高等数学(第七版上册)同济大学 习题1.8答案(函数的连续性与间断点)
高等数学同济第七版经典例题(上册)
高等数学同济第七版经典例题(上册)2017 高等数学I (上) 课本题目第一章函数与极限1.1 理解集合与函数概念掌握函数表示法、几个特性与反函数如课本P5 例6 至例9 P11 例11 P16 第5 题至第10 题P17 第13 题1.2 能够建立应用问题的函数关系、掌握基本初等函数和初等函数如课本P17 第14 题P71 第7 题1.3 理解极限概念、函数左极限与右极限概念及函数极限存在与左极限、右极限关系如课本P23 例3 P26 第5 题至第8 题P30 例6 P33 第1 题至第3 题P71 第2 题P66 第6 题P72 第10 题1.4 理解无穷小量、无穷大量概念掌握无穷小量比较方法会用等价无穷小量求极限如课本P38 第6 题P55 例3 至例5 P55 第5 题P72 第9 题1.5 掌握极限性质及四则运算法则、会利用俩极限存在准则求极限会利用两个重要极限求极限如课本P42 例3 至例8 P45 第1 题至第3 题P48 例1 至例3 P51 例4P52 第1、2、4 题P72 第12 题1.6 理解函数连续性概念(含左连续与右连续) 会利用连续性求极限和判别函数间断点类型如课本P59 例1 至例5 P61 第1 题至第4 题P64 例5 至例8 P66 第3、4 题P71 第3 题第(2) 小题P72 第11 题1.7 理解闭区间上连续函数性质(有界性、最值定理、介值定理、零点定理) 并会应用这些性质如课本P68 例1 P70 第1 题至第5 题P72 第13 题1.8 了解连续函数性质和初等函数连续性第二章导数与微分2.1 掌握定义法求函数导数及左右导数、理解导数定义与几何意义如课本P77—P79 例2 至例7 P83—P84 第5 题至第9 题P123 第3、5、6 题2.2 理解函数可导性与连续性关系掌握判别函数在一点处是否可导或连续方法如课本P81—P82 例9 至例11 P84 第16 题至第19 题P123 第7 题2.3 掌握求平面曲线在一点处切线与法线方程方法了解导数物理意义会用导数描述常见物理量如课本P81 例8、例9 P84 第13 题至第15 题和第20 题2.4 掌握基本初等函数导数公式、四则运算法则、反函数导数、复合函数求导法则和对数求导法如课本P85 定理证明P86—P93 例1 至例15 P92 所有公式P94 第5 题至第11 题P95 第13 题和第14 题P123第8 题P103 例5 和例62.5 会求分段函数的导数掌握复合函数与隐函数及参数方程求导数一阶及二阶导数的方法如课本P101—P103 例1 至例4 P106—P107 例7 至例9 P109 第1 题至第8 题P123 第9 题P124 第11 题至第13 题2.6 了解高阶导数的概念会求简单函数的高阶导数如课本P97—P99 例1 至例8 P100 第1、2、3、10 题2.7 理解微分概念、导数与微分关系会求函数微分了解微分四则运算法则和一阶微分形式不变性如课本P115 例3 至例6 P121 第3、4 题but it requires a very fine nature to sympathize with a friend's success.第三章微分中值定理与导数的应用3.1 掌握用洛必达法则求各种未定式极限的方法如课本P134—P136 例1 至例10 P137 第1 题至第4 题P182 第10 题3.2 掌握函数极值和最值的求法及实际问题最大和最小值的求法、理解函数极值的概念如课本P155—P157 例1 至例4 P160 例7 P161 第1 题至第12 题P183 第14 题3.3 掌握用导数判断函数单调性和曲线凹凸性会求曲线的拐点如课本P145—P150 例1 至例11 P150—P152 第1 题至第6 题第9、10、13、14、15 题P182 第11 题至第13 题3.4 掌握曲线水平渐近线和垂直渐近线的求法如课本P38 第8 题P166 例33.5 理解并会用费马引理、罗尔定理和拉格朗日中值定理了解并会用柯西中值定理如课本P129 例子P132 第1 题至第12 题P182 第2 题第(1) 小题和第5、6 题3.6 理解并会用泰勒中值定理和麦克劳林公式知道简单函数的展开式如课本P143 例3 