人教版平行四边形全章教案

合集下载

人教版数学八年级下册第十七章平行四边形教案

人教版数学八年级下册第十七章平行四边形教案

第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质(1)课型: 上课时间:课时:学习目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、忆一忆:1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?2.你还能举出平行四边形在生活中应用的例子吗?3.你能总结出平行四边形的定义吗?。

如图,平行四边形ABCD可以表示为:,几何表示定义:二、想一想:1、由定义可知平行四边形具有什么性质?2、自己亲自动手画一个平行四边形,观察一下,除了“两组对边分别平行”以外,它的边,角之间有什么关系?度量一下,是否和你的猜想一致?结论:平行四边形的性质:;。

你能证明你所得出的结论吗?证明:3、如图所示,小明用一根36m 长的绳子围成了一个平行四边形的场地,其中AB 边长为8m ,其他三边的长各是多少?4、如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .三、练一练:1、课本练习;2.计算(1)在平行四边形ABCD 中,∠A=500,求∠B 、∠C 、∠D 的度数。

(2)在平行四边形ABCD 中,∠A=∠B+400,求∠A 的邻角的度数。

(3)平行四边形的两邻边的比是2:5,周长为28cm ,求四边形的各边的长。

(4)在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。

5. 如图,在ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足,求证:BE =DF .6.(选择)在下列选项中,平行四边形不一定具有的是( ).(A )对角相等 (B )对角互补 (C )邻角互补 (D )内角和是7.如图:在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( ).(A )4个 (B )5个 (C )8个 (D )9个8.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,360求证:AB=CE四、拓展拓展:1.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶12.□ABCD 的周长为36 cm ,AB =BC ,则较长边的长为( ) A.15 cm B.7.5 cmC.21 cmD.10.5 cm 3. 平行四边形的周长为36 cm ,一组邻边之差为4 cm ,求平行四边形各边的长.4.如图,在□ABCD 中,AB =AC ,若□ABCD 的周长为38 cm ,△ABC 的周长比□ABCD 的周长少10 cm ,求□ABCD 的一组邻边的长.五、小结与反思:18.1.1平行四边形的性质(2)课型: 上课时间: 课时:学习目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养推理论证能力和逻辑思维能力.学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.学习过程:75一、 忆一忆:1、什么样的四边形是平行四边形?四边形与平行四边形的关系是:2、平行四边形的性质:①具有一般四边形的性质:②角:③边:二、活动活动:1. 在纸上画两个全等的ABCD 和EFGH ,并连接对角线AC 、BD 和EG 、HF ,设它们分别交于点O .把这两个平行四边形落在一起,在点O 处钉一个图钉,将ABCD 绕点O 旋转,观察它还和EFGH 重合吗?你从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现OA 与OC 、OB 与OD 的关系吗?那么平行四边形还有什么性质呢?(阅读教材上面探究中的方框内容) 结论:平行四边形又一性质:2.将你得到的上述结论用全等的方法证明:(如图)已知:求证:证明:三、练一练:1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2. 已知四边形ABCD 是平行四边形,AB =10cm ,AD =8cm ,AC ⊥BC ,求BC 、CD 、AC 、OA 的长以及ABCD的面积.1803.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm . 4.ABCD 一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD 的周长是__ ___.5.如图,ABCD 的周长是36㎝,AB=8㎝,BC= ;当∠B=60°时,AD 、BC 的距离AE= ,ABCD 的面积= 。

认识平行四边形教案6篇

认识平行四边形教案6篇

认识平行四边形教案6篇精心设计的教案可以有效提升学生们的学习积极性和参与度,教案的创新性能够激发学生的学习热情和动力,本店铺今天就为您带来了认识平行四边形教案6篇,相信一定会对你有所帮助。

认识平行四边形教案篇1教学目标:1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。

2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。

3、在学习活动中积累对数学的兴趣,培养交往、合作意识。

教学重点:认识平行四边形。

教学难点:感悟平行四边形的特征。

教学过程:一、情境导入同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。

二、自主探究同学们在生活中见过这样的图形吗?在哪见过?看,这是教师在生活中见到的四边形,你知道这是什么吗?课件出示:教材第14页例2图第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。

你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。

学生动手操作,尝试拼平行四边形,教师巡视指导。

组织交流,展示学生拼图结果,并让学生说说发现了什么?(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角) 老师边画平行四边形边指出:像这样的四边形叫做平行四边形。

三、巩固练习1.想想做做第1题。

学生独立完成,分小组讨论,汇报。

2.想想做做第2题。

组织学生想一想,再围一围。

3.想想做做第3题,学生在书上描一描,教师巡视检查。

4.想想做做第4题,学生动手完成。

5.想想做做第5题,学生在家长的帮助下完成。

三、全课总结提问:今天这节课你有什么收获?课后反思: 文章认识平行四边形教案篇2教学内容:数学人教版四年级上册第五课第二节《认识平行四边形》教学目标:1.让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。

人教版初中数学八年级下册第十八章《平行四边形》教案

人教版初中数学八年级下册第十八章《平行四边形》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、重要性质和判定方法。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(4)面积计算的灵活运用:学生在计算平行四边形面积时,有时难以确定底和高。
突破方法:通过讲解不同形状的平行四边形面积计算方法,让学生学会根据实际情况确定底和高,并运用到实际问题中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行四边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状像梯子斜靠在墙上的图形?”(如平行四边形)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的奥秘。
人教版初中数学八年级下册第十八章《平行四边形》教案
一、教学内容
人教版初中数学八年级下册第十八章《平行四边形》主要包括以下内容:
1.平行四边形的定义及性质:平行四边形的定义、对边平行且相等、Байду номын сангаас角相等、对角线互相平分。
2.特殊平行四边形:矩形、菱形、正方形的性质及判定方法。
3.平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形。
2.提升逻辑推理能力:在学习平行四边形的判定方法及性质证明过程中,培养学生严谨的逻辑思维和推理能力。

平行四边形教案最新3篇

平行四边形教案最新3篇

平行四边形教案最新3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形教案最新3篇平行四边形(Parallelogram)是在同一个二维平面内,由两组平行线段组成的闭合图形。

