高中数学选修2-3导学案-1.1
高二数学选修2-3离散型随机变量的方差导学案

2.32离散型随机变量的方差学习目标1、理解各种分布的方差2、会应用均值(期望)和方差来解决实际问题自主学习:课本1.一般地,设一个离散型随机变量X 所有可能取的值是n x x x x ⋅⋅⋅321,,这些值对应的概率是n p p p p ⋅⋅⋅,,,321则________________________________________________________叫做这个离散型随机变量X 的方差;______________________________叫作离散型随机变量X 的标准差2. 离散型随机变量的方差刻画了这个离散型随机变量的_____________________________.3. 离散型随机变量X 分布列为二点分布时, ()___________D X =.4.离散型随机变量X 服从参数为n ,p 的二项分布时,()___________D X =.5. 离散型随机变量X 服从参数为,N M ,n 的超几何分布时, ()___________D X = 自学检测1.已知X ~(),B n p ,()8,() 1.6E X D X ==,则,n p 的值分别是( )A .100和0.08B .20和0.4C .10和0.2D .10和0.82.设掷1颗骰子的点数为X ,则( )A. 2() 3.5,() 3.5E X D X ==B. 35() 3.5,()12E X D X == C. () 3.5,() 3.5E X D X == D. 35() 3.5,()16E X D X ==3.一牧场的10头牛,因误食疯牛病病毒污染的饲料被感染,已知疯牛病发病的概率是0.02,若发病的牛数为X 头,则()D X 等于( )A. 0.2B. 0.196C.0.8D.0.8124. 已知随机变量X 的分布列为则X 的标准差()X σ= A. 3.56 B. C. 3.2 D. 5.王非从家乘车到学校,途中有3个交通岗,设在个交通岗遇红灯的事件是相互独立的,并且概率都是25,则王非上学路上遇红灯的数学期望是___________,方差是_______________. 6.已知随机变量X 的分布列为且() 1.1E X =,设,则()____________D X =7.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为21,ξξ,它们的分布列如下:试对这两名工人的技术水平进行比较。
2018新人教B版高中数学选修2-3全册学案精编

目录✧ 1.1.1基本计数原理学案✧ 1.1.2基本计数原理的应用学案✧ 1.2.1.1排列及排列数公式学案✧ 1.2.1.2排列的综合应用学案✧ 1.2.2.1组合及组合数公式学案✧ 1.2.2.2组合的综合应用学案✧ 1.3.1二项式定理学案✧ 1.3.2杨辉三角学案✧第1章计数原理章末分层突破学案✧ 2.1.1离散型随机变量学案✧ 2.1.2离散型随机变量的分布列学案✧ 2.1.3超几何分布学案✧ 2.2.1条件概率学案✧ 2.2.2事件的独立性学案✧ 2.2.3独立重复试验与二项分布学案✧ 2.3.1离散型随机变量的数学期望学案✧ 2.3.2离散型随机变量的方差学案✧ 2.4正态分布学案✧第2章概率章末分层突破学案✧ 3.1独立性检验学案✧ 3.2回归分析学案✧统计案例章末分层突破学案基本计数原理1.通过实例,能总结出分类加法计数原理、分步乘法计数原理.(重点)2.正确地理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.(易混点)3.能利用两个原理解决一些简单的实际问题.(难点)[基础·初探]教材整理1 分类加法计数原理阅读教材P3中间部分,完成下列问题.做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班.若李先生从甲地去乙地,则不同的交通方式共有7种.( )(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种.( )【解析】(1)×在分类加法计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的.(2)√在分类加法计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事.(3)√由分类加法计数原理,从甲地去乙地共3+4=7(种)不同的交通方式.(4)√根据分类加法计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种).【答案】(1)×(2)√(3)√(4)√教材整理2 分步乘法计数原理阅读教材P3后半部分内容,完成下列问题.做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.判断(正确的打“√”,错误的打“×”)(1)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(2)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )(3)已知x∈{2,3,7},y∈{-3,-4,8},则x·y可表示不同的值的个数为9个.( )(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种.( )【解析】(1)√因为在分步乘法计数原理中的每一步都有多种方法,而每种方法各不相同.(2)×因为在分步乘法计数原理中,要完成这件事需分两步,而每步都不能完成这件事,只有各步都完成了,这件事才算完成.(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故x·y可表示3×3=9个不同的值.(4)×因为每个项目中的冠军都有3种可能的情况,根据分步乘法计数原理共有34种不同的夺冠情况.【答案】(1)√(2)×(3)√(4)×[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类加法计数原理的应用(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准.(2)按个位(或十位)取0~9不同的数字进行分类.【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法.共有不同选法N=4+5+6+7=22种.(2)法一按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).1.应用分类加法计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法.(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏.(3)方法独立:确定的每一类方法必须能独立地完成这件事.2.利用分类加法计数原理解题的一般思路[再练一题]1.(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有( )A.1种B.2种C.3种D.4种(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个.若从三个袋子中任取1个小球,有________种不同的取法.【导学号:62980000】【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.故选C.(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法.其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类加法计数原理,不同的取法共有6+5+4=15种.【答案】(1)C (2)15分步乘法计数原理的应用一种号码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步乘法计数原理.【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000个四位数的号码.1.应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.2.利用分步乘法计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.[再练一题]2.张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成.第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,得2×3=6种.[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成.而只选出“一荤一素”不能算“完成这件事”.探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成.只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事.探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类加法计数原理和分步乘法计数原理求解吗?你能说明分类加法计数原理与分步乘法计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E.3种汤分别记为a,b,c.利用分类加法计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法.故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐.利用分步乘法计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法.由分步乘法计数原理,配成“一素一汤”的套餐共有5×3=15(种)不同套餐.两个计数原理的主要区别在于分类加法计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步乘法计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成.即解答本题可“先分类,后分步”.【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.1.能用分步乘法计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2.利用分步乘法计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉.(3)若完成某件事情需n步,则必须依次完成这n个步骤后,这件事情才算完成.[再练一题]3.一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡.(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法.根据分类加法计数原理,共有10+12=22种取法.(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法.根据分步乘法计数原理,共有10×12=120种取法.[构建·体系]1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )【导学号:62980001】A.7B.12C.64D.81【解析】先从4件上衣中任取一件共4种选法,再从3条长裤中任选一条共3种选法,由分步乘法计数原理,上衣与长裤配成一套共4×3=12(种)不同配法.故选B.【答案】 B2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类,乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9种不同的走法.【答案】 B3.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.【解析】产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.【答案】20 104.十字路口来往的车辆,如果不允许回头,不同的行车路线有________条.【解析】经过一次十字路口可分两步:第一步确定入口,共有4种选法;第二步确定出口,从剩余3个路口任选一个共3种,由分步乘法计数原理知不同的路线有4×3=12条.【答案】125.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类加法计数原理,小明爸爸共有8+6=14(种)坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法.由分步乘法计数原理,小明与爸爸分别就坐共有14×13=182(种)坐法.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如图111所示为一个电路图,从左到右可通电的线路共有( )图111A.6条B.5条C.9条D.4条【解析】从左到右通电线路可分为两类:从上面有3条;从下面有2条.由分类加法计数原理知,从左到右通电的线路共有3+2=5条.【答案】 B2.有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A.96种B.24种C.120种D.12种【解析】 先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.【答案】 A3.将5封信投入3个邮筒,不同的投法共有( )【导学号:62980002】A.53种B.35种 C.8种 D.15种 【解析】 每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B4.如果x ,y ∈N ,且1≤x ≤3,x +y <7,则满足条件的不同的有序自然数对的个数是( )A.15B.12C.5D.4 【解析】 利用分类加法计数原理.当x =1时,y =0,1,2,3,4,5,有6个;当x =2时,y =0,1,2,3,4,有5个;当x =3时,y =0,1,2,3,有4个.据分类加法计数原理可得,共有6+5+4=15个.【答案】 A5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax +By =0的系数A ,B 的值,则形成的不同直线有( )A.18条B.20条C.25条D.10条【解析】 第一步,取A 的值,有5种取法;第二步,取B 的值,有4种取法,其中当A =1,B =2时与A =2,B =4时是相同的方程;当A =2,B =1时与A =4,B =2时是相同的方程,故共有5×4-2=18条.【答案】 A二、填空题6.椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则满足题意的椭圆的个数为________.【解析】因为焦点在y轴上,所以0<m<n,考虑m依次取1,2,3,4,5时,符合条件的n值分别有6,5,4,3,2个,由分类加法计数原理知,满足题意的椭圆的个数为6+5+4+3+2=20个.【答案】207.某班2016年元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.【解析】将第一个新节目插入5个节目排成的节目单中有6种插入方法,再将第二个新节目插入到刚排好的6个节目排成的节目单中有7种插入方法,利用分步乘法计数原理,共有插入方法:6×7=42(种).【答案】428.如图112,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________.图112【解析】依题意,首先找出B到A的路线,一共有4条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为6.由分类加法计数原理,单位时间内传递的最大信息量为3+4+6+6=19.【答案】19三、解答题9.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不同颜色的球共有8×7=56(种).10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法;(2)从四种血型的人中各选1人去献血,有多少种不同的选法?【解】从O型血的人中选1人有28种不同的选法;从A型血的人中选1人有7种不同的选法;从B型血的人中选1人有9种不同的选法;从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理.有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理.有28×7×9×3=5 292种不同的选法.[能力提升]1.一植物园参观路径如图113所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( )图113A.6种B.8种C.36种D.48种【解析】由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.【答案】 D2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有( )【导学号:62980003】A.180种B.360种C.720种D.960种【解析】分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.【答案】 D3.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A,B 的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】224.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),(1)P可以表示平面上的多少个不同点?(2)P可以表示平面上的多少个第二象限的点?(3)P可以表示多少个不在直线y=x上的点?【解】(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,P可以表示平面上的6×6=36(个)不同点.(2)根据条件需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,P 可以表示平面上的3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,P可以表示6×5=30(个)不在直线y=x上的点.基本计数原理的应用1.熟练应用两个计数原理.(重点)2.能运用两个计数原理解决一些综合性的问题.(难点)[基础·初探]教材整理分类加法计数原理与分步乘法计数原理的联系与区别阅读教材P4~P5,完成下列问题.分类加法计数原理和分步乘法计数原理的联系与区别1.由1,2,3,4组成没有重复数字的三位数的个数为________.【解析】由题意知可以组成没有重复数字的三位数的个数为4×3×2=24.【答案】242.(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4)展开后共有________项.【导学号:62980004】【解析】该展开式中每一项的因式分别来自a1+a2+a3,b1+b2+b3,c1+c2+c3+c4中的各一项.由a1,a2,a3中取一项共3种取法,从b1,b2,b3中取一项有3种不同取法,从c1,c2,c3,c4中任取一项共4种不同的取法.由分步乘法计数原理知,该展开式共3×3×4=36(项).【答案】363.5名班委进行分工,其中A不适合当班长,B只适合当学习委员,则不同的分工方案种数为________.【解析】根据题意,B只适合当学习委员,有1种情况,A不适合当班长,也不能当学习委员,有3种安排方法,剩余的3人担任剩余的工作,有3×2×1=6种情况,由分步乘法计数原理,可得共有1×3×6=18种分工方案.【答案】184.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有________个.【解析】分三步完成,第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.【答案】18[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]抽取(分配)问题(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有________.【精彩点拨】(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解.(2)先让一人去抽,然后再让被抽到贺卡所写人去抽.【自主解答】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有3×3×1×1=9(种).【答案】(1)C (2)9求解抽取(分配)问题的方法1.当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.2.当涉及对象数目很大时,一般有两种方法:①直接法:直接使用分类加法计数原理或分步乘法计数原理.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.[再练一题]1.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【解】法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60(种).组数问题用0,1,2,3,4,5可以组成多少个无重复数字的(1)银行存折的四位密码;(2)四位整数;。
北师大版2019年高中数学选修2-3导学案:第一章_计数原理3组合_含答案