P143 第10 题3.7 了解曲率、曲率圆与曲率半径的概念会计算曲线的曲率和曲率半径如课本P172 例1 P176 第1 题至第4 题第四章不定积分4.1 理解原函数和不定积分的概念如课本P193 第7 题4.2 掌握不定积分基本积分公式、不定积分性质、第一换元积分法、第二换元积分法和分部积分法如课本P185—P191 例1 至例15 P192 第2 题P194—P206 例1 至例26P207 第2 题P209—P212 例1 至例9 P212 习题4—3 P222 总习题四第4 题4.3 会求简单有理函数、三角函数有理式和简单无理函数的积分如课本P214—P217 例1 至例8 P218 第1 题至第24 题第五章定积分5.1 理解定积分概念和几何意义掌握可积充分条件、定积分性质及定积分中值定理如课本P236 第3、4 题P228 例1 P271 第4 题5.2 理解积分上限函数和原函数存在定理会求变限积分函数导数如课本P243 例7、例8 P244 第1 题至第7 题P245 第11 题至第16 题P273 第13、14 题5.3 掌握牛顿—莱布尼兹公式和定积分的换元积分和分部积分法如课本P241 例1 至例4 P244 第8 题P247—P253 例1 至例12 P254 第1 题P255 第7 题P272 第11 题5.4 理解无穷限和无界函数广义积分的收敛与发散会计算广义积分如课本P258 例1 至例3 P260 例4 至例7 P262 第1 题和第4 题but it requires a very fine nature to sympathize with a friend's success.第六章定积分的应用6.1 掌握定积分元素法原理和直角坐标系和极坐标系下平面图形面积如课本P276—P279 例1 至例5 P286第1 题至第11 题6.2 掌握曲线弧长的求法、旋转体体积求法和已知横截面面积立体体积的求法如课本P81—P286 例6 至例13 P287—P289 第12 题至第30 题6.3 掌握利用定积分求变力沿直线所作的功和水压力如课本P290—P292 例1 至例4 P293—P294 第1 题至第10 题P296 第11 题至第12 题第七章微分方程(前五节)7.1 掌握可分离变量的微分方程及一阶线性微分方程的解法如课本P304 例1 P308 第1 题和第2 题P316 例1 P320 第1 题和第2 题7.2 会解齐次微分方程会用简单的变量代换解某些微分方程如课本P309 例1 P314第1 题和第2 题P318 例3 P321 第7 题7.3 会用降阶法求解三类可降阶的高阶微分方程如课本P322 例1 P323 例3 P326 例5 P329 第1 题和第2 题7.4 理解微分方程及其阶、特解、通解及初始条件等相关概念如课本P297 例1 和例2 P301 第1 题至第4 题but it requires a very fine nature to sympathize with a friend's success.。
高等数学同济第七版上册课后习题答案
习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±查看全部文档,请关注微信公众号:高校课后习题即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。
高等数学第七版教材答案详解
高等数学第七版教材答案详解1. 课后习题答案1.1 第一章:函数与极限1.1.1 习题1解答1.1.2 习题2解答...1.2 第二章:导数与微分1.2.1 习题1解答1.2.2 习题2解答...1.3 第三章:微分中值定理与导数的应用1.3.1 习题1解答1.3.2 习题2解答...2. 课后思考题答案2.1 第一章:函数与极限2.1.1 思考题1解答2.1.2 思考题2解答...2.2 第二章:导数与微分2.2.1 思考题1解答2.2.2 思考题2解答...2.3 第三章:微分中值定理与导数的应用2.3.1 思考题1解答2.3.2 思考题2解答...3. 课后习题详解3.1 第一章:函数与极限3.1.1 习题1详解3.1.2 习题2详解...3.2 第二章:导数与微分3.2.1 习题1详解3.2.2 习题2详解...3.3 第三章:微分中值定理与导数的应用3.3.1 习题1详解3.3.2 习题2详解...在这篇文章中,我将给出《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