人教初中数学八下 18.1.1 平行四边形的性质教案2 【经典教学设计合编】

 人教初中数学八下 18.1.1 平行四边形的性质教案2 【经典教学设计合编】

平行四边形性质课标解读与教材分析【课标要求】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.教学内容分析:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等、对角线互相平分的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.教学目标知识与技能1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.过程与方法培养学生发现问题、解决问题的能力及逻辑推理能力.情感态度价值观1、培养学生观察、分析、猜想、归纳知识的自学能力.2、使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.3、初步达到演绎数学论证过程的能力.教学重点与难点重点平行四边形的定义,平行四边形对角、对边相等、对角线互相平分的性质,以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.媒体教具三角板课时1课时教学过程修改栏教学内容师生互动配套练习P23-251、典型例题讲析2、基础演练运用平行四边形的性质进行有关的论证和计算.板书设计作业布置教学反思平行四边形的判定——三角形的中位线课标解读与教材分析【课标要求】1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.教学内容分析:一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?二、定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)三、例题分析例1如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC .(也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE到F ,使EF=DE ,连接CF 、CD和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形. 分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.∵ AH=HD ,CG=GD , ∴ HG ∥A C ,HG=21AC (三角形中位线性质). 同理EF ∥AC ,EF=21AC .∴ HG ∥EF ,且HG=EF . ∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.板 书设 计作业布置教 学反 思18.1.1 平行四边形的性质一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:18.1.1 平行四边形的性质三、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.四、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:。

第六章 平行四边形全章教案

第六章  平行四边形全章教案

第六章平行四边形1. 平行四边形的性质(一)教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.探索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学方法:探索归纳法三、教学过程设计本节课分5个环节:第一环节:实践探索,直观感知第二环节:探索归纳,交流合作第三环节:推理论证,感悟升华第四环节:应用巩固,深化提高第五环节:评价反思,概括总结第一环节:实践探索,直观感知1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。

教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。

2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。

效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

第二环节探索归纳、合作交流小组活动三:内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢?活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

人教版数学三年级上册平行四边形的认识教案模板推荐(3)篇

人教版数学三年级上册平行四边形的认识教案模板推荐(3)篇

人教版数学三年级上册平行四边形的认识教案模板推荐(3)篇〖人教版数学三年级上册平行四边形的认识教案模板第【1】篇〗小学数学教案:三年级上册(四边形的认识)【导语】数学教案是为教学活动制定蓝图的过程。

通过教案设计,教师可以对教学活动的基本过程有个整体的把握,可以根据教学情境的需要和教育对象的特点确定合理的教学目标,选择适当的教学方法、教学策略,采用科学合理有效的方法展开教学。

以下是WTT整理的与(四边形的认识教案)相关的资料,希望对您有用!教学目标:1.直观感知四边形,能区分和辨认四边形,知道四边形的特征。

进一步认识长方形和正方形,知道它们的角都是直角。

2.通过画一画、找一找、拼一拼等活动,培养学生的观察比较和概括抽象的能力,发展空间想象能力。

3.通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

教学重点:感知四边形的特征,能判别四边形。

教具、学具:课件一套、三角尺、四边形、格子纸等。

教学过程:(一)感知四边形的特征1.认识四边形。

(1)师:(板书课题)看一看,今天我们要学习什么?你见过四边形吗?你认为它是什么样的?根据学生回答出示长方形、正方形等四边形的。

(2)出示下列学生没有说到的图形。

师:那这个是四边形吗?它们有什么共同特征吗?根据学生回答板书(四条边,四个角。

)2.判断四边形。

(1)老师这里还有一些图形,请你判断一下它们是四边形吗?(书第35页中的图形补充4个图形,用课件展示。

)说说为什么不是。

那你觉得四边形光有四条边行吗?是怎样的四条边?(补充板书:“直的”。

)(2)你有没有办法把这些不是四边形的图形改成四边形?(根据学生回答课件中操作。

)(二)寻找四边形1.找生活中的四边形。

师:同学们真能干,经过你们的修改,这些图形都成了四边形,那请你们找一找在你周围哪些物体的表面也是四边形的。

请你摸给大家看。

2.找主题图中的四边形。

师:其实四边形在生活中的应用是非常广泛的,你看这是一幅校园图,你能从中找到四边形吗?(课件出示,根据学生的回答,相应的四边形用红色闪一闪,提取出来放在屏幕的右边。

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案

《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。

2. 培养学生的观察力、思维能力和空间想象能力。

3. 通过实践操作,提高学生的动手能力和合作学习的能力。

二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。

2. 教学难点:理解和应用平行四边形的性质。

三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。

2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。

3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。

4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。

5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。

四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。

人教版数学三年级上册平行四边形的认识公开课教案推荐(3)篇

人教版数学三年级上册平行四边形的认识公开课教案推荐(3)篇

人教版数学三年级上册平行四边形的认识公开课教案推荐(3)篇〖人教版数学三年级上册平行四边形的认识公开课教案第【1】篇〗一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。

2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

3.培养学生发现问题、解决问题的能力及逻辑推理能力。

二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。

2.难点:运用平行四边形的性质进行有关的论证和计算。

3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。

这一节是全章的重点之一,学好本节可为学好全章打下基础。

学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。

平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的`理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。

为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。

讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。

新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。

这有利于培养学生观察、分析、猜想、归纳知识的自学能力。

教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。

〖人教版数学三年级上册平行四边形的认识公开课教案第【2】篇〗一、教学目标1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高。

四年级数学上册教案-第5单元 平行四边形和梯形(人教版)

四年级数学上册教案-第5单元 平行四边形和梯形(人教版)

四年级数学上册教案-第5单元平行四边形和梯形(人教版)一、教学目标1. 知识与技能:(1)了解平行四边形和梯形的定义、特征及分类。

(2)掌握平行四边形和梯形的性质,能够运用性质解决实际问题。

(3)学会计算平行四边形和梯形的面积。

2. 过程与方法:(1)通过观察、操作、比较,培养学生的观察能力、操作能力和概括能力。

(2)通过小组合作,培养学生的团队协作能力和交流表达能力。

3. 情感态度与价值观:(1)激发学生对几何图形的兴趣,培养学生的审美情趣。

(2)培养学生独立思考、解决问题的能力,增强学生的自信心。

二、教学内容1. 平行四边形的定义、特征及分类2. 平行四边形的性质3. 梯形的定义、特征及分类4. 梯形的性质5. 平行四边形和梯形的面积计算三、教学重点与难点1. 教学重点:(1)平行四边形和梯形的定义、特征及分类。

