易错题集 一元一次不等式组
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目100
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目100一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.3.光华机械厂为英洁公司生产 A、B 两种产品,该机械厂由甲车间生产 A 种产品,乙车间生产 B 种产品,两车间同时生产.甲车间每天生产的 A 种产品比乙车间每天生产的 B 种产品多 2 件,甲车间 3 天生产的 A 种产品与乙车间 4 天生产的 B 种产品数量相同.(1)求甲车间每天生产多少件 A 种产品?乙车间每天生产多少件 B 种产品?(2)光华机械厂生产的A 种产品的出厂价为每件200 元,B 种产品的出厂价为每件180 元.现英洁公司需一次性购买A、B 两种产品共80 件且按出厂价购买A、B 两种产品的费用不超过 15080 元.问英洁公司购进 B 种产品至少多少件?4.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….(1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
2020年中考数学复习微专题《一元一次不等式(组)》易错点解析
中考数学复习微专题《一元一次不等式(组)》易错点解析易错点一不等式的基本性质例1.已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.3a<3bB.-a+1<-b+1C.a+x>b+xD.>【解析】选A.A.不等式的两边都乘以3,不等号的方向不变,故A正确;B.不等式的两边都乘以-1,不等号的方向改变,故B错误;C.不等式的两边都加同一个整式,不等号的方向不变,故C错误;D.不等式的两边都除以2,不等号的方向不变,故D错误.变式练习1. 不等式x-1≤2的非负整数解有()A.1个 B.2个 C.3个 D.4个2. 实数a,b在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A.a-5>b-5B.6a>6bC.-a>-bD.a-b>0易错点二解不等式(组)例2.如图是关于x的不等式2x-a≤-1的解集,则a的取值是( )A.a≤-1B.a≤-2C.a=-1D.a=-2【解析】选C.由数轴上表示不等式解集的方法可知,此不等式的解集为x≤-1,解不等式2x-a ≤-1得x≤,即=-1,解得a=-1.变式练习1.解不等式组该不等式组的最大整数解是( )A.3B.4C.2D.-32.(1)解不等式≥,并把它的解集表示在数轴上.(2)解不等式组:易错点三不等式(组)含参问题例3.若不等式(n-2)x>-1的解集为x<-,则n的取值范围是______.【解析】根据不等式的性质,两边都除以(n-2),不等号的方向改变,得n-2<0,解得n<2. 答案:n<2变式练习1.若关于x,y的二元一次方程组的解满足x+y>0,则m的取值范围是________.2. 若关于x的不等式组22(1)xa x>⎧⎨⎩--<,的解集是x>a,则a的取值范围是()A.a<2 B.a≤2C.a>2 D.a≥2易错点四不等式的综合题型例4.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则关于x的不等式组有解的概率为________.【解析】解不等式①得,x≥3,解不等式②得x<,要使不等式组有解,则需满足>3, 解得a>5,所以满足条件的有4种情况,所以使得不等式组有解的概率为.答案:变式练习1. 已知x=4是不等式ax-3a-1<0的解,x=2不是不等式ax-3a-1<0的解,则实数a的取值范围是__________.2.解不等式组()41713843x xxx⎧+≤+⎪⎨--<⎪⎩,并写出它的所有负整数解.易错点五不等式与新概念问题例5.阅读以下计算程序:(1)当x=1 000时,输出的值是多少?(2)问经过二次输入才能输出y的值,求x的取值范围.【解析】(1)当x=1 000时,y=-2x+2 017=-2×1 000+2 017=17>0, ∴当x=1 000时,输出的值是17.(2)∵经过二次输入才能输出y的值,∴解得:1 008.5≤x<1 508.5,∴x0的取值范围为1 008.5≤x<1 508.5.变式练习1. 已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.易错点六不等式(组)与实际问题例6.“六一儿童节”即将结束,某幼儿园计划采购一批市场价为20元/件的益智玩具,甲、乙两家工厂给出了不同的优惠方案,方案如下:甲工厂:采购金额超过500元后,超过的部分按九折付款;乙工厂:采购金额超过1 000元后,超过的部分按八折付款.(1)如果幼儿园采购的数量超过了50件,应该到哪家工厂进行采购更合算?(2)如果幼儿园选择到乙工厂进行采购,那么幼儿园至少应该采购多少件,才能使每件玩具的平均价格不超过18元?【解析】(1)∵20×50=1 000(元),∴幼儿园到两家工厂采购均可得到优惠.设幼儿园计划采购益智玩具x件,选择甲工厂时费用为y1元,选择乙工厂时费用为y2元,由题意得y1=500+0.9(20x-500)=18x+50,y2=1 000+0.8(20x-1 000)=16x+200.由y1=y2,得18x+50=16x+200,解得x=75.由y1<y2,得18x+50<16x+200,解得x<75.由y1>y2,得18x+50>16x+200,解得x>75.∵采购的数量超过了50件,∴当采购的数量50<x<75时,选择甲工厂时费用较低.当采购的数量为75件时,选择两家工厂的费用一样.当采购的数量x>75时,选择乙工厂时费用较低.(2)设幼儿园到乙工厂采购益智玩具a件,由题意得16a+200≤18a,解得a≥100.所以,该幼儿园到乙工厂至少采购100件时,才能使每件玩具的平均价格不超过18元.变式练习1. 为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)35 30租金(元/辆)400 320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为_______辆;(3)学校共有几种租车方案?最少租车费用是多少?。
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(含答案)100
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(含答案)100一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).3.光华机械厂为英洁公司生产 A、B 两种产品,该机械厂由甲车间生产 A 种产品,乙车间生产 B 种产品,两车间同时生产.甲车间每天生产的 A 种产品比乙车间每天生产的 B 种产品多 2 件,甲车间 3 天生产的 A 种产品与乙车间 4 天生产的 B 种产品数量相同.(1)求甲车间每天生产多少件 A 种产品?乙车间每天生产多少件 B 种产品?(2)光华机械厂生产的A 种产品的出厂价为每件200 元,B 种产品的出厂价为每件180 元.现英洁公司需一次性购买A、B 两种产品共80 件且按出厂价购买A、B 两种产品的费用不超过 15080 元.问英洁公司购进 B 种产品至少多少件?4.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
解一元一次不等式(组)(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】
解一元一次不等式(组)(真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢1.解一元一次不等式(组)是近几年北京中考的第二道大题,属于基本计算找中的容易题,常见的考法有:解一元一次不等式、解一元一次不等式组、不等式或不等式组的整数解、在数轴上表示不等式或不等式组的解集.在平时要熟练掌握不等式或不等式组的解法步骤.2.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.3.一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)解不等式组:{4x −5>x +13x−42<x【答案】2<x <4【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:{4x −5>x +1①3x−42<x② 由①可得:x >2,由②可得:x <4,∴原不等式组的解集为2<x <4.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.【例2】(2022·北京·中考真题)解不等式组:{2+x >7−4x,x <4+x 2. 【答案】1<x <4【解析】【分析】分别解两个一元一次不等式,再求交集即可.【详解】解:{2+x >7−4x①x <4+x2②解不等式①得x >1,解不等式②得x <4,故所给不等式组的解集为:1<x <4.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)解不等式组:{3x >x −2x+13>2x【答案】−1<x <15【解析】【分析】求出每个不等式的解集,再求出解集的公共部分即可.【详解】由3x >x −2解得,x >−1; 由x+13>2x 解得,x <15. ∴原不等式组的解集为:−1<x <15.【点睛】本题考查了解一元一次不等式组,求出不等式组中每一个不等式的解集是关键,常常利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).2.(2014·北京·中考真题)解不等式12x −1≤23x −12,并把它的解集在数轴上表示出来.【答案】x≥-3,数轴见解析.【解析】【分析】去分母得:3x -6≤4x -3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x -6≤4x -3∴x≥-3【点睛】本题考查解一元一次不等式.3.(2015·北京·中考真题)解不等式组:{4(x +1)≤7x +10x −5<x−83,并写出它的所有非负整数解. 【答案】不等式组的所有非负整数解为:0,1,2,3.【解析】【分析】先解不等式组求出x 的取值范围,然后找出符合范围的非负整数解.【详解】解:{4(x +1)≤7x +10①x −5<x−83 ② 由不等式①得:x ≥-2,由不等式②得:,x <72,∴不等式组的解集为:−2≤x <72,∴x 的非负整数解为:0,1,2,3.【点睛】 本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.