为了方便阅读,我将按章节划分答案,并提供习题和思考题的解答。
如果你在学习过程中遇到了困惑,希望这些答案能够帮助你更好地理解相关的数学概念和解题方法。
首先,我将给出每章节的课后习题答案。
在习题解答中,我将详细解释每个题目的解题思路和步骤,并给出最终答案。
你可以根据自己的需要,选择性地查看想要解答的习题。
接下来是课后思考题答案的解析。
这些思考题往往比较有挑战性,需要一定的思考和推导。
我将为每个思考题提供解答,希望能够帮助你在思考和解决问题时找到正确的方向。
最后,我将给出课后习题的详细解析。
在这一部分中,我将逐题逐题地分析解题思路,并给出详细的步骤和推导过程。
通过仔细研究这些解析,你可以更好地理解每个题目的解法,并且提高自己的解题能力。
总之,在这篇文章中,我将为你提供《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
高等数学同济大学第七版上册答案
高等数学同济大学第七版上册答案题型:选择题1. 下列哪个函数是奇函数?A. y=x^2B. y=2x-1C. y=|x|D. y=\sin x答案:C2. 已知函数f(x)在区间[a,b]内单调递增,那么在以下哪个区间内f^{-1}(x)单调递减?A. [f(a),f(b)]B. [a,b]C. [f(b),f(a)]D. (-\infty,+\infty)答案:A3. 设\alpha为第二象限的角,则\cos\alpha等于A. -√2/2B. √2/2C. -√3/2D. -√6/2答案:B4. 若y=\log_3{(x+√1+x^2)},则(1/y)等于A. 3√1+x^2B. \dfrac{3x}{√1+x^2}C. \dfrac{x}{√1+x^2}D. \dfrac{√1+x^2}{x}答案:B5. 函数f(x)=(1/2)(2x-1)\ln{(x+1)}在(0,+\infty)有单峰。
对于f(x)的单峰值点x_0,下列说法正确的是?A. f'(x_0)>0,且f''(x_0)>0B. f'(x_0)<0,且f''(x_0)<0C. f'(x_0)>0,且f''(x_0)<0D. f'(x_0)<0,且f''(x_0)>0答案:C题型:填空题6. 已知f(x)=x^3-3x^2+bx+c在x=1处取极小值-2,则b=____},c=____}。
答案:b=-3,c=0。
7. 设a,b均为正数,若a\ln{3}+b\ln{5}=0,则\log_{15}{√a}+\log_{45}{√b}=____}。
答案:0。
8. 设函数f(x)具有二阶导数,f(0)=0,f'(0)=1,f''(0)=-2,则f(x)+f(-x)的极小值为____}。
高等数学同济第七版上册课后习题答案
习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。
同济大学《高等数学》第七版上、下册答案(详解),DOC
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.
高数高等数学1.8函数的连续性与间断点
2
cos
2
x x y 2 sin cos( x ) 2 2
x 0, sin x x
x
x 0
0
即函数 y sin x在(, )内连续 .
同理可证 y cos x在(, )内连续 .
x 2 , x 0, 例3 讨论函数 f ( x ) 在 x 0处的 x 2, x 0, 连续性.
下列情形之一,y f ( x)在 x0不连续:
(1) f ( x)在 x0无定义;
(2) f ( x )在 x0有定义,但 lim f ( x )不存在;
x x0
(3) f ( x )在 x0有定义,且 lim f ( x )存在,但是
x x0
x x0
lim f ( x ) f ( x0 )
lim f ( x0 x ) f ( x0 )
yy f ( x) Nhomakorabealim y 0
y
f ( x0 ) f ( x0 ) f ( x0 )
左连续 右连续
x
o
x0
x
x
0 , 0, 当 x x0 x 时,有
f ( x ) f ( x0 ) y .
