数学分析曲线积分 17-5

合集下载

《数学分析》第十七章多元函数微分学

《数学分析》第十七章多元函数微分学

06 曲线积分与曲面积分在多 元函数中的应用
曲线积分计算及其在电磁学中的应用
曲线积分的定义与计算方法
包括第一类曲线积分和第二类曲线积分的概念、性质及计算 方法。
曲线积分在电磁学中的应用
通过曲线积分可以计算电场强度、磁场强度等物理量,进而 研究电磁场的分布和变化规律。
曲面积分计算及其在流体力学中的应用
如果函数$f(x,y)$在点$P_0(x_0,y_0)$ 的某一邻域内有定义,且$lim_{(x,y) to (x_0,y_0)}f(x,y)=f(x_0,y_0)$,则称 函数$f(x,y)$在点$P_0(x_0,y_0)$连续。
如果函数$f(x,y)$在点$P_0(x_0,y_0)$ 不连续,则称$P_0(x_0,y_0)$为函数 $f(x,y)$的间断点。
全微分概念与计算
全微分的定义
全微分是多元函数微分学中的一个重要概念,表示函数在某一点附 近的变化量可以近似地用一个线性函数来表示。
全微分的计算
全微分可以通过偏导数来计算,具体为将函数的增量表示为各自变 量增量的线性组合,系数即为偏导数。
全微分的几何意义
全微分表示函数在某一点附近的变化量,可以用来近似计算函数值 的增量。
多元反函数微分法
多元反函数存在定理
若函数$f: D subseteq mathbb{R}^n to mathbb{R}^n$在点$x_0$处可逆,即存在反函数$f^{-1}$,则$f^{1}$在点$f(x_0)$处也可微。
多元反函数微分法
设$y = f(x)$在点$x_0$处可微,且$f'(x_0)$可逆,则反函数$x = f^{-1}(y)$在点$y_0 = f(x_0)$处也可微,且其 导数为$[f^{-1}]'(y_0) = [f'(x_0)]^{-1}$。

曲线积分的计算方法

曲线积分的计算方法

曲线积分的计算方法曲线积分是微积分中的重要概念,它在物理学、工程学和数学分析中有着广泛的应用。

曲线积分的计算方法有多种,下面我们将介绍其中的一些常见方法。

首先,我们来看一下曲线积分的定义。

曲线积分是对曲线上的函数进行积分运算,它描述了函数沿着曲线的变化情况。

曲线积分可以分为第一类曲线积分和第二类曲线积分,它们分别对应着不同的计算方法。

对于第一类曲线积分,也称为向量场沿曲线的积分,计算方法如下,假设曲线的参数方程为r(t)=(x(t),y(t)),函数为P(x,y)dx+Q(x,y)dy,其中P、Q是定义在曲线上的连续函数。

那么第一类曲线积分的计算公式为∫C Pdx+Qdy=∫[a,b](P(x(t)),Q(y(t)))·(x'(t),y'(t))dt,其中[a,b]是曲线的参数区间。

对于第二类曲线积分,也称为标量场沿曲线的积分,计算方法如下,假设曲线的参数方程为r(t)=(x(t),y(t)),函数为f(x,y),其中f是定义在曲线上的连续函数。

那么第二类曲线积分的计算公式为∫C f(x,y)ds=∫[a,b] f(x(t),y(t))·|r'(t)|dt,其中[a,b]是曲线的参数区间,|r'(t)|表示曲线在参数t处的切线长度。

除了以上介绍的基本计算方法外,还有一些特殊情况下的曲线积分计算方法,比如在极坐标系下的曲线积分、在三维空间中的曲线积分等。

这些方法在具体问题中有着重要的应用,需要根据具体情况进行灵活运用。

总之,曲线积分的计算方法是微积分中的重要内容,它涉及到向量场、标量场以及曲线的参数方程等多个概念。

掌握曲线积分的计算方法对于理解微积分的理论和应用具有重要意义,希望以上介绍能够对大家有所帮助。

数学分析 第二型曲线积分

数学分析 第二型曲线积分

解. 根据库仑定律, (x, y , z) 处的单位正电荷在静电场中所受的力为
F
=
q
r r3
=
∇φ,
其中
φ
=

q r
.
因此 F
沿σ
所作的功为
qx
qy
qz
W = σ r 3 dx + r 3 dy + r 3 dz
β
β
= F (σ) · σ (t) dt = φ ◦ σ dt
α
α
qqΒιβλιοθήκη = −.r (α) r (β)
曲线的方向
因此, 为了使第二型曲线积分有意义, 我们总是要给曲线指定一个方向, 这个方 向是由某个参数决定的. 给定了方向的曲线称为有向曲线.
其实, 一元函数的 Riemann 积分也可以看成是第二型曲线积分, 这里的曲线就 是给定了方向的区间.
如果 σ 为一条闭曲线(环路), 即 σ(α) = σ(β), 则选定了方向以后, 不论从曲线上 哪一点出发, 沿此闭曲线的第二型曲线积分的值不变, 这样的积分常记为
第二型曲线积分和第一型曲线积分有一个重要的区别, 这个区别和曲线的方向 有关. 设 φ : [γ, δ] → [α, β] 为严格单调的可逆连续映射, 则复合映射 σ ◦ φ 也是参数曲 线, 它和 σ 的像完全相同, 只是选取了不同的参数而已.
曲线的方向
第二型曲线积分和第一型曲线积分有一个重要的区别, 这个区别和曲线的方向 有关. 设 φ : [γ, δ] → [α, β] 为严格单调的可逆连续映射, 则复合映射 σ ◦ φ 也是参数曲 线, 它和 σ 的像完全相同, 只是选取了不同的参数而已. 如果 φ 严格单调递增, 则称这两个参数是同向的; 如果 φ 严格单调递减, 则称这 两个参数是反向的(不同向).

《数学分析》第20章 曲线积分ppt课件

《数学分析》第20章 曲线积分ppt课件
L f ( x, y, z)ds.
于是前面讲到的质量分布在曲线段 L 上的物体的质
量可由第一型曲线积分 (1) 或 (2) 求得.
1. 若 L fi ( x, y)ds(i 1, 2,, k ) 在ci (i 1, 2, , k )为
k
常数, 则 L i1 ci fi ( x, y)ds 也存在, 且
上定义的连续非负函数. 由第一型曲线的定义, 易见 以 L为准线, 母线平行于z 轴的柱面上截取
0 z f ( x, y)的部分的面积就是L f ( x, y)ds.
z
z f (x, y)
O
y
x
L
图 20 1
二. 第一型曲线积分的计算
定理20.1
设有光滑曲线
L
:
x y
(t (t
), ),
f ( x, y)ds.
L
i 1 Li
3.若 L f ( x, y)ds 与 L g( x, y)ds 都存在, 且在 L 上
f ( x, y) g( x, y), 则
L f ( x, y)ds L g( x, y)ds. 4. 若 L f ( x, y)ds 存在,则 L |f ( x, y)|ds 也存在,
k
k
L i1 ci fi ( x, y)ds i1 ci L fi ( x, y)ds.
2. 若曲线段 L由曲线 L1, L2 ,, Lk 首尾相接而成,
f ( x, y)ds (i 1,2,,k) 都存在, 则 f ( x, y)ds
Li
L
也存在, 且
k
f ( x, y)ds
定义1 设 L 为平面上可求长度的曲线段, f ( x, y) 为

