数学分析试题库--选择题--答案

合集下载

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不一定连续D. f(x)在x=a处可微答案:A2. 极限lim(x→0)(sinx/x)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-6x^2+11x-6的极值点为:A. 1B. 2C. 3D. 1和2答案:D4. 若函数f(x)在区间(a,b)上连续,则下列说法错误的是:A. f(x)在(a,b)上必有最大值B. f(x)在(a,b)上必有最小值C. f(x)在(a,b)上可以没有最大值D. f(x)在(a,b)上可以没有最小值答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,则f'(x)=_________。

答案:2x+32. 函数y=x^3-3x+1在x=1处的切线斜率为_________。

答案:13. 设函数f(x)=ln(x),则f'(x)=_________。

答案:1/x4. 若函数f(x)=x^2-4x+c在x=2处取得极小值,则c=_________。

答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:函数f(x)的导数为f'(x)=3x^2-12x+11。

令f'(x)>0,解得x<1或x>3;令f'(x)<0,解得1<x<3。

因此,函数f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。

2. 求极限lim(x→0)(x^2sinx/x^3)。

答案:lim(x→0)(x^2sinx/x^3) = lim(x→0)(sinx/x^2) = 0。

3. 证明函数f(x)=x^3+3x^2-9x+1在x=-3处取得极小值。

数学分析试题

数学分析试题

《数学分析》试题一、填空题(本大题共5个小题,每小题4分,共20分) 1、(,)(0,0)lim______________x y →= 2、曲线23,,x t y t z t ===在点(1,1,1)处的切线方程为______________________________3、改换二次积分的积分次序:2220(,)_________________y y dy f x y dx =⎰⎰4、无穷级数11(1)n n n ∞=+∑的和是_________5、设()22,x xy xF x e dy -=⎰则()F x '=_______________________二、选择题(本大题共5个小题,每小题4分,共20分)1、函数(,)f x y 在点()00,x y 连续是(,)f x y 在该点存在偏导数的( )A )充分非必要条件B )必要非充分条件C )充分必要条件D )既不充分也不必要条件2、设函数22(,)f xy x y x y xy +=++,则(,)(,),f x y f x y x y∂∂∂∂分别为( )A )-1,2yB )2y ,-1C )2x +2y ,2y +xD )2y ,2x3、若平面区域D 由直线,2,1y x y x y ===所围成,则Ddxdy ⎰⎰=( )A )12 B )14 C )32D )14、若级数1n n u ∞=∑绝对收敛,则级数1n n u ∞=∑必定______;若级数1nn u∞=∑条件收敛,则级数1||nn u∞=∑必定______。

( )A )收敛、收敛B )发散、收敛C )收敛、发散D )发散、发散5、幂级数13nn n x n∞=∑的收敛半径为( )A )3B )13C )1D )2三、计算题(本大题共3个小题,每小题6分,共18分)1、设sin u z e v =,而u xy =,v x y =+,求z x ∂∂和z y∂∂。