(2)平行四边形和梯形的性质。

(3)平行四边形和梯形的面积计算。

2. 教学难点:(1)平行四边形和梯形的性质的推导。

(2)平行四边形和梯形面积计算公式的推导。

1. 启发式教学法:引导学生通过观察、操作、比较,发现平行四边形和梯形的性质。

2. 小组合作学习法:分组讨论,共同解决问题,培养学生的团队协作能力和交流表达能力。

3. 情境教学法:创设生活情境,激发学生的学习兴趣,培养学生的实际应用能力。

五、教学过程1. 导入新课(1)通过图片、实物等引导学生关注平行四边形和梯形在实际生活中的应用。

(2)提出问题,引导学生回顾已学过的相关知识点。

2. 学习新课(1)引导学生通过观察、操作、比较,发现平行四边形和梯形的定义、特征及分类。

(2)讲解平行四边形和梯形的性质,并通过实例验证性质的正确性。

(3)引导学生通过小组合作,探究平行四边形和梯形面积计算的方法。

(4)讲解平行四边形和梯形面积计算公式的推导过程。

3. 巩固练习(1)布置课堂练习,让学生独立完成,巩固所学知识。

(2)针对学生的错误,进行讲解和指导。

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。

人教版平行四边形全章教案

人教版平行四边形全章教案

18.1.1.1平行四边形的性质第一课时修订:陈广营教学目标:1.知识目标经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质;探索并掌握平行四边形的对边相等,对角相等的性质.2.能力目标在进行探索的活动过程中发展学生的探究能力,提高学生运用数学知识解决问题的能力;3.情感目标在探索讨论中养成与他人合作交流的习惯,提高克复困难的勇气和信心. 教学重点:探索平行四边形的性质教学难点:通过操作、思考、升化、归纳出结论教学过程:一、揭题示标1.创设情境,引入课题老师给大家准备一些生活中常见的有关平行四边形的事物图案和标志,请大家欣赏(投影显示),激起学习兴趣2、板书课题:18.1.1平行四边形的性质3、出示学习目标过渡语:本节课我们要达到什么样的学习目标呢?请看:(投影显示)学习目标1、理解平行四边形的定义,理清四边形与平行四边形的关系.2、熟记平行四边形的性质,并会利用性质解决问题.今天的目标有信心实现吗?为了实现本节课的学习目标,请大家在学习指导的帮助下进行自学!二、学习指导(见投影)【学习指导】认真看课本(P41-43练习前)注意:1、理解平行四边形的定义,理清四边形与平行四边形的关系.并举例说明。

2、动手画一个平行四边形,量一量,猜想它的边之间有什么关系?角呢?利用三角形全等来证明你的猜想.怎样用几何语言表示平行四边形的性质?3、回答云图中的问题,并思考解题依据是什么?4、认真分析例1,并注意例1的解题格式和步骤.5、类比两点间的距离,点到直线的距离来理解两平行线之间的距离。