数学分析中的曲线积分计算

数学分析中的曲线积分计算

数学分析中的曲线积分计算数学分析是数学的重要分支之一,它研究的是函数、极限、连续性等数学概念的性质和相互关系。

曲线积分是数学分析中的一个重要概念,它在物理学、工程学等领域中有着广泛的应用。

本文将介绍曲线积分的计算方法。

曲线积分是沿曲线对函数进行积分的一种方法。

在计算曲线积分时,我们首先需要确定曲线的参数方程。

常见的参数方程有直角坐标系参数方程和极坐标系参数方程。

对于直角坐标系参数方程,我们可以用x=f(t)和y=g(t)来表示曲线上的点,其中t是参数。

对于极坐标系参数方程,我们可以用r=f(t)和θ=g(t)来表示曲线上的点。

在确定了曲线的参数方程后,我们可以通过求导来计算曲线的切向量。

曲线的切向量是曲线上一点的切线方向的向量表示。

对于直角坐标系参数方程,曲线的切向量可以通过求导得到。

对于极坐标系参数方程,我们可以利用向量的乘法和导数的链式法则来计算曲线的切向量。

曲线积分的计算方法主要有两种:第一种是沿曲线的弧长对函数进行积分,称为第一类曲线积分;第二种是沿曲线的参数对函数进行积分,称为第二类曲线积分。

在实际应用中,我们常常会遇到第二类曲线积分的计算问题。

对于第二类曲线积分,我们需要将曲线的参数方程代入到被积函数中,并对参数进行求导。

然后,我们可以通过对参数的积分来计算曲线积分的值。

在计算曲线积分时,我们需要注意参数的取值范围和积分的方向。

参数的取值范围决定了曲线的长度,积分的方向决定了曲线的走向。

曲线积分的计算方法不仅仅局限于直角坐标系和极坐标系参数方程。

在实际应用中,我们还可以使用其他参数方程来计算曲线积分。

例如,对于三维空间中的曲线,我们可以使用参数方程x=f(t),y=g(t),z=h(t)来表示曲线上的点。

然后,我们可以通过类似的方法来计算曲线积分。

曲线积分在物理学和工程学中有着广泛的应用。

例如,在电磁学中,我们可以利用曲线积分来计算电场和磁场的功率。

在流体力学中,我们可以利用曲线积分来计算液体的流量和压力。

数学分析简明教程答案

数学分析简明教程答案

第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。

解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。

第一类曲线积分

第一类曲线积分

第一类曲线积分在数学中,曲线积分是一种重要的概念,它在物理学、工程学和数学分析中都有着广泛的应用。

曲线积分分为第一类和第二类两种,本文将重点讨论第一类曲线积分的概念、性质和应用。

首先,我们来了解一下第一类曲线积分的定义。

给定一条曲线C和一个定义在C上的实值函数f(x, y),我们想要计算函数f沿着曲线C的积分。

具体地,我们可以将曲线C参数化为r(t) = (x(t), y(t)),其中a≤t≤b,然后曲线积分可以表示为∫f(x, y)ds,其中ds表示曲线C上的弧长元素。

曲线积分的计算可以通过参数化曲线C来进行,即∫f(x, y)ds = ∫f(x(t), y(t))√(x'(t)² + y'(t)²)dt。

接下来,我们来讨论第一类曲线积分的性质。

首先,第一类曲线积分与路径无关,即曲线积分的值只与曲线C的起点和终点有关,而与具体的路径无关。

这一性质在物理学中有着重要的应用,例如在力学中,曲线积分可以用来计算质点沿着曲线所受的力的功。

其次,第一类曲线积分具有线性性质,即对于实数α和β,有∫(αf(x, y) + βg(x, y))ds = α∫f(x, y)ds + β∫g(x, y)ds。

这一性质使得曲线积分的计算更加灵活和方便。

第一类曲线积分在物理学和工程学中有着广泛的应用。

在物理学中,曲线积分可以用来计算质点在力场中沿着曲线所做的功,从而可以求解力场对质点的做功。

在电磁学中,曲线积分可以用来计算电场或磁场沿着闭合曲线所做的功,从而可以求解闭合曲线内的电荷量或磁通量。

在工程学中,曲线积分可以用来计算流体在管道中流动时的功率损失,从而可以优化管道的设计。

总之,第一类曲线积分是一种重要的数学工具,它在物理学、工程学和数学分析中都有着广泛的应用。

通过对第一类曲线积分的定义、性质和应用的了解,我们可以更好地理解和应用曲线积分的概念,从而更好地解决实际问题。

希望本文对读者对第一类曲线积分有所帮助,也希望读者能够进一步深入学习和应用曲线积分的知识。

数学分析第二十一章课件曲线积分与曲面积分

数学分析第二十一章课件曲线积分与曲面积分

k f(x ,y ,z )d s k f(x ,y ,z )d s
» A B
» A B
(4) f( x ,y ,z ) d s f( x ,y ,z ) d s f( x ,y ,z ) d s
» A B
» A C
C » B
2020/6/1
例1
设L 是椭圆
x2 a2
y b
2
在2 第1 一象限部分,
f( x ,y ,z ) d s f( x ,y ,z x ,y )1 z x 2 x ,y z 2 y x ,y d x d y
S
D x y
2020/6/1
当 S : x x ( u , v ) ,y y ( u , v ) , z z ( u , v ) , ( u , v ) D 时
第二十一章 曲线积分与曲面积分
2020/6/1
i §1. 第一型曲线积分与曲面积分
背景:前面,求几何体的质量 1.第一型曲线曲、面积分
我们的问题是,设有空间的曲线段L,其上每点有线性密度, 如何
求其质量为简单起见,设空间曲线段L是可以求长的,其端点为A,B又设
密度函数f (x, y, z) 在曲线L上连续,我们来求这曲线段L的质量.
说明 1)公式的记忆:“代进去”
2)S的方程为xxy,z,y,zDyz或 y yz,x, z,xDzx 时公式如何
3)当 f(x,y,z)1时,为曲面S的面积公式
4)当光滑曲面S由参数方程:x x u ,v ,y y (u ,v ),z (u ,v ),u,vD
时面积元素 ds EGF2dudv 这时
f( x ,y ,z ) d s f( x ( u ,v ) ,y u ,v ,z u ,v )E G F 2 d u d v

陈纪修《数学分析》(第2版)(下册)名校考研真题-曲线积分、曲面积分与场论(圣才出品)

陈纪修《数学分析》(第2版)(下册)名校考研真题-曲线积分、曲面积分与场论(圣才出品)

陈纪修《数学分析》(第2版)(下册)名校考研真题-曲线积分、曲面积分与场论(圣才出品)第14章曲线积分、曲面积分与场论1.计算为取逆时针方向.[南开大学2011研]解:记因为P与Q在点(0,0)处都无定义,则不能直接应用格林公式.在L围成的区域内取一闭曲线L1:(取逆时针方向),则在L与L1围成是区域内可以应用格林公式.由于则由Green公式知,则2.求第一型曲面积分其中h≠R.[浙江大学研]解:令其中且3.计算其中[湖南大学研]解:令所以4.求常数λ,使得曲线积分对上半平面内任何光滑闭曲线L成立.[北京大学研]解:记由题设知,所考虑积分在上半平面内与路径无关,所以,即即即所以λ=.5.设为xy平面上具有光滑边界的有界闭区域且u为非常值函数及证明[武汉大学研]证明:因在上,u=0.故所以又u为非常值函数,故再注意到的连续性,所以6.计算其中∑为圆柱面被z=0,z=3截的部分外侧.[北京航空航天大学研]解:分别补充圆柱体的交面记P=x,Q=y,R=z,由奥高公式而平面,yz平面;平面,yz平面,所以从而7.计算为[南开大学2011研]解:(对称性)8.计算曲线积分其中L是从(2a,0)沿曲线到点(0,0)的一段.[兰州大学2009研]解:曲线即记则所以所以由Green公式得9.计算,其中为圆柱面的部分,它的法线与ox轴正向成锐角;为xoy平面上半圆域:的部分,它的法线与oz轴正向相反.[上海交通大学研]解:如图14-1所示,补充则构成封闭曲面的外侧,由奥高公式其中则又,从而平面,平面,从而图14-110.计算曲线积分其中C是从A(-a,0)经上半椭圆到B(a,0)的弧段.[湖北大学研]解:记则所以此积分在上半平面内与路径无关,如图14-2所示取以(0,0)为心,a为半径的上半圆周,则。

