}{}{}{}{}{}12312412512341235124512345,,,,,,,,,,,,,,,,,,,,,,, 所以满足条件的集合C 的个数为7个,选项B 正确.故选:B.14.D【解析】【分析】由题设可知集合B 是集合A 的子集,集合B 可能为空集,故需分类讨论【详解】解析:由题意,当=B ∅时,a 的值为0;当{}=1B 时,a 的值为2;当{}=2B 时,a 的值为1,故选:D15.B【解析】【分析】先求出集合,A B ,再根据交集的结果求出a 即可.【详解】 由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭ 又∵{}21A B x x ⋂=-≤≤,∴12a -=, ∴2a =-.故选:B . 二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.(){}2,5【解析】【分析】由方程组可求得交点坐标,由此可得交集.【详解】由213y x y x =+⎧⎨=+⎩得:25x y =⎧⎨=⎩,(){}2,5A B ∴=. 故答案为:(){}2,5.18.2【解析】【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解.【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =. 故答案为:2.19.1,0,1,2【解析】【分析】求出集合A ,利用并集的定义可求得结果.【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-. 故答案为:1,0,1,2.20.(,1]-∞【解析】【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞,因为A =[1,6],且A ⊆B ,所以1a ≤,所以实数a 的范围是(,1]-∞,故答案为:(,1]-∞21.②③⑤【解析】【分析】根据集合与集合的关系,元素与集合的关系确定正确答案.【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误.④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤22.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.23.1115a -<≤【解析】【分析】 根据给定条件按集合A 是否是∅分类讨论,再借助一元二次方程根的情况列式求解作答.【详解】因不等式2220x ax a -++≤的解集为A ,且{}13|A x x ⊆≤≤,则当A =∅时,244(2)0a a ∆=-+<,解得:1a 2-<<,此时满足{}13|A x x ⊆≤≤,即1a 2-<<,当A ≠∅时,不妨令12{|}A x x x x =≤≤(12x x ≤),则一元二次方程2220x ax a -++=在{}|13x x ≤≤上有两个根12,x x ,于是有222Δ44(2)012203232013a a a a a a a ⎧=-+≥⎪-++≥⎪⎨-⋅++≥⎪⎪≤≤⎩,解244(2)0a a -+≥得1a ≤-或2a ≥,解2212203232013a a a a a ⎧-++≥⎪-⋅++≥⎨⎪≤≤⎩得:311513a a a ≤⎧⎪⎪≤⎨⎪≤≤⎪⎩, 则有1125a ≤≤,综合得:1115a -<≤, 所以a 的取值范围为1115a -<≤. 故答案为:1115a -<≤24.3【解析】 【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b a b a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.27.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆;当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥,综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-.28.(1){12}A B x x ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦.29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.44【解析】【分析】借助韦恩图分析可解.【详解】记集合{|A x x =是参加测量的学生},{|B x x =是参加计算的学生}, {|C x x 是参加绘图的学生},则由已知可得如下韦恩图.所以()108864642card A B C x x x x x x x x =++-++++-+-++=+ 已知24x ≤≤,故这支测绘队至少有44人.。
人教版高一数学必修四测试题(含详细答案)