x U ( x0 ),
y f ( x) f ( x0 ) ---函数的增量
y
y f ( x)
y
y
x
0
x
0
x0
x 0 x x
x0
x 0 x
x
2. 函数连续的定义 定义 设函数y f ( x )在 x0的某邻域内有定义,如果
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)
↘
17/5
极小值
↗
6/5
拐点
↗
2
拐点
↗
x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点
↗
极大值
↘
拐点
↘
x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)
↗
拐点
↗
1
极大值
↘
拐点
↘
x
( 1)
-1
高等数学(同济大学版) 课程讲解 1.8函数的连续性与间断点
课时授课计划课次序号:06 一、课题:§1.8 函数的连续性与间断点二、课型:新授课三、目的要求:1.理解函数在一点连续、左右连续及区间上连续的概念;2.会判定函数间断点的类型;四、教学重点:连续的概念与间断点类型的判定.教学难点:间断点类型的判定.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–8 2(1),3八、授课记录:九、授课效果分析:第八节 函数的连续性与间断点复习1.极限的存在准则:夹逼准则、单调有界准则;2.两个重要极限:100sin 1lim1,lim(1)e lim(1)e xx x x x x x x x→→∞→=+=+=或; 3.无穷小的比较:高阶、低阶、同阶、等价、k 阶; 4.等价无穷小替换求极限的方法.前面我们已经讨论了函数的单调性、有界性、奇偶性、周期性等,在实际问题中,我们遇到的函数常常具有另一类重要特征,如运动着的质点,其位移s 是时间t 的函数,时间产生一微小的改变时,质点也将移动微小的距离(从其运动轨迹来看是一条连绵不断的曲线),函数的这种特征我们称之为函数的连续性,与连续相对立的一个概念,我们称之为间断.下面我们将利用极限来严格表述这个概念.一、函数的连续性1. 函数在一点连续定义1 设函数f (x )在x 0的某邻域U (x 0)内有定义,且有00lim ()()x x f x f x →=,则称函数f (x )在点x 0连续,x 0称为函数f (x )的连续点.例1 证明函数f (x )=3x 2-1在x =1处连续.证 因为f (1)=3×1-1=2, 且211lim ()lim(31)2x x f x x →→=-=,故函数f (x )=3x 2-1在x =1处连续.例2 证明函数y =f (x )=|x |在x =0处连续.证 因为y =f (x )=|x |在x =0的邻域内有定义,且f (0)=0,0lim ()lim 0x x x f x x →→→===.由定义1可知,函数y =f (x )=|x |在x =0处连续. 在工程技术中常用增量来描述变量的改变量.设变量u 从它的一个初值u 1变到终值u 2, 终值u 2与初值u 1的差u 2-u 1称为变量u 的增量,记为Δu ,即 Δu =u 2-u 1.变量的增量Δu 可能为正,可能为负,还可能为零.设函数f (x )在0()U x 内有定义,若x ∈0()U x ,则Δx =x -x 0称为自变量x 在点x 0处的增量.显然,x =x 0+Δx ,此时,函数值相应地由f (x 0)变到f (x ),于是Δy =f (x )-f (x 0)=f (x 0+Δx )-f (x 0)称为函数f (x )在点x 0处相应于自变量增量Δx 的增量.函数f (x )在点x 0处的连续性可等价地通过函数的增量与自变量的增量关系来描述.定义2 设函数f (x )在0()U x 内有定义,如果当自变量的增量Δx 趋于零时,相应的函数的增量Δy = f (x 0+Δx )-f (x 0)也趋于零,即0lim 0x y ∆→∆=,则称函数f (x )在点x 0处连续.2. 左右连续(单侧连续)我们曾讨论过x →x 0时函数的左右极限,对于函数的连续性可作类似的讨论.定义3 设函数f (x )在0()U x -(或0()U x +)内有定义,且有 00lim ()()x x f x f x -→= (或 00lim ()()x x f x f x +→=), 则称函数f (x )在点x 0是左(右)连续的.函数在点x 0的左、右连续性统称为函数的单侧连续性. 由函数的极限与其左、右极限的关系,容易得到函数的连续性与其左、右连续性的关系. 定理1 f (x )在点x 0连续的充要条件是f (x )在点x 0左连续且右连续.例3 设函数23,0(),0x x f x a x x ⎧+≥=⎨-<⎩,问a 为何值时,函数y =f (x )在点x =0处连续?解 因为f (0)=3,且0lim ()lim ()x x f x a x a --→→=-=,200lim ()lim (3)3x x f x x ++→→=+=, 故由定理1知a =3时,y =f (x )在点x =0处连续.