数学分析试题库-选择题

数学分析试题库-选择题

数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。

数学分析试题及答案解析

数学分析试题及答案解析

WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。

第三学期数学分析期末考试试题库

第三学期数学分析期末考试试题库

第三学期试题库一、单项选择题:1、设2sin ()z ax by =+,则2zx y ∂∂∂=( ). A. 22cos 2()a ax by +; B 2cos 2()ab ax by +. C.22cos 2()b ax by +; D. 2sin 2()ab ax by + 2、在下列无穷积分中,收敛的是( ).A. 2(ln )e dx x x +∞⎰;B. ln e xdx x +∞⎰;C. 2(ln )e x dx x +∞⎰;D. ln e dxx x +∞⎰3、设D 是由x 轴、y 轴与直线x +y =1围成的三角形区域,则()Dx y dxdy+⎰⎰等于( ).A .14; B. 16; C. 13; D. 12.4、给定区域222{(,)|,0}D x y x y a a =+≤>,则c xdy ydx -=⎰( ). A. a π; B. 2a π; C. 22a π; D.2a π.5、设2arcsin()z xy =,求zy ∂∂=( ).A.BC.D.6、在下列无穷积分中,收敛的是( ).A. e dx x +∞⎰;B.e ⎰; C. 3e dx x +∞⎰; D.e +∞⎰7、设区域222{(,)|,0,0}D x y x y a a y =+≤>≥,则22()D x y dxdy +⎰⎰等于( ).A .2ad r drπθ⎰⎰, B.3ad r drπθ⎰⎰ ; C.222ad r drππθ-⎰⎰; D.322ad r dr ππθ-⎰⎰8、给定区域22{(,)|4}D x y x y =+=,则c xdy ydx -=⎰( ).A. 2π ;B. 4π;C. 6π ;D. 8π. 二、填空题:1、设3z xy x =+, 则dz = .2、三重积分Vdxdydz =⎰⎰⎰ .其中V 为半球体2222,0x y z a z ++≤≥.3、改变二重积分ln 1(,)e xI dx f x y dy=⎰⎰的积分次序, 则I= . 4、将()bxaaI dx f y dy=⎰⎰化为一次定积分, 则I = .5、设L 是任意一条有向闭曲线, 则22L xydx x dy+⎰= .6、设2yz xy =+, 则z z x y ∂∂+=∂∂ . 7、三重积分Vdxdydz =⎰⎰⎰ .其中V 为球体2222x y z a ++≤.8、设区域D :0≤x ≤1,0≤y ≤2 ,则D xydxdy⎰⎰= . 9、改变二重积分110(,)xI dx f x y dy=⎰⎰的积分次序, 则I = .10、设L 是任意一条有向闭曲线, 则22L xydx x dy+⎰= .三、计算题:1、设(,)z z x y =是由方程2220x y xyz +-=确定,求zx ∂∂、z y ∂∂. 2、判别反常积分的的敛散性:(1)1+∞⎰;(2)211ln dx x x ⎰.3、求二重积分22D x dxdy y ⎰⎰的值, 其中D 是由直线x =2、y =x 与双曲线xy =1所围成. 4、求三重积分2211Vdxdydzxy ++⎰⎰⎰的值.其中V 由222x y z +=与z =1所围成. 5、计算Lxdy ydx+⎰.其中L : (1)沿抛物线2y =沿折线OAB.均从(0,0)o 到(1,2)B .6、计算下列反常积分:(1)222dxx x +∞+-⎰;(2)10⎰.7、求二重积分21()R dxdy x y +⎰⎰的值, 其中R :3≤x ≤4,1≤y ≤2.8、以圆域R :222x y a +≤为底、R 上的曲面是22()x y z e -+=的曲顶柱体的体积. 9、计算VI zdxdydz=⎰⎰⎰,.其中V :2222221x y z a b c ++≤,z ≥0.10、计算()CI xydx y x dy=+-⎰,其中曲线C 分别是:1)直线y =x ;2)抛物线2y x =;3)立方抛物线3y x =,都是由原点(0,0)到(1,1)四、证明题: 1、证明:21()ln 2()Df xy dxdy f u du=⎰⎰⎰,其中D由1,2,,4xy xy y x y x ====所围成.2、证明:表达式:2()xy xy xye xye dx x e dy ++是某一函数的全微分,并求此函数.3、证明:21()ln 2()Df xy dxdy f u du=⎰⎰⎰,其中D 由1,2,,4xy xy y x y x ====所围成.4、设(,)f x y 为连续函数, 证明:222201lim(,)(0,0)r x y r f x y dxdy f r π→+≤=⎰⎰.。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

考研数学分析试题及答案

考研数学分析试题及答案

考研数学分析试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b) = 0,若f(x)在区间(a, b)内至少有一个最大值点,则下列说法正确的是()。

