PVD与CVD涂层工艺比较
CVD和PVD工艺比较
A
5
VII. 最后一个比较因素是操作运行安全问题。PVD 是一种完全没有污染的工序,有人称它为“绿色工 程”。而CVD的反应气体、反应尾气都可能具有一 定的腐蚀性,可燃性及毒性,反应尾气中还可能有 粉末状以及碎片状的物质,因此对设备、环境、操 作人员都必须采取一定的措施加以防范。
A
6
A
2
厚度上的区别正好可以弥补 PVD阶梯覆盖性能的不足
III. CVD镀层往往比各种PVD镀层略厚一些,前者厚 度在7.5μm左右,后者通常不到2.5μm厚。CVD镀层的 表面略比基体的表面粗糙些。相反,PVD镀膜如实地 反映材料的表面,不用研磨就具有很好的金属光泽, 这在装饰镀膜方面十分重要。
A
3
IV. CVD反应发生在低真空的气态环境中,具有很 好的绕镀性,所以密封在CVD反应器中的所有工,所有的PVD技术由 于气压较低,绕镀性较差,因此工件背面和侧面的 镀制效果不理想。PVD的反应器必须减少装载密度 以避免形成阴影,而且装卡、固定比较复杂。在 PVD反应器中,通常工件要不停地转动,并且有时 还需要边转边往复运动。
A
4
V. 在CVD工艺过程中,要严格控制工艺条件,否 则,系统中的反应气体或反应产物的腐蚀作用会使 基体脆化。
VI. 比较CVD和PVD这两种工艺的成本比较困难, 有人认为最初的设备投资PVD是CVD的3一4倍,而 PVD工艺的生产周期是CVD的1/10。在CVD的一个 操作循环中,可以对各式各样的工件进行处理,而 PVD就受到很大限制。综合比较可以看出,在两种 工艺都可用的范围内,采用PVD要比CVD代价高。
PVD和CVD两种工艺的对比
概述:同PVD工艺相比,CVD的最大优势就是
良好的阶梯覆盖性能,同时具有便于制备复合产物、 不需高真空和淀积速率高等优点。CVD技术在19世 纪 60 年 代 被 引 入 半 导 体 材 料 制 备 并 快 速 发 展 。 随 PECVD,HDPCVD和MOCVD等技术的出现,CVD 在集成电路制造中广泛应用于多晶硅、绝缘介质和 金属薄膜的制备。
PVD与CVD
2.蒸发镀用途
蒸镀只适用于镀 制对结合强度要 求不高的某些功 能膜,例如用作 电极的导电膜, 光学透镜的反射 膜及装饰用的金 膜、银膜。
2.蒸发镀用途
蒸镀纯金属膜中90%是铝膜,铝膜有广泛的用 途。 目前在制镜工业中已经广泛采用蒸镀,以铝代 银,节约贵重金属。 集成电路是镀铝进行金属化,然后再刻蚀出导 线。在聚酯薄膜上镀铝具有多种用途,可制造 小体积的电容器;制作防止紫外线照射的食品 软包装袋等;经阳极氧化和着色后即得色彩鲜 艳的装饰膜。 双面蒸镀铝的薄钢板可代替镀锡的马口铁制造 罐头盒。
一、 蒸发镀
在真空条件下,用加热蒸发的方法使镀膜材 料转化为气相,然后凝聚在基体表面的方法 称为蒸发镀膜,简称蒸镀。 蒸发镀是PVD方法中最早用于工业生产的一 种方法,该方法工艺成熟,设备较完善,低 熔点金属蒸发效率高,可用于制备介质膜、 电阻、电容等,也可以在塑料薄膜和纸张上 连续蒸镀铝膜。
绕射性好。
基片的正面反面甚至内孔、凹槽、狭缝等,都能沉积上薄膜。
沉积速率快,镀层质量好 。
离子镀膜获得的镀层组织致密,针孔、气泡少。而且镀前对工件 ( 基片 )清洗处理较简单。成膜速度快,可达 75m/min ,可镀制厚 达30m的镀层,是制备厚膜的重要手段。
2 离子镀膜的特点
可镀材质广泛
真空蒸镀时,蒸发粒子动能为0.1~1.0eV,膜对 基体的附着力较弱,为了改进结合力,一般采 用: 在基板背面设臵一个加热器,加热基极,使基 板保持适当的温度,这既净化了基板,又使膜 和基体之间形成一薄的扩散层,增大了附着力。 对于蒸镀像Au这样附着力弱的金属,可以先蒸 镀像Cr,Al等结合力高的薄膜作底层。
1.基本原理