并思考它们之间有何联系与区别?自学6分钟,不能独立解决的问题上作标记,便于对子交流或组内讨论。

三、自研共探1、自主学习(6分钟)学生看书、思考,教师巡视,督促每个学生都认真、紧张的自学,对学生自学过程中出现的问题做到心中有数,进行二次备课。

2、合作交流师:自学完了吗?全部问题都能独立解决吗?生:不能。

师:对于依然存在的问题,下面开始对子交流,对子交流不了的问题,进行组内解决,也可以问老师,下面开始交流。

初中数学第十八章平行四边形教案人教版

初中数学第十八章平行四边形教案人教版

目录第十八章平行四边形18.1 平行四边形18.1.1 平行四边形的性质第1课时平行四边形的性质(1)第2课时平行四边形的性质(2)18.1.2 平行四边形的判定第1课时平行四边形的判定(1)第2课时平行四边形的判定(2)18.2 特殊的平行四边形18.2.1 矩形第1课时矩形的性质第2课时矩形的判定18.2.2 菱形第1课时菱形的性质第2课时菱形的判定18.2.3 正方形第十八章平行四边形标定理,并能运用这些知识进行有关的证明和计算.(3)了解两条平行线之间距离的意义,能度量两条平行线之间的距离.探索并证明三角形中位线定理.2.过程及方法通过经历平行四边形、矩形、菱形、正方形的性质定理和判定定理的探索和证明过程,丰富学生从事数学活动的经验和体验,进一步培养学生的合情推理能力和演绎推理能力.3.情感、态度及价值观通过分析平行四边形及各种特殊平行四边形概念之间的联系及区别,使学生认识到特殊及一般的关系,体会事物间是互相联系又是互相区别的,进一步培养学生的辩证唯物主义观.教学重难点重点:1.平行四边形、特殊平行四边形的特征.2.平行四边形、特殊平行四边形的识别方法以及彼此之间的关系.难点:发展学生进一步推理和解决问题的能力.知识结构课题平行四边形的性质课时第1课时上课时间教学目标1.知识及技能(1)理解平行四边形的定义及有关概念.(2)能根据定义探索并掌握平行四边形的对边相等、对角相等的性质.(3)了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点:运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢?探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜想:平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图▱ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.续表探索新知合作探究分析:作▱ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)探究小结平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.【例】如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.教师指导1.归纳小结:(1)平行四边形:有两组对边分别平行的四边形叫做平行四边形.平行四边形用“▱”表示.(2)平行四边形的性质:①平行四边形的对边相等.②平行四边形的对角相等.2.方法规律:(1)只有一组对边平行的四边形不一定是平行四边形.(2)相关概念给出了平行四边形的一个重要性质:两组对边分别平行.(3)平行四边形具有四边形的一切性质.当堂训练1.在下列图形的性质中,平行四边形不一定具有的是( )(A)对角相等(B)对角互补(C)邻角互补(D)内角和是360°2.在▱ABCD中,如果EF∥AD,GH∥CD,EF及GH相交于点O,那么图中的平行四边形一共有( )(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证:AB=CE.板书设计平行四边形的性质(1)1.平行四边形的定义2.平行四边形的性质3.应用平行四边形的性质解决线段或角的问题教学反思课题平行四边形的性质课时第2课时上课时间教学目标1.知识及技能(1)理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.2.过程及方法(1)经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.(2)在进行性质探索的活动过程中,发展学生的探究能力.(3)在对性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和演绎能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:平行四边形对角线互相平分的性质,以及性质的应用.难点:综合运用平行四边形的性质进行有关的论证和计算.教学活动设计二次设计课堂导入复习提问:1.什么样的四边形是平行四边形?四边形及平行四边形的关系是:2.平行四边形的性质:(1)具有一般四边形的性质(内角和是360°).(2)角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.探索新知合作探究自学指导自学课本,尝试完成课本练习.合作探究请学生在纸上画两个全等的▱ABCD和▱EFGH,并连接对角线AC,BD和EG,HF,设它们分别交于点O.把这两个平行四边形摞在一起,在点O处钉一个图钉,将▱ABCD绕点O旋转180°,观察它还和▱EFGH重合吗?你能从中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.【例1】已知:如图,▱ABCD的对角线AC,BD相交于点O,EF过点O及AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.续表探索新知合作探究【例2】已知四边形ABCD是平行四边形,AB=10 cm,AD=8 cm,AC⊥BC,求BC,CD,AC,OA的长以及▱ABCD的面积.分析:由平行四边形的对边相等,可得BC,CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积公式计算.教师指导1.易错点:平行四边形的对角线互相平分,但不一定相等.2.归纳小结:平行四边形的对角线互相平分.3.方法规律:(1)利用平行四边形的对角线互相平分可以解决对角线或边的取值范围问题;(2)平行四边形被对角线分成的四个小三角形,相邻的两个小三角形周长之差等于邻边之差.当堂训练1.在四边形ABCD中,AC=6,BD=4,则AB的范围是.2.在平行四边形ABCD中,已知AB,BC,CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.3.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15 cm,AD=12 cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.板书设计平行四边形的性质(2)1.平行四边形对角线互相平分探究小结:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形.平行四边形判定方法2 两组对角分别相等的四边形是平行四边形.平行四边形判定方法3 对角线互相平分的四边形是平行四边形.2.取两根等长的木条AB,CD,将它们平行放置,再用两根木条BC,AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.续表探索新知合作探究【例1】已知:如图,A'B'∥BA,B'C'∥CB,C'A'∥AC.求证:(1)∠ABC=∠B',∠CAB=∠A',∠BCA=∠C';(2)△ABC的顶点分别是△B'C'A'各边的中点.【例2】已知:如图,▱ABCD中,E,F分别是AD,BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.教师指导1.归纳小结:平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.(2)一组对边平行且相等的四边形是平行四边形.(3)对角线互相平分的四边形是平行四边形.(4)两组对边分别相等的四边形是平行四边形.(5)两组对角分别相等的四边形是平行四边形.2.方法规律:平行四边形对边相等,对角相等,对角线互相平分及它的判定,是我们证明直线平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.当堂训练1.下列条件中能判断四边形是平行四边形的是( )(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等 (D)对角线互相平分2.在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD3.已知:如图,△ABC中,BD平分∠ABC,DE∥BC,EF∥AC,求证:BE=CF.板书设计平行四边形的判定(1)1.平行四边形的判定方法2.平行四边形性质和判定的应用教学反思课题平行四边形的判定课时第2课时上课时间教学目标1.知识及技能理解三角形中位线的概念,掌握它的性质定理;会证明三角形中位线定理,并能熟练地应用它进行有关的证明和计算.2.过程及方法经过探索三角形中位线定理的过程,理解它及平行四边形的内在联系,感悟几何学的推理方法.3.情感、态度及价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.教学重难点重点:三角形的中位线定理.难点:(1)作出简单平面图形关于直线的轴对称图形. (2)三角形的中位线定理的证明中添加辅助线的思想方法.教学活动设计二次设计课堂导入如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?探索新知合作探究自学指导实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?图中有几个平行四边形?你是如何判断的?合作探究【例1】如图,点D,E分别为△ABC的边AB,AC的中点,求证:DE∥BC且DE=BC.分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.定义:连接三角形两边中点的线段叫做三角形的中位线.探究讨论:(1)一个三角形的中位线共有几条?(2)三角形的中位线及中线有什么区别?(3)三角形的中位线及第三边有怎样的关系?【拓展】利用这一定理,你能证明在自学指导所设情境中分割出来的四个小三角形全等吗?续表探索【例2】新知合作探究已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.