A. f(x)在[a, b]上必有最大值B. f(x)在[a, b]上必有最小值C. 函数f(x)在[a, b]上单调递增D. 函数f(x)在[a, b]上单调递减2. 下列级数中,发散的是()。

A. ∑(-1)^n / nB. ∑1/n^2C. ∑(1/n - 1/(n+1))D. ∑sin(n)3. 已知函数F(x)在点x=c处可导,且F'(c)≠0,那么下列说法中正确的是()。

A. F(x)在x=c处连续B. 函数F(x)在x=c处一定取得最大值或最小值C. 可导性不能保证函数的连续性D. F(x)在x=c处取得极值4. 对于函数f(x) = x^3 - 6x^2 + 9x + 5,其在区间[1, 5]上的最大值是()。

A. 5B. 10C. 15D. 205. 设f(x)在[a, b]上可积,若∫[a, b] f(x) dx = 10,则下列说法中错误的是()。

A. f(x)在[a, b]上非负B. 存在x₀∈[a, b],使得f(x₀) > 0C. 存在x₀∈[a, b],使得f(x₀) = 10/b - aD. f(x)可以是负函数6. 函数f(x) = e^x / (1 + e^x)的值域是()。

A. (-∞, 0)B. (0, 1/2)C. (0, 1)D. (1/2, +∞)7. 下列选项中,不是有界函数的是()。

A. y = sin xB. y = e^xC. y = x^2D. y = 1/x8. 设函数f(x)在点x=1处可导,且f'(1) = 2,那么f(1 + h) - f(1)在h趋近于0时的表达式是()。

A. 2hB. 2h + o(h)C. h^2D. o(h)9. 对于函数f(x) = x^2,其在区间[-1, 1]上满足拉格朗日中值定理的条件,且存在ξ∈(-1, 1),使得()。

数学分析第四学期试题

数学分析第四学期试题

试题(1卷)一.填空(每小题3分,共15分)1.若平面曲线L 由方程0),(=y x F 给出,且),(y x F 在点),(000y x P 的某邻域内满足隐函数定理的条件,则曲线L 在点0P 的切线方程为 ; 2.含参量积分⎰=)()(),()(x d x c dyy x f x F 的求导公式为=')(x F ;3。

Γ函数的表达式为 =Γ)(s ,0>s ;4。

二重积分的中值定理为:若),(y x f 在有界闭区域D 上连续,则存在D ∈),(ηξ,使⎰⎰=Dd y x f σ),( ;5.当0),,(≥z y x f 时,曲面积分⎰⎰S dSz y x f ),,(的物理意义是: 。

二.完成下列各题(每小题5分,共15分)1。

设5422222=-+-++z y x z y x ,求y z x z ∂∂∂∂,; 2。

设 ⎩⎨⎧-=+=,cos ,sin v u e y v u e x u u 求 x v x u ∂∂∂∂, ;3. 求积分)0(ln 1>>-⎰a b dx x x x ab .三。

计算下列积分(每小题10分,共50分)1。

⎰L xyzds,其中L 为曲线)10(21,232,23≤≤===t t z t y t x 的一段;2.⎰+-Ly x xdxydy 22,其中L 为圆t a y t a x sin ,cos ==在第一象限的部分,并取逆时针方向;3.作适当变换计算⎰⎰-+D dxdyy x y x )sin()(, 其中D }{ππ≤-≤≤+≤=y x y x y x 0,0),(; 4。

⎰⎰⎰+Vy x dxdydz22,其中V 是由x y z x x ====,0,2,1与y z =围成的区域;5.dSy xS)(22⎰⎰+,其中S 为圆锥面222z y x =+被平面1,0==z z 截取的部分。