§3 组合自主整理1.一般地,从n个不同的元素中,_______________,叫作从n个不同元素中取出m个元素的一个组合,我们把有关求_______________问题叫作组合问题.2.我们把_______________,叫作从n个不同元素中取出m个元素的组合数,用符号_______________表示.3.一般地,考虑C mn 与A mn的关系:把“从n个不同的元素中选出m(m≤n)个元素进行排列”这件事,分两步进行:第一步:从n个不同元素中取出m个元素,一共有_______________种取法.第二步:_______________一共有A mm种排法.根据____________原理,我们得到“从n个不同元素中选出m(m≤n)个元素进行排列”一共有____________种排法.即有A mn=____________.4.C mn =____________=____________=____________,规定:C0n=____________.5.组合数的性质:性质1:____________________________________________________________.性质2:____________________________________________________________.高手笔记1.使用组合数公式时,要注意C mn中m为非负整数,n∈N+,m≤n等限制条件.2.排列与组合的定义中相同的语句是“从n个不同的元素中,任取m(m≤n)个元素”.定义中不同的语句是:排列的定义中“按着一定的顺序排成一列”;组合的定义中“并成一组”.3.排列与组合的共同点,就是都要“从n个不同元素中,任取m个元素”,而不同点就是前者要“按照一定的顺序排成一列”,而后者却是“不论怎样的顺序并成一组”.因此,“有序”与“无序”是区别排列与组合的重要标志.如,从A、B、C三个元素中,任意取出两个元素的所有排列为:AB,BA,AC,CA,BC,CB;所有组合为:AB,AC,BC.在排列的意义下,AB与BA、AC与CA、BC与CB不同,而在组合的意义下,AB与BA、AC与CA、BC与CB相同.4.公式A mn =C mn·A mm表明从n个不同的元素中,任取m(m≤n)个元素的排列数的计算可分为两步:求C mn;再对取出的m个元素进行全排列.因此,从n个不同的元素中,任取m(m≤n)个元素的一个组合,是相应的所有排列中的1个.如从A、B、C中取出A、B的排列为AB、BA,组合AB(或BA)是其中的1个.5.公式C mn =!)1()2)(1(mmnnnn+---其形式上的特点是:分子是连续m个自然数之积,最大的数为n,最小的数是(n-m+1);分母是m!.名师解惑1.如何区别组合与组合数?剖析:“组合数”与“一个组合”是两个不同的概念,“一个组合”是指“从n个不同元素中,任取m (m≤n)个元素并成一组”,它不是一个数,而是具体的形式;“组合数”是指“从n 个不同元素中取出m (m≤n)个元素的所有组合的个数”,它是一个数.如,从A 、B 、C 中任取两个元素的所有组合为:AB 、AC 、BC ,它是具体的形式“AB、AC 、BC”;而其组合数是具体的数,AB 、AC 、BC 都算作1,1+1+1=3,即C 23=3.2.如何理解组合数的两个性质?剖析:(1)对C m n =C m n n -的理解:这个性质可以由组合数的定义给出,从n 个不同元素中取出m 个元素后,剩下n-m 个元素,也就是说,从n 个不同元素中取出m 个元素的每一个组合,都对应于从n 个不同元素中取n-m 个元素的唯一的一个组合,反过来也如此,因此有C m n =C m n n -.(2)对C 11-+=m n m n C 的理解:把n+1个元素分为不含某元素a 和含某元素a 两类.不含a 这一类,从n+1个元素中取m 个元素的组合,相当于从n 个元素中取m 个元素的组合,组合数为C m n ;含a 的这一类,a 必被取出,从n+1个元素中取m 个元素的组合,相当于从其余的n 个元素中取m-1个元素的组合,组合数为C 1-m n .根据加法原理,有C m n 1+=C m n +C 1-m n .3.解答组合问题时的解题策略是什么?剖析:解答组合应用题的总体思路为:(1)整体分类,对事件进行整体分类,从集合的意义讲,分类要做到各类的并集等于全集,以保证分类的不遗漏,任意两类的交集等于空集,以保证分类的不重复,计算结果时使用加法原理.(2)局部分步,整体分类以后,对每一类进行局部分步,分步要做到步骤连续,以保证分步的不遗漏,同时步骤要独立,以保证分步的不重复,计算每一类的相应结果时,使用乘法原理.(3)考察顺序,区别排列与组合的重要标志是“有序”与“无序”,无序的问题,用组合解答,有序的问题属排列问题.(4)辩证地看待“元素”与“位置”.排列、组合问题中的元素与位置,没有严格的界定标准,哪些事物看成元素或位置,要视具体情况而定.有时“元素选位置”,问题解决得简捷;有时“位置选元素”效果会更好.讲练互动【例1】证明:C n n +n n 1++C n n 2++…+C n m n +=C 11+++n m n .分析:本题运用公式C m n 1+=C m n +C 1-m n写出m+1个等式,然后把这些等式两边分别相加,等式两边相同的项消去后即得结论.证明:C n n =C 12++n nC 12111+++++=+n n n n n n C CC 13212+++++=+n n n n n n C C ……C =++++n m n n m n C 1C 11+++n m n把以上m+1个式子相加,即得C n n +n n 1++C n n 2++……+C n m n +=C 11+++n m n .绿色通道:利用性质C m n +C 1-m n=C m n 1+证明等式时,要先将第一项C n n 变成C 12++n n ,然后与第二项nn +n n 1+结合利用组合性质,依次求和可得右端.变式训练1.证明:C m n +3C 333213+++++=++m n m n m n m n C C C .证明:左边=(C m n +C 1+m n)+2(C 1+m n +C 2+m n )+(C 2+m n +3+m n )=C 11++m n +2C 21++m n +C 31++m n =(C 11++m n +C 21++m n )+(C 21++m n +C 31++m n )=C 22++m n +C 32++m n =C 33++m n =右边.∴等式成立.【例2】从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有多少种?分析:取出的3台电视机中要求至少有甲型与乙型各1台,它包括两种可能:2台甲型与1台乙型、1台甲型与2台乙型,所以可用分类加法计数原理和分步乘法计数原理解决.另外,也可以采用间接法.解法一:从4台甲型电视机中取2台且从5台乙型电视机中取1台有C 24·C 15种取法;从4台甲型电视机中取1台且从5台乙型电视机中取2台有C 14·C 25种取法,所以取出的3台电视机中至少要有甲型与乙型各1台的取法共有C 24·C 15+C 14·C 25=70种.故应选C. 解法二:从所有的9台电视机中取3台有C 39种取法,其中全部为甲型的有C 34种取法,全部为乙型的有C 35种取法,则至少有甲型与乙型各1台的取法有C 39-C 34-C 35=70种.黑色陷阱:解决这类问题最容易出现的错误就是产生重复,比如首先从4台甲型电视机与5台乙型电视机中各取1台,有C 14·C 15种取法,再在剩下的7台电视机中任取1台,有C 17种取法,所以不同的取法共有C 14·C 15·C 17=140种,这种看起来很不错的解法实际上是错误的,因为它产生了重复.避免产生重复的方法就是进行“先分类后分步”.变式训练2.一份考卷有10道考题,分为A 、B 两组,每组5题,要求考生选答6题,但每组最多选4题,问考生有几种选答方法?解:有3种选题方案:A 组选4题、B 组选2题;A 组选2题、B 组选4题及A 、B 组各选3题,故选答方法有2C 45C 25+(C 35)2=200种.【例3】200件产品中有5件是次品,现从中任意抽取4件,按下列条件,各有多少种不同的抽法(只要求列式)?(1)都不是次品;(2)至少有1件次品;(3)不都是次品.分析:第(1)题与顺序无关,都不是次品,即全部是正品,正品有195件;第(2)题与顺序无关,至少有1件次品,即有1件次品,2件次品,3件次品,4件次品四类情况,可用直接法解答,也可用间接法解答;第(3)题与顺序无关,不都是次品,即至少有1件是正品.解:(1)都不是次品,即全部为正品,∴有C 4195种.(2)至少有1件次品,包括1件,2件,3件,4件次品的情况.∴共有C 3195C 15+C 2195C 25+C 1195C 35+C 45种或C 4200-C 4195种.(3)不都是次品,即至少有1件正品,∴共有C 1195C 35+C 2195C 25+C 3195C 15+C 4195种或C 4200-C 45种.绿色通道:解决“至多”或“至少”问题,通常采用直接分类法(简称直接法)和整体排异法(简称间接法)求解.当直接分类讨论的情形较多时,使用整体排异法较简便. 变式训练3.从8名男同学和4名女同学中选出5人组成青年志愿队,按要求各有多少种选法?(1)至少有一名女同学参加;(2)至多有两名女同学参加;(3)男女同学各至少有两名参加.解:(1)法一:“至少有一名”可分为4种情况:1名,2名,3名,4名女同学参加,而题设要求选出5人,因此其余名额不足部分应由男生填补,故至少有一名女同学参加共有N=C 14C 48+C 24C 38+C 34C 28+C 44C 18=736种不同选法.法二:在整体组合C 512中去掉不满足题设要求的组合,即N=C 512-C 58=736种不同选法.(2)法一:直接分类求解.共有N=C 58+C 48C 14+C 38C 24=672种不同选法.法二:整体排异求解. 共有N=C 512-C 44C 18-C 34C 28=672种不同选法.(3)可分两类:一类是2男3女,共有C 28C 34种不同选法;另一类是3男2女,共有C 38C 24种不同选法.根据分类加法计数原理,得符合条件的选法共有C 28C 34+C 38C 24=448种.【例4】6本不同的书分成3堆,每堆2本,共有多少种分法?分析:6本书平均分给甲、乙、丙三人的问题可分为两步来解决,先把这6本书分成3堆,每堆2本,再把分好的3堆给甲、乙、丙三人.解:6本书平均分给甲、乙、丙三人的方法共有26C C 24C 22=15×6=90种.设6本书平均分成3堆的方法有x 种,再将这3堆分给甲、乙、丙3人有A 33种方法,故A 33x=90,解得x=15.即共有15种分法.绿色通道:均匀有序分组的一般结论:n 个元素分成有序的m 组,每组r 个元素,则分法总数为C r r n r n C -r r n C 2-…C r r (其中mr=n ).均匀无序分组的一般结论:n 个元素分成无序的m 组,每组r 个元素,则分法总数为m mr r r r n r r n r n A C c C C 2--(mr=n ). 有序分组与无序分组的本质区别在于只分组,还是分组后再分配给别的不同对象. 变式训练4.12个学生平均分成3组,参加制作航空模型的活动,3个教师各参加一组进行指导,问有多少种分组方法?解法一:将12个学生平均分配到3个固定的组(即组有序)中的方法有C 412C 48C 44种. 事实上并无组别的限制,故将12个学生平均分成3组的方法有334448412A C C C 种.3个教师按每组1人分配到各组中去有A 33种方法.由乘法原理,符合题意的分组方法有334448412A C C C ·A 33=C 412C 48=495×70=34 650种. 解法二:3个教师代表甲、乙、丙3个组,先将12个学生选出4人分到甲组,有C 412种不同方法;再将其余8个学生选4人分到乙组有C 48种不同方法.由乘法原理,符合题意的分组方法有C 412·C 48·C 44=34 650种.【例5】现有6本不同的书分给甲、乙、丙三人,(1)甲得1本,乙得2本,丙得3本,共有多少种不同的分法?(2)一人得1本,一人得2本,一人得3本,共有多少种不同的分法?(3)三人中的一人得4本,另外两人各得1本,共有多少种不同的分法?分析:(1)甲从6本中选1本,乙从剩下的5本中选2本,剩下的3本给丙.利用乘法原理.(2)本小题属不均匀分组且有顺序,分两步:分成三组,一组1本,一组2本,一组3本,共有16C C 25C 33种分组方法;再将不同的三组分给三个人,有A 33种分法.解:(1)16C C 25C 33=60种.(2)16C C 25C 33A 33=360种.(3)解法一:从6本书中选出4本给三人中的一人有46C 13C 种分法,剩下2本书给2个人,每人一本有A 22种分法,利用乘法原理,共有46C 13C ·A 22=90种不同的分法. 解法二:将6本书分成3组,一组4本,两组各1本,共有22111246A C C C 种不同分法;再把3组分给三个人,有A 33种分法,利用乘法原理,共有22111246A C C C A 33=90种不同的分法. 绿色通道:本例是分组问题的典型范例,解决分组问题应弄清以下几点:(1)分组对象是否明确;(2)是否平均分组;(3)是否局部平均分组;(4)分组时有无顺序关系.本例中(1)为非均匀分组且分组无顺序;应固定甲、乙、丙的本数;(2)为非均匀分组有顺序;(3)为局部均匀分组有顺序.非均匀无序分组的一般结论是:n 个元素分成m 组,第i 组有r i 个元素(i=1,2,…,m ),分法总数是C .2211m m rr r r r n r n C C -- 变式训练5.6名护士,3名医生,分成三组到甲、乙、丙三村去下乡,每组2名护士,1名医生,共有多少种不同的分法?解法一:首先把护士分配到三村有C 26C 24C 22种,再把医生分配到三村有C 13C 12C 11种. 据乘法原理共有C 26C 24C 22·C 13C 12C 11=540种.解法二:先分组后分配.3名医生各代表一组,将6名护士平均分组有33222426A C C C 种.再分到三名医生代表的三组中有33222426A C C C A 33种,再将这三个组分配到三个村里去,有33222426A C C C A 33A 33=540种.。
2[1].1.2离散型随机变量的分布列导学案(选修2-3)1
![2[1].1.2离散型随机变量的分布列导学案(选修2-3)1](https://img.taocdn.com/s3/m/1fea6bc2d5bbfd0a7956732b.png)
§2.1.2离散型随机变量的分布列预习案一、教学目标1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题.3. 理解二点分布的意义.二、预习自测:问题一:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一种情况吗?随机变量是如何定义的?问题二:按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。
那么,随机变量与函数有类似的地方吗?问题三:下列试验的结果能否用离散型随机变量表示?为什么?(1)已知在从汕头到广州的铁道线上,每隔50米有一个电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差;(3)某城市1天之内的温度;(4)某车站1小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的等级。
导学案重点:离散型随机变量的分布列的意义及基本性质. 难点:分布列的求法和性质的应用.1.离散型随机变量 随着试验结果的变化而变化的变量称为随机变量,通常用字母X 、Y 表示。
如果对于随机变量可能取到的值,可以按 一一列出,这样的变量就叫离散型随机变量。
2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的值为12,,,,i x x x ,X 取每一个值(1,2,)i x i = 的概率()i i P X x p ==,则表称为随机变量X 的概率分布,简称X 的分布列。
离散型随机变量的概率分布还可以用条形图表示, 如图所示。
离散型随机变量的分布列具有以下两个性质:① ;②一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 。
高中数学选修2-3导学案