教师指导1.归纳小结:三角形的中位线(1)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.2.方法规律:(1)中位线不是中线.(2)三角形中位线定理的特点:在同一题设下,有两个结论,一个结论表示位置关系,另一个结论表示数量关系.(3)三角形中位线定理的作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍数关系.当堂训练1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M,N,如果测得MN=20 m,那么A,B两点的距离是 m,理由是.2.已知:三角形的各边分别为8 cm,10 cm和12 cm,求连接各边中点所成三角形的周长.3.如图,△ABC中,D,E,F分别是AB,AC,BC的中点,(1)若EF=5 cm,则AB= cm;若BC=9 cm,则DE= cm;(2)中线AF及DE中位线有什么特殊的关系?证明你的猜想.板书设计平行四边形的判定(2)1.平行四边形的判定方法2.平行四边形判定方法的选择3.中位线以及中位线定理教学反思课题矩形课时第1课时上课时间教学目标1.知识及技能(1)掌握矩形的概念和性质,理解矩形及平行四边形的区别及联系.(2)会初步运用矩形的概念和性质来解决有关问题.2.过程及方法经历探索矩形的概念和性质的过程,发展学生合情推理意识,掌握几何思维方法.3.情感、态度及价值在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的性质.难点:矩形的性质的灵活应用.教学活动设计二次设计课堂导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何动,它仍然保持平行四边形的形状.我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形.探索新知合作探究自学指导1.请用四根木棒拼成一个平行四边形,拼成的平行四边形形状唯一吗?2.试着改变平行四边形的形状,你能拼出面积最大的平行四边形吗?这时这个平行四边形的内角是多少度?3.观察图形特征,得出概念.叫做矩形.矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角;矩形的对角线;矩形是轴对称图形,它的对称轴是.合作探究问题一如图,矩形ABCD,对角线相交于O,观察对角线所分成的三角形,你有什么发现?问题二将目光锁定在Rt△ABC中,你能发现它有什么特殊的性质吗?【例1】已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB.求证:△AOB是等边三角形.(注意表达格式完整性及逻辑性)续表探索新知合作探究拓展及延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?【例2】在矩形ABCD中,两条对角线AC,BD相交于O,∠ACD=30°,AB=4.(1)判断△AOD的形状;(2)求对角线AC,BD的长.教师指导1.归纳小结:(1)矩形的概念有一个角是直角的平行四边形叫做矩形,也就是长方形.(2)矩形的性质①矩形的四个角都是直角.②矩形的对角线相等.③直角三角形斜边上的中线等于斜边的一半.(推论)2.方法规律:(1)矩形的概念是研究矩形的基础,既可以看做是矩形的性质,又可以视为矩形的判别方法.(2)矩形具有平行四边形的一切性质.(3)矩形既是中心对称图形,又是轴对称图形.对称中心为对角线的交点,对称轴为对边中点所在的直线.当堂1.下列说法错误的是( )(A)矩形的对角线互相平分训练(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形2.已知矩形的一条对角线长为10 cm,两条对角线的一个交角为120°,则矩形的边长分别为 cm, cm,cm, cm.3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.板书设计矩形的性质1.矩形的定义2.矩形的性质及推理教学反思课题矩形课时第2课时上课时间教学目标1.知识及技能理解并掌握矩形的判定方法.2.过程及方法使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.3.情感、态度及价值观在探究讨论中养成及他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心.教学重难点重点:矩形的判定.难点:矩形的判定及性质的综合应用.教学活动设计二次设计课堂导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?探索新知合作探究1.矩形是轴对称图形,它有条对称轴.2.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10 cm,边BC=8 cm,则△ABO的周长为.3.想一想:矩形有哪些性质?在这些性质中哪些是平行四边形所没有的?列表进行比较.平行四边形矩形边角对角线思考:小华想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框吗?看看谁的方法可行?(得到矩形的一个判定)做一做:按照画“边―直角、边-直角、边-直角、边”这样四步画出一个四边形.判断它是一个矩形吗?说明理由.(探索得到矩形的另一个判定)合作探究下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.( )(2)四个角是直角的四边形是矩形.( )(3)四个角都相等的四边形是矩形.( )续表探索新知合作探究(4)对角线相等的四边形是矩形.( )(5)对角线相等且互相垂直的四边形是矩形.( )(6)对角线互相平分且相等的四边形是矩形.( )(7)对角线相等,且有一个角是直角的四边形是矩形.( )(8)一组邻边垂直,一组对边平行且相等的四边形是矩形.( )(9)两组对边分别平行,且对角线相等的四边形是矩形.( )【例1】已知▱ABCD的对角线AC,BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.【例2】已知:如图,▱ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.学重难点难点:菱形的性质及菱形知识的综合应用.教学活动设计二次设计课堂导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.探索新知合作探究自学指导我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.合作探究已知,如图:四边形ABCD是菱形.(1)AB及CD,AD及BC有怎样的关系?(2)∠ABC及∠ADC相等吗?∠BAD及∠BCD呢?菱形ABCD相邻的两个角又有怎样的关系呢?(3)OA及OC相等吗?OB及OD呢?对角线AC及BD有怎样的位置关系?(4)有人说∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8,你认为正确吗?(5)菱形是轴对称图形吗?它有几条对称轴?分别是什么?通过解决以上5个问题引导学生总结出菱形的性质(学生自主推导及老师点拨相结合,先做出来的教教还没做出来的同学,增加同学之间的交流及沟通,最后由老师点评一下)续表探索新知合作探究教师指导1.归纳小结:(1)菱形:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形的四条边都相等.②菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.方法规律:①菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.②菱形是特殊的平行四边形,其面积求法及平行四边形求法相同,其面积等于底乘以相应底上的高.而且菱形的两条对角线互相垂直平分,将菱形分成4个全等的直角三角形,因此菱形面积为4×××两条对角线长之积=×两条对角线长之积.当堂训练1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形ABCD的周长为20 cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.3.已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.板书设计菱形的性质1.菱形定义2.菱形的性质3.菱形的面积计算教学反思课题菱形课时1课时上课时间教学目标1.知识及技能(1)理解菱形的定义,掌握菱形的判定方法;会用这些判定方法进行有关的论证和计算.(2)在菱形的判定方法的探索及综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.2.过程及方法(1)尝试从不同角度寻求菱形的判定方法,并能有效地解决问题.(2)尝试比较不同判定方法之间的差异,并获得判定四边形是菱形的经验.3.情感、态度及价值观启发引导学生理解探索结论和证明结论的过程,掌握合情推理及演绎推理的相互依赖和相互补充的辩证关系,培养学生合作交流的能力,以及独立思考的良好习惯.教学重难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求和方法.难点:明确推理证明的条件和结论,能用数学语言正确表达.教学活动设计二次设计课堂导入什么样的四边形是平行四边形?它有哪些判定方法?边:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.角:两组对角分别相等的四边形是平行四边形.对角线:对角线互相平分的四边形是平行四边形.那么,菱形的判定有什么方法呢?探索新知合作探究自学指导自学课本,回答以下问题1.有一组的平行四边形是菱形.2.对角线的平行四边形是菱形.3. 的四边形是菱形.合作探究1.由菱形的定义判定明确菱形的定义既是菱形的性质,又可作为菱形的第一种判定方法,即有一组邻边相等的平行四边形是菱形.2.除了运用菱形的定义,类比平行四边形的性质定理和判定定理,小组讨论能否找出判定菱形的其他方法?【做一做】用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?你能证明你发现的结论吗?猜想:四边形的对角线互相平分.续表探索新知(2)继续转动木条,观察什么时候橡皮筋围成的四边形变成菱形?猜想1:当木条互相垂直时,平行四边形的一组邻边相等,此时四边。