四.应用高斯公式计算dxdy z dzdx y dydz x S333++⎰⎰,其中S 为球面2222a z y x =++的外侧。

自考数学分析试题及答案

自考数学分析试题及答案

自考数学分析试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是周期函数?A. y = sin(x)B. y = e^xC. y = ln(x)D. y = x^2答案:A2. 函数f(x) = x^3 + 2x在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数答案:A3. 极限lim (sin(x))/x 当x→0时的值是:A. 1B. -1C. 0D. 2答案:A4. 以下哪个选项是洛必达法则的应用?A. 0/0 型不定式B. ∞/∞ 型不定式C. 0•∞ 型不定式D. ∞ - ∞ 型不定式答案:B5. 函数f(x) = 1/x在x=0处是:A. 连续的B. 可导的C. 有界的D. 无界的答案:D6. 以下哪个序列是收敛的?A. 1, 1/2, 1/3, ...B. 2, 2, 2, ...C. -1, 1, -1, 1, ...D. -1, -2, -3, ...答案:B7. 如果函数f(x)在点x=a处可导,那么f'(a)表示:A. 函数在该点的斜率B. 函数在该点的切线方程C. 函数在该点的值D. 函数在该点的二阶导数答案:A8. 以下哪个选项是泰勒级数的基本形式?A. f(x) = Σ[(-1)^n * x^(2n+1) / (2n+1)!]B. f(x) = Σ[f^(n)(a) * (x-a)^n / n!]C. f(x) = Σ[f^(n)(0) * x^n / n!]D. f(x) = Σ[f(a) * (x-a)^n]答案:C9. 以下哪个选项是定积分的几何意义?A. 曲线下的面积B. 曲线上的点的集合C. 曲线的长度D. 曲线的斜率答案:A10. 以下哪个选项是微分方程dy/dx = y/x的一个解?A. y = x^2B. y = e^xC. y = xD. y = 1/x答案:D二、填空题(每题4分,共20分)11. 函数f(x) = x^2 + 3的最小值是______。

西安科技大学真题 612 数学分析复习题及答案

西安科技大学真题 612 数学分析复习题及答案

,记此级数的
和函数为 s( x ) ,则使 s( x) f ( x ) 成立的范围是
(A) [ , ) ; (B) ( , ) ; (C) [ , ] ; (D) ( , ]
8.
曲线
y
1
x x
2
,y
0, x
0和x
2 所围成的平面图形的面积为
(A) 4;
(B) 1 ln 2 ; 2
(C) 1 ln 5 ; 2
y sin3xdx)
a
0
0
(D) cos
x
sin[(
y sin3tdt)]dy sin(
y sin3tdt)
a
0
0
lim 5.
1
(e x
1)
(D)
n
x
(A) e
(B) e2
(C) e3
(D) e4
二.填空题(每题 2 分,共 10 分)
lim 1. y
n
1
1 xn
(x
0)
的间断点为:
证明:
由3
1
f (u)du 1
知道
1 f (u)du 1 ,所以
1
(
f
(u)
u2
)du
0

0
0
3
0
因为 f (u) u2 C[0,1] ,故由积分中值定理知: [0,1] ,使得
1
(f
(u) u2)du
f
( ) 2 (1 0)
0 ,即
[0,1] :
f
( )
2。
0
3. 设 f (x) 在区间[a,b] 上有二阶导数。 f '(a) f '(b) 0 ,证明:在区间 (a,b) 内至少存在一

数学分析试题库

数学分析试题库

数学分析题库一. 选择题1. 函数712arcsin 162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-. 2. 函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定.3. 点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4. 当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小;(C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小. 5. x x x x 2)1(lim -∞→的值( ). (A )e; (B)e 1; (C)2e ; (D)0. 6. 函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ).(A )00)()(x x x f x f -- ; (B)xx f x x f x x ∆-∆+→)()(lim 0 ; (C) ()()xf x f x ∆-→∆0lim 0 ; (D)()()x x x f x x f x ∆∆--∆+→∆2lim 000. 7. 若()()2102lim 0=-→x f x f x ,则()0f '等于( ). (A )4; (B)2; (C)21; (D)41,8. 过曲线x e x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ;(D)x y =-1.9. 若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的;(C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的.10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ).(A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-t t e y e x 35确定,则=dx dy ( ). (A )t e 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数;(C ) 严格递增函数; (D ) 严格递减函数.13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1;14.极限01lim sin x x x →=( ) (A ) 0 ; (B) 1 ; (C ) 2 ; (D )。