高中数学选修2-3导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§2.1.1 离散型随机变量1.理解随机变量的定义;2.掌握离散型随机变量的定义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:掷一枚骰子,出现的点数可能是,出现偶数点的可能性是.复习2:掷硬币这一最简单的随机试验,其可能的结果是,两个事件.课内探究导学案二、新课导学※学习探究探究任务一:在掷硬币的随机试验中,其结果可以用数来表示吗?我们确定一种关系,使得每一个试验结果都用一个表示,在这种关系下,数字随着试验结果的变化而变化新知1:随机变量的定义:像这种随着试验结果变化而变化的变量称为 , 常用字母、、、…表示.思考:随机变量与函数有类似的地方吗?新知2:随机变量与函数的关系:随机变量与函数都是一种,试验结果的范围相当于函数的,随机变量的范围相当于函数的.试试:在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X将随着抽取结果的变化而变化,是一个,其值域是.随机变量{}0=X表示;{}4=X表示;{}3<X表示;“抽出3件以上次品”可用随机变量表示.新知3:所有取值可以的随机变量,称为离散型随机变量.思考:①电灯泡的寿命X是离散型随机变量吗?②②随机变量⎩⎨⎧≥<=小时寿命小时寿命1000,11000,0Y是一个离散型随机变量吗?※典型例题例1.某林场树木最高可达36m,林场树木的高度η是一个随机变量吗?若是随机变量,η的取值范围是什么?例2 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5,现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.※动手试试练1.下列随机试验的结果能否用离散型号随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果(1)抛掷两枚骰子,所得点数之和;(2)某足球队在5次点球中射进的球数;(3)任意抽取一瓶某种标有2500ml 的饮料,其实际量与规定量之差.练2.盒中9个正品和3个次品零件,每次取一个零件,如果取出的次品不再放回,且取得正品前已取出的次品数为ξ.(1)写出ξ可能取的值; (2)写出1=ξ所表示的事件三、总结提升 ※ 学习小结1.随机变量; 2.离散型随机变量.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.下列先项中不能作为随机变量的是( ).A .投掷一枚硬币80次,正面向上的次数B .某家庭每月的电话费C .在n 次独立重复试验中,事件发生的次数D .一个口袋中装有3个号码都为1的小球,从中取出2个球的号码的和2.抛掷两枚骰子,所得点数之和记为ξ,那么,4=ξ表示随机实验结果是 ( ) . A .一颗是3点,一颗是1点B .两颗都是2点C .两颗都是4点D .一颗是3点,一颗是1点或两颗都是2点3.某人射击命中率为0.6,他向一目标射击,当第一次射击队中目标则停止射击,则射击次数的取值是( ).A .1,2,3,… ,n 6.0B .1,2,3,…,n ,…C .0,1,2,… ,n 6.0D .0,1,2,…,n ,…4.已知ξ2=y 为离散型随机变量,y 的取值为1,2,…,10,则ξ的取值为 .5.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以ξ表示取出的球的最大号码,则4=ξ表示的试验结果是 .1在某项体能测试中,跑1km 成绩在4min 之内为优秀,某同学跑1km 所花费的时间X 是离散型随机变量吗如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量2下列随机试验的结果能否用离散型随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数;(2)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的成绩.§2.1.2 离散型随机变量的分布列1.理解离散型随机变量的分布列的两种形式;2.理解并运用两点分布和超几何分布.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ). A .2 B .2或1 C .1或0 D .2或1或0复习2:将一颗骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差是2的概率是 .课内探究导学案二、新课导学 ※ 学习探究探究任务一:抛掷一枚骰子,向上一面的点数是一个随机变量X .其可能取的值是 ;它取各个不同值的概率都等于问题:能否用表格的形式来表示呢?新知1:离散型随机变量的分布列:若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,21 ,X 取每一个值),,2,1(n i x i =的概率i i p x X P ==)(.则 ①分布列表示:②等式表示: ③图象表示:新知2:离散型随机变量的分布列具有的性质: (1) ; (2)试试:某同学求得一离散型随机变量的分布列如下:※ 典型例题例1在掷一枚图钉的随机试验中,令⎩⎨⎧=.,0;,1针尖向下针尖向上X 如果针尖向上的概率为p ,试写出随机变量X 的分布列.变式:篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为 0.7,求他一次罚球得分的分布列新知3:两点分布列:称X 服从 ;称)1(==X P p 为 例2在含有5件次品的100件产品中,任取3件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率.变式:抛掷一枚质地均匀的硬币2次,写出正面向上次数X 的分布列?新知4:超几何分布列:※ 动手试试练1.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.练2.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A 的概率.三、总结提升 ※ 学习小结1.离散型随机变量的分布列; 2.离散型随机变量的分布的性质; 3.两点分布和超几何分布.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.若随机变量ξ的概率分布如下表所示,则表中a 的值为( ).2.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用ξ表示这6人中“三好生”的人数,则概率等于6123735C CC 的是( ) .A .)2(=ξPB .)3(=ξPC .)2(≤ξPD .)3(≤ξP3.若a n P -=≤1)(ξ,b m P -=≥1)(ξ,其中n m <,则)(n m P ≤≤ξ等于( ).A .)1)(1(b a -- B.)1(1b a -- C .)(1b a +- D .)1(1a b --4.已知随机变量ξ的分布列为则ξ为奇数的概率为 .5.在第4题的条件下,若32-=ξη,则η的分布列为 .1.学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人,假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率.2.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列;(2)他能及格的概率.§2.2.1条件概率1.在具体情境中,了解条件概率的意义;2.学会应用条件概率解决实际问题.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:下面列出的表达式是否是离散型随机变量X的分布列().A.0.2)(==iXP,4,3,2,1,0=iB.0.2)(==iXP,5,4,3,2,1=i C.505)(2+==iiXP,5,4,3,2,1=iD.10)(iiXP==,4,3,2,1=i复习2:设随机变量的分布如下:求常数K.课内探究导学案二、新课导学※学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?若抽到中奖奖券用“Y”表示,没有抽到用“Y”表示,则所有可能的抽取情况为{=Ω},用B表示最后一名同学抽到中奖奖券的事件,则{=B},故最后一名同学抽到中奖奖券的概率为:=Ω=)()()(nBnBP思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是?因为已经知道第一名同学没有抽到中奖奖券,故所有可能的抽取情况变为{=A}最后一名同学抽到中奖奖券的概率为=)()(A n B n 记作:)(A B P新知1:在事件A 发生的情况下事件B 发生的条件概率为:)(A B P =)()(A n AB n = 新知2:条件概率具有概率的性质:≤)(A B P ≤如果B 和C 是两个互斥事件,则)(A C B P ⋃=※ 典型例题例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.变式:在第1次抽到理科题的条件下,第2次抽到文科题的概率?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.变式:任意按最后一位数字,第3次就按对的概率?※ 动手试试练1.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A ,求第2次也抽到A 的概率.练2.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为52,既刮风又下雨的概率为101,设A 为下雨,B 为刮风,求: (1))(B A P ; (2))(A B P .三、总结提升 ※ 学习小结1.理解条件概率的存在; 2.求条件概率;3.条件概率中的“条件”就是“前提”的意思.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.下列正确的是( ).A .)(AB P =)(B A P B .)(B A P =)()(B n AB n C .1)(0<<A B P D .)(A A P =02.盒中有25个球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一个球,已知它不是黑球,则它是黄球的概率为( ) . A . 1/3 B .1/4 C . 1/5 D .1/63.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,问它能活到25岁的概率是( ).A .0.4B .0.8C .0.32D .0.54.5.0)(=A P ,3.0)(=B P ,2.0)(=AB P ,则)(B A P = ,)(A B P = .5.一个家庭中有两个小孩,已知这个家庭中有一个是女孩,问这时另一个小孩是男孩的概率是 .1.设某种灯管使用了500h 能继续使用的概率为0.94,使用到700h 后还能继续使用的概率为0.87,问已经使用了500h 的灯管还能继续使用到700h 的概率是多少?2.100件产品中有5件次品,不入回地抽取2次,每次抽1件.已知第1次抽出的是次品,求第2次抽出正品的概率.§2.2.2 事件的相互独立性1.了解相互独立事件的意义,求一些事件的概率;2.理解独立事件概念以及其与互斥,对立事件的区别与联系.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:把一枚硬币任意掷两次,事件=A “第一次出现正面”,事件B =“第二次出现正面”,则)(A B P 等于?复习2:已知0)(>B P ,φ=21A A ,则 成立.A .0)(1>B A PB .=+)(21B A A P )(1B A P +)(2B A PC .0)(21≠B A A PD .1)(21=B A A P课内探究导学案二、新课导学 ※ 学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学有放回地抽取,事件A 为“第一名同学没有抽到奖券”,事件B 为“最后一名同学抽到奖券”,事件A 的发生会影响事件B 发生的概率吗?新知1:事件A 与事件B 的相互独立:设B A ,为两个事件,如果 ,则称事件A 与事件B 的相互独立. 注意:①在事件A 与B 相互独立的定义中,A 与B 的地位是对称的;②不能用)()(B P A B P =作为事件A 与事件B 相互独立的定义,因为这个等式的适用范围是0)(>A P ; ③如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立. 试试:分别抛掷2枚质地均匀的硬币,设A 是事件“第1枚为正面”,B 是事件“第2枚为正面”,C 是事件“2枚结果相同”,问:C B A ,,中哪两个相互独立?小结:判定相互独立事件的方法:①由定义,若)()()(B P A P AB P =,则B A ,独立; ②根据实际情况直接判定其独立性. ※ 典型例题例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是05.0,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.变式:两次都没有抽到指定号码的概率是多少?思考:二次开奖至少中一次奖的概率是一次开奖中奖概率的两倍吗?例2.下列事件中,哪些是互斥事件,哪些是相互独立事件?(1)“掷一枚硬币,得到正面向上”与“掷一枚骰子,向上的点是2点”; (2)“在一次考试中,张三的成绩及格”与“在这次考试中李四的成绩不及格”;(3)在一个口袋内有3白球、2黑球,则“从中任意取1个球得到白球”与“从中任意取1个得到黑球”※ 动手试试练1.天气预报,在元旦假期甲地的降雨概率是2.0,乙地的降雨概率是3.0,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内: (1)甲、乙两地都降雨的概率; (2)甲、乙两地都不降雨的概率; (3)其中至少一个地方降雨的概率.练2.某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为6.0,7.0,8.0,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.三、总结提升 ※ 学习小结1.相互独立事件的定义;2.相互独立事件与互斥事件、对立事件的区别.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1. 甲打靶的命中率为7.0,乙的命中率为8.0,若两人同时射击一个目标,则都未中的概率为( ).A .06.0B .44.0C .56.0D .94.02.有一道题,C B A 、、三人独自解决的概率分别为413121、、,三人同时独自解这题,则只有一人解出的概率为 ( ) . A .241 B .2411 C . 2417D . 313.同上题,这道题被解出的概率是( ).A .43 B .32 C . 54 D .107 4.已知A 与B 是相互独立事件,且3.0)(=A P ,6.0)(=B P ,则=⋅)(B A P .5.有100件产品,其中5件次品,从中选项取两次:(1)取后不放回,(2)取后放回,则两次都取得合格品的概率分别为 、 .1.一个口袋内装有2个白球和2个黑球,那么先摸出1个白球放回,再摸出1个白球的概率是多少?2.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.§2.2.3独立重复试验与二项分布1.了解独立重复试验; 2.理解二项分布的含义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:生产一种产品共需5道工序,其中1~5道工序的生产合格率分别为96%,99%,98%,97%,96%,现从成品中任意抽取1件,抽到合格品的概率是多少?复习2:掷一枚硬币 3次,则只有一次正面向上的概率为 .课内探究导学案二、新课导学 ※ 学习探究探究1:在n 次重复掷硬币的过程中,各次掷硬币试验的结果是否会受其他掷硬币试验的影响?新知1:独立重复试验:在 的条件下 做的n 次试验称为n 次独立重复试验.探究2:投掷一枚图钉,设针尖向上的概率为p ,则针尖向下的概率为p q -=1,连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?新知2:二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为:)(k X P == ,n k ,,2,1,0 =则称随机变量X 服从 .记作:X ~B ( ),并称p 为 .试试:某同学投篮命中率为6.0,他在6次投篮中命中的次数X 是一个随机变量,X ~B ( ) 故他投中2次的概率是 . ※ 典型例题例1某射手每次射击击中目标的概率是8.0,求这名射击手在10次射击中 (1)恰有8次击中目标的概率; (2)至少有8次击中目标的概率.变式:击中次数少于8次的概率是多少?例2.将一枚硬币连续抛掷5次,求正面向上的次数X 的分布列变式:抛掷一颗骰子5次,向上的点数是2的次数有3次的概率是多少?※ 动手试试练1.若某射击手每次射击击中目标的概率是9.0,每次射击的结果相互独立,那么在他连续4次的射击中,第1次未击中目标,但后3次都击中目标的概率是多少?练2.如果生男孩和生女孩的概率相等,求有3个小孩的家庭中至少有2个女孩的概率.三、总结提升 ※ 学习小结1.独立重复事件的定义; 2.二项分布与二项式定理的公式.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.某学生通过计算初级水平测试的概率为21,他连续测试两次,则恰有1次获得通过的概率为( ).A .31B . 21C .41D .432.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为( ) . A .2.0 B .41.0 C . 74.0 D . 67.03.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为 ( ).A .3)1(p - B .31p - C .)1(3p -D .)1()1()1(223p p p p p -+-+-4.在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 .5.某种植物种子发芽的概率为7.0,则4颗种子中恰好有3颗发芽的概率为 .1.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是7.0,那么在这段时间内吊灯能照明的概率是多少?2.甲、乙两选手比赛,假设每局比赛甲胜的概率为6.0,乙胜的概率为4.0,那么采用3局2胜制还是采用5局3胜制对甲更有利?§2.3.1离散型随机变量的均值(1)1.理解并应用数学期望来解决实际问题; 2.各种分布的期望.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:甲箱子里装3个白球,2个黑球,乙箱子里装2个白球,2个黑球,从这两个箱子里分别摸出1个球,则它们都是白球的概率?复习2:某企业正常用水的概率为43,则5天内至少有4天用水正常的概率为 . 课内探究导学案二、新课导学 ※ 学习探究探究:某商场要将单价分别为18元/kg ,24元/kg ,36元/kg 的3种糖果按1:2:3的比例混合销售,如何对混合糖果定价才合理?列为:则称=EX .为随机变量X 的均值或数学期望.它反映离散型随机变量取值的 .新知2:离散型随机变量期望的性质:若b aX Y +=,其中b a ,为常数,则Y 也是随机变量,且b aEX b aX E +=+)(.注意:随机变量的均值与样本的平均值的:区别:随机变量的均值是 ,而样本的平均值是 ;联系:对于简单随机样本,随着样本容量的增加,样本平均值越来越接近于总体均值. ※ 典型例题例1在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为7.0,那么他罚球1次的得分X 的均值是多少?变式:.如果罚球命中的概率为8.0,那么罚球1次的得分均值是多少?新知3:①若X 服从两点分布,则=EX ; ②若X ~),(p n B ,则=EX .例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分100分.学生甲选对任意一题的概率为9.0,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求甲学生和乙学生在这次测验中的成绩的均值 .思考:学生甲在这次单元测试中的成绩一定会是90分吗?他的均值为90分的含义是什么?※ 动手试试练1.已知随机变量X 的分布列为:求EX .练2.同时抛掷5枚质地均匀的硬币,求出现正面向上的硬币数X 的均值.三、总结提升 ※ 学习小结1.随机变量的均值; 2.各种分布的期望.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1. 随机变量X 的分布列为则其期望等于( ).A .1B .31C .5.4D .4.22.已知32+=ξη,且53=ξE ,则=ηE ( ) .A .53B .56C . 521D . 5123.若随机变量X 满足1)(==c X P ,其中c 为常数,则=EX ( ).A .0B .1C . cD .不确定4.一大批进口表的次品率15.0=P ,任取1000只,其中次品数ξ的期望=ξE .5.抛掷两枚骰子,当至少有一枚出现6点时,就说这次试验成功,则在30次试验中成功次数的期望 .1.抛掷1枚硬币 ,规定正面向上得1分,反面向上得1-分,求得分X 的均值.2.产量相同的2台机床生产同一种零件,它们在一小时内生产出的次品数21,X X 的分布列分别如下:问哪台机床更好?请解释所得出结论的实际含义.§2.3.1离散型随机变量的均值(2)1.进一步理解数学期望; 2.应用数学期望来解决实际问题.课前预习导学案一、课前准备(预习教材P 72~ P 74,找出疑惑之处)复习1:设一位足球运动员,在有人防守的情况下,射门命中的概率为3.0=p ,求他一次射门时命中次数ξ的期望复习2:一名射手击中靶心的概率是9.0,如果他在同样的条件下连续射击10次,求他击中靶心的次数的均值?课内探究导学案二、新课导学探究:某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%,下表是过去200例类拟项目开发的实施结果:则该公司一年后估计可获收益的期望是 元.※ 典型例题例1 已知随机变量X 取所有可能的值n ,,2,1 是等到可能的,且X 的均值为5.50,求n 的值例2.根据气象预报,某地区近期有小洪水的概率为25.0,有大洪水的概率为01.0.该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案:方案1:运走设备,搬运费为3800元方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水 . 方案3:不采取措施,希望不发生洪水. 试比较哪一种方案好.思考:根据上述结论,人们一定采取方案2吗?※ 动手试试练1.现要发行10000张彩票,其中中奖金额为2元的彩票1000张, 10元的彩票300张, 50元的彩票100张, 100元的彩票50张, 1000元的彩票5张,问一张彩票可能中奖金额的均值是多少元练2.抛掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,求在20次试验中成功次数X 的期望.三、总结提升 ※ 学习小结1.随机变量的均值; 2.各种分布的期望.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.若ξ是一个随机变量,则)(ξξE E -的值为( ). A .无法求 B .0 C .ξE D .ξE 2 2设随机变量ξ的分布列为41)(==k P ξ,4,3,2,1=k ,则ξE 的值为 ( ) . A .25B .5.3C . 25.0D . 2 3.若随机变量ξ~)6.0,(n B ,且3=ξE ,则)1(=ξP 的值是( ).A .44.02⨯ B .54.02⨯ C .44.03⨯ D .46.03⨯ 4.已知随机变量ξ的分布列为:则x = ;=<≤)31(ξP ;ξE = .5.一盒内装有5个球,其中2个旧的,3个新的,从中任意取2个,则取到新球个数的期望值为 .1.已知随机变量X 的分布列:求)52(,+X E EX2.一台机器在一天内发生故障的概率为1.0,若这台机器一周5个工作日不发生故障,可获利5万元;发生1次故障仍可获利5.2万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元,问这台机器一周内可能获利的均值是多少§2.3.2 离散型随机变量的方差(1)1.理解随机变量方差的概念; 2.各种分布的方差.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:若随机变量 Y ~)8.0,5(B ,则=EY ;又若42+=Y X ,则=2EX复习2:已知随机变量ξ的分布列为 :且1.1=ξE ,则=p ;=x课内探究导学案二、新课导学 ※ 学习探究探究:要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩纪录,第一名同学击中目标靶的环数1X ~)8.0,10(B ,第二名同学击中目标靶的环数42+=Y X ,其中Y ~)8.0,5(B ,请问应该派哪名同学参赛?新知1:离散型随机变量的方差:当已知随机变量ξ的分布列为()k k p x P ==ξ ),2,1( =k 时,则称=ξD 为ξ的方差,=σξ 为ξ的标准差随机变量的方差与标准差都反映了随机变量取值的 .ξD 越小,稳定性越 ,波动越 . 新知2:方差的性质:当b a ,均为常数时,随机变量b a +=ξη的方差=+=)()(b a D D ξη .特别是: ①当0=a 时,()=b D ,即常数的方差等于 ;②当1=a 时,=+)(b D ξ ,即随机变量与常数之和的方差就等于这个随机变量的方差 ; ③当0=b 时,()=ξa D ,即随机变量与常之积的方差,等于常数的 与这个随机变量方差的积 新知2:常见的一些离散型随机变量的方差: (1)单点分布:=ξD ; (2)两点分布:=ξD ; (3)二项分布:=ξD .※ 典型例题例1已知随机变量X 的分布列为:求DX 和X σ.变式:已知随机变量X 的分布列:求)12(,+X D DX小结:求随机变量的方差的两种方法:一是列出分布列,求出期望,再利用方差定义求解;另一种方法是借助方差的性质求解 例2.随机抛掷一枚质地均匀的骰子,求向上一面的点数X 的均值、方差和标准差.※ 动手试试练1.已知X 是一个随机变量,随机变量5+X 的分布列如下:试求DX .。
(word完整版)高中数学选修2-3导学案,正规模版1.1