人教版四年级数学上册集体备课《认识平行四边形》教案

人教版四年级数学上册集体备课《认识平行四边形》教案

人教版四年级数学上册集体备课《认识平行四边形》教案一、教学目标1.知识目标:能够辨认平行四边形,理解平行四边形的性质。

2.能力目标:学生能够观察、描述和辨认平行四边形。

3.情感目标:培养学生对数学的兴趣,鼓励合作和分享。

二、教学重难点1.重点:了解平行四边形的定义、性质和特征。

2.难点:能够观察出平行四边形,并区分其特征。

三、教学准备1.课件:包含了图形示例和练习题的电子课件。

2.板书内容:定义、性质及特征的板书内容。

3.学具:有关平行四边形的几何模型和图形卡片。

四、教学过程1. 导入活动老师出示几种不同形状的图形,请学生观察并提问:“有哪些图形是平行四边形?你能找出它们的特征吗?”2. 讲解平行四边形的定义通过讲解和展示图形,引入平行四边形的定义,板书“平行四边形:具有四条边都两两平行的四边形”。

3. 识别和描述平行四边形让学生在课桌上或纸上画出平行四边形,然后描述其性质(边长相等、对边平行)。

4. 拓展练习老师出示多个图形,让学生识别并圈出其中的平行四边形,同时让他们互相交流讨论。

5. 梳理知识请学生回答一些综合性问题,巩固对平行四边形的认识,并引导学生总结性质和特征。

五、课堂互动利用小组合作、学生讨论、师生互动等形式,激发学生的学习兴趣和思维发展。

六、作业布置布置一些练习题,要求学生识别平行四边形并解释其特征,以巩固当天所学内容。

七、教学反思教师应及时总结课堂教学,记录学生表现和反馈,调整教学方法和手段,为下节课改进提供参考。

通过本节课的学习,相信学生能够更好地理解和应用平行四边形的相关知识,为数学学习打下坚实的基础。

人教版数学四年级上册第5课时《平行四边形》教案

人教版数学四年级上册第5课时《平行四边形》教案

人教版数学四年级上册第5课时《平行四边形》教案
1. 教学目标
•知识目标:学生能够理解平行四边形的特点,能够识别平行四边形。

•能力目标:学生能够通过观察、比较和总结的方式学会判断和认识平行四边形。

•情感目标:培养学生对平行四边形的兴趣,激发他们对几何的学习热情。

2. 教学重难点
•重点:平行四边形的定义及特点。

•难点:结合生活实践,让学生理解平行四边形的实际意义。

3. 教学准备
•教材:人教版数学四年级上册
•工具:黑板、彩色粉笔、课件、素材图片
•教具:平行四边形图形卡片
4. 教学过程
(1)导入
•利用教具展示一些不同形状的图形卡片,让学生猜测有可能是什么图形。

(2)呈现新知识
•展示平行四边形的定义,并通过图形卡片让学生观察、比较和总结平行四边形的特点。

(3)讲解与实践
•通过生动的教学实例,让学生理解平行四边形的概念,并进行相应的练习。

(4)课堂互动
•利用小组讨论或问答的形式,加深学生对平行四边形的理解,鼓励他们积极参与。

(5)激励与总结
•表扬表现好的同学,鼓励其他同学积极参与,最后总结本节课内容。

5. 课后作业
•要求学生整理当天课堂所学内容,并挑选几个例题进行练习。

6. 教学反思
•回顾本节课的教学过程,总结教学亮点和不足之处,为下节课教学做准备。

通过本节课的学习,相信学生能够对平行四边形有了更深入的理解,为接下来的几何学习打下坚实的基础。

人教版平行四边形的性质教案

人教版平行四边形的性质教案

人教版平行四边形的性质教案《平行四边形的性质》选自义务教育课程标准实验教科书《数学》(人教版)八年级下册第十九章第一节.本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,下面是为大家整理的人教版平行四边形的性质教案5篇,希望大家能有所收获!人教版平行四边形的性质教案1教学内容:义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。

教学目标:1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。

2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。

3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

教学重、难点:让学生在观察、操作、交流等教学活动中认识平行四边形。

教具准备:一个长方形方框,多媒体课件。

学具准备:每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。

教学过程:一、谈话引入教师:同学们,在以前的学习中我们已经初步认识了平行四边形。

实际上,在我们生活中也经常见到平行四边形。

请看大屏幕。

(课件出示主题图)请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。

)教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢今天这节课老师就和同学们一起来进一步认识平行四边形。

板书课题:平行四边形二、探究新知1、认识平行四边形的特征(1)教师:同学们喜欢看魔术表演吗(喜欢)现在,老师就给同学们表演一个小魔术。

(教师出示一个长方形方框)这个图形大家认识吗(它是长方形)教师:对!这是一个长方形。

老师握着这个长方形方框的两个对角,轻轻地拉一拉。

小学四年级数学上册平行四边形教案(优秀8篇)

小学四年级数学上册平行四边形教案(优秀8篇)

小学四年级数学上册平行四边形教案(优秀8篇)认识平行四边形教案篇一教学目的:探索平行四边形的特征,初步认识平行四边形;知道平行四边形易变形的特性。

通过动手操作与实验,让学生在做中学,培养创新意识和实践能力及初步的空间观念。

创设互相协作的学习情境,使学生感受到生活中处处有数学,激发学生学习数学的兴趣。

教学重难点:探索平行四边形的特征。

教学准备:师:课件;平行四边形图片;生:钉子板、七巧板、剪刀、平行四边形图片、小棒。

教学过程:创设情境,引入新课。

小朋友,你们觉得我们的学校漂亮吗?今天陈老师带大家去参观一所漂亮的学校好吗?现在我们就一起去参观这所学校。

出示课件:请小朋友仔细观察这所学校,你能找到哪些图形朋友?(根据学生的发言课件出现长方形、正方形及平行四边形图片。

)小朋友找的这些图形中我们已经认识了长方形和正方形,现在陈老师想来考考你们,(课件)这是刚才小朋友找到的长方形,你能说说长方形有什么特点吗?生:长方形对边相等,四个角都是直角。