人教版高一数学必修四测试题(含详细答案)高一数学试题(必修4)第一章三角函数一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C的关系是()A.B=A∩C。
B.B∪C=C。
C.AC。
D.A=B=C2.已知$\sin\theta=\frac{1}{2}$,$\theta\in\mathrm{Q}$,则$\cos\theta$等于()A。
$\frac{\sqrt{3}}{2}$。
B。
$-\frac{\sqrt{3}}{2}$。
C。
$\frac{1}{2}$。
D。
$-\frac{1}{2}$3.已知$\sin\alpha=-\frac{2}{\sqrt{5}}$,$\alpha\in\mathrm{III}$,则$\cos\alpha$等于()A。
$-\frac{1}{\sqrt{5}}$。
B。
$\frac{1}{\sqrt{5}}$。
C。
$-\frac{2}{\sqrt{5}}$。
D。
$\frac{2}{\sqrt{5}}$4.下列函数中,最小正周期为$\pi$的偶函数是()A。
$y=\sin2x$。
B。
$y=\cos x$。
C。
$y=\sin2x+\cos2x$。
D。
$y=\cos2x$5.若角$\theta$的终边上有一点$P$,则$\sin\theta$的值是()A。
$\frac{OP}{1}$。
B。
$\frac{1}{OP}$。
C。
$\frac{OA}{1}$。
D。
$\frac{1}{OA}$6.要得到函数$y=\cos x$的图象,只需将$y=\sin x$的图象()A。
向左平移$\frac{\pi}{2}$个单位。
B。
向右平移$\frac{\pi}{2}$个单位C。
向左平移$\pi$个单位。
D。
向右平移$\pi$个单位7.若函数$y=f(x)$的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿$x$轴向左平移1个单位,沿$y$轴向下平移1个单位,得到函数$y=\sin x$的图象,则$y=f(x)$是()A。
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)人教版高一数学必修一第五单元《三角函数》单元练题(含答案)一、单选题1.已知函数$f(x)=\cos 2x+3\sin 2x+1$,则下列判断错误的是()A。
$f(x)$的最小正周期为$\pi$B。
$f(x)$的值域为$[-1,3]$C。
$f(x)$的图象关于直线$x=\dfrac{\pi}{6}$对称D。
$f(x)$的图象关于点$\left(-\dfrac{\pi}{4},0\right)$对称2.已知函数$y=\sin(\omega x+\dfrac{\pi}{2})$在区间$\left[0,\dfrac{\pi}{3}\right]$上单调递增,则$\omega$的取值范围是A。
$\left[0,\dfrac{1}{2}\right]$B。
$\left[\dfrac{1}{2},1\right]$C。
$\left[\dfrac{1}{3},2\right]$D。
$\left[\dfrac{2}{3},3\right]$3.若角$\alpha$的终边过点$P(2,2)$,则$\sin\alpha=$()A。
1B。
-1C。
$\dfrac{1}{\sqrt{10}}$D。
$-\dfrac{1}{\sqrt{10}}$4.若$x$是三角形的最小内角,则函数$y=\sin x+\cos x+\sin x\cos x$的值域是()A。
$[-1,+\infty)$B。
$[1,2]$C。
$[0,2]$D。
$\left[1,\dfrac{2+\sqrt{2}}{2}\right]$5.下列说法正确的个数是()①大于等于,小于等于90的角是锐角;②钝角一定大于第一象限的角;③第二象限的角一定大于第一象限的角;④始边与终边重合的角的度数为$360^\circ$。
A。
1B。
2C。
3D。
46.角$\alpha$的终边经过点$(2,-1)$,则$2\sin\alpha+3\cos\alpha$的值为()A。
人教版高一数学必修2测试题
高一数学必修2测试题一、 选择题(12 X 5分=60分)1、 下列命题为真命题的是( )A. 平行于同一平面的两条直线平行; C. 垂直于同一平面的两条直线平行; D.2、 下列命题中错误的是:()A. 如果a 丄B ,那么a 内一疋存在直线平行于平面 B ;B. 如果a 丄B ,那么a 内所有直线都垂直于平面 3;C. 如果平面a 不垂直平面3,那么a 内-D. 如果a 丄丫,3丄Y,aG I ,那么I 丄丫.3、 右图的正方体 ABCD-A ' B ' C ' D ' 中,异面直线AA '与BC 所成的角是(A. 300B.450C. 6004、 右图的正方体 ABCD- A ' B ' C ' D '中, 二面角D ' -AB-D 的大小是()A. 300B.450C. 60° B.与某一平面成等角的两条直线平行;D.垂直于同一直线的两条直线平行。