例4 设函数1,0,()1,0,x f x x -<⎧=⎨≥⎩ 试问在x 0=0处函数f (x )是否连续?解 由于f (0)=1,而0lim ()1x f x -→=-,于是函数f (x )在点x =0不是左连续的,从而函数f (x )在x =0处不连续.3. 区间上连续定义4 若函数y =f (x )在区间(a ,b )内任一点均连续,则称函数y =f (x )在区间(a ,b )内连续,记为f (x )∈C (a ,b ). 若函数y =f (x )不仅在(a ,b )内连续,且在a 点右连续,在b 点左连续,则称y =f (x )在闭区间[a ,b ]上连续,记为f (x )∈C [a ,b ].半开半闭区间上的连续性可类似定义. 函数y =f (x )在其连续区间上的图形是一条连绵不断的曲线.例5 证明函数y =3x 2-5x +3在(-∞,+∞)内连续.证 设x 0为(-∞,+∞)内任意给定的点,由极限运算法则可知22000lim lim ()lim(353)353()x x x x x x y f x x x x x f x →→→==-+=-+=,故y =3x 2-5x +3在点x 0处连续.由x 0的任意性可知,y =3x 2-5x +3在(-∞,+∞)内连续.二、函数的间断点1. 间断点的定义定义5 设在x 0的任何邻域内总有异于x 0而属于函数f (x )的定义域的点,而f (x )在x 0处不连续,则称x 0是函数f (x )的一个间断点.例6 考虑函数y =sin xx在x =0处的连续性. 解 由于0sin lim1x x x →=,但在x =0处,函数sin x y x =无定义,故sin xy x=在x =0处不连续. 若补充定义函数值f (0)=1,则函数sin ,0,()1,0xx f x x x ⎧≠⎪=⎨⎪=⎩ 在x =0处连续.例7 讨论函数2,0,1,0x x y x ≠⎧=⎨=⎩在点x =0处的连续性.解 由于0lim lim 20x x y x →→==,而10yx ==,由定义知函数y 在点x =0处不连续. 若修改函数y 在x =0的定义,令f (0)=0,则函数2,0,()0,0x x f x x ≠⎧=⎨=⎩在点x =0处连续(见图1-36).图1-362. 间断点的分类若0lim ()x x f x →存在,且0lim ()x x f x A →=,而函数y =f (x )在点x 0处无定义,或者虽然有定义,但f (x 0)≠A , 则点x 0是函数y =f (x )的一个间断点,称此类间断点为函数的可去间断点. 此时,若补充或改变函数y =f (x )在点x 0处的值为f (x 0)=A ,则可得到一个在点x 0处连续的函数,这也是为什么把这类间断点称为可去间断点的原因.例8 讨论函数1arctan ,0,()0,0x y f x xx ⎧≠⎪==⎨⎪=⎩ 在点x =0处的连续性. 解 由于01lim arctan 2x x +→π=, 01l i m a r c t a n 2x x -→π=-,函数y =f (x )在点x =0处的左右极限存在但不相等,故y =f (x )在x =0处不连续. 此时不论如何改变函数在点x =0处的函数值, 均不能使函数在这点连续(见图1-37).若函数y =f (x )在点x 0处的左、右极限均存在,但不相等,则点x 0为f (x )的间断点,且称这样的间断点为跳跃间断点.函数的可去间断点与跳跃间断点统称为第一类间断点.在第一类间断点处,函数的左右极限均存在.凡不属于第一类间断点的间断点,我们统称为第二类间断点,在第二类间断点处,函数的左、右极限中至少有一个不存在.图1-37 图1-38例9 讨论函数1,0,0,0x y x x ⎧≠⎪=⎨⎪=⎩在点x =0处的连续性.解 由于01limx x→=∞,故函数在点x =0处间断(见图1-38). 若函数y =f (x )在点x 0处的左、右极限中至少有一个为无穷大,则称点x 0为y =f (x )的无穷间断点.例10 讨论函数1sin ,0,0,0x y xx ⎧≠⎪=⎨⎪=⎩在x =0处的连续性. 解 由于01lim sinx x→不存在,随着x 趋近于零,函数值在-1与1之间来回振荡,故函数在点x =0处间断(见图1-39).若函数y =f (x )在x →x 0时呈振荡无极限状态,则称点x 0为函数y =f (x )的振荡间断点.无穷间断点和振荡间断点都是第二类间断点.图1-39课堂总结1.连续的定义:00lim ()()x x f x f x →=,三个条件缺一不可;2.间断点的分类:第一类(可去型、跳跃型),第二类(无穷型、振荡型).。
高等数学同济第七版上册课后答案