现在老师要来变个魔术,小朋友仔细观察一下,这个长方形变成了什么图形?(平行四边形)这节课我们就一起来认识这位图形朋友。

(板书课题)请小朋友再观察一遍,长方形变成了平行四边形,你还发现了什么?你认为平行四边形的边和角有什么变化?生1:我发现了长方形的一组对边变倾斜了,它们的对边还是相等的。

师:你观察得真仔细。

生2:我发现了平行四边形有两个钝角和两个锐角。

刚才小朋友通过观察发现了平行四边形的这些特点,但这是用眼睛看的,是不是准确呢?你们想通过做实验来验证吗?这节课我们就一起来验证平行四边形的特点。

探索平行四边形的特征。

实验要求:篮子里有一些平行四边形,你们可以借助剪刀、直尺、三角板、活动角等工具,想办法来验证平行四边形的`特点,看能不能发现平行四边形的其它秘密,比一比哪一组想出来的方法最多?小组实验。

汇报:小组派代表说说你是用什么办法验证平行四边形的特点?≮≮ 生1:我用笔把平行四边形的一条边画在纸上,再用它的另一条对边去比,发现了两条对边重合在一起,另外一组对边我也用相同的办法去做,我们发现了平行四边形的对边相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版平行四边形全章教案本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March.1.1平行四边形的性质第一课时修订:陈广营教学目标:1.知识目标经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质;探索并掌握平行四边形的对边相等,对角相等的性质.2.能力目标在进行探索的活动过程中发展学生的探究能力,提高学生运用数学知识解决问题的能力;3.情感目标在探索讨论中养成与他人合作交流的习惯,提高克复困难的勇气和信心.教学重点:探索平行四边形的性质教学难点:通过操作、思考、升化、归纳出结论教学过程:一、揭题示标1.创设情境,引入课题老师给大家准备一些生活中常见的有关平行四边形的事物图案和标志,请大家欣赏(投影显示),激起学习兴趣2、板书课题:平行四边形的性质3、出示学习目标过渡语:本节课我们要达到什么样的学习目标呢?请看:(投影显示)学习目标1、理解平行四边形的定义,理清四边形与平行四边形的关系.2、熟记平行四边形的性质,并会利用性质解决问题.今天的目标有信心实现吗?为了实现本节课的学习目标,请大家在学习指导的帮助下进行自学!二、学习指导(见投影)【学习指导】认真看课本(P41-43练习前)注意:1、理解平行四边形的定义,理清四边形与平行四边形的关系.并举例说明。

2、动手画一个平行四边形,量一量,猜想它的边之间有什么关系角呢利用三角形全等来证明你的猜想.怎样用几何语言表示平行四边形的性质3、回答云图中的问题,并思考解题依据是什么?4、认真分析例1,并注意例1的解题格式和步骤.5、类比两点间的距离,点到直线的距离来理解两平行线之间的距离。

并思考它们之间有何联系与区别?自学6分钟,不能独立解决的问题上作标记,便于对子交流或组内讨论。

三、自研共探1、自主学习(6分钟)学生看书、思考,教师巡视,督促每个学生都认真、紧张的自学,对学生自学过程中出现的问题做到心中有数,进行二次备课。

2、合作交流师:自学完了吗全部问题都能独立解决吗生:不能。

师:对于依然存在的问题,下面开始对子交流,对子交流不了的问题,进行组内解决,也可以问老师,下面开始交流。

(1)对子交流:自学指导问题1(2)小组讨论:自学指导问题2、5(学生把解决不了的问题讨论完毕自动坐下)3、汇报成果口答:学习指导中的问题1、:51、平行四边形的定义,四边形与平行四边形的有什么关系.并举例说明。

5、类比两点间的距离,点到直线的距离来归纳两平行线之间的距离的定义,并回答它们之间有何联系与区别?四、学情展示师:其它问题都解决了吗学的效果如何呢下面通过展示过程看一下到底谁学得最好。

(一)、展示内容展示一:根据平行四边形的定义画平行四边形,猜想并证明平行四边形的性质展示二:课本练习1展示三:课本练习2学生练习,教师巡视,提醒学生书写工整,过程规范.收集学生做题错误,注意把错误分类.(二)、抽签定主题组长抽签决定展示组和点评组.(三)组内做准备具体做法:各组领到展示题目之后,组长组织本组成员先快速集体讨论具体分工及做法,达成统一思路之后,一至三人做板前书写,另一人进行板前准备的正误细节监督,其他组员在板前或者自己座位上做好讲解演练,需要进行文字性的知识总结的要做好知识总结记录,以便明了讲解思路。

本组展示准备完成之后,可解决其他组的展示问题,以便于质疑点评,进行知识的总结。

(四)展示与点评1.展示要求:本组人员认真听取本组展示人员在展示过程中的讲解,对于讲解不够到位之处可以在其展示完毕给予及时补充;其他组成员要仔细听的同时,分析讲解人员讲解的优点和不足,为质疑点评积累素材,以便于进行精彩的展评互动。

2.展评互动具体做法:各组领到展示题目之后,组长组织本组成员先快速集体讨论具体分工及做法,达成统一思路之后,一至三人做板前书写,另一人进行板前准备的正误细节监督,其他组员在板前或者自己座位上做好讲解演练,需要进行文字性的知识总结的要做好知识总结记录,以便明了讲解思路。

本组展示准备完成之后,可解决其他组的展示问题,以便于质疑点评,进行知识的总结。

3、评价标准:讲解的过程中是否把所用知识点说到位了解题思路是否理清晰了声音是否洪亮讲解时是否能和同学们形成知识的互动是否把握住了该题的要点评展示一:引导学生利用三角形全等来证明,体现化归思想,也可以用平行四边形的定义来证明评展示二:引导学生正确利用平行四边形的性质来解决,注意强调用几何语言的表述。