(2016·北京·中考真题)解不等式组:{2x +5>3(x −1)4x >x+72. 【答案】1<x <8.【解析】【详解】试题分析:根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.试题解析:解不等式2x+5>3(x ﹣1),得:x <8,解不等式4x >x+72,得:x >1,∴不等式组的解集为:1<x <8.考点:解一元一次不等式组.5.(2017·北京·中考真题)解不等式组: {2(x +1)>5x −7x+103>2x . 【答案】x<2.【解析】【详解】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:{2(x +1)>5x −7①x+103>2x② , 由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.6.(2018·北京·中考真题)解不等式组:{3(x +1)>x −1x+92>2x . 【答案】−2<x <3.【解析】【详解】分析:分别解不等式,找出解集的公共部分即可.详解:{3(x +1)>x −1①x+92>2x② 由①得,x >−2,由②得,x <3,∴不等式的解集为−2<x <3.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.7.(2019·北京·中考真题)解不等式组:{4(x −1)<x +2,x+73>x. 【答案】不等式组的解集为x <2.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:解不等式①得:4x −4<x +2,4x −x <4+2,3x <6,∴x <2解不等式②得:x +7>3x,x −3x >−7,−2x >−7,∴x <72∴不等式组的解集为x <2【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2020·北京·中考真题)解不等式组:{5x −3>2x 2x−13<x 2【答案】1<x <2【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:{5x −3>2x①2x−13<x 2② 解不等式①得:x >1,解不等式②得:x <2,∴此不等式组的解集为1<x <2.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京朝阳·二模)解不等式x −5<x−123,并写出它的所有非负整数解. 【答案】x <32,不等式的所有非负整数解为0,1【解析】【分析】去分母,移项、合并同类项,系数化为1即可,根据不等式的解集即可求得所有非负整数解.【详解】解:3(x −5)<x −12,3x −15<x −12,2x <3,x <32.∴原不等式的所有非负整数解为0,1.【点睛】本题考查了解一元一次不等式及求其非负整数解,正确求解不等式是解题的关键.2.(2022·北京东城·二模)解不等式6−4x ≥3x −8,并写出其正整数解.【答案】x ≤2,正整数解为1,2.【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数解即可.【详解】解:6−4x ≥3x −8,移项得:−4x −3x ≥−8−6,合并同类项得:−7x ≥−14,系数化为1得:x ≤2,∴不等式的正整数解为1,2.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.3.(2022·北京平谷·二模)解不等式组:{5x +3>4x 6−x 2≥x .【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:{5x +3>4x①6−x 2≥x② , 解不等式①得:x >−3,解不等式②得:x ≤2,则不等式组的解集为−3<x ≤2.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.4.(2022·北京北京·二模)解不等式组:{5x +3>2x x−22<6−3x .【答案】−1<x <2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:{5x +3>2x①x−22<6−3x② 解不等式①,得x >−1.解不等式②,得x <2.∴原不等式组的解集为−1<x <2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2022·北京丰台·二模)解不等式组:{2x −3>x −23x−22<x +1 .【解析】【分析】先求出每个不等式的解集,然后取公共部分即可得到答案.【详解】解:原不等式组为{2x −3>x −2①3x−22<x +1② , 由①得:x >1,由②得:x <4,所以原不等式组的解集为:1<x <4.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式6.(2022·北京密云·二模)解不等式组:{2x −1≤−x +2x−12<1+2x 3,并写出它的非负整数解.【答案】−5<x ≤1;非负整数解为:0,1【解析】【分析】首先解两个一元一次不等式,然后求两个不等式解集的公共部分,最后写出不等式组的整数解.【详解】解不等式2x -1≤-x +2,得,x ≤1, 解不等式x−12<1+2x3,得,x >-5,∴该不等式组的解集为-5<x ≤1,∴该不等式组的非负整数解是:0,1.【点睛】本题主要考查了解一元一次不等式组,解决问题的关键是熟练解答一元一次不等式和确定一元一次不等式组的解集,在一元一次不等式组解集里确定非负整数解.7.(2022·北京西城·二模)解不等式:5x−26<x2+1,并写出它的正整数解. 【答案】x =1,2,3,【解析】【分析】先解不等式,求出不等式解集,再根据解集,写出正整数解即可.【详解】 解:5x−26<x2+1, 5x -2<3x +6,5x -3x <6+2,2x <8,x <4,∵x 为正整数,∴x =1,2,3,【点睛】本题考查求不等式正整数解,熟练掌握解不等式是解题的关键.8.(2022·北京顺义·二模)解不等式组:{5x +2≥4x −1,x+14>x−32+1. 【答案】−3≤x <3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】{5x +2≥4x −1①x +14>x −32+1② 解不等式①得:x ≥−3解不等式②得:x <3∴不等式的解集为:−3≤x <3【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.9.(2022·北京市十一学校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x ,并将不等式组的解集在数轴上表示出来.【答案】x >2,见解析【解析】【分析】先解不等式组中的每一个不等式,再取其解集的公共部分即得不等式组的解集,然后即可在数轴上表示其解集.【详解】对不等式:{4(x +1)≥x +7①3x+24<x② 解不等式①得:x ≥1解不等式②得:x >2所以不等式的解集为:x >2【点睛】本题考查了一元一次不等式组的解法,属于基本题型,熟练掌握解一元一次不等式组的方法是解题的关键.10.(2022·北京海淀·二模)解不等式组:{5x −2>2x +4,x−12>x 3. 【答案】原不等式组的解集为x >3【解析】【分析】分别解不等式组中的两个不等式,再确定两个不等式解集的公共部分即可.【详解】解:原不等式组为{5x −2>2x +4,①x−12>x 3.② 解不等式①,得x >2.解不等式②,得x >3.∴ 原不等式组的解集为x >3.【点睛】本题考查的是不等式组的解法,掌握“解一元一次不等式组的步骤”是解本题的关键.11.(2022·北京东城·一模)解不等式组{x−32<1,2(x+1)≥x−1.【答案】−3≤x<5【解析】【分析】先分别求出不等式的解集,然后求出不等式组的解集即可.【详解】解:{x−32<12(x+1)≥x−1,解不等式x−32<1得,x<5;解不等式2(x+1)≥x−1得,x≥−3;∴不等式组的解集为−3≤x<5.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.12.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.【答案】(1)m=-4,画图见解析(2)-3≤m<0或m≤-4【解析】【分析】(1)根据待定系数法,将Q点坐标代入y=mx即可求值,进而画出直线的图象;(2)不等式组表达含义为P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,根据m<0的条件,数形结合即可求出m的取值范围.(1)解:∵函数y=mx的图象经过点Q,∴m=-2×2=-4,一次函数的解析式为:y=-x+4,图象如下.(2)解:由题意知,P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,∵m<0,∴反比例函数经过二、四象限,故P点在反比例函数图象上方,∴存在两种情况,①Q在反比例函数图象上方,在一次函数图象下方,P在一次函数图象上或上方,即:{2>m−2 2<2−m−1−m≤2,解得:-3≤m<0;②Q在反比例函数图象上或下方,P在一次函数图象下方,即:{2≤m−2−1−m>2,解得:m≤-4;综上所述,m 的取值范围为:-3≤m <0或m ≤-4.【点睛】本题考查了待定系数法求反比例函数解析式,解决本题难点是分析出反比例函数、一次函数的图象与P 、Q 两点的位置关系,得到关于m 的不等式组.13.(2022·北京市十一学校二模)解不等式组:{x −3(x −1)≥11+3x 2>x −1 ,并把它的解集在数轴上表示出来. 【答案】−3<x ≤1,数轴见解析【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{x −3(x −1)≥1①1+3x2>x −1② ,解不等式①得:x ≤1,解不等式②得:x >−3,∴不等式组的解集为−3<x ≤1,把解集在数轴上表示出来,如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.14.(2022·北京石景山·一模)解不等式组:{3(x +1)<x −1x+92>2x 并写出它的最大整数解.【答案】﹣3【解析】【分析】分别求出每一个不等式的解集,根据口诀同大取大;同小取小;大小小大中间找;大大小小找不到,确定不等式组的解集.【详解】{3(x +1)<x −1①x +92>2x② 由①得,x <﹣2,由②得,x <3,∴不等式组的解集为x <﹣2,最大的整数解是﹣3.