曲线积分和曲面积分的计算

曲线积分和曲面积分的计算

第21章 曲线积分和曲面积分的计算教学目的:教学重点和难点:§1 第一类曲线积分的计算设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为()()()()0x x t y y t t t T z z t =⎧⎪=≤≤⎨⎪=⎩则()()()(),,,,Tlt f x y z ds f x t y t z t =⎡⎣⎰⎰。

特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ϕ=,()a xb ≤≤,那么有((,) , ()blaf x y ds f x x ϕ=⎰⎰。

例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。

求22()lx y ds +⎰。

例:设l 是曲线x y 42=上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分lyds ⎰。

例:计算积分2lx ds ⎰,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。

例:求()lI x y ds =+⎰,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。

§2 第一类曲面积分的计算一 曲面的面积(1)设有一曲面块S ,它的方程为 (),z f x y =。

(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。

则该曲面块的面积为 xyS σ=。

(2)若曲面的方程为 ()()(),,,x x u v y y u v z z u v =⎧⎪=⎨⎪=⎩, 令222u u u E x y z =++,u v u v u v F x x y y z z =++,222v v vG x y z =++, 则该曲面块的面积为 S d u d v ∑=。

例:求球面2222x y z a ++=含在柱面()220x y ax a +=>内部的面积。

《曲线积分》课件

《曲线积分》课件

换元法
总结词
换元法是通过引入新的变量替换原变量,将曲线积分转化为更容易计算的定积分的方法。
详细描述
换元法的基本思想是通过引入新的变量替换原变量,将曲线积分转化为定积分。通过选择合适的换元函数,可以 将曲线积分的积分路径转化为直线或简单的几何形状,从而简化计算过程。这种方法在处理复杂的曲线积分时非 常有效。
经济学中的应用
在经济学中,曲线积分可以用于研究商品价格变动对需求量 的影响,以及投资回报率等问题。
曲线积分的分类
第一型曲线积分
第一型曲线积分是计算函数在曲线上 的定积分,用于计算曲线下的面积和 长度等。
第二型曲线积分
第二型曲线积分是计算函数关于某个 变量的变差,用于计算速度和加速度 等物理量。
02
曲线积分背景
曲线积分是微积分学中的重要概 念,它与定积分、重积分等概念 有密切联系,是解决许多实际问 题的重要工具。
曲线积分的应用
1 2
3
物理学中的应用
曲线积分在物理学中有广泛的应用,如计算曲线运动的轨迹 长度、速度和加速度等。
工程学中的应用
在工程学中,曲线积分被广泛应用于计算各种曲线形状的物 体在运动过程中的物理量,如管道流速、机械零件的振动等 。
电场线的积分与电荷量
电场线的积分
电场线是描述电场分布的几何图形,电 场线的积分可以用来计算电场中的电荷 量。通过曲线积分的方法,可以计算出 电场线上各点的电场强度,从而得到整 个电场的电荷量分布。
VS
电荷量
电荷量是描述电场中电荷数量的物理量, 它表示电场中电荷的多少。在物理学中, 电荷量可以通过电场线的积分来计算,并 用于研究电场的性质和行为。
06
曲线积分的综合应用

陈纪修《数学分析》(第2版)(下册)章节题库-曲线积分、曲面积分与场论(圣才出品)

陈纪修《数学分析》(第2版)(下册)章节题库-曲线积分、曲面积分与场论(圣才出品)

第14章曲线积分、曲面积分与场论1.计算曲线积分,其中L是绕原点的简单闭曲线.解:方法一当时,可以验证,所以可将曲线L换成以原点为中心,适当小的>0为半径的小圆周:易见构造辅助函数:仍有.若定义A(0,0)=0,B(0,0)=1,则A,B在原点连续.事实上,由泰勒展开式,有.所以有即补充定义后A在原点连续,同理可证B也在原点连续.于是I=J=2π.方法二在L′上,有故积分值与无关.注意到被积函数关于连续,令,在积分号下取极限即得2.设封闭曲线的正向与z轴正向符合右手法则,求曲线积分解:由可得因此可设曲线L的参数方程为:,t从-3π/4到3π/4.于是3.设函数f(x)在(-∞,+∞)上具有一阶连续导数,L是上半平面y>0内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记(1)证明:曲线积分I与积分路径无关;(2)当ab=cd时,求I的值.证明:(1)因为所以在上半平面内曲线积分I与积分路径无关.(2)由(1)知,是某个函数u(x,y)的全微分,而设F(x)是f(x)的一个原函数,则,因此4.计算积分其中(n,x),(n,y)分别是由x轴、y轴正向与L的外法向n之间的夹角,L为逐段光滑的简单闭曲线.解:表示L的正向,即沿逆时针方向,切线方向τ与一致,如图14-1所示.从n逆时针旋转π/2即到τ,于是有(n,x)=(τ,y),(n,y)=π-(τ,x),故cos(n,x)ds=cos(τ,y)ds=dy,cos(n,y)ds=-cos(τ,x)ds=-dx.从而其中S表示L所围的面积.图14-15.计算曲面积分,其中S是球面解:将球面S分成三部分S1,S2,S3,其中此时曲面S1在xOy平面的投影区域为,S1的方程为z=,故有从而6.计算曲面积分,其中S为下半球面的上侧,a>0为常数.解:采用补面法.按常规应补平面S1:x2+y2≤a2,z=0.仔细观察发现被积函数在原点处有奇性,不能直接应用高斯公式,但注意到在下半球面上的点(x,y,z)满足x2+y2+z2=a2,则可将原曲面积分改写成这样,取S1的法向方向与z轴正向相反,就可对上式使用高斯公式了.于是有其中V是S1,S所围的空间区域.故7.计算曲线积分L是x2+y2+z2=2r1x与x2+y2=2r2x的交线(0<r2<r1,z>0),L的方向是使L所围的球面上较小部分区域保持在左边.解:由于球面的外法向的方向余弦为所以由斯托克斯公式,有其中S是球面x2+y2+z2=2r1x由L所围的部分.由于曲面S关于xOz平面对称,所以.又由可知,。

第一类曲线积分定义

第一类曲线积分定义

第一类曲线积分定义曲线积分是数学分析中的一种重要概念,可以用来描述曲线上某个向量场的沿曲线的累积效应。

在曲线积分的研究中,第一类曲线积分是最基本的一种形式,它的定义及其性质对于理解和研究其他类型的曲线积分都具有重要意义。

本文将介绍第一类曲线积分的定义、计算方法和一些基本性质。

一、第一类曲线积分的定义设C为一条光滑曲线,P(x,y)为C上的任意一点,f(x,y)为定义在C上的标量函数,则在C上对f(x,y)的第一类曲线积分定义如下:∫Cf(x,y)ds其中ds表示曲线C上的一个长度微元,即ds=√[dx²+dy²]。