D. 90°D. 90°5、直线5x-2y-10=0 在x轴上的截距为a,在y 轴上的截距为b,则()6、直线2x-y=7 与直线3x+2y-7=0 的交点是(A (3,-1)B (-1,3)C (-3,-1)D (3,1)7、过点P(4,-1)且与直线3x-4y+6=0 垂直的直线方程是(9、 已知一个铜质的五棱柱的底面积为 16cm 2,高为4cm ,现将它熔化后铸成一 个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( )4A. 2cm;B.—cm;C.4cm;D.8cm 。
310、 圆x 2+y 2-4x-2y-5=0 的圆心坐标是:()A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).11、 直线3x+4y-13=0 与圆(x 2)2 (y 3)2 1的位置关系是:() A.相离; B.相交; C.相切; D.无法判定.12、 圆 C 仁(x 2)2 (y 2)2 1 与圆 C 2:(x 2)2 (y 5)2 16 的位置关系是( )A.a=2,b=5;B.a=2,b=5;C.a= 2 ,b=5;D.a= 2,b= 5.A 4x+3y-13=0 C 3x-4y-16=0B 4x-3y-19=0 D 3x+4y-8=08、正方体的全面积为 a,它的顶点都在球面上,则这个球的表面积是:A. B.2C. 2 aD. 3 a .A 、外离B 相交C 内切D 外切、填空题(5 X5=25 )13、底面直径和高都是4cm的圆柱的侧面积为_____________________ cm2。
人教版本高中高一数学必修一第一章练习试题与包括答案
集合与函数根底测试一、选择题 ( 共 12 小题,每题 5 分,四个选项中只有一个符合要求 ).函数 y == x2- x + 10在区间〔 , 〕上是〔〕16 2 4A .递减函数B .递增函数C .先递减再递增D .选递增再递减.x y 22.方程组 { x y 0 的解构成的集合是〔〕A . {( 1,1)}B . {1,1}C .〔1,1〕D . {1}3.集合 A={ a ,b ,c}, 以下可以作为集合 A 的子集的是〔〕A. aB. {a ,c} C. {a , eD.{a ,b ,c ,d}} 4.以下图形中,表示 MN 的是〔〕MNNM M NMNABCD5.以下表述正确的选项是〔〕A. { 0}B.{ 0}C.{ 0}D.{ 0}6、设集合 A ={x|x 参加自由泳的运发动 } ,B ={x|x 参加蛙泳的运发动 } ,对于“既参 加自由泳又参加蛙泳的运发动〞用集合运算表示为 ( ) ∩B B ∪B B7. 集合 A={x x2k, k Z } ,B={ x x2k 1, k Z } ,C={ x x 4k1, kZ } 又 aA,bB, 那么有〔 〕A. 〔 a+b 〕 AB. (a+b) BC.(a+b) CD. (a+b)A 、B 、C 任一个〕8.函数 f 〔x 〕=- x 2+ 〔 a - 〕 x +2 在〔-∞, 〕上是增函数,那么 a 的范围是〔a ≥ 2 1 4.a ≤-A . 5.a ≥3.a ≤35B CD9. 满足条件 {1,2,3} M {1,2,3,4,5,6} 的集合 M 的个数是〔〕A. 8B. 7C. 6D. 510. 全集 U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 } , A= {3 ,4 ,5 } , B= {1 ,3 ,6 } ,那么集 合 { 2 ,7 ,8} 是 〔 〕A. A BB. A BC. C U A C U BD. C U A C U B11. 以下函数中为偶函数的是〔〕A . yxB . y xC . y x 2D . y x 3 1 12. 如果集合 A={ x | ax 2 + 2x + 1=0} 中只有一个元素,那么 a 的值是〔 〕 A .0 B . 0 或 1 C .1 D .不能确定 二、填空题 ( 共 4 小题,每题 4 分,把答案填在题中横线上 ).函数 f 〔x 〕= × - | x |的单调减区间是.132 2 3___________14.函数 y =1的单调区间为 ___________.x +115. 含 有 三 个 实 数 的 集 合 既 可 表 示 成 { a, b,1} , 又 可 表 示 成 { a 2 , ab,0}, 那么 a2 0 0 3b2 0 0 4. a16. 已知集合U{ x | 3 x 3} , M { x |1x 1} ,C U N { x | 0 x 2} 那么集合N, M (C U N ), M N.三、解答题 ( 共 4 小题,共 44 分〕17. 集合A{ x x2 4 0} ,集合 B { x ax20} ,假设B A ,求实数a的取值集合.18.