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2022·北京房山·二模)解不等式组:{3(x −1)<2x +1x−12≤x +2 . 【答案】−5≤x <4【解析】【分析】分别求出两不等式的解集,根据:“大小小大中间找”确定不等式组解集.【详解】解:{3(x −1)<2x +1①x−12≤x +2② 由①得3x −3<2x +1,即x <4由②得x −1≤2x +4,即x ≥−5∴不等式组的解集为:−5≤x <4【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.16.(2022·北京平谷·一模)解不等式组:{x +2>2x 5x+32≥x .【答案】−1≤x <2【解析】【分析】先分别求出两个不等式的解集,然后求出不等式组的解集即可.【详解】解:{x+2>2x 5x+32≥x解不等式x+2>2x移项合并得−x>−2系数化为1得x<2∴不等式的解集为x<2;解不等式5x+32≥x去分母得5x+3≥2x移项合并得3x≥−3系数化为1得x≥−1∴不等式的解集为x≥−1;∴不等式组的解集为−1≤x<2.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.17.(2022·北京·东直门中学模拟预测)解不等式组:{3x>x−2 x+13≥2x【答案】−1<x≤15【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:{3x>x−2①x+13≥2x②,∵解不等式①得:x>-1,解不等式②得:x≤15,∴不等式组的解集是−1<x≤15.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.18.(2022·北京市第一六一中学分校一模)解不等式组{x+2(−2x)≥-4 3+5x2>x−1【答案】−53<x≤2【解析】【分析】按照解一元一次不等式的方法分别求出各不等式的解,进而得到不等式组的解集.【详解】解:{x+2(1−2x)≥−4⋯①3+5x2>x−1⋯②由①式去括号,得:x+2−4x≥−4移项、合并同类项,得:x≤2由②式去分母,得:3+5x>2x−2移项、合并同类项,得:x>−53所以不等式组的解集为:−53<x≤2.【点睛】本题考查解一元一次不等式组,熟练掌握相关知识是解题的关键.19.(2022·北京房山·一模)解不等式组:{x-2≤1 x+15<x−1【答案】32<x≤3【解析】【分析】先求得每个不等式的解集,后根据口诀确定不等式组的解集.【详解】解:{x-2≤1①x+15<x−1②由①得:x≤3,由②得:x>32,∴不等式组的解集为32<x≤3.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.20.(2022·北京朝阳·一模)解不等式组:{x −3(x −2)≥4x −1<1+2x 3【答案】不等式组的解集为x ≤1【解析】【分析】先根据不等式的基本性质分别解两个不等式,再确定不等式组的解集即可.【详解】{x −3(x −2)≥4①x −1<1+2x 3② 解①得x ≤1解②得x <4所以,不等式组的解集为x ≤1.【点睛】本题考查了解不等式组,根据不等式的基本性质解不等式是解题的关键.21.(2022·北京顺义·一模)解不等式组{2(x +1)≤5x +82x −5<x−12,并写出它的所有整数解. 【答案】-2≤x <3,它的整数解为-2、-1、0、1、2.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:{2(x +1)≤5x +82x −5<x−12由第一个不等式得2x +2≤5x +8,解得x ≥-2,由第二个得4x -10<x -1解得x <3∴不等式组的解集为-2≤x <3,它的整数解为-2、-1、0、1、2.【点睛】本题考查解一元一次不等式组,求符合条件的整数解.正确掌握一元一次不等式解集确定方法是解题的关键.22.(2022·北京西城·一模)解不等式组{5x +1>3(x −1)8x+29>x :【答案】−2<x <2【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{5x +1>3(x −1)①8x+29>x② , 解不等式①得:x >−2,解不等式②得:x <2,∴不等式组的解集为−2<x <2.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.23.(2022·北京通州·一模)解不等式组{3x −1>x +14x−53≤x【答案】1<x ≤5【解析】【分析】先分别解出两个不等式,再确定不等式组解集即可.【详解】{3x −1>x +1①4x −53≤x② 解①得x >1解②得x ≤5所以,不等式组的解集为1<x ≤5.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解题步骤是解题的关键.24.(2022·北京海淀·一模)解不等式组:{4(x −1)<3x,5x+32>x. 【答案】−1<x <4【解析】【分析】先求出各不等式的解集,再求其公共解集即可.【详解】解:解不等式4(x −1)<3x ,得:x <4, 解不等式5x+32>x ,得:x >−1,所以原不等式组的解集是−1<x <4.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.25.(2022·北京市第五中学分校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x . 【答案】x >2【解析】【分析】分别求出两个不等式的解集,即可得到不等式组的解集.【详解】解:{4(x +1)≥x +7①3x+24<x②解不等式①得:x ≥1,解不等式②得:x >2,所以不等式组的解集为:x >2.【点睛】本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.26.(2022·北京市三帆中学模拟预测)解不等式组{2x−7<3(1−x)43x+3≥1−23x,并写出它的非负整数解.【答案】−1≤x<2,0和1【解析】【分析】首先解每一个不等式,再求不等式组的解集,据此即可解答.【详解】解:{2x−7<3(1−x)①43x+3≥1−23x②由①解得x<2由②解得x≥−1故不等式组的解集为−1≤x<2所以,它的非负整数解有:0和1.【点睛】本题考查了一元一次不等式组的解法及整数解问题,熟练掌握和运用一元一次不等式组的解法及求整数解的方法是解决本题的关键.27.(2022·北京十一学校一分校模拟预测)在平面直角坐标系xOy中,一次函数y=−x+b经过点(0,2).(1)求这个一次函数的解析式:(2)当x<4时,对于x的每一个值,函数y=−x+b的值与函数y=kx−k的值之和都大于0,求k的取值范围.【答案】(1)y=−x+2(2)23≤k<1【解析】【分析】(1)根据待定系数法求解即可;(2)根据题意解不等式组即可.(1)解:∵一次函数y=−x+b经过点(0,2)∴2=b ,∴这个一次函数的解析式为y =−x +2.(2)由y =kx −k =k (x −1)则y =kx −k 过定点(1,0),依题意,kx −k −x +2>0的解集为x <4∴ x <k−2k−1,且k −1<0 ∴k−2k−1≤4,且k <1∴k −2≥4(k −1)即k −2≥4k −4−3k ≥−2当k <0时,k ≤23,则k <0当0≤k <1时,k ≥23,则23≤k <1 综上所述,23≤k <1【点睛】本题考查了待定系数法求一次函数解析式,解不等式组,理解题意是解题的关键.28.(2022·北京昌平·模拟预测)解不等式组{2x +7<3x −1x−25≥0 ,并把解集在数轴上表示出来. 【答案】x >8,作图见解析【解析】【分析】先分别计算不等式,然后求解集,将解集在数轴上表示出来即可.【详解】解:{2x +7<3x −1①x−25≥0②解不等式①得x >8,解不等式②得x ≥2,∴不等式组的解集为x >8,在数轴上表示如图所示:【点睛】本题考查了求不等式组的解集,在数轴上表示解集.解题的关键在于正确的计算.29.(2022·北京朝阳·模拟预测)解下列不等式,并把解在数轴上表示出来.(1)5x﹣5<2(2+x);(2)4x−13−x>1;(3)32>x2−2x−38;(4)x(x+4)≤(x+1)2+9.【答案】(1)x>3,数轴见解析(2)x>4,数轴见解析(3)x≤4.5,数轴见解析(4)x≤5,数轴见解析【解析】【分析】(1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集;(2)根据去分母、移项、合并同类项和系数化为1即可求出不等式的解集.(3)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(4)去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(1)解:5x﹣5<2(2+x)去括号得,5x﹣5<4+2x,移项得,5x﹣2x>4+5,合并同类项,3x>9,∴x>3.在数轴上表示此不等式的解集如下:(2)解:4x−13−x>1去分母,得4x﹣1﹣3x>3,移项,得4x﹣3x>3+1,合并同类项,得x>4,∴x>4.在数轴上表示此不等式的解集如下:(3)解:32>x2−2x−38去分母,得12≥4x﹣(2x﹣3),去括号,得12≥4x﹣2x+3,移项,得﹣4x+2x≥3﹣12,合并同类项,得﹣2x≥﹣9,∴x≤4.5.在数轴上表示此不等式的解集如下:(4)解:x(x+4)≤(x+1)2+9去括号,得x2+4x≤x2+2x+1+9,移项,得x2﹣x2+4x﹣2x≤1+9,合并同类项,得2x≤10,∴x≤5.在数轴上表示此不等式的解集如下:【点睛】本题考查了解一元一次不等式,能正确运用不等式的基本性质进行计算是解此题的关键.30.(2022·北京·二模)解不等式组:{3(x −1)≥2x −5,①2x <x+32,②并写出它的所有整数解. 【答案】−2≤x <1;−2,−1,0【解析】【分析】分别解不等式①,②,进而求得不等式组的解集,根据不等式组的解集写出所有整数解即可.【详解】{3(x −1)≥2x −5,①2x <x +32,② 解不等式①得:x ≥−2解不等式②得:x <1∴不等式组的解集为:−2≤x <1它的所有整数解为:−2,−1,0【点睛】 本题考查了解一元一次不等式组,求不等式组的整数解,正确的计算是解题的关键.。
一元一次不等式及不等式组易错题汇总