该式的意义为将曲线C分为若干小段,对每一小段上的f(x,y)进行积分求和,然后将这些积分结果相加得到整条曲线上的积分值。

二、第一类曲线积分的计算方法对于一些简单的曲线如直线、圆弧等,可以通过参数方程或直接计算弧长来求出曲线的长度微元ds。

但是对于复杂的曲线,曲线长度的计算则需要借助曲线积分进行。

下面介绍两种求解第一类曲线积分的常用方法。

1.参数化计算法将曲线C表示为x=x(t),y=y(t),t∈[a,b]的参数方程形式,则有:ds=√[dx²+dy²]=√[(dx/dt)²+(dy/dt)²]dt因此,第一类曲线积分可以表示为:∫Cf(x,y)ds=∫bf(x(t),y(t))√[(dx/dt)²+(dy/dt)²]dt2.直接计算法对于一些对称的曲线如圆、椭圆等,可以使用极坐标或直角坐标变换将曲线简化为较为简单的形式。

例如,对于以原点为中心,半径为r的圆弧C,我们可以使用x=rcos(θ),y=rsin(θ)的参数方程表示曲线C,然后计算曲线C上的积分。

三、第一类曲线积分的基本性质1. 可加性:若C可以表示为C1和C2的组合,即C=C1+C2,则有∫Cf(x,y)ds=∫C1f(x,y)ds+∫C2f(x,y)ds2. 线性性:对于任意实数a,b和定义在曲线C上的标量函数f(x,y)和g(x,y),有∫C(af(x,y)+bg(x,y))ds=a∫Cf(x,y)ds+b∫Cg(x,y)ds3. 保号性:若曲线C的方向与正方向相同时,当f(x,y)>0时,∫Cf(x,y)ds>0;当f(x,y)<0时,∫Cf(x,y)ds<0。