1小结:在解决实际问题中,要分清题意,正确选择加法原理和乘法原理,乘法原理针对的是分步问题,其中的各步骤相互依存,只有各个步骤都完成才算完成这件事探动手试试练1.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.⑴ 从中任选1人参加接待外宾的活动,有多少种不同的选法?⑵ 从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?变式:在上题中,如果数学也是A大学的强项专业,则A大学共有6个专业可以选择,B大学共有4个专业可以选择,那么用分类加法原理,得到这名同学可能的专业选择共有6 4 10种•这种算法对吗?小结:加法原理针对的是分类问题,其中的各种方法相互独立,用其中任何一种方法都可以完成这件事• 例2书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3 层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?【当堂检测】1. 一个商店销售某种型号的电视机,其中本地产品有4种,外地产品有7种,要买1台这种型号的电视机,有__________ 种不同的选法.2. 某班有男生30人,女生20人,现要从中选出男,女各1人代表班级参加比赛,共有种不同选法.3. 乘积a1a2a n d b2 _______________ b n展开后,共有项.4. 要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有___________________ 种不同的选法〈〈分类加法计数原理与分步乘法计数原理(2)》导学案【学习目标】1. 能根据具体问题的特征,选择运用分类计数原理、分步计数原理;2. 能综合运用两个原理解决一些简单的实际问题;3. 会用列举法解一些简单问题,并体会两个原理的作用【重点难点】A大学B大学生物学数学化学会计学医学信息技术学物理学法学工程学5. 一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成个四位数号码.变式:要从甲,【反思】1. 什么是分类加法原理?加法原理使用的条件是什么?2. 什么是分步乘法原理?乘法原理使用的条件是什么?集合A中有n个元素,则集合A的子集的个数有2n个2的专业,具体如下:那么,这名同学1. 能根据具体问题的特征,选择运用分类计数原理、分步计数原理;2. 能综合运用两个原理解决一些简单的实际问题;3. 会用列举法解一些简单问题,并体会两个原理的作用【学法指导】(预习教材P5〜P10,找出疑惑之处)复习1:什么是分类计数原理?什么是分步计数原理?它们在使用时的主要区别是什么?新知:用两个计数原理解决计数问题时,最重要的是在开始计算之前进行仔细分析,正确选择是分类还是分步•分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用加法原理求和;分步要做到“步骤完整”,完成所有步骤,恰好完成任务.试试:积a1 a2 a3 d b? b3 5 C2 C3 C4展开后共有多少项?反思:在实际问题中,一个问题可能同时使用两个原理,有时还可能多次使用同一原理.(二)深入学习例1核糖核酸(RNA )分子是生物细胞中发现的化学成分•一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据•总共有4中不同的碱基,分别是A,C,G,U表示•在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意位置上的碱基与其他位置的碱基无关•假设有一类RNA分子有100个碱基组成,那么能有多少种不同的RNA分子?复习2 :现有高二年级某班三个组学生24人,其中第一、二、三组各7人、8人、9人,他们自愿组成数学兴趣小组.⑴ 选其中1人为负责人,有多少种不同的选法?⑵ 每组选1名组长,有多少种不同的选法?【教学过程】(一)导入探究任务一:两个原理的应用问题:给程序模块命名,需要用3个字符,其中首字符要求用字母A〜G或U〜Z,后两个要求用数字1〜9•问最多可以给多少个程序命名?变式:电子元件很容易实现电路的通与断,电位的高与低等两种状态,而这也是最容易控制的两种状态•因此计算机内部就采用了每一位只有0或1两种数字的计数法,即二进制•为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或两个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成•问:⑴一个字节(8位)最多可以表示多少个不同的字符?⑵ 计算机汉字国标码包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?小结:使用分步计数原理时,要注意各步中所有的可能情况,做到不重不漏3例2计算机编程人员在编好程序以后需要 对程序进行测试•程序员需要知道到底有多 少条执行路径,以便知道需要提供多少个测 试数据•一般地,一个程序模块由许多子模 块组成•如图,它是一个具有许多执行路径 的程序模块•问:这个程序模块有多少条执 行路径?变式:随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码 需要扩容•交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有 3个不重复的英文字母和 3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现•那么这种办法共能给多少辆汽车上牌照?【当堂检测】1. 从5名同学中选出正,畐熾长各一名,共有种不同的选法•2. 某电话局管辖范围内的电话号码由 8位数字组成,其中前 4位的数字是不变的,后4位数字都是0到9之间的一个数字,那么这个电话局最多有 个• 3. 用1 , 5, 9, 13中的任意一个数作分子,4, 8, 12, 16中任意一个数作分母,可以构成 个不同的分数,可以构成个不同的真分数•4. 在平面直角坐标系内,横坐标与纵坐标均在集合{ 0, 1 , 2, 3, 4, 5}内取值的不同点共有个.5. 有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是1. 设x, y N , x y 4,则在直角坐标系中满足条件的点M x, y 共有_ 个;2. 在在平面直角坐标系内,斜率在集合B= {1, 3, 5, 7} , y 轴上的截距在集合 C={ 2, 4, 6, 8}内取值的不同直线共有条.3. 有3个班的同学分别从 5个风景点中选择一处游览,不同选法种数是4. 在1〜20共20个整数中取两个数相加,使其和为偶数的不同取法共有 ____________________ 种.5. 用1 , 2, 3三个数字,可组成 个无重复数字的自然数.6. 一个班级有8名教师,30位男同学,20名女同学,从中任选教师代表和学生代表 各一名,共有不同的选择种数为【反思】1. 正确选择是分类还是分步的方法2. 分类要做到“不重不漏”,分步要做到“步骤完整”. 探知识拓展乘法运算是特定条件下加法运算的简化,分步乘法计数原理和分类加法计数原理也 有类似关系.练2.由数字0, 1, 2, 3, 4可以组成多少个三位数?(各位上的数允许重复)4探动手试试 练1.某。
高中数学选修2-3第一章 排列组合二项式定理导学案

§1.1分类加法计数原理与分步乘法计数原理(一)【学习要求】1.理解分类加法计数原理与分步乘法计数原理.2.会用这两个原理分析和解决一些简单的实际计数问题【学法指导】两个计数原理是推导排列数、组合数计算公式的依据,其基本思想贯穿本章始终,理解两个原理的关键是分清分类与分步.【知识要点】两个计数原理1.分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=种不同的方法.2.分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=种不同的方法.【问题探究】探究点一分类加法计数原理问题1用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码?问题2问题1中最重要的特征是什么?问题3由问题1你能归纳出一般结论吗?问题4分类加法计数原理中的“各种方法”与“完成这件事”有什么关系?例1在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?问题5若还有C大学,其中强项专业为:新闻学、金融学、人力资源学,那么,这名同学可能的专业选择共有多少种?小结如果完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,那么完成这件事共有m1+m2+m3+…+m n种不同的方法.跟踪训练1某校高三共有三个班,其各班人数如下表:(1)从三个班中选一名学生会主席,有多少种不同的选法?(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?探究点二分步乘法计数原理问题1如图,从丽水经杭州到上海的途径有多少种?问题2用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?问题3由上述问题1,2,你能归纳猜想出一般结论吗?问题4分步乘法计数原理中的“各步方法”与“完成这件事”有什么关系?问题5如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事需要n个步骤,做每一步中都有若干种不同的方法,那么应当如何计数呢?例2某商店现有甲种型号电视机10台,乙种型号电视机8台,丙种型号电视机12台,从这三种型号的电视机中各选一台检验,有多少种不同的选法?小结利用分步乘法计数原理解决问题时,一定要正确设计“分步”的程序,即完成这件事共分几步,每一步的具体内容是什么,各步的方法、种数是多少,最后用分步乘法计数原理求解.跟踪训练2已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数是多少?探究点三两个计数原理的综合应用问题比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?例3书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?小结解两个计数原理的综合应用题时,最容易出现不知道应用哪个原理解题的情况,其思维障碍在于没有区分该问题是“分类”还是“分步”,突破方法在于认真审题,明确“完成一件事”的含义.具体应用时灵活性很大,要在做题过程中不断体会和思考,基本原则是“化繁为简”.跟踪训练3现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?(4)要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?【当堂检测】1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .812.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为 ( ) A .1+1+1=3 B .3+4+2=9 C .3×4×2=24 D .以上都不对 3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线 ( ) A .24种 B .16种 C .12种 D .10种4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a +b i ,其中虚数有________个. 5.将3封信投入6个信箱内,不同的投法有________种.【课堂小结】1.本课主要学习了两个重要的计数原理,应用两个原理时,要仔细区分原理的不同,加法原理关键在于分类,不同类之间互相排斥,互相独立;乘法原理关键在于分步,各步之间互相依存,互相联系. 2.通过对这两个原理的学习,要进一步体会分类讨论思想及等价转化思想在解题中的应用.【拓展提高】1.用前六个大写的英文字母和1~9九个阿拉伯数字,以,,,,,2121B B A A ⋅⋅⋅…的方式给教室的座位编号,总共能编出多少种不同的号码?2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数号码.3.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名. (1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?【课后作业】§1.1分类加法计数原理与分步乘法计数原理(二)【学习要求】巩固分类加法计数原理和分步乘法计数原理,并能应用两个原理解决实际问题.【学法指导】用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准,在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性.【双基检测】1.如图所示,在由开关组A 与B 所组成的并联电路中,接通电源,则只闭合一个开关能使电灯发光的方法种数为 ()A .6B .5C .30D .12.用4种不同的颜色涂入如图所示的矩形A ,B ,C ,D 中,每个矩形只涂入一种,要求相邻的矩形涂色不同,则不同的涂色方法共有 ( ) A .72种 B .48种 C .24种 D .12种3.在夏季,一个女孩有红、绿、黄3件上衣,红、绿、黄、白、黑5种裙子,这位女孩夏季某一天去学校上学,有________种不同的穿法.【题型解法】题型一 两个计数原理在排数中的应用 例1 数字不重复的四位偶数共有多少个?小结 排数问题实际就是分步问题,需要用乘法原理解决.此题中,由于数字0的出现,又进行了分类讨论,即在解决相关的排数问题时,要注意两个原理的综合应用. 跟踪训练1 用0,1,…,9这十个数字,可以组成多少个: (1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?题型二 两个计数原理的实际应用 例2 (1)给程序模块命名,需要用3个字符,其中首字符要求用字母A ~G 或U ~Z ,后两个要求用数字1~9,最多可以给多少个程序命名?(2)核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每个位置上都有一个称为碱基的化学成分所占据.总共有4种不同的碱基,分别用A 、C 、G 、U 表示(如图所示).在一个RNA 分子中,各种碱基能以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA 分子由100个碱基组成,那么能有多少种不同的RNA 分子?小结 以上两个问题分别表示两个原理在计算机字节与生物学中的应用,要解决好实际问题,首先要将问题与学习过的两个原理联系,确定用分类还是分步,或是分类和分步综合应用.跟踪训练2 电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态,因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB 码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?【当堂检测】1.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法有() A.48种B.24种C.14种D.12种2.已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数的个数为() A.125 B.15 C.100 D.103.(a1+a2)·(b1+b2+b3)·(c1+c2+c3+c4)的展开式中有________项.4.由0,1,2,3这四个数字,可组成多少个:(1)无重复数字的三位数?(2)可以有重复数字的三位数?5.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照号码组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么按照这种办法共能给多少辆汽车上牌照?【课堂小结】本课时主要讲解了两个基本原理的应用,通过不同类型的题目,要仔细体会两个计数原理的具体用法,尤其是在自然科学、现代科技中处处都离不开两个计数原理的应用,从而深刻体会数学本身的重要性,进一步坚定学好数学的信念.【拓展提高】1.某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?2.在在平面直角坐标系内,斜率在集合B={1,3,5,7}, y轴上的截距在集合C={2,4,6,8}内取值的不同直线共有条.3.将三封信投入4个邮箱,不同的投法有种.4.自然数2520有多少个约数?5.现要排一份5天的值班表,每天有1人值班,共有5个人,每个人都可以值多天或不值班,但相邻两天不准同一个人值班,问此值班表共有多少种不同的选法?6.用1,2,3三个数字,可组成个无重复数字的自然数.【课后作业】§1.1习题课分类加法计数原理与分步乘法计数原理【学习要求】1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.2.能根据实际问题特征,正确选择原理解决实际问题.【知识要点】两个计数原理在解决计数问题中的用法在利用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析,是分类还是分步.【题型解法】题型一抽取(分配)问题例1高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种小结解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.跟踪训练13个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?题型二涂色问题例2一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(1)如图1,圆环分成的3等份为a1,a2,a3,有多少种不同的种植方法?(2)如图2,圆环分成的4等份为a1,a2,a3,a4,有多少种不同的种植方法?小结(1)涂色问题的基本要求是相邻区域不同色,但是不相邻的区域可以同色.因此一般以不相邻区域同色,不同色为分类依据,相邻区域可用分步涂色的办法涂色.(2)涂色问题往往涉及分类、分步计数原理的综合应用,因此,要找准分类标准,兼顾条件的情况下分步涂色.跟踪训练2如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成的,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.题型三 种植问题例3 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.小结 按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都完成了这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.跟踪训练3 将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种(以数字作答).【当堂检测】1.某电话局的电话号码为168*****,若后面的五位数字是由6或8组成的,则这样的电话号码一共有 ( ) A .20个 B .25个 C .32个 D .48个2.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax +By =0的系数,则形成不同的直线最多有 ( ) A .18条 B .20条 C .25条 D .10条3.如图是5个相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻正方形涂不同的颜色.如果颜色可反复使用,那么共有________种涂色方法.4.由0,1,2,3这四个数字,可组成多少个: (1)无重复数字的三位数? (2)可以有重复数字的三位数?【课堂小结】1.分类加法计数原理与分步乘法计数原理是两个最基本、也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.应用分类加法计数原理要求分类的每一种方法都能把事件独立完成;应用分步乘法计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏. 4.若正面分类,种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.【拓展提高】1.有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是2.如图6个扇形区域F E D C B A 、、、、、,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可供选择,有多少种染色方法?3.将一个四棱锥S ABCD 的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?§1.2.1排列(一)【学习要求】1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.【学法指导】排列是分步乘法计数原理的一个重要应用,学习中要理解排列数公式的推导过程,从中体会“化归”的数学思想.【知识要点】1.排列:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement).2.排列数:从n 个不同元素中取出m (m ≤n )个元素的 叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:A mn = (n ,m ∈N *,m ≤n )= .【问题探究】探究点一 排列(数)的概念问题1 从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的安排方法?问题2 从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数? 问题3 怎样判断一个具体问题是否为排列问题? 例1 判断下列问题是否是排列问题.(1)从1、2、3、4四个数字中,任选两个做加法,其结果有多少种不同的可能? (2)从1、2、3、4四个数字中,任选两个做除法,其结果有多少种不同的可能? (3)会场有50个座位,要求选出3个座位安排3位客人就座,有多少种不同的方法?小结 判断一个问题是否为排列问题的依据是否是有顺序,有顺序且是从n 个不同的元素中任取m (m ≤n )个不同的元素的问题就是排列,否则就不是排列. 跟踪训练1 判断下列问题是否是排列问题:(1)某班共有50名同学,现要投票选举正、副班长各一人,共有多少种可能的选举结果? (2)从2,3,5,7,9中任取两数分别作对数的底数和真数,有多少不同对数值?(3)从1到10十个自然数中任取两个数组成点的坐标,可得多少个不同的点的坐标?探究点二 排列的列举问题问题 对于简单的排列问题,怎样写出从n 个不同元素中取出m 个元素的所有排列? 例2 写出下列问题的所有排列:(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数? (2)写出从4个元素a ,b ,c ,d 中任取3个元素的所有排列.小结 在写出所要求的排列时,可采用“树形”图或“框”图一一列出,一定保证不遗漏.跟踪训练2 写出下列问题的所有排列:(1)北京、广州、南京、天津4个城市相互通航,应该有多少种机票?(2)A 、B 、C 、D 四名同学排成一排照相,要求自左向右,A 不排第一,B 不排第四,共有多少种不同的排列方法?探究点三 排列数公式的推导及应用问题1 由例2中两个问题知:A 24=4×3=12,A 34=4×3×2=24,你能否得出A 2n 的意义和A 2n 的值? 问题2 由以上规律,你能写出A m n 吗?有什么特征?若m =n 呢?例3 (1)计算:2A 58+7A 48A 88-A 59. (2)求证:A m n +1=m ·A m -1n +A m n .小结 利用排列数公式进行运算时,要注意排列数之间的关系,两种形式中,一种形式用于化简,证明等,而另一种形式常用于求解.跟踪训练3 (1)某年全国足球甲级(A 组)联赛共有10个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?(2)解不等式:2996->x X A A【当堂检测】1.下列问题属于排列问题的是 ( ) ①从10个人中选2人分别去种树和扫地; ②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队; ④从数字5,6,7,8中任取两个不同的数作幂运算. A .①④ B .①② C .④ D .①③④2.从甲、乙、丙三人中选两人站成一排的所有站法为( )A .甲乙,乙甲,甲丙,丙甲B .甲乙丙,乙丙甲C .甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D .甲乙,甲丙,乙丙 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( )A .A 615-mB .A 15-m 20-mC .A 620-m D .A 520-m4.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法(用数字作答).【课堂小结】1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.【拓展提高】1.(1)215A;(2)66A(3)28382AA -;(4)6688A A .2.某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;3.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?【课后作业】§1.2.1排列(二)【学习要求】1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.【双基检测】1.4×5×6×…×(n -1)×n 等于( )A .A 4nB .A n -4nC .n !-4!D .A n -3n2.6名学生排成两排,每排3人,则不同的排法种数为( ) A .36 B .120 C .720 D .2403.从集合M ={1,2,…,9}中,任取两个元素作为a ,b , ①可以得到多少个焦点在x 轴上的椭圆方程x 2a 2+y 2b 2=1?②可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2b2=1?其中属于排列问题的是________,其结果为________.4.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的科代表,若某女生必须担任语文科代表,则不同的选法共有________种(用数字作答).【题型解法】题型一 无限制条件的排列问题例1 (1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法? (2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?小结 本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.跟踪训练1 (1)某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的 信号?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?题型二 元素“在”与“不在”问题例2 用0到9这10个数字,可以组成多少个没有重复数字的三位数?小结解决排列应用题,常用的思考方法有直接法和间接法.排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.跟踪训练2五个学生和一个老师站成一排照相,问老师不排在两端的排法有多少种?题型三元素“相邻”与“不相邻”问题例37人站成一排.(1)甲、乙两人相邻的排法有多少种?(2)甲、乙两人不相邻的排法有多少种?(3)甲、乙、丙三人必相邻的排法有多少种?(4)甲、乙、丙三人两两不相邻的排法有多少种?小结处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.跟踪训练3对于本例中的7人,(1)甲、乙两人之间只有1人的排法有多少种?(2)甲、乙、丙排序一定时,有多少种排法?(3)甲在乙的左边(不一定相邻)有多少种不同的排法?【当堂检测】1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个 D.60个2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144 C.576 D.6843.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法种数为()A.42 B.30 C.20 D.124.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许有空袋,且红口袋中不能装入红球,则有________种不同的放法.【课堂小结】1.对有特殊限制的排列问题,优先安排特殊元素或特殊位置.2.对从正面分类繁杂的排列问题,可考虑使用间接法.3.对要求某些元素相邻或不相邻的排列问题,可使用“捆绑法”、“插空法”.【拓展提高】1.(1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4男4女排成一排,同性者相邻,有多少种不同的站法?(4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?2.用0到9这10个数字,可以组成多少个没有重复数字的三位数?3.用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?4.有4位男学生3位女学生排队拍照,根据下列要求,各有多少种不同的排列结果?(1)4个男学生必须连在一起;(2)其中甲、乙两人之间必须间隔2人.(3)若三女生互不相邻(4)若甲、乙两位同学必须排两端(5)若甲、乙两位同学不得排两端(6)若甲、乙两女生相邻且不与第三女生相邻5.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?6.一条铁路原有n个车站,为适应客运需要新增)1(mm个车站,客运车票增加62种,问原有多少个车站,现有多少个?【课后作业】§1.2.2组合(一)【学习要求】1.理解组合及组合数的概念.2.能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.【学法指导】组合研究的问题与排列是平行的,两者的区别是有无“顺序”.学习中可和排列相比较,领悟概念的本质,组合数公式推导中要研究组合与排列的关系.【知识要点】1.组合:一般地,从n个不同元素中,叫做从n个不同元素中取出m个元素的一个组合(combination).2.组合数:从n个不同元素中取出m (m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.3.组合数公式:C m n=A m nA m m==(n,m∈N*,m≤n).【问题探究】探究点一组合的概念问题1从3名同学甲、乙、丙中选2名去参加一项活动,有多少种不同选法?问题2问题1和“从3名同学中选出2名去参加一项活动,其中1名参加上午的活动,1名参加下午的活动”有何区别?问题3排列与组合有什么联系和区别?例1判断下列各事件是排列问题,还是组合问题.(1)10个人相互各写一封信,共写了多少封信?(2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?。
高中数学选修2-3导学案58453