其中靶是一平板,由欲沉积的材料组成,一般 将它与电源的负极相连,故此法又常称为阴极 溅射镀膜。 固定装臵可以使工件接地、悬空、偏臵、加热、 冷却或同时兼有上述几种功能。真空室中需要 充入气体作为媒介,使辉光放电得以启动和维 持,最常用的气体是氩气。
cvd或pvd镀膜原理
cvd或pvd镀膜原理CVD或PVD镀膜原理引言:随着科技的不断进步,各种高科技产品的需求也越来越大。
在许多电子产品和工业设备中,镀膜技术被广泛应用。
其中,CVD(化学气相沉积)和PVD(物理气相沉积)是两种常见的镀膜方法。
本文将重点介绍这两种方法的原理及其应用。
一、CVD镀膜原理:CVD是一种基于气相反应的镀膜技术。
其原理是通过在高温和低压环境下,将气体中的化学物质分解并沉积在基底表面上,形成一层致密且均匀的薄膜。
具体步骤如下:1. 基底表面的预处理:在进行CVD镀膜之前,需要对基底表面进行预处理,以去除杂质和提高表面的粗糙度,以便更好地与镀膜层结合。
2. 反应物的供给:在CVD过程中,需要提供反应物。
这些反应物可以是气体或液体形式,根据需要选择不同的反应物。
例如,金属气体、有机化合物或金属有机化合物可以作为反应物。
3. 反应室的设置:CVD镀膜通常在封闭的反应室中进行。
反应室内的温度和压力可以根据所需的镀膜材料和薄膜性质进行调节。
4. 反应过程:在反应室内,反应物会在高温下分解,并与基底表面上的活性位点发生反应,生成新的化合物。
这些化合物在基底表面沉积,逐渐形成一层均匀的薄膜。
5. 薄膜性质的调节:通过调节反应室内的温度、压力和反应物的浓度,可以控制薄膜的成分、结构和性质。
这些参数的调节可以实现对薄膜的硬度、抗腐蚀性、电学性能等特性的控制。
6. 后处理:在CVD过程结束后,需要对镀膜进行后处理,以去除残余的反应物和提高薄膜的质量。
这可以通过热处理、溶剂洗涤或化学处理等方法来实现。
二、PVD镀膜原理:PVD是一种基于物理过程的镀膜技术。
其原理是通过蒸发或溅射源,将固体材料转化为气体或离子态,并沉积在基底表面上,形成一层致密且均匀的薄膜。
具体步骤如下:1. 蒸发源或溅射源的选择:PVD镀膜过程需要使用蒸发源或溅射源来提供镀膜材料。
蒸发源可以是电子束蒸发源或电阻加热蒸发源,而溅射源可以是直流或射频溅射源。
pvd和cvd是有区别的
CVD与PVD的区别及比较2009年03月06日 17:17 www.elecfans.co 作者:本站用户评论(0)关键字:CVD与PVD的区别及比较(一)选材:化学蒸镀-装饰品、超硬合金、陶瓷物理蒸镀-高温回火之工、模具钢(二)蒸镀温度、时间及膜厚比较:化学蒸镀-1000℃附近,2~8小时,1~30μm(通常5~10μm)物理蒸镀-400~600℃,1~3小时,1~10μm (三) 物性比较:化学蒸镀皮膜之结合性良好,较复杂之形状及小孔隙都能蒸镀;唯若用于工、模具钢,因其蒸镀温度高于钢料之回火温度,故蒸镀后需重施予淬火-回火,不适用于具精密尺寸要求之工、模具。
不需强度要求之装饰品、超硬合金、陶瓷等则无上述顾虑,故能适用。
物理蒸镀皮膜之结合性较差,且背对金属蒸发源之处理组件会产生蒸镀不良现象;但其蒸镀温度可低于工、模具钢的高温回火温度,且其蒸镀后之变形甚微,故适用于经高温回火之精密工具、模具。
(4) 半导体制程概要-离子布植郑硕贤4.1前言在半导体组件工业中,常在半导体晶体中加入杂质以控制带电载子数目,来增加导电性。
这种加入杂质的方法称为掺入杂质(Doping) 。
一般来说,掺入杂质的方法有两种:1. 化学蒸镀法2. 扩散法3. 离子布植法其中1、3两项在微电子组件工业中已普遍使用,这两种方法虽简易实用,但却牺牲了完整晶型的要求。
如化学蒸镀法在较低温度下进行,则蒸镀层常为非晶质或是多晶质。
离子布植则造成许多表面有许多点缺陷,甚至使表面层变成非晶质;因此一般均须经一道恢复完整晶格的退火处理,使表面层能回复晶型的样子。