空间曲线积分与曲面积分的计算方法

空间曲线积分与曲面积分的计算方法

空间曲线积分与曲面积分的计算方法空间曲线积分与曲面积分是《数学分析》中的重要内容之一,但由于它计算的复杂性及灵活多变性,使我们在学习时感到很难掌握,缺乏必要而行之有效的方法,因此,本文将给出空间曲线积分与曲面积分的一些典型计算方法,为这部分的学习提供参考.1 空间曲线积分与曲面积分的定义及性质定义1.1[]()1981P 设L 为空间可求长度的曲线段,(),,f x y z 为定义在L 上的函数,对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段i L ()1,2,,i n =,i L 的弧长记为i s ∆,分割T 的细度为1max i i nT s ≤≤=∆,在i L 上任取一点()(),,1,2,,i i i i n ξης=,若有极限()01lim ,,ni i i i T i f s J ξης→=∆=∑ 且J 的值与分割T 与点(),,i i i ξης的取法无关,则称此极限为(),,f x y z 在L 上的第一型曲线积分,记作()⎰Lds z y x f ,,.第一型曲线积分具有和定积分类似的性质,略.定义1.2[]()2031P 设函数()()(),,,,,,,,P x y z Q x y z R x y z 为定义在空间有向可求长度曲线L :弧AB 上.对L 的任一分割T ,它把L 分成n 个小曲线段弧i i M M 1-()1,2,,i n =,其中0,n M A M B ==,记各小曲线段弧i i M M 1-的弧长为i s ∆,分割T 的细度为1max i i nT s ≤≤=∆,又设T的分点i M 的坐标为(),,i i i x y z ,并记111,,i i i i i i i i i x x x y y y z z z ---∆=-∆=-∆=-()1,2,,i n =.在每个小曲线段弧i i M M 1-上任取一点(),,i i i ξης()1,2,,i n =,若极限()()()0111lim ,,lim ,,lim ,,nnni i i i i i i i i i i i T T T i i i P x Q y R z ξηςξηςξης→→→===∆+∆+∆∑∑∑存在且与分割T 与点(),,i i i ξης的取法无关,则称此极限为函数()()(),,,,,,,,P x y z Q x y z R x y z 沿有向曲线L 上的第二型曲线积分,记为()()(),,,,,,LP x y z dx Q x y z dy R x y z dz ++⎰或 ()()(),,,,,,ABP x y z dx Q x y z dy R x y z dz ++⎰.常简写成LPdx Qdy Rdz ++⎰或⎰++ABRdz Qdy Pdx .第二型曲线积分具有线性性质和积分区域的可加性.定义1.3[]()2801P 设S 是空间中可求面积的曲面,(),,f x y z 为定义在S 上的函数,对曲面S 作分割T ,它把S 分成n 个小曲面块i S ()1,2,,i n =,以i S ∆记小曲面块i S 的面积,分割T 的细度为{}的直径i ni S T ≤≤=1max ,在i S 上任取一点(),,i i i ξης()1,2,,i n =,若极限()01lim ,,ni i i i T i f s ξης→=∆∑存在,且与分割T 与(),,i i i ξης()1,2,,i n =的取法无关,则称此极限为(),,f x y z 在S 上的第一型曲面积分,记作(),,Sf x y z ds ⎰⎰.第一型曲面积分具有和定积分类似的性质,略.定义1.4[]()2841P 设,,P Q R 为定义在双侧曲面S 上的函数,在S 所指定的一侧作分割T ,它把S 分成n 个小曲面块12,,,n S S S ,分割T 的细度为{}的直径i ni S T ≤≤=1max ,以,,yz zx xy i i i S S S ∆∆∆分别表示i S 在三个坐标面上的投影区域上的面积,它们的符号由i S 的方向来确定,若i S 的法线正向与z 轴正向成锐角时,i S 在xy 平面的投影区域面积xyi S ∆为正,反之,若i S 的法线正向与z 轴正向成钝角时,它在xy 平面的投影区域面积xy i S ∆为负.在各个小曲面块i S 上任取一点()(),,1,2,,i i i i n ξης=,若()()(),0111lim ,lim ,,lim ,,yz zx xy nnni i i i i i i i i i i i T T T i i i P S Q S R S ξηςξηςξης→→→===∆+∆+∆∑∑∑存在,且与曲面S 的分割T 和(),,i i i ξης在i S 上的取法无关,则称此极限为函数,,P Q R 在曲面S 所指定一侧上的第二型曲面积分,记作()()(),,,,,,SP x y z dydz Q x y z dzdx R x y z dxdy ++⎰⎰.第二型曲面积分具有线性性质和区域可加性.2 三个重要定理定理2.1(Green 公式)[]()2241P 若函数()()y x Q y x P ,,, 在闭区域D 上连续,且有连续的一阶偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂D L Qdy Pdx d y P x Q σ,这里L 为区域D 的边界曲线,并取正方向.定理 2.2(Gauss 公式)[]()2901P 设空间区域V 由分片光滑的双侧封闭曲面S 围成.若函数R Q P ,,在V 上连续,且有一阶连续偏导数,则⎰⎰⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V SRdxdy Qdzdx Pdydz dxdydz z R y Q x P ,其中S 取外侧.定理2.3(Stokes 公式)[]()2921P 设光滑曲面S 的边界L 是按段光滑的连续曲线,若函数P 、Q 、R 在S ()L 连同上连续,且有一阶连续偏导数,则⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S L Rdz Qdy Pdx dxdy y P x Q dzdx x R z P dydz z Q y R , 其中S 的侧与L 的方向按右手法则确定.定理3.2'(Stokes 公式)[]()9922P (1)设S 是3R 中的分片光滑曲面,(2)设S 的边界是有限条封闭光滑曲线L ,(3)设函数P 、Q 、R 是在曲面S 及其附近有定义,在S 直到L 上有连续的偏导数,则⎰⎰⎰++∂∂∂∂∂∂=++LS dS R Q P z y x Rdz Qdy Pdx γβαcos cos cos⎰⎰∂∂∂∂∂∂=sRQPz y x dxdy dzdx dydz, 其中+S 与+L 呈右手关系(即站在+S 的法线上看,+L 为逆时针方向),αcos ,βcos ,γcos 为+S 的法线方向余弦.3 空间曲线积分的计算方法3.1 对称法对称方法是数学中的一种重要方法,在曲线积分的计算(证明)中注意到被积式与积分区域的对称性,运用对称性质计算,能够起到化繁为简的作用.例1 设L 为对称于坐标轴的光滑闭曲线,证明()()⎰=-+++Ly y dy y xe xy dx e y x0233.证明 设L 为正向闭曲线,其包围的区域为D ,由Green 公式得()()⎰-+++Ly y dy y xe xy dx e y x233=()33Dy x dxdy -⎰⎰=33DDy dxdy x dxdy -⎰⎰⎰⎰因为L 是对称于坐标轴的光滑曲线,所以区域D 关于坐标轴对称.因为3y 是变量y 的奇函数,从而30Dy dxdy =⎰⎰,同理30Dx dxdy =⎰⎰,所以33D Dy dxdy x dxdy -⎰⎰⎰⎰0=. 故()()⎰=-+++Ly y dy y xe xy dx e y x0233.除了上述对称性之外,还可利用轮换对称性. 例2 计算积分2Lx ds ⎰,其中02222=++=++z y x a z y x L 与为的交线.解 积分曲线L 关于,,x y z 有轮换对称性,因此2Lx ds ⎰=2Ly ds ⎰=2Lz ds ⎰=()22213Lx y z ds ++⎰ 22133L L a a ds ds ==⎰⎰232233a a a ππ==. 3.2 参数法根据积分路径或被积函数的特点选用适当的参数表示,化第二型曲线积分为定积分,有时多采用极坐标,或广义极坐标. 例3 计算()⎰++L ds z y x222,其中L 是球面29222=++z y x 与平面1=+z x 的交线. 解 将L 的两个方程式联立,得⎪⎩⎪⎨⎧=+=++129222z x z y x ,消去z ,得141212122=+⎪⎭⎫ ⎝⎛-y x .令θρθρsin 2,cos 221==-y x ,代入可知1=ρ, 从而L 的参数方程为().πθθθθ20cos 221,sin 2,cos 221≤≤-==+=z y x ()()()θθθθθd d ds 2sin 2cos 2sin 2222=++-=所以()πθπ1822920222=⋅=++⎰⎰d ds z y xL.例4[]()9252P 计算曲线积分Lydx zdy xdz ++⎰.其中L 是曲线0,0,0,1,1222222≥≥≥=+=++z y x c z a x c z b y a x (1)(0,0,0>>>c b a 为常数)从点)0,0,(a 到),0,0(c .解 方法一 如图1所示(利用坐标面上的投影椭圆)在式(1)中消去z ,得2222212a x y a ⎛⎫- ⎪⎝⎭+=⎛⎫ ⎪⎝⎭ 这是xy 平面上,以,02a ⎛⎫⎪⎝⎭为中心,以2a 为半轴的椭圆,从而可改写成参数方程cos ,22a a x y θθ=+=,代入1x z a c +=,得cos 22c cz θ=-. 因0x y z θπ≥≤≤、、,故0.则Lydx zdy xdz ++⎰θθθθθθθπd ca abc c a b ⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+-=sin 2cos 22cos 2cos 22sin 2sin 2 ⎰⎰⎰+--=20202022sin 2cos 2sin 2πππθθθθθθd ac d bcd ab()c a bac +-=242π.图1方法二 (在截平面上引用极坐标)令,,x ax y by z cz ===, 则L 变成2221,1x y z x z ++=+=, 作旋转变换,令,,22x z x zu y v ω+-===, 这时L 变成2221,u v v ω++==,在v =L 是圆周222112u ω+=-=,引用极坐标,u ωθθ==, 于是可得L 的参数方程()()()1cos 2221cos 22v ax ax aby bybu c cz czv ωθθωθ+===+=====-=-其余同方法一.方法三(因为曲线上,y z 都可写成x 的函数)令x at=,则()1,z c t y =-=点1t =,终点0t =.于是 原积分=1112t t act dt ⎡⎤--⎢⎥⎣⎦⎰⎪⎭⎫ ⎝⎛=2cos 2θt 令=2220cos cos cos sin 2222ac d πθθθθθθθ⎛⎫+ ⎪⎝⎭⎰ ()224ac c a b++-=π.3.3 Stokes 公式法在空间曲线积分的参数方程不易求得时,用Stokes 公式将第二型曲线积分化为曲面积分,常可使计算简单.例5 求曲线积分⎰-+-+-=Ldz y x dy x z dx z y I )()()(222222,其中L 为球面在第一卦限部分的边界线,从球的外侧看去L 的方向为逆时针方向.解 如图2所示 不妨设球面在第一卦限部分为S ,其边界为L , 根据右手法则,S 取外法向,由Stokes 公式得⎰⎰+-+-+-=Sdxdy y x dzdx x z dydz z y I )(2)(2)(2.设S 三个坐标平面上的投影区分别为,,yz zx xy D D D ,则()()()222yzzxxyD D D I y z dydz z x dzdx x y =-+-+-+⎰⎰⎰⎰⎰⎰由坐标的轮换对称性,得41212)(62101-=-=-=+-=⎰⎰⎰⎰⎰⎰-x D D xdy dx xdxdy dxdy y x I xyxy. 图2例6 求⎰++=Lxdz zdy ydx I ,其中L 为圆周2222x y z a x y z ⎧++=⎨++=⎩,且从z 轴正向看去圆周L的方向为逆时针方向.解 不妨设S 为平面0x y z ++=上以L 为边界的部分,其法向量为{}11,1,13n =. 根据Stokes 公式得{}{}dSdxdy dzdx dydz I SS1,1,1311,1,1⎰⎰⎰⎰⋅---=---=233a dS Sπ-=-=⎰⎰.3.4 曲线积分与路径无关法当曲线积分与路径无关时,选择特殊的路径,例如选平行于坐标轴的直线段或折线段来计算曲线积分,会使计算变得容易.例7 求⎰-+-+-=Ldz xy z dy xz y dx yz xI )()()(222,其中L 是沿螺旋线,cos θa x =()πθπθθ202,sin ≤≤==h z a y 从点(),0,0A a 到(),0,B a h 的有向曲线. 解 这里()()()222,,,,,,,,P x y z x yz Q x y z y xz R x y z z xy =-=-=-. 因为,,R Q P R Q P x y z y z z x x y∂∂∂∂∂∂==-==-==-∂∂∂∂∂∂, 所以曲线积分与积分路径无关.分路径为有向线段AB :()h t t z y a x ≤≤===0,0,,则⎰-+-+-=Ldz xy z dy xz y dx yz x I )()()(222⎰-+⋅-+⋅-=ABdt t a )0(0)00(0)0(2230231h dt t h ==⎰. 例8 验证:()()22cos sin y y xe dx x e z dy y z dz --+-++-是全微分,并求它的一个原函数. 解 这里()()()2,,2,,,cos ,,,sin y y P x y z xe Q x y z x e z R x y z y z --==-+=-,则sin ,0,2y R Q P R Q Pz xe y z z x x y-∂∂∂∂∂∂==-====-∂∂∂∂∂∂, 所以()()22cos sin y y xe dx x e z dy y z dz --+-++-是全微分.设所求的原函数为()z y x I ,,,点()()()12,0,0,,,0,,,,M x M x y M x y z 取积分路径为折线段12OM M M 得()z y x I ,,()()()()⎰-++-+=--z y x y y dz z y dy z e x dx xe ..0,0,02sin cos 2()()dz z y dy z e x dx xe y y MM M M OM sin cos 2)(22211-++-+++=--⎰⎰⎰()⎰⎰⎰-++-+=-zyvxwdw y dv ex udu 020sin 12z y e x ycos 2+=-.4 曲面积分的计算方法4.1 对称法 例9 计算()⎰⎰+Sdydz z yx 22,其中S 为2222R z y x =++的外侧.解 设V 为球:2222R z y x ≤++,则由Gauss 公式及对称性,得()⎰⎰+Sdydz z y x 22()⎰⎰⎰+=Vdxdydz z y 22⎰⎰⎰=Vdxdydz z 22()⎰⎰⎰++=Vdxdydz z y x 22232 523983432R R R ππ=⋅⋅=. 例10 设()f z 为奇函数,试求积分()()()22;;SSSI f z dS J f z dS K yf z dS ===⎰⎰⎰⎰⎰⎰,其中S 为锥面22z xy =位于球面2222x y z a ++=内的部分.解 如图3所示 22z xy =是以原点为顶点的双叶锥面,对称轴是xy 平面上1、3象限的分角线. S 关于xy 平面上、下对称,在对称点上()f z 的大小相等,符号相反,因此积分()0sI f z dS ==⎰⎰.又由于S 在1、3卦限内的部分与它在7、5卦限内的部分关于原点对称,在对称点上()2yf z 的大小相等,符号相反,所以积分()20SK yf z dS ==⎰⎰. 除了上、下对称,原点对称之外,S 还关于y x =平面(前后)对称.在对称点上()z f 2大小相等符号相同,因此()128S J f z dS =⎰⎰,其中1S 表示S 位于第一卦限内夹于0y y x ==与之间的部分.图34.2 直接使用公式法可以选择适当的坐标平面,利用直角坐标方程求解曲面积分,也可利用参数方程把曲面积分化为二重积分求解曲面积分.例11 计算曲面积分⎰⎰+++=Sa z y x dS I 222)(,其中S 为以原点为中心,()0a a >为半径的上半球面.解 上半球面ϕθϕθϕcos ,sin sin ,cos cos :a z a y a x S === ,0,022πϕθπ⎛⎫≤≤≤≤ ⎪⎝⎭因此⎰⎰++++=Saaz z y x dSI 2222220202πϕθπ≤≤≤≤=⎰⎰202aππϕ=⎰22ππ=-(22a π=.例12 计算积分()⎰⎰+=Szds y xI 22,S 是上半球面()02222≥=++z R z y x ,含在柱面Rx y x =+22的内部.解 S :222y x R z --=在xy 平面上的投影D :Rx y x ≤+22,222221yx R R y z x z --=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+()⎰⎰--⋅--⋅+=Ddxdy yx R R y x R y x I 22222222()⎰⎰+=Ddxdy y xR22(令θcos r x =,θsin r y =)52244cos 0322323cos 41R d R R dr r d RR πθθθππθππ===⎰⎰⎰--. 4.3 Gauss 公式法利用Gauss 公式将曲面积分化为三重积分,使被积函数简化,从而使计算简单化. 例13 试证:若S 为封闭的光滑曲面,l 为任意固定的已知方向,则()⎰⎰=SdS l n 0,cos ,式中n为曲面的外法线向量.证明 设),,(1c b a l = 为l 方向的单位向量,1n 是外法线的单位向量:()γβαcos ,cos ,cos 1=n, 则()γβαcos cos cos ,cos 11c b a n l l n ++=⋅=.应用Gauss 公式()()⎰⎰⎰⎰++=SsdS c b a dS l n γβαcos cos cos ,cos ⎰⎰++=Scdxdy bdzdx adydz00V Va b c dxdydz dv x y z ⎛⎫∂∂∂=++== ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰. 例14 记()ϕθ,r r =为分片光滑封闭曲面S 的球面坐标方程.试证明S 所围的有界区域V 的体积⎰⎰=SdS r V φcos 31,其中φ为曲面S 在动点的外法线方向与向径所成的夹角.证明 ()z y x r ,,=表示动点的径向量,则模222z y x r ++=,()γβαcos ,cos ,cos =n表示S 的外法线单位向量,则γβαφcos cos cos cos rzr y r x n r r ++=⋅=因此()⎰⎰⎰⎰++=S S dS z y x dS r γβαφcos cos cos 31cos 31⎰⎰++=Szdxdy ydzdx xdydz 31 V dxdydz V==⎰⎰⎰所以原题得证.5 空间曲线积分与曲面积分之间的关系Stokes 公式建立了沿空间双侧曲面S 的积分与沿S 的边界曲线L 的积分之间的联系.例15 试计算积分()⎰+-+-+-=L dz x y dy z x dx y z I )()(,其中L +是从(),0,0A a 经 ()0,,0B a 到()0,0,C a 回到(),0,0A a 的三角形.解 方法一 如图4所示+S 表示ABC ∆所围平面块之上侧,则⎰⎰+---∂∂∂∂∂∂=S xy zx yz z y x dxdydzdx dydz I ⎰⎰+++=S dxdy dzdx dydz 2 轮换对称⎰⎰∆=⋅ABCa dxdy 3332.图4方法二 ()().1,1,1,,,0:='''=-++≡z y x F F F a z y x F S , 因此法线方向余弦()⎪⎪⎭⎫⎝⎛=31,31,31cos ,cos ,cos γβα, 23323323cos cos cos a S dS dS xy zx yz z y x I ABC S S=⋅=⋅=---∂∂∂∂∂∂=∆⎰⎰⎰⎰γβα. 例16 计算积分⎰+++=L xdz zdy ydx I ,其中+L为圆周0,0,2222=++>=++z y x a a z y x从z 轴正方向看为逆时针方向.解 方法一 如图5所示(用Stokes 公式化为第一型曲面积分)+S 表示L 所围成的平面圆块(上侧),())1,1,1(,,,0:='''=++≡+z y x F F F z y x F S ,()⎪⎪⎭⎫⎝⎛=31,31,31cos ,cos ,cos γβα, 故dS xzyz y x I S ⎰⎰+∂∂∂∂∂∂=313131()⎰⎰+⋅-⋅=S dS 3113 233a dS S π-=-=⎰⎰+.图5方法二 (用Stokes 公式化为第二型曲面积分) +S 表示L 所围成的平面圆块(上侧),⎰⎰+∂∂∂∂∂∂=S xzy z y x dxdy dzdx dydz I ⎰⎰+---=S dxdy dzdx dydz轮换对称性⎰⎰⎰⎰∆-=-+dxdy dxdy S 33,其中∆是+S 在xy 平面的投影区域:2222a xy y x ≤++.令2,2ηξηξ+=-=y x ,则121212121=-=J ,(){}2223:,a ≤+=∆'ηξηξ , 故 ππ2233133a a S I -=⋅-=⋅-=∆'.通过上面讨论,总结归纳了一些空间曲线积分与曲面积分的典型计算方法,希望本文对学习《数学分析》的同学提供参考和帮助.。