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式§2.1.1 离散型随机变量学习目标1.理解随机变量的定义;2.掌握离散型随机变量的定义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:掷一枚骰子,出现的点数可能是,出现偶数点的可能性是.复习2:掷硬币这一最简单的随机试验,其可能的结果是,两个事件.课内探究导学案二、新课导学※学习探究探究任务一:在掷硬币的随机试验中,其结果可以用数来表示吗?我们确定一种 关系,使得每一个试验结果都用一个 表示,在这种 关系下,数字随着试验结果的变化而变化 新知1:随机变量的定义:像这种随着试验结果变化而变化的变量称为 , 常用字母 、 、 、 …表示. 思考:随机变量与函数有类似的地方吗?新知2:随机变量与函数的关系:随机变量与函数都是一种 ,试验结果的范围相当于函数的 ,随机变量的范围相当于函数的 . 试试:在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个 ,其值域是 . 随机变量{}0=X 表示 ;{}4=X 表示 ;{}3<X 表示 ;“抽出3件以上次品”可用随机变量 表示.新知3:所有取值可以 的随机变量,称为离散型随机变量. 思考:① 电灯泡的寿命X 是离散型随机变量吗?②随机变量⎩⎨⎧≥<=小时寿命小时寿命1000,11000,0Y 是一个离散型随机变量吗?※ 典型例题例1.某林场树木最高可达36m ,林场树木的高度η是一个随机变量吗?若是随机变量,η的取值范围是什么?例2 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5,现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.※ 动手试试练1.下列随机试验的结果能否用离散型号随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果(1)抛掷两枚骰子,所得点数之和; (2)某足球队在5次点球中射进的球数;(3)任意抽取一瓶某种标有2500ml 的饮料,其实际量与规定量之差.练2.盒中9个正品和3个次品零件,每次取一个零件,如果取出的次品不再放回,且取得正品前已取出的次品数为ξ.(1)写出ξ可能取的值; (2)写出1=ξ所表示的事件三、总结提升 ※ 学习小结1.随机变量; 2.离散型随机变量.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.下列先项中不能作为随机变量的是( ).A .投掷一枚硬币80次,正面向上的次数B .某家庭每月的电话费C .在n 次独立重复试验中,事件发生的次数D .一个口袋中装有3个号码都为1的小球,从中取出2个球的号码的和2.抛掷两枚骰子,所得点数之和记为ξ,那么,4=ξ表示随机实验结果是 ( ) . A .一颗是3点,一颗是1点B .两颗都是2点C .两颗都是4点D .一颗是3点,一颗是1点或两颗都是2点3.某人射击命中率为0.6,他向一目标射击,当第一次射击队中目标则停止射击,则射击次数的取值是( ). A .1,2,3,… ,n 6.0 B .1,2,3,…,n ,… C .0,1,2,… ,n 6.0 D .0,1,2,…,n ,…4.已知ξ2=y 为离散型随机变量,y 的取值为1,2,…,10,则ξ的取值为 . 5.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以ξ表示取出的球的最大号码,则4=ξ表示的试验结果是 .课后作业1在某项体能测试中,跑1km 成绩在4min 之内为优秀,某同学跑1km 所花费的时间X 是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?2下列随机试验的结果能否用离散型随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数;(2)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的成绩.§2.1.2 离散型随机变量的分布列学习目标1.理解离散型随机变量的分布列的两种形式; 2.理解并运用两点分布和超几何分布.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ). A .2 B .2或1 C .1或0 D .2或1或0复习2:将一颗骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差是2的概率是 .课内探究导学案二、新课导学※ 学习探究探究任务一:抛掷一枚骰子,向上一面的点数是一个随机变量X .其可能取的值是 ;它取各个不同值的概率都等于 问题:能否用表格的形式来表示呢?X 123456P新知1:离散型随机变量的分布列:若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,21 ,X 取每一个值),,2,1(n i x i =的概率i i p x X P ==)(.则①分布列表示:X 1x 2x … i x… n x P1p2p…i p…n p②等式表示: ③图象表示:新知2:离散型随机变量的分布列具有的性质: (1) ; (2) 试试:某同学求得一离散型随机变量的分布列如下:X0 1 2 3 P0.20.30.150.45试说明该同学的计算结果是否正确.※ 典型例题例1在掷一枚图钉的随机试验中,令⎩⎨⎧=.,0;,1针尖向下针尖向上X 如果针尖向上的概率为p ,试写出随机变量X 的分布列.变式:篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为 0.7,求他一次罚球得分的分布列新知3:两点分布列:X 01Pp -1 p称X 服从 ;称)1(==X P p 为 例2在含有5件次品的100件产品中,任取3件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率.变式:抛掷一枚质地均匀的硬币2次,写出正面向上次数X 的分布列?新知4:超几何分布列:X 0 1 … mPn N n M N M C C C 00-- nNn MN M C C C 11-- …nNm n MN m M C C C --※ 动手试试练1.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.练2.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A 的概率.三、总结提升 ※ 学习小结1.离散型随机变量的分布列; 2.离散型随机变量的分布的性质; 3.两点分布和超几何分布.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.若随机变量ξ的概率分布如下表所示,则表中a 的值为( ).ξ1 2 3 4 P1/21/61/6aA .1B .1/2C .1/3D .1/62.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用ξ表示这6人中“三好生”的人数,则概率等于6123735C C C 的是( ) . A .)2(=ξP B .)3(=ξP C .)2(≤ξP D .)3(≤ξP3.若a n P -=≤1)(ξ,b m P -=≥1)(ξ,其中n m <,则)(n m P ≤≤ξ等于( ). A .)1)(1(b a -- B .)1(1b a -- C .)(1b a +- D .)1(1a b -- 4.已知随机变量ξ的分布列为ξ 1 2 3 4 5 P0.10.20.40.20.1则ξ为奇数的概率为 .5.在第4题的条件下,若32-=ξη,则η的分布列为 .课后作业1.学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人,假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率.2.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.§2.2.1 条件概率学习目标1.在具体情境中,了解条件概率的意义; 2.学会应用条件概率解决实际问题.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:下面列出的表达式是否是离散型随机变量X 的分布列( ). A .0.2)(==i X P ,4,3,2,1,0=iB .0.2)(==i X P ,5,4,3,2,1=iC .505)(2+==i i X P ,5,4,3,2,1=iD .10)(ii X P ==,4,3,2,1=i复习2:设随机变量的分布如下:ξ1 2 3… nPK K 2 K 4…K n 12-求常数K .课内探究导学案二、新课导学 ※ 学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?若抽到中奖奖券用“Y ”表示,没有抽到用“Y ”表示,则所有可能的抽取情况为{=Ω },用B表示最后一名同学抽到中奖奖券的事件,则{=B},故最后一名同学抽到中奖奖券的概率为:=Ω=)()()(n B n B P 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是?因为已经知道第一名同学没有抽到中奖奖券,故所有可能的抽取情况变为{=A }最后一名同学抽到中奖奖券的概率为=)()(A n B n 记作:)(A B P新知1:在事件A 发生的情况下事件B 发生的条件概率为:)(A B P =)()(A n AB n = 新知2:条件概率具有概率的性质:≤)(A B P ≤如果B 和C 是两个互斥事件,则)(A C B P ⋃=※ 典型例题例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.变式:在第1次抽到理科题的条件下,第2次抽到文科题的概率?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.变式:任意按最后一位数字,第3次就按对的概率?※动手试试练1.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A,求第2次也抽到A的概率.练2.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为52,既刮风又下雨的概率为101,设A为下雨,B为刮风,求:(1))(BAP;(2))(ABP.三、总结提升※学习小结1.理解条件概率的存在;2.求条件概率;3.条件概率中的“条件”就是“前提”的意思.课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1.下列正确的是().A.)(ABP=)(BAP B.)(BAP=)()(BnABnC.1)(0<<ABP D.)(AAP=02.盒中有25个球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一个球,已知它不是黑球,则它是黄球的概率为( ) .A.1/3 B.1/4 C.1/5 D.1/63.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,问它能活到25岁的概率是( ).A .0.4B .0.8C .0.32D .0.54.5.0)(=A P ,3.0)(=B P ,2.0)(=AB P ,则)(B A P = ,)(A B P = . 5.一个家庭中有两个小孩,已知这个家庭中有一个是女孩,问这时另一个小孩是男孩的概率是 .课后作业1.设某种灯管使用了500h 能继续使用的概率为0.94,使用到700h 后还能继续使用的概率为0.87,问已经使用了500h 的灯管还能继续使用到700h 的概率是多少?2.100件产品中有5件次品,不入回地抽取2次,每次抽1件.已知第1次抽出的是次品,求第2次抽出正品的概率.§2.2.2 事件的相互独立性学习目标1.了解相互独立事件的意义,求一些事件的概率;2.理解独立事件概念以及其与互斥,对立事件的区别与联系.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:把一枚硬币任意掷两次,事件=A “第一次出现正面”,事件B =“第二次出现正面”,则)(A B P 等于?复习2:已知0)(>B P ,φ=21A A ,则 成立. A .0)(1>B A PB .=+)(21B A A P )(1B A P +)(2B A PC .0)(21≠B A A PD .1)(21=B A A P课内探究导学案二、新课导学 ※ 学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学有放回地抽取,事件A 为“第一名同学没有抽到奖券”,事件B 为“最后一名同学抽到奖券”,事件A 的发生会影响事件B 发生的概率吗?新知1:事件A 与事件B 的相互独立:设B A ,为两个事件,如果 ,则称事件A 与事件B 的相互独立.注意:①在事件A 与B 相互独立的定义中,A 与B 的地位是对称的;②不能用)()(B P A B P =作为事件A 与事件B 相互独立的定义,因为这个等式的适用范围是0)(>A P ; ③如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立. 试试:分别抛掷2枚质地均匀的硬币,设A 是事件“第1枚为正面”,B 是事件“第2枚为正面”,C 是事件“2枚结果相同”,问:C B A ,,中哪两个相互独立?小结:判定相互独立事件的方法:①由定义,若)()()(B P A P AB P =,则B A ,独立; ②根据实际情况直接判定其独立性. ※ 典型例题例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是05.0,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.变式:两次都没有抽到指定号码的概率是多少?思考:二次开奖至少中一次奖的概率是一次开奖中奖概率的两倍吗?例2.下列事件中,哪些是互斥事件,哪些是相互独立事件? (1)“掷一枚硬币,得到正面向上”与“掷一枚骰子,向上的点是2点”; (2)“在一次考试中,张三的成绩及格”与“在这次考试中李四的成绩不及格”;(3)在一个口袋内有3白球、2黑球,则“从中任意取1个球得到白球”与“从中任意取1个得到黑球”※ 动手试试练1.天气预报,在元旦假期甲地的降雨概率是2.0,乙地的降雨概率是3.0,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内: (1)甲、乙两地都降雨的概率; (2)甲、乙两地都不降雨的概率; (3)其中至少一个地方降雨的概率.练2.某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为6.0,7.0,8.0,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.三、总结提升 ※ 学习小结1.相互独立事件的定义;2.相互独立事件与互斥事件、对立事件的区别.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1. 甲打靶的命中率为7.0,乙的命中率为8.0,若两人同时射击一个目标,则都未中的概率为( ). A .06.0 B .44.0 C .56.0 D .94.02.有一道题,C B A 、、三人独自解决的概率分别为413121、、,三人同时独自解这题,则只有一人解出的概率为 ( ) . A .241 B .2411 C . 2417 D . 31 3.同上题,这道题被解出的概率是( ). A .43 B .32 C . 54 D .107 4.已知A 与B 是相互独立事件,且3.0)(=A P ,6.0)(=B P ,则=⋅)(B A P .5.有100件产品,其中5件次品,从中选项取两次:(1)取后不放回,(2)取后放回,则两次都取得合格品的概率分别为 、 .课后作业1.一个口袋内装有2个白球和2个黑球,那么先摸出1个白球放回,再摸出1个白球的概率是多少?2.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.§2.2.3独立重复试验与二项分布学习目标1.了解独立重复试验;2.理解二项分布的含义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:生产一种产品共需5道工序,其中1~5道工序的生产合格率分别为96%,99%,98%,97%,96%,现从成品中任意抽取1件,抽到合格品的概率是多少?复习2:掷一枚硬币3次,则只有一次正面向上的概率为.课内探究导学案二、新课导学※学习探究探究1:在n次重复掷硬币的过程中,各次掷硬币试验的结果是否会受其他掷硬币试验的影响?新知1:独立重复试验:在的条件下做的n次试验称为n次独立重复试验.探究2:投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为pq-=1,连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?新知2:二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为:)(kXP== ,nk,,2,1,0=则称随机变量X服从.记作:X~B(),并称p为.试试:某同学投篮命中率为6.0,他在6次投篮中命中的次数X是一个随机变量,X~B()故他投中2次的概率是.※典型例题例1某射手每次射击击中目标的概率是8.0,求这名射击手在10次射击中(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.变式:击中次数少于8次的概率是多少?例2.将一枚硬币连续抛掷5次,求正面向上的次数X的分布列?变式:抛掷一颗骰子5次,向上的点数是2的次数有3次的概率是多少?※动手试试练1.若某射击手每次射击击中目标的概率是9.0,每次射击的结果相互独立,那么在他连续4次的射击中,第1次未击中目标,但后3次都击中目标的概率是多少?练2.如果生男孩和生女孩的概率相等,求有3个小孩的家庭中至少有2个女孩的概率.三、总结提升※学习小结1.独立重复事件的定义;2.二项分布与二项式定理的公式.课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1.某学生通过计算初级水平测试的概率为21,他连续测试两次,则恰有1次获得通过的概率为().A.31B.21C.41D.432.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为( ) .A.2.0B.41.0C.74.0D.67.03.每次试验的成功率为)10(<<pp,则在3次重复试验中至少失败1次的概率为().A.3)1(p-B.31p-C.)1(3p-D.)1()1()1(223ppppp-+-+-4.在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率的范围是.5.某种植物种子发芽的概率为7.0,则4颗种子中恰好有3颗发芽的概率为.课后作业1.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是7.0,那么在这段时间内吊灯能照明的概率是多少?2.甲、乙两选手比赛,假设每局比赛甲胜的概率为6.0,乙胜的概率为4.0,那么采用3局2胜制还是采用5局3胜制对甲更有利?§2.3.1离散型随机变量的均值(1)学习目标1.理解并应用数学期望来解决实际问题;2.各种分布的期望.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:甲箱子里装3个白球,2个黑球,乙箱子里装2个白球,2个黑球,从这两个箱子里分别摸出1个球,则它们都是白球的概率?复习2:某企业正常用水的概率为43,则5天内至少有4天用水正常的概率为.课内探究导学案二、新课导学※学习探究探究:某商场要将单价分别为18元/kg,24元/kg,36元/kg的3种糖果按1:2:3的比例混合销售,如何对混合糖果定价才合理?新知1:均值或数学期望:若离散型随机变量X的分布列为:X1x2x…i x…n xP1p2p…i p…n p则称=EX.为随机变量X的均值或数学期望.它反映离散型随机变量取值的.新知2:离散型随机变量期望的性质:若baXY+=,其中ba,为常数,则Y也是随机变量,且baEXbaXE+=+)(.注意:随机变量的均值与样本的平均值的:区别:随机变量的均值是 ,而样本的平均值是 ;联系:对于简单随机样本,随着样本容量的增加,样本平均值越来越接近于总体均值. ※ 典型例题例1在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为7.0,那么他罚球1次的得分X 的均值是多少?变式:.如果罚球命中的概率为8.0,那么罚球1次的得分均值是多少? 新知3:①若X 服从两点分布,则=EX ; ②若X ~),(p n B ,则=EX .例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分100分.学生甲选对任意一题的概率为9.0,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求甲学生和乙学生在这次测验中的成绩的均值 .思考:学生甲在这次单元测试中的成绩一定会是90分吗?他的均值为90分的含义是什么?※ 动手试试练1.已知随机变量X 的分布列为:X 0 1 2 3 4 5 P0.10.20.30.20.10.1求EX .练2.同时抛掷5枚质地均匀的硬币,求出现正面向上的硬币数X 的均值.X1 3 5P 0.5 0.3 0.2三、总结提升 ※ 学习小结1.随机变量的均值; 2.各种分布的期望.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1. 随机变量X 的分布列为则其期望等于( ).A .1B .31C .5.4D .4.22.已知32+=ξη,且53=ξE ,则=ηE ( ) . A .53 B .56 C . 521 D . 512 3.若随机变量X 满足1)(==c X P ,其中c 为常数,则=EX ( ). A .0 B .1 C . c D .不确定4.一大批进口表的次品率15.0=P ,任取1000只,其中次品数ξ的期望=ξE .5.抛掷两枚骰子,当至少有一枚出现6点时,就说这次试验成功,则在30次试验中成功次数的期望 .课后作业1.抛掷1枚硬币 ,规定正面向上得1分,反面向上得1-分,求得分X 的均值.2.产量相同的2台机床生产同一种零件,它们在一小时内生产出的次品数21,X X 的分布列分别如下:1X0 1 2 3 P0.40.30.20.12X0 1 2 P0.30.50.2问哪台机床更好?请解释所得出结论的实际含义.§2.3.1离散型随机变量的均值(2)学习目标1.进一步理解数学期望;2.应用数学期望来解决实际问题.课前预习导学案一、课前准备(预习教材P 72~ P 74,找出疑惑之处)复习1:设一位足球运动员,在有人防守的情况下,射门命中的概率为3.0=p ,求他一次射门时命中次数ξ的期望复习2:一名射手击中靶心的概率是9.0,如果他在同样的条件下连续射击10次,求他击中靶心的次数的均值?课内探究导学案二、新课导学探究:某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%,下表是过去200例类拟项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的期望是 元.※ 典型例题例1 已知随机变量X 取所有可能的值n ,,2,1 是等到可能的,且X 的均值为5.50,求n 的值例2.根据气象预报,某地区近期有小洪水的概率为25.0,有大洪水的概率为01.0.该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案: 方案1:运走设备,搬运费为3800元方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水 . 方案3:不采取措施,希望不发生洪水. 试比较哪一种方案好.思考:根据上述结论,人们一定采取方案2吗?※ 动手试试练1.现要发行10000张彩票,其中中奖金额为2元的彩票1000张, 10元的彩票300张, 50元的彩票100张, 100元的彩票50张, 1000元的彩票5张,问一张彩票可能中奖金额的均值是多少元?练2.抛掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,求在20次试验中成功次数X 的期望.三、总结提升 ※ 学习小结1.随机变量的均值;2.各种分布的期望.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.若ξ是一个随机变量,则)(ξξE E -的值为( ). A .无法求 B .0 C .ξE D .ξE 2 2设随机变量ξ的分布列为41)(==k P ξ,4,3,2,1=k ,则ξE 的值为 ( ) . A .25B .5.3C . 25.0D . 2 3.若随机变量ξ~)6.0,(n B ,且3=ξE ,则)1(=ξP 的值是( ). A .44.02⨯ B .54.02⨯ C .44.03⨯ D .46.03⨯ 4.已知随机变量ξ的分布列为:ξ0 1 2 34 P1.02.0.0x1.0则x = ;=<≤)31(ξP ;ξE = .5.一盒内装有5个球,其中2个旧的,3个新的,从中任意取2个,则取到新球个数的期望值为 .课后作业1.已知随机变量X 的分布列:X2- 1 3 P16.044.040.0求)52(,+X E EX2.一台机器在一天内发生故障的概率为1.0,若这台机器一周5个工作日不发生故障,可获利5万元;发生1次故障仍可获利5.2万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元,问这台机器一周内可能获利的均值是多少?§2.3.2 离散型随机变量的方差(1)学习目标1.理解随机变量方差的概念; 2.各种分布的方差.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:若随机变量 Y ~)8.0,5(B ,则=EY ;又若42+=Y X ,则=2EX 复习2:已知随机变量ξ的分布列为 :ξ1xP51 p103且1.1=ξE ,则=p ;=x课内探究导学案二、新课导学 ※ 学习探究探究:要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩纪录,第一名同学击中目标靶的环数1X ~)8.0,10(B ,第二名同学击中目标靶的环数42+=Y X ,其中Y ~)8.0,5(B ,请问应该派哪名同学参赛?新知1:离散型随机变量的方差:当已知随机变量ξ的分布列为()k k p x P ==ξ ),2,1( =k 时,则称=ξD 为ξ的方差,=σξ 为ξ的标准差随机变量的方差与标准差都反映了随机变量取值的 .ξD 越小,稳定性越 ,波动越 .新知2:方差的性质:当b a ,均为常数时,随机变量b a +=ξη的方差=+=)()(b a D D ξη .特别是: ①当0=a 时,()=b D ,即常数的方差等于 ;②当1=a 时,=+)(b D ξ ,即随机变量与常数之和的方差就等于这个随机变量的方差 ; ③当0=b 时,()=ξa D ,即随机变量与常之积的方差,等于常数的 与这个随机变量方差的积 新知2:常见的一些离散型随机变量的方差: (1)单点分布:=ξD ; (2)两点分布:=ξD ; (3)二项分布:=ξD .※ 典型例题例1已知随机变量X 的分布列为:X 0 1 2 3 4 5 P0.10.20.30.20.10.1求DX 和X σ.。
高中数学选修2-3导学案