数学分析期末考试试题

数学分析期末考试试题

数学分析期末考试试题一、选择题(每题2分,共20分)1. 函数f(x)=x^2-3x+2在区间[1,3]上的最大值是:A. 0B. 2C. 4D. 62. 以下哪个选项不是闭区间[a, b]上连续函数的性质?A. 有界性B. 保号性C. 介值性D. 可微性3. 函数f(x)=sin(x)在x=0处的导数是:A. 0B. 1C. -1D. 24. 函数f(x)=x^3+2x^2-3x+1在x=-1处的泰勒展开式(展开到x^2项)是:A. -1+2x-x^2B. 1-2x+x^2C. -1+2x+x^2D. 1+2x-x^25. 以下哪个级数是发散的?A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1^2 + 1/2^2 + 1/3^2 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...6. 函数f(x)=x^2在x=1处的高阶导数f^(n)(x)(n≥2)是:A. 0B. 1C. 2D. 47. 函数f(x)=e^x的原函数是:A. e^x + CB. ln(x) + CC. sin(e^x) + CD. cos(e^x) + C8. 函数f(x)=x^2在[0,1]上的定积分是:A. 1/3B. 1/2C. 1D. 2/39. 函数f(x)=|x|在x=0处的导数是:A. 1B. -1C. 0D. 不存在10. 以下哪个函数是周期函数?A. f(x)=x^2B. f(x)=e^xC. f(x)=sin(x)D. f(x)=ln(x)二、填空题(每题2分,共10分)11. 若函数f(x)=x^3-6x^2+11x-6在x=2处取得极小值,则f'(2)=_________。