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题第二十二章曲线积分与曲面积分P.361 第一型曲线积分与第一型曲面积分1. 计算下列第一型曲线积分:(1))1,0(),0,1(),0,0(,)(B A O L ds y x L是以其中?+为顶点的三角形;(2)+Lds y x2122)(,其中L 是以原点为中心,R 为半径的右半圆周;(3)?L xyds ,其中L 为椭圆12222=+by a x 在第一象限中的部分;(4)Lds y ,其中L 为单位圆122=+y x ;(5)ds z y x L)(222++,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段;(6)?Lxyzds ,其中L 为曲线)10(21,232,22≤≤===t t z t y t x 的一段;(7)+Lds z y 222,其中L 是2222a z y x =++与y x =相交的圆周.2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量.设其线密度为.2az =ρ 3. 求摆线??≤≤-=-=)0()cos 1()sin (πt t a y t t a x 的重心,设其质量分布是均匀的.4. 计算下列第一类型曲面积分:(1)++SdS z y x )(,其中S 是上半圆面0,2222≥=++z a z y x ;(2)+SdS y x )(22,其中S 为立体122≤≤+z y x 的边界曲面;(3),??+S yx dS 22其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分;(4)SxyzdS ,其中S 为平面1=++z y x 在第一卦限中的部分;5. 若曲线以极坐标))((21θθθθρρ≤≤=表示,试给出计算Lds y x f ),(的公式,并用此公式计算下列曲线积分:(1)?+Ly x ds e22,其中L 为曲线)4(πθρ≤≤=a 的一段;(2)?Lxds ,其中L 为对数螺线)0(>=k ae k θρ在圆a r =内的部分.6. 设有一质量分布不均匀的半圆弧)0(sin ,cos πθθθ≤≤==r y r x ,其线密度θρa =(a 为常数),求它对原点)0,0(处质量为m 的质点的引力.7. 证明:若函数f 在光滑曲线],[),(),(:βα∈==t t y y t x x L 上连续,则存在点L y x ∈),(00,使得L y x f dS y x f L=?),(),(00,其中L ?为L 的长.8. 计算dS z S2,其中S 为圆锥表面的一部分:≤≤≤≤??===,20,0:;cos sin sin sin cos :π?θθ?θa r D r z r y r x S这里θ为常数).20(πθ≤≤P.371 第二型曲线积分1. 计算第二型曲线积分:(1)-L ydx xdy ,其中L 为本节例2中的三种情形.(2)?+-Ldy dx y a )2(,其中L 为摆线)20)(cos 1(),sin (π≤≤-=-=t t a y t t a x 沿t 增加方向的一段;(3)++-L y x ydy xdx 22,其中L 为圆周222a y x =+,依逆时针方向;(4)?+Lxdy ydx sin ,其中L 为)0(sin π≤≤=x x y 与x 轴所围的闭曲线,依顺时针方向;(5)++Lzdz ydy xdx ,其中L :从(1,1,1)到(2,3,4)的直线段.2. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由)0,(a 沿椭圆移动到),0(b ,求力所作的功。