设 f 〔x〕是定义在 R上的增函数, f 〔 xy〕= f 〔x〕+ f 〔 y〕,f 〔3〕= 1,求解不等式 f 〔x〕+ f 〔x-2〕> 1.19.函数 f 〔x〕是奇函数,且当 x> 0 时, f 〔x〕= x3+2x2— 1,求 f 〔x〕在 R 上的表达式.20.二次函数 f (x)x 22(m1)x2m m 2的图象关于y 轴对称,写出函数的解析表达式,并求出函数 f (x)的单调递增区间.必修 1 第一章 集合测试集合测试参考答案:一、 1~5 CABCB6~10ABACC11~12cB二、 13 [ 0, 3],〔-∞,- 3 〕4414 〔-∞,- 1〕,〔- 1,+∞〕15 -1 16N { x | 3 x 0 或 2x3} ;M(C U N ) { x | 0 x 1} ;MN { x | 3 x 1或 2 x 3} .三、17 .{0.-1,1} ;18.解:由条件可得 f 〔 x 〕+ f 〔x - 〕= f [x 〔x - 〕],2 2 1 = f 〔 〕.3所以 f [x 〔x -2〕]>f 〔3〕,又 f 〔x 〕是定义在 R 上的增函数,所以有 x 〔x -2〕> 3,可解得 x >3 或 x <- 1.答案: x >3 或 x <- 1.19..解析:此题主要是培养学生理解概念的能力.f 〔 x 〕= x 3+2x 2 -1.因 f 〔 x 〕为奇函数,∴ f 〔0〕= -1 .当 x <0 时,- x >0,f 〔- x 〕=〔- x 〕3+ 2〔- x 〕2- 1=- x 3+2x 2-1,∴f 〔x 〕= x 3-2x 2+1.20.二次函数f ( x)x 22(m1) x2mm 2 的图象关于 y 轴对称,∴ m1,那么f (x)x 21,函数f ( x)的单调递增区间为,0 ..。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
人教版高一数学必修 测试题及答案全套
A. 9 2
B. 7 2
C. 5 2
D. 3 2
6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长
分别是 9 和15 ,则这个棱柱的侧面积是( )
A.130
B.140 C.150 D.160
二、填空题
1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,
人教版高一数学必修 2 测试题及答案全套
[基础训练 A 组]
一、选择题
1.有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
主视图
左视图
2.棱长都是1的三棱锥的表面积为( )
A. 3
B. 2 3 பைடு நூலகம். 3 3
D. 4 3
俯视图
3.长方体的一个顶点上三条棱长分别是 3, 4, 5 ,且它的8 个顶点都在
同一球面上,则这个球的表面积是( )
A. 25 B. 50 C.125 D.都不对
4.正方体的内切球和外接球的半径之比为( )
A. 3 :1 B. 3 : 2 C. 2 : 3 D. 3 : 3
5.在△ABC 中, AB 2, BC 1.5, ABC 1200 ,若使绕直线 BC 旋转一周,
则所形成的几何体的体积是( )
顶点最少的一个棱台有 ________条侧棱。
1
PS:双击获取文档。Ctrl+A,Ctrl+C,然后粘贴到word即可。 未能直接提供word版,抱歉。
人教版高一年级数学题及答案
人教版高一年级数学题及答案【一】第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},则(A∩B)∪C等于()A.{0,1,2,6,8}B.{3,7,8}C.{1,3,7,8}D.{1,3,6,7,8}[答案]C[解析]A∩B={1,3},(A∩B)∪C={1,3,7,8},故选C.2.(09•陕西文)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)x2-x1<0,则()A.f(3)C.f(-2)[答案]A[解析]若x2-x1>0,则f(x2)-f(x1)<0,即f(x2)∴f(x)在[0,+∞)上是减函数,∵3>2>1,∴f(3)又f(x)是偶函数,∴f(-2)=f(2),∴f(3)3.已知f(x),g(x)对应值如表.x01-1f(x)10-1x01-1g(x)-101则f(g(1))的值为()A.-1B.0C.1D.不存在[答案]C[解析]∵g(1)=0,f(0)=1,∴f(g(1))=1.4.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x+2B.3x+1C.3x-1D.3x+4[答案]C[解析]设x+1=t,则x=t-1,∴f(t)=3(t-1)+2=3t-1,∴f(x)=3x-1.5.已知f(x)=2x-1(x≥2)-x2+3x(x<2),则f(-1)+f(4)的值为()A.-7B.3C.