评展示三:正确运用平行四边形的定义和平行四边形的性质相结合解决问题五、归纳总结1、本节课我学会了哪些知识?2、我的困惑是……六、巩固提升必做题1.如图, □ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( )A.6cm B. 12cm C. 4cm2、在□ABCD中,∠A:∠B=7:2,求∠C的度数.3.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()∶2∶3∶4 ∶2∶2∶1∶1∶2∶2 ∶1∶2∶14.在□ABCD中,∠A、∠B的度数之比为5∶4,则∠C等于()°°5.平行四边形的周长为36 cm,一组邻边之差为4 cm,求平行四边形各边的长.6.如图,在□ABCD中,AB=AC,若□ABCD的周长为38 cm,△ABC的周长比□ABCD的周长少10 cm,求□ABCD的一组邻边的长.七、板书设计:.1.1平行四边形的性质平行四边形的定义:平行四边形的表示法:平行四边形的性质:教学反思平行四边形的性质第二课时修订:陈广营教学目标:1.知识目标理解并掌握平行四边形对角线互相平分的性质.2.能力目标在进行探索的活动过程中发展学生的探究能力,提高学生运用数学知识解决河题的能力;3.情感目标在探索讨论中养成与他人合作交流的习惯,提高克复困难的勇气和信心.教学重点:平行四边形对角线互相平分的性质,以及性质的应用.教学难点:综合运用平行四边形的性质进行有关的论证.教学过程:一、揭题示标1、创设情境,引入新课同学们,一个平行四边形除了研究边和角,还有没有可研究的元素?今天我们继续探索平行四边形的性质.2、板书课题平行四边形的性质3、出示学习目标过渡语:本节课我们要达到什么样的学习目标呢?请看:(投影显示)学习目标1.理解并熟记平行四边形对角线互相平分的性质.2.会利用平行四边形的性质解决问题.今天的目标有信心实现吗?为了实现本节课的学习目标,请大家在学习指导的帮助下进行自学!二、学习指导(【学习指导】认真看课本(P43探究-44练习前)注意:1、理解平行四边形对角线互相平分的性质,并试着用三角形全等证明这个结论.2、认真分析例2,并注意例2的解题格式和步骤.自学5分钟,不能独立解决的问题上作标记,便于对子交流或组内讨论。

三、自研共探1、自主学习(5分钟)学生看书、思考,教师巡视,督促每个学生都认真、紧张的自学,对学生自学过程中出现的问题做到心中有数,进行二次备课。

2、合作交流(1)对子交流:自学指导问题1、2(2)小组讨论:自学指导问题1(学生把解决不了的问题讨论完毕自动坐下)四、学情展示(一)、展示内容展示一:平行四边形的对角线互相平分的证明展示二:课本P44练习1展示三:课本P44练习2展示四:归纳出平行四边形的所有性质,并用几何语言描述(二)、抽签定主题组长抽签决定展示组和点评组.(三)组内做准备具体做法:各组领到展示题目之后,组长组织本组成员先快速集体讨论具体分工及做法,达成统一思路之后,一至三人做板前书写,另一人进行板前准备的正误细节监督,其他组员在板前或者自己座位上做好讲解演练,需要进行文字性的知识总结的要做好知识总结记录,以便明了讲解思路。

本组展示准备完成之后,可解决其他组的展示问题,以便于质疑点评,进行知识的总结。

(四)展示与点评1.展示要求:本组人员认真听取本组展示人员在展示过程中的讲解,对于讲解不够到位之处可以在其展示完毕给予及时补充;其他组成员要仔细听的同时,分析讲解人员讲解的优点和不足,为质疑点评积累素材,以便于进行精彩的展评互动。

2.展评互动评价标准:讲解的过程中是否把所用知识点说到位了解题思路是否理清晰了声音是否洪亮讲解时是否能和同学们形成知识的互动是否把握住了该题的要点评展示一:利用三角形全等来证明评展示二:利用平行四边形的性质来计算评展示三:利用三角形全等来证明,体现化归思想评展示三:从边、角、对角线三方面来归纳平行四边形的性质五、归纳总结1、本节课我学会了哪些知识?2、我的困惑是……六、巩固提升1.平行四边形具有而一般四边形不具有的特征是()A、不稳定性B、对角线互相平分C、内角的为360°D、外角和为360°2.若平行四边形的一边长为5,则它的两条对角线长可以是( )和2 B.3和4 C.4和6 D.4和83.如图,在平面直角坐标系中, OBCD的顶点O﹑B﹑D的坐标如图所示,则顶点C的坐标为()A. (3,7)B.(5,3)C. (7,3)D.(8,2)4.在平行四边形ABCD中,对角线AC,BD交于点O,AC=10,BD=8,则AD的取值范围是_________.5.在平行四边形ABCD中, 对角线AC﹑BD相交于点O,且AC+BD=20, △AOB 的周长等于15,则CD=________.6、课本P49习题第3题选做题:一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的:老大老二老四老三当四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗为什么备用习题1.平行四边行的两条对角线把它分成全等三角形的对数是()2.如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=,则四边形BCEF的周长为()如图,在□ABCD中,对角线AC,BD相交于点O,MN是过O点的直线,交BC于M,交AD于N,BM=2,AN=,求BC和AD的长.4.如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等为什么七、板书设计.1.2平行四边形的性质平行四边形的性质:几何语言表示:教学反思平行四边形的判定(一)第三课时修订:陈广营教学目标:1、运用类比的方法,通过学生的合作探究,得出平行四边形的前两个判定方法.2、理解平行四边形的这两种判定方法,并学会简单运用.3、通过对平行四边形两个判定方法的探索和运用,使学生感受到数学证明的严谨性.教学重点平行四边形的判定定理的证明.教学难点综合运用平行四边形的性质和判定进行有关的论证.教具准备两长两短的四根木条、图钉教学过程:一、揭题示标1、回顾旧知同学们,平行四边形的定义是什么它可以作为平行四边形的一个判定吗还有其他的判定方法吗今天,我们一起探究平行四边形的判定方法.2、板书课题:平行四边形的性质3、出示学习目标过渡语:本节课我们要达到什么样的学习目标呢?请看:(投影显示)学习目标1、理解平行四边形的三个判定方法.2、会运用平行四边形的三个判定方法判定一个四边形是平行四边形.今天的目标有信心实现吗?为了实现本节课的学习目标,请大家在学习指导的帮助下进行自学!二、学习指导【学习指导】认真看课本(P45-46例3)注意:1、思考中〝反过来〞三个字指的是什么你能写出平行四边形的性质的逆命题吗试着写出来2、参考45页的证明过程,完成云图中的问题。

相关文档
最新文档