不等式(组)常见易错题一.对一元一次不等式定义的理解1.①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有_______个.2.已知06232a xa)(是关于x 的一元一次不等式,则.___________a 3.下列各式中,是一元一次不等式的是()A.845B.12x C.x 2≤5D.x x31≥04.下列说法,错误的是()A.33x 的解集是1xB.-10是102x 的解C.2x的整数解有无数多个 D.2x 的负整数解只有有限多个5.下列不等关系中,正确的是()A.a 不是负数表示为a >0; B.x不大于5可表示为x >5 C.x 与1的和是非负数可表示为x +1>0; D.m与4的差是负数可表示为m -4<0二.已知范围,求正确的结论6.若a 为有理数,则下列结论正确的是()A. a >0B.-a ≤0 C. a2>0 D. a2+1>07.若a >b ,且c 是有理数,则下列各式正确的是()①ac >bc ②ac <bc ③ac 2>bc2④ac 2≥bc2A.1个B. 2个 C. 3个 D. 4个8.若a <b <0,则下列答案中,正确的是()A.a <bB.a>bC.2a <2bD.a 3>b29.若b a ,则下列各式中一定成立的是()A.11b a B.33b a C.bc acD.ba 10.若1m ,则下列各式错误..的是()A.66m B.55m C.01m D.21m 11.已知:b a,那么下列不等式一定成立..的是()A.c b caB.c b caC.ba11 D.ba三.根据已知条件确定字母的取值范围12.已知2a 有意义,则a 的取值范围是________________.若x 21有意义,则x 的取值范围是________________. 13.若x x 44,则x 的取值范围是_________________. 14.如果x x2121,则x 的取值范围是_________________.15.若11|1|xx ,则x 的取值范围是________________.※16.代数式1x 与2x的值符号相同,则x 的取值范围________.※17.已知x x 3)12(,化简│x+2│-│-4-2x │=______________________.四.在数轴上表示不等式解集18.如图,图中阴影部分表示x 的取值范围,则下列表示中正确的是()A 、x >﹣3<2B 、﹣3<x ≤2C 、﹣3≤x ≤2D 、﹣3<x <2 19.已知关于x 的不等式2x ﹣m >﹣3的解集如图,则m 的值为()A 、2B 、1C 、0D 、﹣120.已知,关于x 的不等式23xa 的解集如图所示,则a 的值等于______________.21.表示不等式组的解集如图所示,则不等式组的解集是.22.若不等式组nm x n m x的解是53x ,则.________________,n m 常见易错“简单题”1.满足522x 的最大整数是_____________.2.满足522x的最小整数是__________.1-1五、求整数解23.求不等式组41)3(28)3(2xx x x的整数解是__________________.24.已知关于x 的不等式组0321x ax有五个整数解,这五个整数是_______________,a 的取值范围是__________________.六.求参数范围25.关于x 的方程x x m x m 5)3(1)1(3若其解是非正数,则m 的取值范围是 .26.不等式a ax 的解集为1x ,则a 的取值范围是() A 、0aB、0aC 、0aD 、0a27.已知不等式03a x 的正整数解恰是1,2,3,4,那么a 的取值范围是 .28.若不等式组1m x 1x 59x 的解集为2x ,则m 的取值范围是___________________.29.不等式组632a xa x 的解集是32ax ,则a 的取值.30.已知02yx 且y x 5,则y x,的取值范围是x _________;y ___________.31.若方程组323a yxy x 的解都是负数,则a 的取值范围是______________.32.已知方程②①m 1y2xm 31y x 2满足0yx ,则m 的取值范围是__________________.33.已知122,42kyxk y x 中的x ,y 满足0<y -x <1,则k 的取值范围________________.34.若不等式组530,0x x m ≥≥有解,则实数m 的取值范围是________________.35.若不等式组2210xx a x 有解,则实数a 的取值范围是________________.36.若不等式组1x0x a 无解,则a 的取值范围是______________.七、解下列不等式(组)37.412x 1625x 38. .17)10(2383y y y39.15.02.02.04.0xx 40.356634x x 八、解不等式组41.-5<6-2x <3. 42..234512x x x 43.解不等式组.1)]3(2[21,312233xxx x x将其解集在数轴上表示出来,并指出其负整数解.九、应用题44.在一次法律知识竞赛中,共有30道判断题,答对一道得4分,不答或答错倒扣1分,如果在这次竞赛中得分要超过72分,那么至少应答对_________题.45.为了参加2011年西安世界园艺博览会,某公司用几辆载重为80吨的汽车运送一批参展货物。
最新初中数学试卷一元一次不等式易错压轴解答题题分类汇编(及答案)
最新初中数学试卷一元一次不等式易错压轴解答题题分类汇编(及答案)一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.我市某中学计划购进若千个排球和足球如果购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元(1)求每个排球和每个足球的价格分别是多少元?(2)如果学校要购买排球和足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个足球?3.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).4.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)6.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….(1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.7.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.8.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.9.为响应党中央“下好一盘棋,共护一江水”的号召,某治污公司决定购买甲、乙两种型号的污水处理设备共10台.经调查发现:购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元,且一台甲型设备每月可处理污水240吨,一台乙型设备每月可处理污水200吨.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?(2)若治污公司购买污水处理设备的资金不超过109万元,月处理污水量不低于2080吨.①求该治污公司有几种购买方案;②如果为了节约资金,请为该公司设计一种最省钱的购买方案.10.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜2个、乙种书柜3个,共需资金1020元;若购买甲种书柜3个,乙种书柜4个,共需资金1440元(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,学校至多能够提供资金3800元,请设计几种购买方案供这个学校选择.(两种规格的书柜都必须购买)11.某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱类与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目演出的平均用时分别为5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多有多少个?12.如果A,B都是由几个不同整数构成的集合,由属于A又属于B的所有整数构成的集合叫做A,B的交集,记作A∩B.例如:若A={1,2,3},B={3,4,5},则A∩B={3};若A={0,﹣62,37,2},B={2,﹣1,37,﹣5,0,19},则A∩B={37,0,2}.(1)已知C={4,3},D={4,5,6},则C∩D={________};(2)已知E={1,m, 2},F={6,7},且E∩F={m},则m=________;(3)已知P={2m+1,2m﹣1},Q={n,n+2,n+4},且P∩Q={m,n},如果关于x的不等式组,恰好有2019个整数解,求a的取值范围.【参考答案】***试卷处理标记,请不要删除一、一元一次不等式易错压轴解答题1.(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-解析:(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-2)=2x2-4x+8+2x2+4x-4=4x2+4;若2x2-4x+8<x2+2x-2,则原式=2x2-4x+8-2(x2+2x-2)=2x2-4x+8-2x2-4x+4=-8x+12,∴小明计算错误.【解析】【解答】解:(1)(-4)*3=-4-2×3=-10,故答案为:-10;( 2 )∵(3x-4)*(x+6)=(3x-4)+2(x+6),∴3x-4≥x+6,解得:x≥5,故答案为:x≥5.【分析】(1)根据公式计算可得;(2)结合公式知3x-4≥x+6,解之可得;(3)由题意可得或,分别求解可得;(4)计算(2x2-4x+8)*(x2+2x-2)时需要分情况讨论计算.2.(1)解:设每个排球的价格为x元,每个足球的价格为y元,依题意,得: {20x+15y=2050,10x+20y=1900,解得: {x=50,y=70.答:每个排球的价格为50元,每解析:(1)解:设每个排球的价格为x元,每个足球的价格为y元,依题意,得:解得:答:每个排球的价格为50元,每个足球的价格为70元(2)解:设学校购买m个足球,则购买个排球,依题意,得:解得:又m为整数,的最大值为35.答:该学校至多能购买35个足球【解析】【分析】(1)抓住题中关键的已知条件:购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元,这就是题中的两个等量关系,再设未知数,列方程组,然后求出方程组的解。
中考数学 一元一次不等式易错压轴解答题(含答案)100