-8D.4[答案]B[解析]f(4)=2×4-1=7,f(-1)=-(-1)2+3×(-1)=-4,∴f(4)+f(-1)=3,故选B.6.f(x)=-x2+mx在(-∞,1]上是增函数,则m的取值范围是()A.{2}B.(-∞,2]C.[2,+∞)D.(-∞,1][答案]C[解析]f(x)=-(x-m2)2+m24的增区间为(-∞,m2],由条件知m2≥1,∴m≥2,故选C.7.定义集合A、B的运算A*B={x|x∈A,或x∈B,且x∉A∩B},则(A*B)*A等于()A.A∩BB.A∪BC.AD.B[答案]D[解析]A*B的本质就是集合A与B的并集中除去它们的公共元素后,剩余元素组成的集合.因此(A*B)*A是图中阴影部分与A的并集,除去A中阴影部分后剩余部分即B,故选D.[点评]可取特殊集合求解.如取A={1,2,3},B={1,5},则A*B={2,3,5},(A*B)*A={1,5}=B.8.(广东梅县东山中学2009~2010高一期末)定义两种运算:a b=a2-b2,a⊗b=(a-b)2,则函数f(x)=为()A.奇函数B.偶函数C.奇函数且为偶函数D.非奇函数且非偶函数[答案]A[解析]由运算与⊗的定义知,f(x)=4-x2(x-2)2-2,∵4-x2≥0,∴-2≤x≤2,∴f(x)=4-x2(2-x)-2=-4-x2x,∴f(x)的定义域为{x|-2≤x<0或0又f(-x)=-f(x),∴f(x)为奇函数.9.(08•天津文)已知函数f(x)=x+2,x≤0,-x+2,x>0,则不等式f(x)≥x2的解集为()A.[-1,1]B.[-2,2]C.[-2,1]D.[-1,2][答案]A[解析]解法1:当x=2时,f(x)=0,f(x)≥x2不成立,排除B、D;当x=-2时,f(x)=0,也不满足f(x)≥x2,排除C,故选A.解法2:不等式化为x≤0x+2≥x2或x>0-x+2≥x2,解之得,-1≤x≤0或010.调查了某校高一一班的50名学生参加课外活动小组的情况,有32人参加了数学兴趣小组,有27人参加了英语兴趣小组,对于既参加数学兴趣小组,又参加英语兴趣小组的人数统计中,下列说法正确的是()A.最多32人B.最多13人C.最少27人D.最少9人[答案]D[解析]∵27+32-50=9,故两项兴趣小组都参加的至多有27人,至少有9人.11.设函数f(x)(x∈R)为奇函数,f(1)=12,f(x+2)=f(x)+f(2),则f(5)=()A.0B.1C.52D.5[答案]C[解析]f(1)=f(-1+2)=f(-1)+f(2)=12,又f(-1)=-f(1)=-12,∴f(2)=1,∴f(5)=f(3)+f(2)=f(1)+2f(2)=52.12.已知f(x)=3-2|x|,g(x)=x2-2x,F(x)=g(x),若f(x)≥g(x),f(x),若f(x)A.最大值为3,最小值-1B.最大值为7-27,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值[答案]B[解析]作出F(x)的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选B.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.(2010•江苏,1)设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.[答案]-1[解析]∵A∩B={3},∴3∈B,∵a2+4≥4,∴a+2=3,∴a=-1.14.已知函数y=f(n)满足f(n)=2(n=1)3f(n-1)(n≥2),则f(3)=________.[答案]18[解析]由条件知,f(1)=2,f(2)=3f(1)=6,f(3)=3f(2)=18.15.已知函数f(x)=2-ax(a≠0)在区间[0,1]上是减函数,则实数a的取值范围是________.[答案](0,2][解析]a<0时,f(x)在定义域上是增函数,不合题意,∴a>0.由2-ax≥0得,x≤2a,∴f(x)在(-∞,2a]上是减函数,由条件2a≥1,∴016.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________.[答案]3800元[解析]由于4000×11%=440>420,设稿费x元,x<4000,则(x-800)×14%=420,∴x=3800(元).三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设集合A={x|a≤x≤a+3},集合B={x|x<�-1或x>5},分别就下列条件求实数a的取值范围:(1)A∩B≠∅,(2)A∩B=A.[解析](1)因为A∩B≠∅,所以a<�-1或a+3>5,即a<�-1或a>2.(2)因为A∩B=A,所以A⊆B,所以a>5或a+3<�-1,即a>5或a<�-4.18.(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.