12. 若函数f(x)=x^3+bx^2+cx+d在x=-1处取得最大值,则b=_________。

13. 函数f(x)=ln(x)的原函数是_________。

数学分析(Ⅱ)试题与参考答案

数学分析(Ⅱ)试题与参考答案

数学分析(2)期末试题课程名称数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班 应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、 下列级数中条件收敛的是( ).A .1(1)nn ∞=-∑ B .1nn ∞=.21(1)n n n ∞=-∑ D .11(1)nn n ∞=+∑2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在它的间断点x 处 ( ).A .收敛于()f xB .收敛于1((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是( ).A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x '=( )A .1x B .ln x x C . 21x- D . x e 5、已知反常积分20 (0)1dxk kx +∞>+⎰收敛于1,则k =( ) A . 2π B .22π C . 2D . 24π6、231ln (ln )(ln )(1)(ln )n nx x x x --+-+-+收敛,则( )A . x e <B .x e >C . x 为任意实数D . 1e x e -<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =. 3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为. 4、已知由定积分的换元积分法可得,1()()bxxaef e dx f x dx =⎰⎰,则a =,b =.5、数集(1)1, 2 , 3, 1nnn n ⎧⎫-=⎨⎬+⎩⎭的聚点为. 6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分) 1、(1)dx x x +⎰. 2、2ln x x dx ⎰. 3、 0 (0)dx a >⎰. 4、 2 0cos limsin xx t dt x→⎰.5、dx ⎰.四、解答题(第1小题6分,第2、3 小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)-∞+∞上的一致收敛性. 2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ-上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=,证明:级数1nn b∞=∑也收敛.2、证明:22 0sin cos nn x dx x dx ππ=⎰⎰.66试题参考答案与评分标准课程名称 数学分析(Ⅱ) 适 用 时 间试卷类别1适用专业、年级、班应用、信息专业一、 单项选择题(每小题3分,3×6=18分)⒈ B ⒉ B ⒊ A ⒋ C ⒌ D ⒍ D二、 填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈-∞+∞∑三、 计算题(每小题6分,6×5=30分)1. 解111(1)1x x x x=-++1(1)dx x x ∴+⎰(3分)11()1dx x x =-+⎰ln ln 1.x x C =-++(3分)2. 解 由分部积分公式得231ln ln 3x xdx xdx =⎰⎰ 3311ln ln 33x x x d x =-⎰(3分) 33111ln 33x x x dx x =-⋅⎰ 3211ln 33x x x dx =-⎰ 3311ln 39x x x C =-+(3分) 3. 解 令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得⎰2220cos atdt π=⎰(3分)6722(1cos2)2at dtπ=+⎰221(sin2)22at tπ=+2.4aπ=(3分)4.解由洛必达(L'Hospital)法则得2coslimsinxxtdtx→⎰2coslimcosxxx→=(4分)lim cosxx→=1=(2分)5.解=(2分)2sin cosx x dxπ=-⎰424(cos sin)(sin cos)x x dx x x dxπππ=-+-⎰⎰(2分)244(sin cos)(sin cos)x x x xπππ=+-+2.=(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(,),x n∀∈-∞∞∀+(正整数)22sin1nxn n≤(3分)而级数211nn∞=∑收敛,故由M判别法知,21sinnnxn∞=∑在区间(,)-∞+∞上一致收敛.(3分)682. 解 幂级数1nn x n∞=∑的收敛半径1R ==,收敛区间为(1,1)-.(2分)易知1n n x n ∞=∑在1x =-处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)-.(2分) 01, (1, 1)1n n x x x ∞==∈--∑(2分) 逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈--∑⎰⎰. 即101ln(1), (1,1).1n nn n x x x x n n+∞∞==--==∈-+∑∑(2分)3. 解 函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。

数学分析试题及答案

数学分析试题及答案

(十四)《数学分析II 》考试题一填空(共15分,每题5分):1 设 E = {x — [x] I x e 则 s upE = 1 , inf E = 0"'(5) = 2,则鳏今若警=竺,sin ax, x < 0,ln(l + x) +。

在"。

处可导,灿 Jb= o二计算下列极限:(共20分,每题5分)1 1 1 11 lim (1 + — + — + ----------- F —)〃 ; ,一823 n故 lim (1 + 土 + ! + 〃一>8 2 3]+ + —2 hm ------------- ---------- :— (V/?)解:由Stolz 定理, 「 1 + A /2 + — yfn..lim ----------- — --------- = lim —。

/_____ 今〃f° (而)3 f (如)一(J. — 1)=lim____ _____________〃一8( — — 1)(〃 + 一 1) + 〃 一 1)=lim"*(〃 —(〃一 1))(2” + — 1)—1)1 + J1--2=怛 I ------------ " 1=32 +、)F ),,小 1 1解:由于1<(1 + 5 +氏+・…+上是沽,又limS = l,n〃一>81 1+ —)〃 = lony/n(y/n + y/n — 1)「sinx —sin6f3 lim ------------------------L x — ac x + a ・ x — a「 sin X —sin Q 2cos -------------------------- sin ----------- 解:lim ------------------- = Um -------------- 2 ---------X* x — a — x — a . X — Usin ----------=lim cos ------------------------ =—— = cost/.2X — Cl ~~2~4 lim(l + 2x) ve .X —()解:lim(l + 2x)' = lim (l + 2x)A —>0X —>Qi2x2=e 2三计算导数(共15分,每题5分): 1 /(x) = Vx 2 + 1 — ]n(x + J-? +1), '(x); 2x 1 + _ _____解:e)=玉 _ 2«.『+l=^2 Jx? + 1 X ++ 1 yjx 1 +1 yjx 2 + 1 」X’ + 1 x-1 表示的函数的二阶导数 y = “sin t(“sin ,)' 3〃sirr ,cos , - —- = z ----------------- = -tanf, dx (acos t) — 3ocos~fsin ,d^y — sec" t sec 、 ~ o dx~ (t/cos ,)' 3“cosUsin ,3 设 y = (3x2 _ 2)sin2x,求y (I(x,)o 2 求由方程! 解: 解:由Leibniz 公式 y <,00) =C 1%(sin2x)<100)(3x 2 -2) + C l l 00(sin 2x)(99>(3x 2 -2y + C^(sin 2x)(98)(3x 2 -2/ =2,0° sin(2x + 衅)(3子一 2) +100 ・ 2的 siii(2x + 哗)6x + 悴298 sin(2x + 哗)• 6= 2,00(3x 2 - 2)sin 2x - 600 • 2W xcos 2x - 29700 x 2<?8 sin 2x = 2*12/ -229708 )sin 2.s 1200xcos2炸四(12分)设u>0, {%}满足:X 。