中考数学一元一次不等式易错压轴解答题(含答案)100一、一元一次不等式易错压轴解答题1.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?3.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…. (1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.4.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?7.在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分. (1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?8.某小区准备新建60 个停车位,以解决小区停车难的问题。
方程与不等式之一元一次方程易错题汇编附答案解析
方程与不等式之一元一次方程易错题汇编附答案解析一、选择题1.某商店把一件商品按标价的九折出售,仍可获利20%,若该商品的进价为每件21元,则该商品的标价为( ) A .27元 B .27.8元C .28元D .28.4元【答案】C 【解析】 【分析】设该商品的标价是x 元,根据按标价的九折出售,仍可获利20%列方程求解即可. 【详解】解:设该商品的标价是x 元, 由题意得:0.9x -21=21×20%, 解得:x =28,即该商品的标价为28元, 故选:C . 【点睛】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.2.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++= B .6090(30)480x x ++= C .160()904802x x ++= D .16090()4802x x ++=【答案】D 【解析】 【分析】 【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D . 【点睛】本题考查由实际问题抽象出一元一次方程.3.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( ) A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭【答案】A 【解析】 【分析】由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可. 【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A. 【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.4.方程2﹣24736x x --=-去分母得( ) A .2﹣2(2x ﹣4)=﹣(x ﹣7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣2(2x ﹣4)=﹣(x ﹣7) D .以上答案均不对【答案】C 【解析】 【分析】两边同时乘以6即可得解. 【详解】解方程:247236x x ---=- 去分母得:122(24)(7)x x --=--.故选C. 【点睛】本题考查了解一元一次方程的去分母,两边乘以同一个数时要注意整数也要乘以这个数.5.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.6.甲、乙两人环湖竞走,环湖一周为 400 米,乙的速度是80 米/分,甲的速度是乙的 114倍,且竞走开始时甲在乙前 100 米处,多少分钟后两人第一次相遇?设经过 x 分钟两人第一次相遇,所列方程为( ) A .80 x+ 100=54 ⨯ 80 x B .80 x + 300=54⨯ 80 x C .80 x - 100=54⨯ 80 x D .80 x - 300=54⨯ 80 x 【答案】B 【解析】 【分析】根据相遇时乙的路程+300=甲的路程列出方程即可. 【详解】 解:甲的速度为:54⨯ 80米/分,相遇时甲比乙多行了400-100=300米,根据题意可得: 80 x + 300=54⨯ 80 x , 故选:B 【点睛】本题考查了一元一次方程的应用,能找出题中的等量关系是解题的关键.7.下列关于a 、b 的等式,有一个是错误的,其它都是正确的,则错误的是( ) A .3b a = B .0b a -=C .2290b a -=D .26b m a m +=+【答案】B 【解析】 【分析】观察四个等式可发现都含有一个相同的等式b-3a=0,由此即可判断出错误的选项. 【详解】由题意知,选项A 可以化为b-3a=0;选项C 可以化为(b-3a )(b+3a)=0,可以得到b-3a=0;选项D 可以化为2b-6a=0,即b-3a=0,由此可以判断选项A 、C 、D 都是正确的,选项B 中的等式是错误的, 故选:B. 【点睛】此题考查等式的性质,根据等式的性质正确化简是解题的关键.8.等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.下列方程中,是一元一次方程的是( )A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=1 x【答案】B【解析】【分析】一元一次方程的一般式为ax+b=0(a≠0),根据该定义进行判断即可.【详解】解:x2﹣4x=3,未知数x的最高次数为2,故A不是一元一次方程;x=0,符合一元一次方程的定义,故B是一元一次方程;x+2y=1,方程含有两个未知数,故C不是一元一次方程;x﹣1=1x,分母上含有未知数,故D不是一元一次方程.故选择B.【点睛】本题考查了一元一次方程的定义.10.若一个数的平方根为2a+3和a-15,则这个数是()A.-18 B.64 C.121 D.以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程,从而可求得a的值,进而求得这个数.【详解】解:根据题意得:2a+3+(a-15)=0,解得a=4,则这个数是(2a+3)2=121.故选:C.【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.11.甲、乙两人都从A出发经B地去C地,乙比甲晚出发1分钟,两人同时到达B地,甲在B地停留1分钟,乙在B地停留2分钟,他们行走的路程y(米)与甲行走的时间x (分钟)之间的函数关系如图所示,则下列说法中正确的个数有()①甲到B地前的速度为100/minm②乙从B地出发后的速度为600/minm③A、C两地间的路程为1000m④甲乙在行驶途中再次相遇时距离C地300mA.1个B.2个C.3个D.4个【答案】C【解析】【分析】①②③直接利用图中信息即可解决问题,求出到B地后的函数关系式,利用方程组求交点坐标即可判定④的正确性.【详解】解:由图象可知:甲到B地前的速度为400÷4=100米/分钟,故①正确,乙从B地出发后的速度为600÷2=300米/分钟,故②错误,由图象可知,A、C两地间的路程为1000米,故③正确,设甲到B地后的函数关系为y=kx+b,则有5400 91000k bk b+=⎧⎨+=⎩,解得150350kb=⎧⎨=-⎩,∴y=150x-350,设乙到B地后的函数关系为y=mx+n,则有6400 81000m nm n+=⎧⎨+=⎩,解得3001400mn=⎧⎨=-⎩,∴y=300x-1400,由1503503001400 y xy x=-⎧⎨=-⎩解得7700xy=⎧⎨=⎩,∴甲乙再次相遇时距离A地700米,∵1000-700=300,∴甲乙再次相遇时距离C地300米,故④正确,故选:C.【点睛】本题考查一次函数的应用、路程=速度×时间的关系等知识,解题的关键是读懂图象信息,学会构建一次函数,利用方程组求交点坐标解决实际问题,属于中考常考题型.12.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。
一元一次不等式》易错题集(含答案)
⼀元⼀次不等式》易错题集(含答案)《⼀元⼀次不等式》练习题⼀、选择题1、若不等式组有解,则a的取值范围是(A)A、a>﹣1B、a≥﹣1C、a≤1D、a<12、如果⼀元⼀次不等式组的解集为x>3.则a的取值范围是(C)A、a>3B、a≥3C、a≤3D、a<33、若不等式组⽆解,则a的取值范围是(D)A、a<2B、a=2C、a>2D、a≥24、已知关于x的不等式组⽆解,则a的取值范围是(B)A、a≤﹣1B、a≥2C、﹣1<a<2D、a<﹣1,或a>25、不等式组⽆解,则a的取值范围是(B)A、a<1B、a≤1C、a>1D、a≥16、如果不等式组的解集为x>3,那么m的取值范围为(B)A、m≥3B、m≤3C、m=3D、m<37、如果不等式组⽆解,那么m的取值范围是(B)B、m≥8C、m<8D、m≤88、若不等式组有解,则m的取值范围是(A)A、m<2B、m≥2C、m<1D、1≤m<29、若不等式组⽆解,那么a的取值范围是(B)A、a>6B、a≥6C、a<6D、a≤610、若不等式组有解,则k的取值范围是(A)A、k<2B、k≥2C、k<1D、1≤k<211、如果关于x的不等式组⽆解,那么不等式组的解集()A、b﹣3<x<3﹣aB、3﹣b<x<3﹣aC、3﹣a<x<3﹣bD、⽆解12、不等式组的解集是3<x<a+2,则a的取值范围是()A、a>1B、a≤3C、a<1或a>3D、1<a≤313、关于x的不等式组有四个整数解,则a的取值范围是()A、﹣<a≤﹣B、﹣≤a<﹣C、﹣≤a≤﹣D、﹣<a<﹣14、已知关于x的不等式组恰有3个整数解,则a的取值范围是()A、B、C、D、15、⼩明要制作⼀个长⽅形的相⽚框架,这个框架的长为25cm,⾯积不⼩于500cm2,则宽的长度xcm应满⾜的不等式组为()A、B、C、D、⼆、填空题16、关于x的不等式组的解集是x>﹣1,则m=_________.17、已知不等式组⽆解,则a的取值范围是_________.18、已知关于x的不等式组⽆解,则a的取值范围是_________.19、已知关于x的不等式组⽆解,则a的取值范围是_________.20、如果不等式组⽆解,那么a的取值范围是_________.21、若不等式组⽆解,则m的取值范围是_________.22、若⽆解,则a的取值范围是_________若⽆解,则a的取值范围是_________..23、如果关于x的不等式(a﹣1)x<a+5和2x<4的解集相同,则a的值为_________.(1)⼀变:如果的解集是x<2,则a的取值范围是_________;(2)⼆变:如果的解集是1≤x<2,则a的取值范围是_________24、不等式的⾃然数解有_________个.25、如图,如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)共有_________个.三、解答题26、某产品⼀名⼯⼈⼀天的产量约为5⾄8个,如每天⽣产⼯艺品60个,那么需要⼯⼈多少⼈.27、计算:(1)解⽅程:+=2的解(2)解不等式组:的解集.28、不等式组:的整数解有多少个.答案与评分标准选择题1、若不等式组有解,则a的取值范围是()A、a>﹣1B、a≥﹣1C、a≤1考点:解⼀元⼀次不等式组。