[解析](1)∵f(x)为二次函数且f(0)=f(2),∴对称轴为x=1.又∵f(x)最小值为1,∴可设f(x)=a(x-1)2+1(a>0)∵f(0)=3,∴a=2,∴f(x)=2(x-1)2+1,即f(x)=2x2-4x+3.(2)由条件知2a<119.(本题满分12分)图中给出了奇函数f(x)的局部图象,已知f(x)的定义域为[-5,5],试补全其图象,并比较f(1)与f(3)的大小.[解析]奇函数的图象关于原点对称,可画出其图象如图.显见f(3)>f(1).20.(本题满分12分)一块形状为直角三角形的铁皮,直角边长分别为40cm 与60cm现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?[解析]如图,剪出的矩形为CDEF,设CD=x,CF=y,则AF=40-y.∵△AFE∽△ACB.∴AFAC=FEBC即∴40-y40=x60∴y=40-23x.剩下的残料面积为:S=12×60×40-x•y=23x2-40x+1200=23(x-30)2+600∵0∴在边长60cm的直角边CB上截CD=30cm,在边长为40cm的直角边AC上截CF=20cm时,能使所剩残料最少.21.(本题满分12分)(1)若a<0,讨论函数f(x)=x+ax,在其定义域上的单调性;(2)若a>0,判断并证明f(x)=x+ax在(0,a]上的单调性.[解析](1)∵a<0,∴y=ax在(-∞,0)和(0,+∞)上都是增函数,又y=x为增函数,∴f(x)=x+ax在(-∞,0)和(0,+∞)上都是增函数.(2)f(x)=x+ax在(0,a]上单调减,设0=(x1+ax1)-(x2+ax2)=(x1-x2)+a(x2-x1)x1x2=(x1-x2)(1-ax1x2)>0,∴f(x1)>f(x2),∴f(x)在(0,a]上单调减.22.(本题满分14分)设函数f(x)=|x-a|,g(x)=ax.(1)当a=2时,解关于x的不等式f(x)(2)记F(x)=f(x)-g(x),求函数F(x)在(0,a]上的最小值(a>0).[解析](1)|x-2|<2x,则x≥2,x-2<2x.或x<2,2-x<2x.∴x≥2或2323.(2)F(x)=|x-a|-ax,∵0∴F(x)=-(a+1)x+a.∵-(a+1)<0,∴函数F(x)在(0,a]上是单调减函数,∴当x=a时,函数F(x)取得最小值为-a2.【二】第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
最新人教版高一数学上学期期末考试试题(附答案)
最新人教版高一数学上学期期末考试试题(附答案)最新人教版高一数学上学期期末考试试题(附答案)一、选择题(每题3分,共36分)1.已知集合$A=\{2,4,6\}$。
且当$a\in A$ 时,$6-a\in A$。
则 $a$ 为()A。
2 B。
4 C。
3 D。
12.$\sin(-1050)$ 的值为()A。
$\dfrac{3}{3}$ B。
$\dfrac{3}{2}$ C。
$0$ D。
$2$ 或$4$3.下列函数中,不满足 $f(2x)=2f(x)$ 的是()A。
$f(x)=|x|$ B。
$f(x)=x+1$ C。
$f(x)=-x$ D。
$f(x)=x-|x|$4.函数 $f(x)=|\cos x|$ 的最小正周期为()A。
$2\pi$ B。
$\pi$ C。
$3\pi$ D。
均不对5.函数 $y=2\sin x-2$ 的定义域为()A。
$[2k\pi,2k\pi+\dfrac{\pi}{4}]$,$k\in Z$ B。
$[2k\pi+\dfrac{\pi}{4},2k\pi+\dfrac{\pi}{2}]$,$k\in Z$C。
$[2k\pi+\dfrac{3\pi}{4},2k\pi+\pi]$,$k\in Z$ D。
$[2k\pi,2k\pi+3\pi]$,$k\in Z$6.函数 $f(x)=ax^2+bx+c$ 满足 $f(1)>0$,$f(2)<0$,则$f(x)$ 在 $(1,2)$ 上的零点()A。
至多有一个 B。
有1个或2个 C。
有且仅有一个 D。
一个也没有7.已知向量 $\bold{a}=(1,2,3)$,$|\bold{b}|=1$,且两向量夹 $120^\circ$,则 $|\bold{a}-\bold{b}|=$()A。
$\sqrt{3}$ B。
$3$ C。
$5$ D。
$7$8.将函数 $y=\sin(x+\phi)$,$(0<\phi<\pi)$ 的图像所有点的纵坐标不变,横坐标伸长到原来的2倍,再向左平移$\dfrac{1}{2}$ 个单位得到一个奇函数的图像,则$\phi=$()A。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学第一章《函数》测验(9月23日)
时间:40分钟 满分:100分
班级 姓名 座号
一、判断题:每小题5分,共20分.下列结论中,正确的在后面的括号中打“∨”,错误的在后面的括号中打“╳” .