数学分析期末试题A答案doc

数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。

因此,答案为 D。

2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。

A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。

因此,答案为 B。

3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。

4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。

在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。

因此,答案为 C。

高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。

以下是本次考试的部分试题及其答案,供大家参考。

一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。

1数学分析一元函数微分学试题答案

1数学分析一元函数微分学试题答案

一、选择题:: 1.集合4|{2<=x x s的上确界为______B_______.A.-2B.2C.-4D. 4 答:22<<-x2.xxx 2sin lim0→=______C_______.A.1B.0C.21D. 2 答:()等价无穷小替换212lim 2sin lim00==→→x x x x x x3. 若2/53254lim x x x ox -→与αx 当0→x 时为等价无穷小量,则α=_____B________.A.25 B.52C.2D. 1 答:5/23254lim xx x ox -→=14、点0=x 为函数||sin )(x xx f =____B_____间断点.(选填:可去,跳跃,第二类) A. 可去 B. 跳跃 C.第二类 D. 非 答:因1||sin lim ,1||sin lim 00-==-+→→x x x x x x5.22)(cos lim x x x →=____D______.A. eB.1C.0D. 1-e答:1/2).1(cos lim 22222)1cos 1(lim )(cos lim --→→==-+=→e ex x x x x x x x x6.xx xx x sin tan lim0--→ _____B________.A. 1B.2C.0D. 不存在答:22/lim cos 11tan sec lim sin tan lim 22000==--=--→→→x x x x x x x x x x x x7.函数x x x f ln )(-=的稳定点为__B____.A. 0B.1C.2D. 3答:令011)('=-=xx f 可得,1=x 8.函数x x x f -=3)(的的单调递减区间为_______A__________.A. ⎥⎦⎤⎢⎣⎡-33,33B.⎥⎦⎤⎢⎣⎡33,0C.⎥⎦⎤⎢⎣⎡-0,33D. ⎥⎦⎤⎢⎣⎡-33,33解:根据13)('2-=x x f ,可得答案为A 。