跟踪“解一元一次不等式(组)的易错点
跟踪“解一元一次不等式(组)”的易错点李培华广东省化州市第一初级中学 525100解一元一次不等式(组)的步骤和解法虽然简单,但倘若你没有注意一些易错的地方则极易会出错。
下面本文结合例题归纳解一元一次不等式(组)的七个易错点,供同学们学习时使用。
易错点1:混淆一元一次不等式(组)的“解”和“解集”的含义例1判断正误⑴5>x 是不等式84>+x 的解( );⑵7=x 是不等式21>+x 的解集( ); ⑶5>x 是不等式31>+x 的解集( );⑷0>x 是不等式34>+x 的解集( )。
错解:⑴√ ⑵√ ⑶√ ⑷√错因剖析:对一元一次不等式的解和解集的意义理解不透彻,从而将两者混淆。
所谓一元一次不等式的解是指使不等式成立的每一个数,而一元一次不等式的解集是指由全体不等式的解组成的一个集合。
因此,一元一次不等式的解可以是一个或多个值,而一元一次不等式的解集应包含满足一元一次不等式的所有解。
⑴中错把解集当做解,⑵中则是把解当做解集,⑶和⑷中的5>x 和0>x 均不能全部满足不等式31>+x 和34>+x ,所以都不是原不等式的解集。
正解:⑴× ⑵× ⑶× ⑷×易错点2:误解一元一次不等式组的“公共部分”就是两个数之间的部分例2解不等式组 )2.(02)1(,01<+>- 错解:由⑴得1>x ,由⑵得2-<x ,所以不等式组的解集为12<<-x 。
错因剖析:解一元一次不等式组的方法是先分别求出不等式组中各个不等式的解集,再利用数轴求出这些不等式解集的公共部分。
此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集)。
实际上,这两部分没有“公共部分”,也就是说此不等式组无解,而所谓“公共部分”的解是指“两线重叠”的部分。
此外,有些同学可能会受到解题顺序的影响,把解集表示成21-<<x 或12><-x 等等,这些都是错误的。
最新七年级数学试卷一元一次不等式易错压轴解答题试题(含答案)
最新七年级数学试卷一元一次不等式易错压轴解答题试题(含答案)一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.我市某中学计划购进若千个排球和足球如果购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元(1)求每个排球和每个足球的价格分别是多少元?(2)如果学校要购买排球和足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个足球?3.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).4.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.某机器人公司为扩大经营,决定购进 6 台机器用于生产某种小机器人.现有甲、乙两种机器供选择,其中每台机器的价格和日生产量如下表所示.经过预算,本次购买机器的费用不能超过 34 万元.甲种机器乙种机器价格/(万元/台)57每台机器的日生产量/个60100(1)按要求该公司有几种购买方案?(2)若该公司购进的6台机器的日生产量不能少于380个,那么为了节约资金,应选择哪种购买方案?6.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.7.有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S1.(1)试探究该正方形的面积S与S1的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2)再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S2.①试比较S1, S2的大小;②当m为正整数时,若某个图形的面积介于S1, S2之间(不包括S1, S2)且面积为整数,这样的整数值有且只有16个,求m的值.8.为了让孩子们了解更多的海洋文化知识,市海洋局购买了一批有关海洋文化知识的科普书籍和绘本故事书籍捐赠给市里的几所中小学校.经了解,以两类书的平均单价计算,30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元.(1)求平均每本科普书籍和绘本故事书籍各是多少元.(2)计划每所学校捐赠书籍数目和总费用相同.其中每所学校的科普书籍大于115本,科普书籍比绘本故事书籍多30本,总费用不超过5000元,请求出所有符合条件的购书方案. 9.某文具店购进A、B两种文具进行销售.若每个A种文具的进价比每个B种文具的进价少2元,且用900元正好可以购进50个A种文具和50个B种文具,(1)求每个A种文具和B种文具的进价分别为多少元?(2)若该文具店购进A种文具的数量比购进种文具的数量的3倍还少5个,购进两种文具的总数量不超过95个,每个A种文具的销售价格为12元,每个B种文具的销售价格为15元,则将购进的A、B两种文具全部售出后,可使总利润超过371元,通过计算求出该文具店购进A、B两种文具有哪几种方案?10.某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:(1) ________, ________.(2)若,则的取值范围是________;若,则的取值范围是________.(3)已知,满足方程组,求,的取值范围.12.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)60045010辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【参考答案】***试卷处理标记,请不要删除一、一元一次不等式易错压轴解答题1.(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-解析:(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-2)=2x2-4x+8+2x2+4x-4=4x2+4;若2x2-4x+8<x2+2x-2,则原式=2x2-4x+8-2(x2+2x-2)=2x2-4x+8-2x2-4x+4=-8x+12,∴小明计算错误.【解析】【解答】解:(1)(-4)*3=-4-2×3=-10,故答案为:-10;( 2 )∵(3x-4)*(x+6)=(3x-4)+2(x+6),∴3x-4≥x+6,解得:x≥5,故答案为:x≥5.【分析】(1)根据公式计算可得;(2)结合公式知3x-4≥x+6,解之可得;(3)由题意可得或,分别求解可得;(4)计算(2x2-4x+8)*(x2+2x-2)时需要分情况讨论计算.2.(1)解:设每个排球的价格为x元,每个足球的价格为y元,依题意,得: {20x+15y=2050,10x+20y=1900,解得: {x=50,y=70.答:每个排球的价格为50元,每解析:(1)解:设每个排球的价格为x元,每个足球的价格为y元,依题意,得:解得:答:每个排球的价格为50元,每个足球的价格为70元(2)解:设学校购买m个足球,则购买个排球,依题意,得:解得:又m为整数,的最大值为35.答:该学校至多能购买35个足球【解析】【分析】(1)抓住题中关键的已知条件:购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元,这就是题中的两个等量关系,再设未知数,列方程组,然后求出方程组的解。
一元一次不等式(组)专题训练
一元一次不等式(组)一、 一元一次不等式(组)的解A 、 已知不等式(组)的解(集),求参数的值或取值范围 例1:不等式-<+mx 23x 4的解集是63x m >-,求m 的取值范围。
练习:1、若关于x 的不等式a(1)x 12a x ->+-的解集是1x <-求a 的取值范围。
2、若关于x 的不等式(1)x 5a a -<+的解集和24x <的解集相同,求a 的取值。
3、不等式475x a x ->+的解集是1x <-求a 的取值4、若关于x 的不等式2132x a a ->-的解集和2x a <的解集相同,求a 的取值例2:若不等式组3x x a >⎧⎨>⎩的解集是x a >则a 的取值范围是 练习:1、(1)若不等式组5x x m <⎧⎨>⎩ 无解,则a 的取值范围是 (2)若无解,则a 的取值范围是2、已知不等式组x a x b <⎧⎨>⎩无解,求不等式组11x a x b >-⎧⎨<-⎩的解3、当a 满足什么条件时,不等式组131x a x a >+⎧⎨<-⎩无解4、如果2a <,那么不等式组2x x a >⎧⎨>⎩的解集为 ,2x x a <⎧⎨<⎩的解集为 例3:若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<求(a 3)(b 3)-+ 的值。
练习:1、一元一次不等式组13x a x -≤⎧⎨+>⎩的解集为x a ≥-,求a 的取值范围。
2、一元一次不等式组221x a b x a a -≥⎧⎨-<+⎩的解集为35x ≤<,求b a3、一元一次不等式组213(x 1)x x m ->-⎧⎨<⎩的解集为2x <,求m 的取值范围。
4、不等式组26x x x m-+<-⎧⎨>⎩的解集为4x >,求m 的取值范围B :已知不等式(组)的整数解的个数,求参数的取值范围例4:已知不等式30x a -≤ 的正整数解有三个,1,2,3求a 的取值范围。
七年级数学试卷一元一次不等式易错压轴解答题练习题100
七年级数学试卷一元一次不等式易错压轴解答题练习题100一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.3.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.4.为了让孩子们了解更多的海洋文化知识,市海洋局购买了一批有关海洋文化知识的科普书籍和绘本故事书籍捐赠给市里的几所中小学校.经了解,以两类书的平均单价计算,30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元.(1)求平均每本科普书籍和绘本故事书籍各是多少元.(2)计划每所学校捐赠书籍数目和总费用相同.其中每所学校的科普书籍大于115本,科普书籍比绘本故事书籍多30本,总费用不超过5000元,请求出所有符合条件的购书方案. 5.某小区准备新建60 个停车位,以解决小区停车难的问题。
湖南中考数学 一元一次不等式易错压轴解答题(含答案)