1. 已知A={}Z k k x x ∈-=,23|,则5∈A. ( ╳ )
2. 函数)(x f y =的图象有可能是如图所示的曲线. (╳ )
3.对于定义域为R 的奇函数)(x f ,一定有0)2()2(=+-f f 成立. (∨ )
4.函数x
x f 1)(=在),0()0,(+∞-∞Y 上为减函数. ( ╳ ) 二、选择题.每小题5分.每题都有且只有一个正确选项.
5.已知集合A ≠Φ,且A{2,3,4},则这样的集合A 共有( )个 ( B ) A.5 B.6 C.7 D.8
6
.函数03()()2
f x x =+-的定义域是 ( D )
A . 3(2,)2-
B . (2,)-+∞
C .3(,)2+∞
D . 33(2,)(,)22
-⋃+∞
7.函数{}()1,1,1,2f x x x =+∈-的值域是 ( C ) A.0,2,3 B.30≤≤y C.}3,2,0{ D.]3,0[
8.由函数])5,0[(4)(2∈-=x x x x f 的最大值与最小值可以得其值域为 ( C )
A .),4[+∞-
B . ]5,0[
C .]5,4[-
D .]0,4[-
9.函数()f x 是定义域为R 的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 的表达式为 (B )
A .1+-x
B .1--x
C .1+x
D . 1-x
10.定义在R 上的偶函数()f x ,在(0,)+∞上是增函数,则 ( C )
A . (3)(4)()f f f π<-<-
B .()(4)(3)f f f π-<-<
C .(3)()(4)f f f π<-<-
D .(4)()(3)f f f π-<-<
三、 填空题.每小题5分.
11.已知函数=)(x f 21,0
2,0
x x x x +≤->,若17)(=x f ,则x = - 4 12.设},3|{2R x x y y M ∈-==,{}
R x x y y N ∈+==,3|2,则=N M I {3}
13.函数)0(1)(≠-=x x
ax x f 是奇函数,则实数a 的值为 0 . 四、 解答题.写出必要的文字说明.
14.(10分)已知全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A ,C U B , (C U A)∩(C U B),C U (A ∪B),并指出其中相等的集合.
14. 解: C U A={x |-1≤x ≤3};C U B={x |-5≤x <-1或1≤x ≤3};
(C U A)∩(C U B)= {x |1≤x ≤3};
C U (A ∪B)= {x |1≤x ≤3}.
相等集合有(C U A)∩(C U B)= C U (A ∪B)
15.(12分)用单调性定义证明:函数2
)1(1)(-=x x f 在)1,(-∞上为增函数. 证明:在)1,(-∞上任取1x 、2x ,且1x <2x , 而22212122222121)
1()1()1()1()1(1)1(1)()(-----=---=-x x x x x x x f x f 2
2211212)1()1())(2(----+=x x x x x x 因为121<<x x ,可知0221<-+x x ,012>-x x ,0)1(21>-x ,0)1(2
2>-x , 则0)()(21<-x f x f
所以)()(21x f x f <
所以函数在)1,(-∞上为增函数.
普通班16.已知函数)(1
1)(R x x x x f ∈-++=.
(13分) (1)证明)(x f 函数是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数,然后画出函数图象;
(3)写出函数的值域.
(1))(1111)(x f x x x x x f =++-=--++-=-
所以)(x f 是偶函数;
(2)⎪⎩
⎪⎨⎧>≤≤--<-=)1(2)11(2)1(2)(x x x x x x f
(3)函数的值域为:),2[+∞
实验班:16.当x 在实数集R 上任取值时,函数)(x f 相应的值等于x 2、2 、x 2-三个之中最大的那个值.
(1) 求)0(f 与)3(f ;(2分)
(2) 画出)(x f 的图象,写出)(x f 的解析式;(6分)
(3) 证明)(x f 是偶函数;(3分)
(4) 写出)(x f 的值域.(2分)
(1)2)0(=f ,6)3(=f .
(2)⎪⎩
⎪⎨⎧>≤≤--<-=)1(2)11(2)1(2)(x x x x x x f
(3)当1>x 时,1-<-x ,所以x x f x x x f 2)(,2)(2)(==--=-,有)()(x f x f =-; 当1-<x 时,1>-x ,所以x x f x x x f 2)(,2)(2)(-=-=-=-,有)()(x f x f =-; 当11≤≤-x 时,)(2)(x f x f ==-.
综上所述,对定义域中任意一个自变量x 都有)()(x f x f =-成立.
所以)(x f 是偶函数.
(4)函数的值域为:),2[+∞。