§2、1、1离散型随机变量学习目标1、理解随机变量得定义;2、掌握离散型随机变量得定义、课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:掷一枚骰子,出现得点数可能就就是,出现偶数点得可能性就就是、复习2:掷硬币这一最简单得随机试验,其可能得结果就就是, 两个事件、课内探究导学案二、新课导学※学习探究探究任务一:在掷硬币得随机试验中,其结果可以用数来表示吗?我们确定一种关系,使得每一个试验结果都用一个表示,在这种关系下,数字随着试验结果得变化而变化新知1:随机变量得定义:像这种随着试验结果变化而变化得变量称为,常用字母、、、…表示、思考:随机变量与函数有类似得地方吗?新知2:随机变量与函数得关系:随机变量与函数都就就是一种,试验结果得范围相当于函数得,随机变量得范围相当于函数得、试试:在含有10件次品得100件产品中,任意抽取4件,可能含有得次品件数将随着抽取结果得变化而变化,就就是一个,其值域就就是、随机变量表示;表示;表示;“抽出3件以上次品”可用随机变量表示、新知3:所有取值可以得随机变量,称为离散型随机变量、思考:①电灯泡得寿命就就是离散型随机变量吗?②随机变量就就是一个离散型随机变量吗?※典型例题例1、某林场树木最高可达36,林场树木得高度就就是一个随机变量吗?若就就是随机变量,得取值范围就就是什么?例2 写出下列随机变量可能取得值,并说明随机变量所取得值表示得随机试验得结果(1)一袋中装有5只同样大小得白球,编号为1,2,3,4,5,现从该袋内随机取出3只球,被取出得球得最大号码数; (2)某单位得某部电话在单位时间内收到得呼叫次数、※动手试试练1、下列随机试验得结果能否用离散型号随机变量表示:若能,请写出各随机变量可能得取值并说明这些值所表示得随机试验得结果(1)抛掷两枚骰子,所得点数之与;(2)某足球队在5次点球中射进得球数;(3)任意抽取一瓶某种标有2500得饮料,其实际量与规定量之差、练2、盒中9个正品与3个次品零件,每次取一个零件,如果取出得次品不再放回,且取得正品前已取出得次品数为、(1)写出可能取得值;(2)写出所表示得事件三、总结提升※学习小结1、随机变量;2、离散型随机变量、课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1、下列先项中不能作为随机变量得就就是( )、A、投掷一枚硬币次,正面向上得次数B、某家庭每月得电话费C、在n次独立重复试验中,事件发生得次数D、一个口袋中装有3个号码都为1得小球,从中取出2个球得号码得与2、抛掷两枚骰子,所得点数之与记为,那么,表示随机实验结果就就是( )、A、一颗就就是3点,一颗就就是1点B、两颗都就就是2点C、两颗都就就是4点D、一颗就就是3点,一颗就就是1点或两颗都就就是2点3、某人射击命中率为0、6,她向一目标射击,当第一次射击队中目标则停止射击,则射击次数得取值就就是( )、A、1,2,3,…,B、1,2,3,…,,…C、0,1,2,…,D、0,1,2,…,,…4、已知为离散型随机变量,得取值为1,2,…,10,则得取值为、5、一袋中装有6个同样大小得黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以表示取出得球得最大号码,则表示得试验结果就就是、课后作业1在某项体能测试中,跑1km成绩在4min之内为优秀,某同学跑1km所花费得时间就就是离散型随机变量吗?如果我们只关心该同学就就是否能够取得优秀成绩,应该如何定义随机变量?2下列随机试验得结果能否用离散型随机变量表示:若能,请写出各随机变量可能得取值并说明这些值所表示得随机试验得结果、(1)从学校回家要经过5个红绿灯口,可能遇到红灯得次数;(2)在优、良、中、及格、不及格5个等级得测试中,某同学可能取得得成绩、§2、1、2离散型随机变量得分布列学习目标1、理解离散型随机变量得分布列得两种形式;2、理解并运用两点分布与超几何分布、课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:设某项试验得成功率就就是失败率得2倍,用随机变量描述1次试验得成功次数,则得值可以就就是( )、A、2 B、2或1C、1或0 D、2或1或0复习2:将一颗骰子掷两次,第一次掷出得点数减去第二次掷出得点数得差就就是2得概率就就是、课内探究导学案二、新课导学※学习探究探究任务一:抛掷一枚骰子,向上一面得点数就就是一个随机变量、其可能取得值就就是;它取各个不同值得概率都等于问题:能否用表格得形式来表示呢?若离散型随机变量可能取得不同值为,取每一个值得概率、则①分布列表示::③图象表示:新知2:离散型随机变量得分布列具有得性质:(1) ;(2)试试:某同学求得一离散型随机变量得分布列如下:※典型例题例1在掷一枚图钉得随机试验中,令如果针尖向上得概率为,试写出随机变量得分布列、变式:篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中得概率为0、7,求她一次罚球得分得分布列新知3:两点分布列:称服从;为例2在含有5件次品得100件产品中,任取3件,试求:(1)取到得次品数得分布列;(2)至少取到1件次品得概率、变式:抛掷一枚质地均匀得硬币2次,写出正面向上次数得分布列?新知4:超几何分布列:练1、在某年级得联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球与20个白球,这些球除颜色外完全相同、一次从中摸出5个球,至少摸到3个红球就中奖、求中奖得概率、练2、从一副不含大小王得52张扑克牌中任意抽出5张,求至少有3张A得概率、三、总结提升※学习小结1、离散型随机变量得分布列;2、离散型随机变量得分布得性质;3、两点分布与超几何分布、课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1、若随机变量得概率分布如下表所示,则表中得值为()、/62、某12人得兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用表示这6人中“三好生”得人数,则概率等于得就就是()、A、B、C、D、3、若,,其中,则等于( )、A、B、C、D、4、已知随机变量得分布列为则为奇数得概率为、5、在第4题得条件下,若,则得分布列为、课后作业1、学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人,假设每名候选人都有相同得机会被选到,求该班恰有2名同学被选到得概率、2、老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格、某同学只能背诵其中得6篇,试求:(1)抽到她能背诵得课文得数量得分布列;(2)她能及格得概率、§2、2、1条件概率学习目标1、在具体情境中,了解条件概率得意义;2、学会应用条件概率解决实际问题、课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:下面列出得表达式就就是否就就是离散型随机变量得分布列()、A、,B、,C、,D、,复习2:设随机变量得分布如下:课内探究导学案二、新课导学※学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券得概率就就是否比其她同学小?若抽到中奖奖券用“”表示,没有抽到用“”表示,则所有可能得抽取情况为,用表示最后一名同学抽到中奖奖券得事件,则,故最后一名同学抽到中奖奖券得概率为:思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券得概率又就就是?因为已经知道第一名同学没有抽到中奖奖券,故所有可能得抽取情况变为最后一名同学抽到中奖奖券得概率为记作:新知1:在事件发生得情况下事件发生得条件概率为:==新知2:条件概率具有概率得性质:如果与就就是两个互斥事件,则=※典型例题例1在5道题中有3道理科题与2道文科题、如果不放回地依次抽取2道题,求:(1)第1次抽到理科题得概率;(2)第1次与第2次都抽到理科题得概率;(3)在第1次抽到理科题得条件下,第2次抽到理科题得概率、变式:在第1次抽到理科题得条件下,第2次抽到文科题得概率?例2一张储蓄卡得密码共有位数字,每位数字都可从~中任选一个、某人在银行自动提款机上取钱时,忘记了密码得最后一位数字、求:(1)任意按最后一位数字,不超过次就按对得概率;(2)如果她记得密码得最后一位就就是偶数,不超过2次就按对得概率、变式:任意按最后一位数字,第次就按对得概率?※动手试试练1、从一副不含大小王得张扑克牌中不放回地抽取次,每次抽张、已知第次抽到,求第次也抽到得概率、练2、某地区气象台统计,该地区下雨得概率就就是,刮三级以上风得概率为,既刮风又下雨得概率为,设为下雨,为刮风,求:(1) ;(2)、三、总结提升※学习小结1、理解条件概率得存在;2、求条件概率;3、条件概率中得“条件”就就就是“前提”得意思、课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1、下列正确得就就是( )、A、=B、=C、D、=2、盒中有25个球,其中10个白得,5个黄得,10个黑得,从盒子中任意取出一个球,已知它不就就是黑球,则它就就是黄球得概率为() 、A、1/3B、1/4 C、1/5D、1/63、某种动物由出生算起活到20岁得概率为0、8,活到25岁得概率为0、4,现有一个20岁得动物,问它能活到25岁得概率就就是()、A、0、4B、0、8C、0、32D、0、54、,,,则=,=、5、一个家庭中有两个小孩,已知这个家庭中有一个就就是女孩,问这时另一个小孩就就是男孩得概率就就是、课后作业1、设某种灯管使用了500h能继续使用得概率为0、94,使用到700h后还能继续使用得概率为0、87,问已经使用了500h得灯管还能继续使用到700h得概率就就是多少?2、100件产品中有5件次品,不入回地抽取次,每次抽件、已知第次抽出得就就是次品,求第次抽出正品得概率、§2、2、2事件得相互独立性学习目标1、了解相互独立事件得意义,求一些事件得概率;2、理解独立事件概念以及其与互斥,对立事件得区别与联系、课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:把一枚硬币任意掷两次,事件“第一次出现正面”,事件B=“第二次出现正面”,则等于?复习2:已知,,则成立、A、B、+C、D、课内探究导学案二、新课导学※学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学有放回地抽取,事件为“第一名同学没有抽到奖券”,事件为“最后一名同学抽到奖券”,事件得发生会影响事件发生得概率吗?新知1:事件与事件得相互独立:设为两个事件,如果,则称事件与事件得相互独立、注意:①在事件与相互独立得定义中,与得地位就就是对称得;②不能用作为事件与事件相互独立得定义,因为这个等式得适用范围就就是;③如果事件与相互独立,那么与,与,与也都相互独立、试试:分别抛掷2枚质地均匀得硬币,设就就是事件“第1枚为正面”,就就是事件“第2枚为正面”,就就是事件“2枚结果相同”,问:中哪两个相互独立?小结:判定相互独立事件得方法: ①由定义,若,则独立;②根据实际情况直接判定其独立性、※典型例题例1某商场推出二次开奖活动,凡购买一定价值得商品可以获得一张奖券、奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同得兑奖活动、如果两次兑奖活动得中奖概率都就就是,求两次抽奖中以下事件得概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码、变式:两次都没有抽到指定号码得概率就就是多少?思考:二次开奖至少中一次奖得概率就就是一次开奖中奖概率得两倍吗?例2、下列事件中,哪些就就是互斥事件,哪些就就是相互独立事件?(1)“掷一枚硬币,得到正面向上”与“掷一枚骰子,向上得点就就是点”;(2)“在一次考试中,张三得成绩及格”与“在这次考试中李四得成绩不及格”;(3)在一个口袋内有白球、黑球,则“从中任意取个球得到白球”与“从中任意取个得到黑球”※动手试试练1、天气预报,在元旦假期甲地得降雨概率就就是,乙地得降雨概率就就是,假定在这段时间内两地就就是否降雨相互之间没有影响,计算在这段时间内:(1)甲、乙两地都降雨得概率;(2)甲、乙两地都不降雨得概率;(3)其中至少一个地方降雨得概率、练2、某同学参加科普知识竞赛,需回答个问题、竞赛规则规定:答对第一、二、三问题分别得分、分、分,答错得零分、假设这名同学答对第一、二、三个问题得概率分别为,且各题答对与否相互之间没有影响、(1)求这名同学得分得概率;(2)求这名同学至少得分得概率、三、总结提升※学习小结1、相互独立事件得定义;2、相互独立事件与互斥事件、对立事件得区别、课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1、甲打靶得命中率为,乙得命中率为,若两人同时射击一个目标,则都未中得概率为()、A、B、C、D、2、有一道题,三人独自解决得概率分别为,三人同时独自解这题,则只有一人解出得概率为( )、A、B、C、D、3、同上题,这道题被解出得概率就就是( )、A、B、C、D、4、已知与就就是相互独立事件,且,,则、5、有件产品,其中件次品,从中选项取两次:(1)取后不放回,(2)取后放回,则两次都取得合格品得概率分别为、、课后作业1、一个口袋内装有个白球与个黑球,那么先摸出个白球放回,再摸出1个白球得概率就就是多少?2、甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工得零件就就是一等品而乙机床加工得零件不就就是一等品得概率为,乙机床加工得零件就就是一等品而丙机床加工得零件不就就是一等品得概率为,甲、丙两台机床加工得零件都就就是一等品得概率为(1)分别求甲、乙、丙三台机床各自加工得零件就就是一等品得概率;(2)从甲、乙、丙加工得零件中各取一个检验,求至少有一个一等品得概率、§2、2、3独立重复试验与二项分布学习目标1、了解独立重复试验;2、理解二项分布得含义、课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:生产一种产品共需道工序,其中1~5道工序得生产合格率分别为96%,99%,98%,97%,96%,现从成品中任意抽取件,抽到合格品得概率就就是多少?复习2:掷一枚硬币3次,则只有一次正面向上得概率为、课内探究导学案二、新课导学※学习探究探究1:在次重复掷硬币得过程中,各次掷硬币试验得结果就就是否会受其她掷硬币试验得影响?新知1:独立重复试验:在得条件下做得次试验称为次独立重复试验、探究2:投掷一枚图钉,设针尖向上得概率为,则针尖向下得概率为,连续掷一枚图钉次,仅出现次针尖向上得概率就就是多少?新知2:二项分布:一般地,在次独立重复试验中,设事件发生得次数为,在每次试验中事件发生得概率为,那么在次独立重复试验中,事件恰好发生次得概率为:=,则称随机变量服从、记作:~( ),并称为、试试:某同学投篮命中率为,她在次投篮中命中得次数就就是一个随机变量,~()故她投中次得概率就就是、※典型例题例1某射手每次射击击中目标得概率就就是,求这名射击手在次射击中(1)恰有次击中目标得概率;(2)至少有次击中目标得概率、变式:击中次数少于次得概率就就是多少?例2、将一枚硬币连续抛掷次,求正面向上得次数得分布列?变式:抛掷一颗骰子次,向上得点数就就是2得次数有3次得概率就就是多少?※动手试试练1、若某射击手每次射击击中目标得概率就就是,每次射击得结果相互独立,那么在她连续次得射击中,第次未击中目标,但后次都击中目标得概率就就是多少?练2、如果生男孩与生女孩得概率相等,求有个小孩得家庭中至少有个女孩得概率、三、总结提升※学习小结1、独立重复事件得定义;2、二项分布与二项式定理得公式、课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1、某学生通过计算初级水平测试得概率为,她连续测试两次,则恰有次获得通过得概率为( )、A、B、C、D、2、某气象站天气预报得准确率为80%,则5次预报中至少有4次准确得概率为( ) 、A、B、C、D、3、每次试验得成功率为,则在次重复试验中至少失败次得概率为 ( )、A、B、C、D、4、在3次独立重复试验中,随机事件恰好发生1次得概率不大于其恰好发生两次得概率,则事件在一次试验中发生得概率得范围就就是、5、某种植物种子发芽得概率为,则颗种子中恰好有颗发芽得概率为、课后作业1、某盏吊灯上并联着个灯泡,如果在某段时间内每个灯泡能正常照明得概率都就就是,那么在这段时间内吊灯能照明得概率就就是多少?2、甲、乙两选手比赛,假设每局比赛甲胜得概率为,乙胜得概率为,那么采用局胜制还就就是采用局胜制对甲更有利?§2、3、1离散型随机变量得均值(1)学习目标1、理解并应用数学期望来解决实际问题;2、各种分布得期望、课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:甲箱子里装个白球,个黑球,乙箱子里装个白球,个黑球,从这两个箱子里分别摸出个球,则它们都就就是白球得概率?复习2:某企业正常用水得概率为,则天内至少有天用水正常得概率为、课内探究导学案二、新课导学※学习探究探究:某商场要将单价分别为元/kg,24元/kg,36元/kg得3种糖果按得比例混合销售,如何对混合糖果定价才合理?新知1:均值或数学期望:若离散型随机变量得分布列为:则称、为随机变量得均值或数学期望、它反映离散型随机变量取值得、新知2:离散型随机变量期望得性质:若,其中为常数,则也就就是随机变量,且、注意:随机变量得均值与样本得平均值得:区别:随机变量得均值就就是,而样本得平均值就就是;联系:对于简单随机样本,随着样本容量得增加,样本平均值越来越接近于总体均值、※典型例题例1在篮球比赛中,罚球命中次得分,不中得分、如果某运动员罚球命中得概率为,那么她罚球次得得分得均值就就是多少?变式:、如果罚球命中得概率为,那么罚球次得得分均值就就是多少?新知3:①若服从两点分布,则;②若~,则、例2、一次单元测验由个选择题构成,每个选择题有个选项,其中仅有一个选项正确、每题选对得分,不选或选错不得分,满分分、学生甲选对任意一题得概率为,学生乙则在测验中对每题都从各选项中随机地选择一个、分别求甲学生与乙学生在这次测验中得成绩得均值、思考:学生甲在这次单元测试中得成绩一定会就就是分吗?她得均值为分得含义就就是什么?※动手试试练1、已知随机变量得分布列为:求、练2、同时抛掷枚质地均匀得硬币,求出现正面向上得硬币数得均值、三、总结提升※学习小结1、随机变量得均值;2、各种分布得期望、课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1、随机变量得分布列为则其期望等于( )、A、B、C、D、2、已知,且,则( ) 、A、B、C、D、3、若随机变量满足,其中为常数,则()、A、B、C、D、不确定4、一大批进口表得次品率,任取只,其中次品数得期望、5、抛掷两枚骰子,当至少有一枚出现点时,就说这次试验成功,则在次试验中成功次数得期望、课后作业1、抛掷1枚硬币,规定正面向上得1分,反面向上得分,求得分得均值、2、产量相同得台机床生产同一种零件,它们在一小时内生产出得次品数得分布列分别如下:§2、3、1离散型随机变量得均值(2)学习目标1、进一步理解数学期望;2、应用数学期望来解决实际问题、课前预习导学案一、课前准备(预习教材P72~ P74,找出疑惑之处)复习1:设一位足球运动员,在有人防守得情况下,射门命中得概率为,求她一次射门时命中次数得期望复习2:一名射手击中靶心得概率就就是,如果她在同样得条件下连续射击次,求她击中靶心得次数得均值?课内探究导学案二、新课导学探究:某公司有万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金得50%,下表就就是过去200例类拟项目开发得实施结果:则该公司一年后估计可获收益得期望就就是元、※典型例题例1已知随机变量取所有可能得值就就是等到可能得,且得均值为,求得值例2、根据气象预报,某地区近期有小洪水得概率为,有大洪水得概率为、该地区某工地上有一台大型设备,遇到大洪水时要损失元,遇到小洪水时要损失元、为保护设备,有以下种方案:方案1:运走设备,搬运费为元方案2:建保护围墙,建设费为元,但围墙只能防小洪水、方案3:不采取措施,希望不发生洪水、试比较哪一种方案好、思考:根据上述结论,人们一定采取方案2吗?※动手试试练1、现要发行张彩票,其中中奖金额为元得彩票张, 元得彩票张,元得彩票张,元得彩票张,元得彩票张,问一张彩票可能中奖金额得均值就就是多少元?练2、抛掷两枚骰子,当至少有一枚点或点出现时,就说这次试验成功,求在次试验中成功次数得期望、三、总结提升※学习小结1、随机变量得均值;2、各种分布得期望、课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1、若就就是一个随机变量,则得值为( )、A、无法求B、C、D、2设随机变量得分布列为,,则得值为( ) 、A、B、C、D、3、若随机变量~,且,则得值就就是()、A、B、C、D、4、已知随机变量得分布列为:= ; ;=、5、一盒内装有个球,其中2个旧得,3个新得,从中任意取2个,则取到新球个数得期望值为、课后作业1、已知随机变量得分布列:求2、一台机器在一天内发生故障得概率为,若这台机器一周个工作日不发生故障,可获利万元;发生次故障仍可获利万元;发生次故障得利润为元;发生次或次以上故障要亏损万元,问这台机器一周内可能获利得均值就就是多少?§2、3、2离散型随机变量得方差(1)学习目标1、理解随机变量方差得概念;2、各种分布得方差、课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:若随机变量~,则;又若,则复习2:已知随机变量得分布列为:且,则;课内探究导学案二、新课导学※学习探究探究:要从两名同学中挑出一名,代表班级参加射击比赛,根据以往得成绩纪录,第一名同学击中目标靶得环数~,第二名同学击中目标靶得环数,其中~,请问应该派哪名同学参赛?新知1:离散型随机变量得方差:当已知随机变量得分布列为时,则称为得方差,为得标准差随机变量得方差与标准差都反映了随机变量取值得、越小,稳定性越,波动越、新知2:方差得性质:当均为常数时,随机变量得方差、特别就就是:①当时, ,即常数得方差等于;②当时, ,即随机变量与常数之与得方差就等于这个随机变量得方差;③当时,,即随机变量与常之积得方差,等于常数得与这个随机变量方差得积新知2:常见得一些离散型随机变量得方差:(1)单点分布: ;(2)两点分布: ;(3)二项分布: 、。
高中数学选修23导学案,正规模版