湖南中考数学一元一次不等式易错压轴解答题(含答案)一、一元一次不等式易错压轴解答题1.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?2.我市某中学计划购进若千个排球和足球如果购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元(1)求每个排球和每个足球的价格分别是多少元?(2)如果学校要购买排球和足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个足球?3.某服装店用2400元购进一批运动服,很快售完;老板又用3750元购进第二批运动服,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批运动服每件进价是多少元?(2)服装店按标价的8折进行销售,要使得两次的销售总利润不少于1850元,每件运动服标价至少为多少元?(利润=售价-进价).4.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株.(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株.(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用为22080元.5.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?6.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
《一元一次不等式组》易错题集: 一元一次不等式组的解法
《一元一次不等式组》易错题集(01): 一元一次不等式组的解法 选择题1.若不等式组⎩⎨⎧--≥+2210x a a x 有解,则a 的取值范围是( ) A .a >-1 B .a≥-1 C .a≤1 D .a <12.如果一元一次不等式组⎩⎨⎧a x x 3的解集为x >3.则a 的取值范围是( ) A .a >3 B .a≥3 C .a≤3 D .a <33.若不等式组⎩⎨⎧+-112a x a x 无解,则a 的取值范围是( )A .a <2B .a=2C .a >2D .a≥24.已知关于x 的不等式组⎪⎩⎪⎨⎧-ax x x 12无解,则a 的取值范围是( )A .a <1B .a≤1C .a >1D .a≥17.如果不等式组⎩⎨⎧m x x 8无解,那么m 的取值范围是( )A .m >8B .m≥8C .m <8D .m≤88.若不等式组⎩⎨⎧≤mx x 21有解,则m 的取值范围是( )A .m <2B .m≥2C .m <1D .1≤m <29.若不等式组⎩⎨⎧a x x 6无解,那么a 的取值范围是()A .a >6B .a≥6C .a <6D .a≤610.如果关于x 的不等式组⎩⎨⎧b x ax (a≠b )无解,那么不等式组⎩⎨⎧--b xax 33 的解集()A .b-3<x <3-aB .3-b <x <3-aC .3-a <x <3-bD .无解11.若不等式组⎩⎨⎧≤k x x 21有解,则k 的取值范围是( )A .k <2B .k≥2C .k <1D .1≤k <212.不等式组⎩⎨⎧+-5321 x a x a 的解集是3<x <a+2,则a 的取值范围是( ) A .a >1 B .a≤3 C .a <1或a >3 D .1<a≤3A .24-≤-aB .24-≤- aC .24-≤≤-aD .24-- a 14.已知关于x 的不等式组⎩⎨⎧≥-+023032x a x a 恰有3个整数解,则a 的取值范围是( ) A . 2332≤≤a B .2334≤≤a C . 2334≤a D . 2334 a ≤ 填空题 224.如图,如果不等式组⎩⎨⎧-≥-0809 b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有个.。
一元一次不等式(易错题解析)
北京育才苑个性化教案教师姓名陆战学生姓名年级辅导科目数学上课时间课时课题名称《一元一次不等式和一元一次不等式组》易错题集解析教学及辅导过程选择题1.已知实数a满足不等式组则化简下列式子的结果是()A.3﹣2a B.2a﹣3 C.1 D.﹣1考点:二次根式的性质与化简;解一元一次不等式组。
分析:此题应先解出不等式组,找出a的取值范围,再将根式化简,确定符号,从而得出结论.解答:解:解不等式组得1<a<2,∴=|a﹣2|﹣|1﹣a|=﹣(a﹣2)﹣[﹣(1﹣a)]=3﹣2a.故选A.点评:此题主要考查了二次根式的性质,化简二次根式常用的性质:=|a|.2.(2009•荆门)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<1考点:解一元一次不等式组。
分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选A.点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.3.(2009•恩施州)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<3考点:解一元一次不等式组。
专题:计算题。
分析:根据不等式组解的定义和同大取大的原则可得出a和3之间的关系式,解答即可.解答:解:不等式组的解集为x>3,所以有a≤3,故选C.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.4.(2006•梧州)若不等式组无解,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≥2考点:解一元一次不等式组。
一元一次不等式(易错题)
1.已知实数a满足不等式组则化简下列式子的结果是()A.3﹣2a B.2a﹣3 C.1 D.﹣1解答:解:解不等式组得1<a<2,∴=|a﹣2|﹣|1﹣a|=﹣(a﹣2)﹣[﹣(1﹣a)]=3﹣2a.故选A.点评:此题主要考查了二次根式的性质,化简二次根式常用的性质:=|a|.2.若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1D.a<1解答:解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选A.点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3C.a≤3D.a<3解答:解:不等式组的解集为x>3,所以有a≤3,故选C.4.若不等式组无解,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≥2解答:解:可以判断出2a﹣1≥a+1,解得:a≥2.故选D.5.已知关于x的不等式组无解,则a的取值范围是()A.a≤﹣1 B.a≥2C.﹣1<a<2 D.a<﹣1,或a>2解答:解:∵不等式组无解∴a≥2时,不等式组无解,故选B.6.不等式组无解,则a的取值范围是()A.a<1 B.a≤1C.a>1 D.a≥1解答:解:原不等式组可化为,即,故要使不等式组无解,则a≤1.故选B.7.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8C.m<8 D.m≤8解答:解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选B.8.若不等式组有解,则m的取值范围是()A.m<2 B.m≥2C.m<1 D.1≤m<2解答:解:原不等式组可化为和,(1)始终有解集,则由(2)有解可得m<2.故选A.9.若不等式组无解,那么a的取值范围是()A.a>6 B.a≥6C.a<6 D.a≤6解答:解:∵不等式组无解,∴a≥6,故选B.10.若不等式组有解,则k的取值范围是()A.k<2 B.k≥2C.k<1 D.1≤k<2解答:解:因为不等式组有解,根据口诀可知k只要小于2即可.故选A.11.如果关于x的不等式组无解,那么不等式组的解集()A.b﹣3<x<3﹣a B.3﹣b<x<3﹣a C.3﹣a<x<3﹣b D.无解解答:解:不等式组无解,所以a≥b,则3﹣a≤3﹣b,,所以3﹣a<x<3﹣b.故选C.12.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3C.a<1或a>3 D.1<a≤3解答:解:根据题意可知a﹣1≤3即a+2≤5所以a≤3又因为3<x<a+2 即a+2>3所以a>1 所以1<a≤3故选D.13.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣ B.﹣≤a<﹣ C.﹣≤a≤﹣D.﹣<a<﹣解答:解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.15.要做一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足为()A.B.C.D.解答:解:根据题意,得.故选A.16.关于x的不等式组的解集是x>﹣1,则m=﹣3.解答:解:根据“同大取大”确定x的范围x>m+2,∵解集是x>﹣1,∴m+2=﹣1,m=﹣3.17.已知不等式组无解,则a的取值范围是a≤﹣1.解答:解:由(1)得x≥﹣1;由(2)得x<a.根据“大大小小找不到”可得a≤﹣1.故答案为a≤﹣1.18.已知关于x的不等式组无解,则a的取值范围是a≥3.解答:解:解关于x的不等式组,得,∵不等式组无解∴大大小小找不到,即a≥3.19.已知关于x的不等式组无解,则a的取值范围是a≥3.解答:解:由x﹣a>0,∴x>a,由5﹣2x≥﹣1移项整理得,2x≤6,∴x≤3,又不等式组无解,∴a≥3.20.如果不等式组无解,那么a的取值范围是a≤2.21.若不等式组无解,则m的取值范围是m≥8.22.若无解,则a的取值范围是a≤﹣1.24.不等式的自然数解有8个.解答:x<8,故此不等式的自然数解有0,1,2,3,4,5,6,7共8个.25.如图,如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)共有72个.解答:解:由不等式组得:,由于其整数解仅为1,2,3,结合图形得:,a的整数值共有9个;,b的整数值共8个,则整数a,b的有序数对(a,b)共有8×9=72个.26.在平面直角坐标系中,点A(x﹣1,2﹣x)在第四象限,则实数x的取值范围是x>2.解答:解:∵点A(x﹣1,2﹣x)在第四象限,∴,解得:x>2.27.某产品一名工人一天的产量约为5至8个,如每天生产工艺品60个,那么需要工人12人.解答:解:设需要工人x人,根据题意得5≤≤8解得7.5≤x≤12因为x为整数所以8≤x≤12故为保正每天生产工艺品60个,应需要12个人.答:需要工人12人.点评:此题考虑到人数不能为半个人,应取整数,而且考虑到工人的生产率的不稳定性,取最多人数,以保证产量.28.计算:(1)解方程:+=2的解是无解;(2)解不等式组:的解集是﹣1<x≤4.