数学分析目录

数学分析目录

数学分析目录
一、极限与连续性
数列的极限定义与性质极限的运算法则极限存在的条件函数的极限函数在某点的极限函数在某无穷点的极限无穷小量与无穷大量函数的连续性连续性的定义间断点及其分类连续函数的性质与运算
二、导数与微分
导数的概念定义与几何意义可导与连续的关系导数的计算基本初等函数的导数导数的四则运算法则复合函数、隐函数、参数方程函数的导数微分微分的定义与性质微分的计算与应用
三、微分中值定理
罗尔定理拉格朗日中值定理柯西中值定理泰勒中值定理
四、不定积分
不定积分的概念与性质不定积分的计算基本积分公式换元积分法分部积分法有理函数与三角函数的不定积分
五、定积分
定积分的概念与性质定积分的计算定积分的计算法则微积分基本定理定积分的应用面积计算体积计算物理应用(如质心、动量等)
六、级数与幂级数
数列与级数的概念级数的收敛与发散级数的性质正项级数的审敛法比较审敛法比值审敛法根值审敛法幂级数幂级数的收敛域幂级数的运算函数的幂级数展开
七、多元函数分析
多元函数的极限与连续性偏导数与全微分多元函数的极值隐函数定理与雅可比矩阵多元函数的泰勒公式
八、曲线与曲面积分
曲线积分第一类曲线积分第二类曲线积分(即线积分)格林公式及其应用曲面积分第一类曲面积分第二类曲面积分(即面积分)高斯公式及其应用场论初步向量场与标量场方向导数与梯度散度与旋度此目录为数学分析的主要章节概要,每个章节下包含的具体内容可能更为详细和深入,需结合具体的教材或教学要求进行进一步的学习与讨论。

第一类曲线积分计算方法例题

第一类曲线积分计算方法例题

第一类曲线积分计算方法例题曲线积分是数学分析中的一个重要概念,它在物理学、工程学等领域有着广泛的应用。

曲线积分可以分为两类,第一类是沿曲线的积分,第二类是围绕曲线的积分。

对于第一类曲线积分,我们可以通过参数方程的方法来计算。

下面我们来看一个具体的例题:考虑曲线C:C: x = t^3, y = t^2, z = t, 0 ≤ t ≤ 1我们要计算函数f(x, y, z) = x^2 + y^2 + z^2沿曲线C的积分。

首先,我们需要求出曲线C的切向量。

曲线C的参数方程为x = t^3, y = t^2, z = t,所以曲线的切向量为:r'(t) = (3t^2, 2t, 1)接下来,我们计算函数f(x, y, z)在曲线C上的值:f(x(t), y(t), z(t)) = (t^3)^2 + (t^2)^2 + (t)^2 = t^6 + t^4 + t^2然后,我们计算曲线C的长度。

根据参数方程,曲线C的长度为:∫(0到1) √( (dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2 ) dt= ∫(0到1) √( (3t^2)^2 + (2t)^2 + 1^2 ) dt= ∫(0到1) √( 9t^4 + 4t^2 + 1 ) dt最后,我们将函数f(x, y, z)在曲线C上的值乘以曲线C的长度,得到曲线积分的结果:∫(0到1) ( t^6 + t^4 + t^2 ) √( 9t^4 + 4t^2 + 1 ) dt通过数值计算,可以得到最终的结果。