(完整版)数学分析试题及答案解析,推荐文档

(完整版)数学分析试题及答案解析,推荐文档

∑⎰ ⎰ ⎰ 2014 ---2015 学年度第二学期《数学分析 2》A 试卷一. 判断题(每小题 3 分,共 21 分)(正确者后面括号内打对勾,否则打叉)1.若 f (x )在[a ,b ]连续,则 f (x )在[a ,b ]上的不定积分⎰ f (x )dx 可表为x f(t )dt + C ( ).a2.若 f (x ), g (x )为连续函数,则⎰ f (x )g (x )dx = [⎰f (x )dx ]⋅ [⎰g (x )dx ().+∞+∞3.若 f (x )dx 绝对收敛, ⎰ g (x )dx 条件收敛,则aa+∞[ f(x )- g (x )]dx 必然条件收敛().a+∞ 4. 若f (x )dx 收敛,则必有级数∑ f (n )收敛( )1n =15. 若{f n }与{g n }均在区间 I 上内闭一致收敛,则{f n + g n }也在区间 I上内闭一致收敛( ).∞6. 若数项级数 a n 条件收敛,则一定可以经过适当的重排使其发散n =1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题 3 分,共 15 分)1. 若 f(x )在[a ,b ]上可积,则下限函数af (x )dx 在[a ,b ]上()xA. 不连续B. 连续C.可微D.不能确定⎰ ⎰∞⎰ ⎰ ⎰ ⎰ ∑ 2. 若 g (x )在[a ,b ]上可积,而 f (x )在[a ,b ]上仅有有限个点处与 g (x )不相等,则( )A. f (x )在[a ,b ]上一定不可积;B. f (x )在[a , b ]上一定可积,但是bf (x )dx ≠ bg (x )dx ;aaC. f (x )在[a , b ]上一定可积,并且 b f (x )dx = bg (x )dx ;aaD. f (x )在[a ,b ]上的可积性不能确定.∞3. 级数 n =11 + (- 1)n -1 n n2 A. 发散 B.绝对收敛 C.条件收敛 D. 不确定4. 设∑u n 为任一项级数,则下列说法正确的是( )A. 若lim u n →∞= 0 ,则级数∑u n一定收敛;B. 若lim un +1 = < 1,则级数∑u 一定收敛;n →∞ u nC. 若∃ N ,千D. 若∃ N ,千 n > N 千千n > N 千千千u n +1 n< 1,则级数∑u n 一定收敛; u n> 1,则级数∑u n 一定发散;5. 关于幂级数∑ a n x n 的说法正确的是()A. ∑ a n x n 在收敛区间上各点是绝对收敛的;B. ∑ a n x n 在收敛域上各点是绝对收敛的;C. ∑ a n x n 的和函数在收敛域上各点存在各阶导数;千 u n +1u n nx ⎰⎰ D. ∑ a n x n 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题 5 分,共 10 分) 1. lim 1n (n + 1)(n + 2) (n + n ) n →∞ n2. ln (sin x )dx cos 2 x四. 判断敛散性(每小题 5 分,共 15 分)1. dx 01 + + x 2∞∑2. ∑ n ! n =1 n n∞ 3. n =1(- 1)nn 2n1 + 2n五. 判别在数集 D 上的一致收敛性(每小题 5 分,共 10 分)1. f n(x )= sin nx n, n =1,2 , D = (- ∞,+∞)∑2. n D xn= (- ∞, - 2]⋃[2, + ∞)六.已知一圆柱体的的半径为 R ,经过圆柱下底圆直径线并保持与底圆面300 角向斜上方切割,求从圆柱体上切下的这块立体的体积。

数学分析考试库选择题

数学分析考试库选择题
处的切线方程为(
)
6.函数f(x)
在x=x0处的导数
f (x0)可定义 为(
(A)y 1
2 x 0; (B)
y 2x
1; (C)y
2x 3;
(D)
y 1 x.
9.若在区间
a,b内,导数
f x 0,
二阶导数f
x 0,
则函数
f x在区间内
是(
).
(A)单调减少,曲线是凹的
; (B)
单调减少,
曲线是凸的;
b)上的递增函数,则(x)
max{ f (x), g(x)}
b)上
(A)
递增函数;
(B) 递减函数;
(C)
严格递增函数;
(D)严格递减函数.13.limn源自n( n 1 n)()
(A)
1
; (B) 0;
2
(C);
(D)
14.极限
lim xsin1(x 0x

(A)
0 ;(B) 1 ;
(C)2 ;
(D)
(C)单调增加,曲线是凹的
; (D)
单调增加,
曲线是凸的.
10.函数f x
1x33x2
9x在区间
0,4上的最大值点为(
).
3
A)4; (B)0; (C)2; (D)3.
11.函数y f x由参数方程
5et
3et
确定,则dy
dx
).
A)
53e2t;(B)
3t
e;
5
(C)
3
5
(D)
3
5
12设f
,g为区间(a,
数学分析题库(
. 选择题
(A)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档