解答:解:(1)由方程+=2两边乘以2x﹣1(2x﹣1≠0)得10x﹣5=2(2x﹣1),∴6x=3解得;∵2x﹣1≠0,∴x≠,∴方程无解;(2)2x>﹣2,∴x>﹣1,x﹣2≤2,解得x≤4,∴不等式的解集为:﹣1<x≤4.29.不等式组:的整数解有3个.解答:解:由x﹣3(x﹣2)≤8得x≥﹣1由5﹣x>2x得x<2∴﹣1≤x<2∴不等式组的整数解是x=﹣1,0,1 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章《一元一次不等式和一元一次不等式组》易错题集(04):1.6一元一次不等式组第1章《一元一次不等式和一元一次不等式组》易错题集(04):1.6 一元一次不等式组选择题1.已知实数a满足不等式组则化简下列式子的结果是()A.3﹣2a B.2a﹣3 C.1 D.﹣12.(2009•荆门)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<13.(2009•恩施州)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<34.(2006•梧州)若不等式组无解,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≥25.(2004•日照)已知关于x的不等式组无解,则a的取值范围是()A.a≤﹣1 B.a≥2 C.﹣1<a<2 D.a<﹣1,或a>26.(2002•聊城)不等式组无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥17.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤88.若不等式组有解,则m的取值范围是()A.m<2 B.m≥2 C.m<1 D.1≤m<29.若不等式组无解,那么a的取值范围是()A.a>6 B.a≥6 C.a<6 D.a≤610.若不等式组有解,则k的取值范围是()A.k<2 B.k≥2 C.k<1 D.1≤k<211.如果关于x的不等式组无解,那么不等式组的解集()A.b﹣3<x<3﹣a B.3﹣b<x<3﹣a C.3﹣a<x<3﹣b D.无解12.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤313.(2003•泰安)关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣ B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣14.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.15.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.填空题16.(2009•孝感)关于x的不等式组的解集是x>﹣1,则m=_________.17.(2006•贺州)已知不等式组无解,则a的取值范围是_________.18.(2003•重庆)已知关于x的不等式组无解,则a的取值范围是_________.19.已知关于x的不等式组无解,则a的取值范围是_________.20.如果不等式组无解,那么a的取值范围是_________.21.若不等式组无解,则m的取值范围是_________.22.若无解,则a的取值范围是_________.23.如果关于x的不等式(a﹣1)x<a+5和2x<4的解集相同,则a的值为_________.(1)一变:如果的解集是x<2,则a的取值范围是_________;(2)二变:如果的解集是1≤x<2,则a的取值范围是_________.24.不等式的自然数解有_________个.25.如图,如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)共有_________个.26.(2009•乌鲁木齐)在平面直角坐标系中,点A(x﹣1,2﹣x)在第四象限,则实数x的取值范围是_________.解答题27.某产品一名工人一天的产量约为5至8个,如每天生产工艺品60个,那么需要工人_________人.28.计算:(1)解方程:+=2的解是_________;(2)解不等式组:的解集是_________.29.(2010•呼和浩特)不等式组:的整数解有_________个.第1章《一元一次不等式和一元一次不等式组》易错题集(04):1.6 一元一次不等式组参考答案与试题解析选择题1.已知实数a满足不等式组则化简下列式子的结果是()A.3﹣2a B.2a﹣3 C.1 D.﹣1考点:二次根式的性质与化简;解一元一次不等式组。
分析:此题应先解出不等式组,找出a的取值范围,再将根式化简,确定符号,从而得出结论.解答:解:解不等式组得1<a<2,∴=|a﹣2|﹣|1﹣a|=﹣(a﹣2)﹣[﹣(1﹣a)]=3﹣2a.故选A.点评:此题主要考查了二次根式的性质,化简二次根式常用的性质:=|a|.2.(2009•荆门)若不等式组有解,则a的取值范围是()A.a>﹣1 B.a≥﹣1 C.a≤1 D.a<1考点:解一元一次不等式组。
分析:先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.解答:解:由(1)得x≥﹣a,由(2)得x<1,∴其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1,故选A.点评:求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.3.(2009•恩施州)如果一元一次不等式组的解集为x>3.则a的取值范围是()A.a>3 B.a≥3 C.a≤3 D.a<3考点:解一元一次不等式组。
专题:计算题。
分析:根据不等式组解的定义和同大取大的原则可得出a和3之间的关系式,解答即可.解答:解:不等式组的解集为x>3,所以有a≤3,故选C.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.4.(2006•梧州)若不等式组无解,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≥2考点:解一元一次不等式组。
分析:利用不等式组的解集是无解可知,x应该是大大小小找不到.解答:解:可以判断出2a﹣1≥a+1,解得:a≥2.故选D.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.(2004•日照)已知关于x的不等式组无解,则a的取值范围是()A.a≤﹣1 B.a≥2 C.﹣1<a<2 D.a<﹣1,或a>2考点:解一元一次不等式组。
分析:先求出不等式组的解集,利用不等式组的解集是无解可知a<x<2,且x应该是大大小小找不到,所以可以判断出a≥2,不等式组是x>2,x<2时没有交集,所以也是无解,不要漏掉相等这个关系.解答:解:∵不等式组无解∴a≥2时,不等式组无解,故选B.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).6.(2002•聊城)不等式组无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1考点:解一元一次不等式组。
分析:先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.解答:解:原不等式组可化为,即,故要使不等式组无解,则a≤1.故选B.点评:解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.7.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8考点:解一元一次不等式组。
专题:计算题。
分析:根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可.解答:解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选B.点评:本题考查不等式解集的表示方法,根据大大小小无解,也就是没有中间(公共部分)来确定m的范围.做题时注意m=8时也满足不等式无解的情况.8.若不等式组有解,则m的取值范围是()A.m<2 B.m≥2 C.m<1 D.1≤m<2考点:解一元一次不等式组。
分析:本题实际就是求这两个不等式的解集.先根据第一个不等式中x的取值,分析m的取值.解答:解:原不等式组可化为和,(1)始终有解集,则由(2)有解可得m<2.故选A.点评:本题除用代数法外,还可画出数轴,表示出解集,与四个选项对照即可.同学们可以自己试一下.9.若不等式组无解,那么a的取值范围是()A.a>6 B.a≥6 C.a<6 D.a≤6考点:解一元一次不等式组。
分析:不等式组的解集是无解,根据小大大小取不了解答此题.解答:解:∵不等式组无解,∴a≥6,故选B.点评:本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围10.若不等式组有解,则k的取值范围是()A.k<2 B.k≥2 C.k<1 D.1≤k<2考点:解一元一次不等式组。
专题:计算题。
分析:根据不等式组的解集为两个不等式解集的公共部分,所以在有解的情况下,k的值必须小于2.解答:解:因为不等式组有解,根据口诀可知k只要小于2即可.故选A.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.11.如果关于x的不等式组无解,那么不等式组的解集()A.b﹣3<x<3﹣a B.3﹣b<x<3﹣a C.3﹣a<x<3﹣b D.无解考点:解一元一次不等式组。
专题:计算题。
分析:根据“大大小小”无解,从而得出一个新的不等式,解答即可.解答:解:不等式组无解,所以a≥b,则3﹣a≤3﹣b,再根据比大的小比小的大取中间,所以3﹣a<x<3﹣b.故选C.点评:本题考查了不等式组解集表示,难度较大.12.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3考点:解一元一次不等式组。
专题:计算题。
分析:根据题中所给条件,结合口诀,可得a﹣1与3之间、5和a+2之间都存在一定的不等关系,解这两个不等式即可.解答:解:根据题意可知a﹣1≤3即a+2≤5所以a≤3又因为3<x<a+2即a+2>3所以a>1所以1<a≤3故选D.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2003•泰安)关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣ B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣考点:一元一次不等式组的整数解。