这个例题展示了第一类曲线积分的计算方法。

通过求出曲线的切向量和计算函数在曲线上的值,我们可以得到曲线积分的表达式。

然后,通过对曲线的参数进行积分,我们可以求得曲线积分的结果。

这个过程需要一定的数学技巧和计算能力,但是掌握了方法后,我们可以应用到更加复杂的问题中。

数学分析 第一型曲线积分

数学分析 第一型曲线积分

其中
∆si
=
s(ti )

s(ti−1).
如果极限 lim π →0
m i =1
f (σ(ξi ))∆si
存在且与
{ξi }
的选取无关,
则称此极限为
f
在 σ 上的第一型曲线积分, 记为
m
f ds = lim f (σ(ξi ))∆si .
σ
π →0 i =1
当 f = 1 时, 第一型曲线积分也就是曲线的长度.
β
(f ) = sup v (f ; π).
α
π
根据定义不难验证, 单调函数, Lipschitz 函数, C1 函数都是有界变差函数.
问题: 你能举一个连续但不是有界变差函数的例子吗?
可求长的充要条件
(Jordan 定理) 曲线 σ(t) 可求长当且仅当其分量均为有界变差函数.
可求长的充要条件
i =1
如果 supπ v (f ; π) 有限, 则称 f 为 [α, β] 上的有界变差函数, 它在 [α, β] 中的全变 差记为
β
(f ) = sup v (f ; π).
α
π
有界变差函数
为了确定曲线可求长的充分必要条件, 我们引入有界变差函数的概念.
设 f 为定义在 [α, β] 中的函数. 任给分割 π : α = t0 < t1 < t2 < · · · < tm = β, 记
若 σ 的弧长参数存在, 第一型曲线积分可化为 Riemann 积分:
L(σ)
f ds =
f (σ(s)) ds.
σ
0
例子
例1
设曲线 σ
是椭圆
x2 a2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x x ∴ ∫ ( x + x + y )dx = + + xy + C ( y ), 3 4 u u ∴ = x + C ′( y ), 又 = 1 + x, y y
2 3
3
4
∴ x + C ′( y ) = 1 + x , C ′( y ) = 1,
C ( y) = y,
x3 x4 原方程的通解为 y + xy + + = C . 3 4
续偏导数时 ,
P Q . 全微分方程 = y x
2.解法 2.解法
P( x, y)dx + Q( x, y)dy = 0 全微分方程
du( x , y ) = 0
通解为 u( x, y) = C ; (1) 应用曲线积分与路径无关 应用曲线积分与路径无关.
u( x, y) = ∫x P( x, y)dx + ∫y Q( x0 , y)dy
1 2 = d ( yx + ( xy ) ) = 0, 2
3
可积组合法
原方程的通解为
1 yx + ( xy )2 = C . 2
3
例5 求微分方程 2xy ln ydx + ( x2 + y2 1 + y2 )dy = 0的通解 . 解 将方程左端重新组合,有 将方程左端重新组合 有 2 ( xy ln ydx + x2dy) + y2 1 + y2dy = 0,
2 3 0 0 x y
凑微分法: B 凑微分法:
dy + ( xdy + ydx ) + x 2 dx + x 3 dx = 0, x3 x4 dy + d ( xy ) + d +d = 0, 3 4 4 x3 x d ( y + xy + + ) = 0. 3 4
u 2 3 不定积分法 C 不定积分法: ∵ = x + x + y , x
xdy + ydx = d(ln xy) xy
xdx + ydy 1 = d ln( x2 + y2 ) x2 + y2 2
xdy ydx 1 x + y = d ln 2 2 x y 2 x y
可选用的积分因子有
1 1 1 1 x y , 2, 2 2, 2 , 2 , 2 等. 2 x+ y x x y x + y y x
将方程左端重新组合,有 将方程左端重新组合 有
d( x ) + x yd( x y) = 0,
2 2 2
2 2 原方程的通解为 x + ( x y) = C. 3
2
3 2
二、积分因子法
连续可微函数, 定义: 定义: 如存在 ( x , y ) ≠ 0 连续可微函数,使方程
( x , y ) P ( x , y )dx + ( x , y )Q( x , y )dy = 0 成为全微分
1 x 1 x = d ( ) + d ( 3 ) = d ( + 3 ), y y y y 2 1 x 原方程的通解为 + 3 = C . y y
2
2
例3 求微分方程
2x(1+ x2 y)dx x2 ydy = 0的通解 .

2xdx + 2x x2 ydx x2 ydy = 0, d( x2 ) + x2 yd( x2 ) x2 ydy = 0,
dy 1 2 y = x , + 解1 整理得 dx 1 + x
C . 常数变易法: A 常数变易法: 对应齐方通解 y = 1+ x C ( x) x3 x4 . C ( x) = 设 y= + C. 1+ x 3 4
公式法: B 公式法: y = e ∫
1 dx 1+ x
[∫ x e
2

1 dx 1+ x
1 易知 ( x , y ) = , y2 x 则(2x ln ydx + dy) + y 1 + y2dy = 0, y 3 可积组合法 1 2 2 2 即d( x ln y) + d(1 + y ) = 0. 3 3 1 2 x ln y + (1+ y2 )2 = C. 原方程的通解为 3
dy x2 + x3 + y 的通解. 例6 求微分方程 = dx 1+ x
dx + C ],
x3 x4 通解为 y + xy + + = C. 3 4
解2 整理得 ( x + x + y )dx + (1 + x )dy = 0,
2 3
P Q ∵ , =1= y x
∴ 是全微分方程 .
用曲线积分法 A 用曲线积分法:
u( x , y ) = ∫ ( x + x )dx + ∫ (1 + x )dy ,
为方程的积分因子 积分因子. 方程. 则称 ( x , y ) 为方程的积分因子. 方程.
问题: 如何求方程的积分因子? 问题 如何求方程的积分因子
( P ) ( Q ) , = (1) 公式法: ∵ 公式法: y x P Q +P = +Q y y x x
两边同除 ,
ln ln P Q Q P = 求解不易 x y y x
∫ g( y)dy . ∴( y) = e
2.观察法: 2.观察法: 凭观察凑微分得到 ( x , y ) 观察法 常见的全微分表达式
x2 + y2 xdx + ydy = d 2
xdy ydx y = d 2 x x
xdy ydx y = d arctan x x2 + y2
例4 求微分方程
(3xy + y2 )dx + ( x2 + xy)dy = 0的通解.
1 1 P Q 1 ∫ x dx 解 ∵ ( ) = , ∴ ( x) = e = x. Q y x x
则原方程变为
( 3 x y + xy )dx + ( x + x y )dy = 0,
2 2 3 2
3 x 2 ydx + x 3 dy + xy( ydx + xdy )
3 2 3 0 0
x
y
x 3 2 2 y = x y + , 4 2 4
4
4
原方程的通解为
x 3 2 2 y x y + = C. 4 2 4
4
4
(2)
用直接凑全微分的方法 用直接凑全微分的方法
2 2
2x y 3x 例2 求方程 3 dx + dy = 0的通解 . 4 y y 6 x Q P , = 4 = 是全微分方程 解 y y x 1 2x 3x2 将左端重新组合 y 2 dy + ( y 3 dx y 4 dy )
0 0
x
y
= ∫y Q( x, y)dy + ∫x P( x, y0 )dx,
0 0
y
x
例1 求方程( x 3xy )dx + ( y 3x y)dy = 0
3 2 3 2
的通解.பைடு நூலகம்

P Q , 是全微分方程. = 6 xy = 是全微分方程. y x
u( x, y) = ∫ ( x 3xy )dx + ∫ y dy
特殊地: 特殊地:
a . 当只与 x有关时;
d , = 0, = x dx y
d ln 1 P Q ) = f (x) ∴ = ( dx Q y x
∫ f ( x)dx . ∴( x) = e
b. 当只与y有关时;
d , = 0, = y dy x
d ln 1 Q P ∴ = ( ) = g( y ) dy P x y
§5
全微分方程
一、全微分方程及其求法
1.定义 1.定义
若存在 u( x , y ), 使得 du( x, y) = P( x, y)dx + Q( x, y)dy
. 则称 P( x, y)dx + Q( x, y)dy = 0 为全微分方程
当 P ( x , y )和Q ( x , y )在单连通区域 D内有一阶连
相关文档
最新文档