《 正态分布》导学案【学习目标 】1.了解正态曲线的形状;2.会求服从正态分布的随机变量X 的概率分布. 【重点难点 】1.了解正态曲线的形状;2.会求服从正态分布的随机变量X 的概率分布. 【学法指导 】(预习教材P 80~ P 86,找出疑惑之处) 复习1:函数2221)(x ex f -=π的定义域是 ;它是 (奇或偶)函数;当=x 时,函数有最 值,是 .复习2:已知抛物线322++-=x x y ,则其对称轴为 ;该曲线与直线1=x ,2=x ,x 轴所围的成的图形的面积是?【教学过程 】 (一)导入※ 学习探究探究1.一所学校同年级的同学的身高,特别高的同学比较少,特别矮的同学也不多,大都集中在某个高度左右;2.某种电子产品的使用寿命也都接近某一个数,使用期过长,或过短的产品相对较少.生活中这样的现象很多,是否可以用数学模型来刻划呢?新知1:正态曲线: 函数222)(,21)(σμσμσπϕ--=x ex ,),(+∞-∞∈x ,(其中实数μ和σ)0(>σ为参数)的图象为正态分布密度曲线,简称正态曲线.试试:下列函数是正态密度函数的是( ).222)(21)(σμπσ-=x ex f ,)0(,>σσμ是实数 B .2222)(x e x f -=ππ C .4)1(2221)(--=x ex f πD .2221)(x e x f π=新知2:正态分布:如果对于任何实数b a <,随机变量X 满足,)(b X a P ≤<= ,则称X 的分布为正态分布.记作:X ~N ( ). 新知3:正态曲线的特点:(1)曲线位于x 轴 ,与x 轴 ; (2)曲线是单峰的,它关于直线 对称; (3)曲线在 处达到峰值 ; (4)曲线与x 轴之间的面积为 .新知4:正态曲线随着μ和σ的变化情况:①当σ一定时,曲线随着μ的变化而沿x 轴 ;②当μ一定时,曲线的 由σ确定. σ越小,曲线越“ ”,表示总体的分布越 ;σ越大,曲线越“ ”,表示总体的分布越 .试试:把一个正态曲线a 沿着横轴方向向右移动2个单位,得到新的一条曲线b ,下列说法中不正确的是( ).A .曲线b 仍然是正态曲线B .曲线a 和曲线b 的最高点的纵坐标相等C .以曲线b 为概率密度曲线的总体的期望比以曲线a 为概率密度曲线的总体的期望大2D .以曲线b 为概率密度曲线的总体的方差比以曲线a 为概率密度曲线的总体的方差大2新知5:正态分布中的三个概率:=+≤<-)(σμσμX P ;=+≤<-)22(σμσμX P ;=+≤<-)33(σμσμX P .新知6:小概率事件与σ3原则:在一次试验中几乎不可能发生,则随机变量X 的取值范围是 . (二)深入学习例1若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值等于π241,求该正态分布的概率密度函数的解析式.例2.在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~)100,90(N . (1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有 2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?※ 动手试试练1.某地区数学考试的成绩X 服从正态分布,其密度函数曲线图形最高点坐标(π281,60),成绩X 位于区间(]68,52的概率是多少?【当堂检测 】1.若2)1(221)(--=x ex f π,则下列正确的是( ).A .有最大值、最小值B .有最大值,无最小值C .无最大值,有最小值D .无最大值、最小值2.设随机变量ξ~)4,2(N ,则)21(ξD = ( ) .A .1B .2C .21D . 4 3.若随机变量满足正态分布),(2σμN ,则关于正态曲线性质的叙述正确的是( ).A .σ越大,曲线越“矮胖”,σ越小,曲线越“高瘦”B .σ越小,曲线越“矮胖”,σ越大,曲线越“高瘦”C .σ的大小,和曲线的“高瘦”、“矮胖”没有关系D .曲线的“高瘦”、“矮胖”受到μ的影响4.期望是2,标准差为π2的正态分布密度函数的解析式是 . 5.若随机变量X ~)2,5(2N ,则=≤<)73(X P .1.标准正态总体的函数为2221)(x ex f -=π,),(+∞-∞∈x(1)证明)(x f 是偶函数; (2)求)(x f 的最大值;(3)利用指数函数的性质说明)(x f 的增减性.2.商场经营的某种包装的大米质量服从正态分布)1.0,10(2N (单位:kg )任选一袋这种大米,质量在9.8~10.2kg 的概率是多少?【反思 】1.正态密度曲线及其特点;2.服从正态分布的随机变量的概率.《第二章 随机变量及其分布(复习)》导学案 【学习目标 】1.掌握离散型随机变量及其分布列; 2.会求离散型随机变量的期望和方差; 3.掌握正态分布的随机变量X 的概率分布. 【重点难点 】【学法指导】(预习教材P87~ P89,找出疑惑之处)复习1:知识结构:1.离散型随机变量及其分布列①离散型随机变量;②分布列;③两点分布;④二项分布.2.离散型随机变量的期望和方差①离散型随机变量的期望及性质;②离散型随机变量的方差及性质;③二项分布的期望和方差.3.正态分布①正态密度曲线;②正态分布中的三个概率.【教学过程】例1袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数ξ的期望和方差.例2.已知每门大炮射击一次击中目标的概率是3.0,那么要多少门这样的大炮同时对某一目标射击一次,才能使目标被击中的概率超过%95?例3:某商场要根据天气预报来决定国庆节是在商场内还是在商场外展开促销活动.统计资料表明,每年国庆商场内的促销活动可获得经济效益2万元;商场外的促销活动如果不遇到有雨天气可获得经济效益10万元,如果遇到有雨天气则带来经济损失4万元,9月30日气象台预报国庆节当地的降水概率是40%,商场应该选择哪种促销方式?例4:一批电池用于手电筒的寿命是均值为35.6小时、标准差为4.4小时的正态分布.随机从这批电池中任意取一节电池装在电筒中,问这节电池可持续使用不小于40.0小时的概率是多少?※动手试试练1.园林公司种植的树的成活率为90%,该公司种植的10棵树中有8棵或8棵以上将成活的概率是多少?从平均的角度来看,该公司种植的10棵树中将有多少棵成活?练2:NBA总决赛采取七局四胜制.预计本次比赛,两队的实力相当,有每场比赛组织者可获利200万美元(1)求组织者在本次比赛区中获利不低于1200万美元的概率;(2)组织者在本次比赛中期望获利多少?【当堂检测】1.则等于().A.0.1 B.0.2 C.0.5 D.0.672.设服从二项分布),(p n B 的随机变量ξ的期望和方差分别是15和445,则p n ,的值分别是( ) . A .41,50 B .41,60 C .43,50 D . 43,60则ξ的数学期望的最小值是( ).A .21B .0C .2D . 随p 的变化而变化 4.连续抛掷两枚骰子,所得点数之差是一个随机变量ξ,则=≤≤-)44(ξP .5.正态总体)94,0(N ,则数据落在)32,(-∞内的概率是 . 1.某种兔子的繁殖后代中有41具有长毛,在一窝6只兔崽中恰有3只有长毛的概率是多少?2.在某次大型考试中,某班同学的成绩服从正态分布)5,80(2N ,现已知该班同学成绩在80~85分的同学有17人,试计算该班同学中成绩在90分以上的同学有多少个?【反思 】1.离散型随机变量的分布列,期望与方差;2.正态分布及其应用.※ 知识拓展一位同学每天上学路上所花时间X 的样本均值为22分钟,其样本标准差为2分钟,如果X 服从正态分布,学校8点钟开始上课,为使该同学至少能够以0.99的概率保证上课不迟到,该名同学至少要提前二十八分钟出发.。
河北省承德实验中学高中数学选修2-3导学案:第一章第