习题1-101.证明方程x5-3x=1至少有一个根介于1和2之间.证明设f(x)=x5-3x-1,则f(x)是闭区间[1, 2]上的连续函数.因为f(1)=-3,f(2)=25,f(1)f(2)<0,所以由零点定理,在(1, 2)内至少有一点ξ(1<ξ<2),使f(ξ)=0,即x=ξ是方程x5-3x=1的介于1和2之间的根.因此方程x5-3x=1至少有一个根介于1和2之间.2.证明方程x=a sin x+b,其中a>0,b>0,至少有一个正根,并且它不超过a+b.证明设f(x)=a sin x+b-x,则f(x)是[0,a+b]上的连续函数.f(0)=b,f(a+b)=a sin (a+b)+b-(a+b)=a[sin(a+b)-1]≤0.若f(a+b)=0,则说明x=a+b就是方程x=a sin x+b的一个不超过a+b的根;若f(a+b)<0,则f(0)f(a+b)<0,由零点定理,至少存在一点ξ∈(0,a+b),使f(ξ)=0,这说明x=ξ也是方程x=a sin x+b的一个不超过a+b的根.总之,方程x=a sin x+b至少有一个正根,并且它不超过a+b.3.设函数f(x)对于闭区间[a,b]上的任意两点x、y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)⋅f(b)<0.证明:至少有一点ξ∈(a,b),使得f(ξ)=0...证明 设x 0为(a , b )内任意一点. 因为0||lim |)()(|lim 00000=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00=-→x f x f x x , 即 )()(lim 00x f x f x x =→. 因此f (x )在(a , b )内连续.同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续.因为f (x )在[a , b ]上连续, 且f (a )⋅f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0.4. 若f (x )在[a , b ]上连续, a <x 1<x 2< ⋅ ⋅ ⋅ <x n <b , 则在[x 1, x n ]上至少有一点ξ, 使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 证明 显然f (x )在[x 1, x n ]上也连续. 设M 和m 分别是f (x )在[x 1, x n ]上的最大值和最小值.因为x i ∈[x 1, x n ](1≤ i ≤n ), 所以有m ≤f (x i )≤M , 从而有 M n x f x f x f m n n ⋅≤+⋅⋅⋅++≤⋅)( )()(21,M nx f x f x f m n ≤+⋅⋅⋅++≤)( )()(21. 由介值定理推论, 在[x 1, x n ]上至少有一点ξ . 使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ..5. 证明: 若f (x )在(-∞, +∞)内连续, 且)(lim x f x ∞→存在, 则f (x )必在(-∞, +∞)内有界.证明 令A x f x =∞→)(lim , 则对于给定的ε >0, 存在X >0, 只要|x |>X , 就有|f (x )-A |<ε , 即A -ε<f (x )<A +ε .又由于f (x )在闭区间[-X , X ]上连续, 根据有界性定理, 存在M >0, 使|f (x )|≤M , x ∈[-X , X ].取N =max{M , |A -ε|, |A +ε|}, 则|f (x )|≤N , x ∈(-∞, +∞), 即f (x )在(-∞, +∞)内有界.6. 在什么条件下, (a , b )内的连续函数f (x )为一致连续?。
函数的连续性与间断点
1 x
x 不存在,
故 x0为f (x)的第二类 间断点.
y sin 1 x
且是无穷次振荡型间断点.
y sin 1 x
21
l i mf (x)不存在 ,
xx0
例
函f数 (x) 1xx,,
x0, 则称 x0为f(x)的间断.
x0,
y
f(x)在x0处有定义,
lim(x)0 lim(1x)1
1
x0
函数的连续性与间断点
2021/2/21
1
§1.8 函数的连续性 与间断点
函数的连续(continuity) 函数的间断点 (discontinuous point) 小结 思考题 作业
第一章 函数与极限
2
在自然界中,许多事物的变化是连续的, 如气温变化很小时,单摆摆长变化也很小.时 间变化很小时,生物生长的也很少.这种现象 在函数关系上的反映就是函数的连续性.
x0
x0
27
三、小结
1. 函数在一点连续的三个定义、必须满足的 三个条件;
2. 区间上的连续函数; 3. 函数间断点的分类:
第一类间断点: 跳跃型,可去型 间断点
第二类间断点:无穷型, 无穷次振荡型 (见下图)
28
第y 一 类 间 断 点O
可去型
x0
x
第 二
y
类
无穷型
间
断
点 O x0
x
y
跳跃型
O x0 x y
有理分式函数 R(x) P(x) Q( x)
只要 Q(x0)0,都有 x l ix0m R (x)R (x0)
因此有理分式函数在其定义域内的每一点
都是连续的.
16