二,二项式定理的逆用
例3设n为自然数,化简C ·2n-C ·2n-1+…+(-1)k·C ·2n-k+…+(-1)n·C .
跟踪训练3(2015·枣庄市高二期末)化简(x+1)4-4(x+1)3+6(x+1)2-4(x+1)+1的结果为()
(1)Tr+1=C ·( )8-r· r=C ·2-r·x4- r.
令4- r=1,解得r=4.
∴含x的一次幂的项为T4+1=C ·2-4·x= x.
跟踪训练2(1) (2)35
例3原式=C ·2n·10-C 2n-1·11+…+(-1)k·C 2n-k+…+(-1)n·C ·20=(2-1)n=1.
A.-4B.-3
C.-2D.-1
(2)(2015·漳州市高二期中)(1-2x)5(2+x)的展开式中x3项的系数是________.
课外作业班级:高一()班姓名__________
课堂随笔:
后记与感悟:
答案
牛刀小试1. D 2. B 3. 80 4. -10
例1设第r+1项为常数项,则
Tr+1=C (x2)10-r· r=C x20- r· r(r=0,1…,10).
【课堂研讨】
一,利用通项公式求展开式中的特定项
例1.求二项式 的展开式中的常数项.
跟踪训练1(x2- )5展开式中的常数项为()
A.80 B.-80 C.40 D.-40
例2若 展开式中前三项系数依次成等差数列.求:
(1)展开式中含x的一次幂的项;
(2)展开式中所有x的有理项.
跟踪训练2(1)若(x+ )8的展开式中x4的系数为7,则实数a=________.
111分类加法计数原理与分步乘法计数原理(一)(无答案)-山西省朔州市应县第一中学人教版高中数学选修2-3导学案

3张涛大学毕业参加工作后,把每月工资中结余的 钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?
完成教材例1,2,3,4.
课时作业(1)班级:姓名:____时间:_______
A.1+1+1=3B.3+4+某学生在书店发现3本好书,决定 至少买其中的1本,则购买方法有()
A.3种B.6种C.7种D.9种
5.如图1 1 1,一条电路从A处到B处接通时,可构成线路的条数为()
A.8B.6C.5D.3
6.十字路口来往的车辆,如果不允许回头,不同的行车路线有( )条.
1.某小组有8名男生,4名女生, 要从中选出一名当组长,不同的选法有()
A.32种B.9种C.12种D.20种
2.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()
A.7B.12
C.64D.81
3.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为()
班级
男生数
女生数
总数
高三(1)
30
20
50
高三(2)
30
30
60
高三(3)
35
20
55
9.某校高三共有三个班,其各班人数如下表:
(1)从三个班中选一名学生会主席,有多少种不同的选 法?
(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?
高中数学选修2-3导学案

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式第一章1.1分类加法计数原理与分步乘法计数原理导学案课前预习学案一、预习目标准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。
二、预习内容分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,……,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.分步计数原理:完成一件事,需要分成n个,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N= 种不同的方法。
课内探究学案一、学习目标二、准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。
学习重难点:教学重点:两个原理的理解与应用教学难点:学生对事件的把握二、学习过程情境设计1、从学校南大门到图艺中心有多少种不同的走法?2、从学校南大门经图艺中心到食堂有多少种不同的走法?(请画分析图)3、课件中提供的生活实例。
新知分类计数原理:完成一件事, 有n类 , 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,……,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.分步计数原理:完成一件事,需要分成n个,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=n种不同的方法。
巩固原理例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。
(1)若学校分配给该班1名代表,有多少不同的选法?(2)若学校分配给该班2名代表,且男、女代表各一名,有多少种不同的选法?解:练习1、乘积()()1231234a a ab b b b++⋅+++⋅()12345c c c c c++++展开后共有多少项?例2(1)在下图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法? (2)在下图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法?(1)(2)例3、为了确保电子信箱的安全,在注册时通常要设置电子信箱密码.在网站设置的信箱中, (1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个,这样的密码共有多少个? (3)密码为4~6位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个? 解: 例4、用4种不同颜色给下图示的地图上色, 要求相邻两块涂不同的颜色, 共有多少种不同的涂法?解:三、学生反思总结1. 分类计数与分步计数原理是两个最基本,也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事. 四、当堂检测课本P10:练习1—5五、作业 课本p12 习题1.1 A 组 1、2、3题六、教学反思(1)(2)(4) (3)课后练习与提高一、选择题1.将5封信投入3个邮筒,不同的投法共有().A.种B.种C.种D.种2.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有().A.种B.种C.18种D.36种3.已知集合,,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是().A.18 B.10 C.16 D.144.用1,2,3,4四个数字在任取数(不重复取)作和,则取出这些数的不同的和共有().A.8个B.9个C.10个D.5个二、填空题1.由数字2,3,4,5可组成________个三位数,_________个四位数,________个五位数.2.用1,2,3…,9九个数字,可组成__________个四位数,_________个六位数.3.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有_______种不同的选法.要买上衣、裤子各一件,共有_________种不同的选法.4.大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不小于20的情形有_______种.三、解答题1.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,能得到多少个不同的对数值?2.在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个?1.2.1排列学习目标1.理解并掌握排列、排列数的概念2.掌握排列数公式及其变式,并运用排列数公式熟练地进行相关运算3.在解排列应用问题中,通过正、逆向的思考,提高学生的逻辑思维能力、辩证思维能力及数学应用能力【重点】排列的定义,排列数公式及其应用。
高中数学选修2-3导学案,正规模版1.2

新知 1:排列的定义
一般地,从 n 个 元素中取出 m( )个元素,按照一定的
做从 个不同元素中取出
个元素的一个排列 .
试试 : 写出从 4 个不同元素中任取 2 个元素的所有排列 .
排成一排,叫
变式 :计算下列各式:
⑴ A125 ;
⑶ A83 2 A82 ;
⑵ A66
⑷
A88 A66
.
例 2 若 Anm 17 16 15 L 5 4,则 n
和
;两个排列相同的条件是
相同,
也
相同
复习 2:排列数公式:
Anm =
( m, n N , m n )
全排列数: Ann =
=
.
复习 3 从 5 个不同元素中任取 2 个元素的排列数是
,全部取出的排列数是
【教学过程】
(一)导入
探究任务一: 排列数公式应用的条件
问题 1:
⑴ 从 5 本 不同的书中选 3 本送给 3 名同学,每人各 1 本,共有多少种不同的送法?
【反思】 1. 排列数的定义
【当堂检测】
1. 计算: 5 A53
4
A
2 4
;
.
2.. 计算: A41
A42
A43
A
4 4
;
2. 排列数公式及其全排列公式 .
3. 某年全国足球甲级( A 组)联赛共有 14 队参加,每队都要与其余各队在主客场分
别比赛 1 次,共进行
场比赛;
4. 5 人站成一排照相,共有
反思 :排列问题有何特点?什么条件下是排列问题?
1
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下
.——《老子》
高中数学选修2-3导学案

( 1)
例 4、用 4 种不同颜色给下图示的地图上色, 同的颜色, 共有多少种不同的涂法? 解:
要求相邻两块涂不
( 2)
( 3)
( 4)
三、学生反思总结 1. 分类计数与分步计数原理是两个最基本,也是最重要的原理,是解答排列、组合 问题,尤其是较复杂的排列、组合问题的基础 . 2.辨别运用分类计数原理还是分步计数原理的关键是 “ 分类 ” 还是 “ 分步 ” , 也就是说 “ 分类 ” 时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而 “ 分步 ” 时,各步中 的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事 . 四、当堂检测 课本 P10:练习 1—5 五、作业 课本 p12 习题 1.1 A 组 1 、 2、 3 题
六、教学反思
2
课后练习与提高
一、选择题 1.将 5 封信投入 3 个邮筒,不同的投பைடு நூலகம்共有( A. 种 B. 种 C. 种 ). D. 种 ).
2.将 4 个不同的小球放入 3 个不同的盒子,其中每个盒子都不空的放法共有( A. 种 B. 种 C . 18 种 D. 36 种
3.已知集合 , ,从两个集合中各取一个元素作为点的坐 标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( ). A. 18 B. 10 C . 16 D . 14
n! ( n m 1)!
( B) n(n - 1)(n - 2) ,,
(n - m) ( C) (34 - n) 等于( ( D) A34
8 n
nAn n
m 1 m 1 ( D) A1 nA n 1
m 1
3.若 n ∈ N 且 n<20 ,则 (27 - n)(28 - n) ,, ( A) A27
高中数学选修2-3导学案,正规模版31.doc

《回归分析的基本思想及其初步应用》导学案【学习目标】1.了解回归分析的基本思想和方法,培养学生•观察分析计算的能力【学习目标】学习重点:回归方程学习难点:2、&公式的推到【学法指导】1.使值最小时,值的推到工(兀一兀)(”一刃_ _2.结论0= -------------------------------- a - y-/3x£(召-汙1=13.y = bx + a{Va和&的含义是什么4.(;,$)—定通过回归方程吗?【教学过程】例1.研究某灌溉倒水的流速y与水深xZ间的关系,测得一组数据如下:(1)求y与x的回归直线方程;(2)预测水深为1.95m时水的流速是多少?分析:(1)y与x的回归直线方程为9 = 0.733%+ 0.6948(2)当水深为1.95m时,可以预测水的流速约为2.12m/s【当堂检测】1.对两个变量y和x进行回归分析,得到一组样本数据:(X],开),(兀2,力),(兀3,儿),…,(百,儿)・则F列说法不正确的是()A.山样本数据得到的回归方程y = bx + a必过样本中心GI) B.残差平方和越小的模型,拟合的效果越好C.用相关指数F来刻画I叫归效果,F越小,说明模型的拟合效果越好D.若变量y与x之间的相关系数r = -0.9362,则变量y与x之间具有线性相关关系2.已知某地每单位面积菜地年平均使用氮肥最xkg与每单位曲积蔬菜年平均产最yt Z间的关系冇如下数据:若x与y之间线性相关,求蔬菜年平均产量y与使用氮肥量x之间的回归直线方程, 并估计每单位面积蔬菜的年平均产最.(已知_ _ 15 15兀= 101,"10. 11,工好=161,工x.y. = 16076.8)/=! (=1课后练习与提髙32.51、下表提供了某厂节能降耗技术改造后生产甲产晶过程中记录的产量X (吨)与相 应的生产能耗y (吨标准煤)的儿组对照数据:X 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;⑵ 请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y = bx-^a ; ⑶ 已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线 性冋归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3x2.5 + 4x3 + 5x4 + 6x4.5 = 66.5) 解:(1)由题设所给数据,可得散点图如卜图仙(能耗:吨标准煤)24 5 6 x (产最:吨)一、预习目标通过截距;与斜率b分别是使Q(a, 0) = £ (x- - 0兀-a)2取最小值时,求a,0的/=1值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一类方法用,有___种方法;
第二类方法用,有___种方法;
∴能编出不同的号码有__________种方法.
新知:分类计数原理-加法原理:
如果完成一件工作有两类不同的方案,由第1类方案中有 种方法,在第2类方案中有 种不同的方法,那么,完成这件工作共有 种不同的方法.
【当堂检测】
1.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.
⑴ 从中任选1人参加接待外宾的活动,有多少种不同的选法?
⑵ 从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?
2.要把3个球放入2两个不同的口袋,有几种不同的放法?
3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?
《分类加法计数原理与分步乘法计数原理》导学案
【学习目标 】
1.通过实例,总结出分类计数原理、分步计数原理;
2.了解分类、分步的特征,合理分类、分步;
3.体会计数的基本原则:不重复,不遗漏.
【重点难点】
1.通过实例,总结出分类计数原理、分步计数原理;
2.了解分类、分步的特征,合理分类、分步;
3.体会计数的基本原则:不重复,不遗漏.
8.如图,要给下面A、B、C、D四个区域分别涂上5种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?
【课后练习】
1. 一个商店销售某种型号的电视机,其中本地产品有4种,外地产品有7种,要买1台这种型号的电视机,有种不同的选法.
2.某班有男生30人,女生20人,现要从中选出男,女各1人代表班级参加比赛,共有种不同选法.
分析:每一个编号都是由个部分组成,第一部分是,有____种编法,第二部分是,有种编法;要完成一个编号,必须完成上面两部分,每一部分就是一个步骤,所以,不同的号码一共有个.
新知:分步计数原理-乘法原理:
完成一件工作需要两个步骤,完成第1步有 种不同的方法,完成第2步有 种不同的方法,那么,完成这件工作共有 种不同方法。
集合A中有n个元素,则集合A的子集的个数有 个.
试试:一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是.
反思:使用分类计数原理的条件是什么?分类加法原理可以推广到两类以上的方法吗?
探究任务二:分步计数原理
问题2:用前六个大写的英文字母和1~9九个阿拉伯数字,以 …的方式给教室的座位编号,总共能编出多少种不同的号码?
试试:从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同的路线有条.
反思:使用乘法原理的条件是什么?分步乘法原理可以推广到两部以上的问题吗?
(二)深入学习
例1在填报高考志愿时,一名高中毕业生了解到,A,B两大学都有一些自己感兴趣的专业,具体如下:
A大学B大学
生物学 数学
化学 会计学
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
变式:要从甲,乙,丙3副不同的画中选出2副,分别挂在左,右两边墙上的指定位置,问共有多少种不同的选法?
小结:在解决实际问题中,要分清题意,正确选择加法原理和乘法原理,乘法原理针对的是分步问题,其中的各步骤相互依存,只有各个步骤都完成才算完成这件事.
3.乘积 展开后,共有项.
4. 要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有种不同的选法.
5.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成个四位数号码.
【反思】
1. 什么是分类加法原理?加法原理使用的条件是什么?
2. 什么是分步乘法原理?乘法原理使用的条件是什么?
【学法指导】
(预习教材P2~P10,找出疑惑之处)
复习1从高二(1)班的50名学生中挑选1名同学担任学校元旦晚会主持人,有多少种不同挑选结果?
复习2:一次会议共3人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?
【教学过程】
(一)导入
探究任务一:分类计数原理
问题1:用一个大写的英文字母或一个阿拉伯数字给教室的座位编号,总共能编出多少种不同的号码?
4.要把1,2,3,4四个数放入下面三个格子里,数字不可重复,有多少种不同的放法?
5.体育彩票中的排列5中奖号码有5位数码,每位数若是0--9这十个数字中任一个,则产生中奖号码所有可能的种数是多少?
6.0---9这十个数一共可以组成多少5位数字?
7.0---9这十个数一共可以组成多少个数字不重复的5位数字?
医学 信息技术学
物理学 法学工程学那么,这同学可能的专业选择共有多少种?
变式:在上题中,若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?
小结:加法原理针对的是分类问题,其中的各种方法相互独立,用其中任何一种方法都可以完成这件事.
例2书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,