4.2原理离子布植是将高能量带电粒子射入硅基晶中。
离子进入硅靶材后,会和硅原子发生碰撞而逐渐损失能量;直到能量耗损殆尽,即停止在该深度。
在与硅原子碰撞过程中,离子会传递部份能量给硅原子,若此能量大于硅和硅间的键结能量,则可使其产生位移而产生新的入射粒子;这新获得动能的粒子,也会与其它硅原子产生碰撞。
CVD和PVD工艺比较
CVD工艺的沉积温度较低,有利于保持材料的原有性能。
CVD和PVD工艺优缺点总结
CVD和PVD工艺优缺点总结
高能耗
CVD工艺需要高温反应,因此能耗 较高。
设备复杂
CVD工艺需要复杂的反应设备和管道 系统,增加了设备的维护成本。
CVD和PVD工艺优缺点总结
环保
PVD工艺不产生有害物质,对环境友好。
ABCD
在材料科学领域,CVD工 艺可用于制备各种高性能 材料,如碳纳米管、金刚 石等。
在光学领域,CVD工艺可 用于制备各种光学薄膜和 增透膜。
03 PVD工艺简介
PVD工艺定义
PVD工艺是一种物理气相沉积技术,利用物理方法将材料从 源物质中蒸发出来,并在基材上沉积形成薄膜。
与CVD工艺不同,PVD工艺不涉及化学反应,而是通过物理 过程实现材料的沉积。
CVD工艺原理
CVD工艺原理是利用气态的先驱反应 物在高温或催化剂的作用下发生化学 反应,生成固态沉积物。
反应过程中,先驱反应物通过扩散作 用到达基材表面,并在表面发生化学 反应,形成固态沉积物。
CVD工艺应用
CVD工艺广泛应用于材料 科学、电子学、光学等领 域。
在电子学领域,CVD工艺 可用于制备各种电子器件 和集成电路的薄膜材料。
薄膜质量比较
总结词
CVD工艺生成的薄膜质量通常优于PVD工艺。
详细描述
CVD工艺可以生成结构致密、与基材结合紧密的薄膜,同时具有较高的表面光洁度。相比之下,PVD 工艺生成的薄膜可能在致密性和附着力方面稍逊于CVD工艺。
适用材料比较
总结词
CVD工艺适用于多种材料,而PVD工艺 在某些材料上表现更佳。
高附着力
PVD工艺制备的涂层与基材之间具有高附着 力。
薄膜技术中PVD和CVD的区别详解
Page 24
Page 14
溅射法
直流溅射沉积装置
真空系统中,靶材
是需要溅射的材料, 它作为阴极。相对于 作为阳极的衬底加有 数千伏的电压。在对 系统预抽真空以后, 充入适当压力的惰性 气体。
Page 15
溅射法
溅射法分类
(1)直流溅射; (2)高频溅射; (3)磁控溅射; (4)反应溅射; (5)离子镀。
Page 16
Page 10
真空蒸镀
蒸发源分类
(一)电阻加热蒸发 (二)电子束加热蒸发 (三)电弧加热蒸发 (四)激光加热蒸发
Page 11
真空蒸镀
真空蒸发的影响因素
1.物质的蒸发速度 2.元素的蒸汽压 3.薄膜沉积的均匀性 4.薄膜沉积的纯度
Page 12
真空蒸镀
薄膜沉积的纯度
蒸发源的纯度; 加热装置、坩埚可能造成的污染; 真空系统中的残留气体。
物理气相沉积(PVD)
物理气相沉积法过程的三个阶段: 1,从原材料中发射出粒子; 2,粒子运输到基片; 3,粒子在基片上凝结、成核、长大、成膜。
Page 6
物理气相沉积(PVD)
PVD
物理气相沉积技术中最为基本的两种方法就 是蒸发法和溅射法,另外还有离子束和离子助等 等方法。
蒸发法相对溅射法具有一些明显的优点,包 括较高的沉积速度,相对较高的真空度,以及由 此导致的较高的薄膜质址等。
薄膜制备
张洋洋
薄膜制备工艺包括:薄膜制备方法的 选择,基体材料的选择及表面处理, 薄膜制备条件的选择和薄膜结构、性 能与工艺参数的关系等。
Page 2
薄
膜
物理气相沉积(PVD)
制
化学气相沉积 ( CVD)
CVD和PVD工艺比较
VII. 最后一个比较因素是操作运行安全问题 操作运行安全问题。PVD 操作运行安全问题 是一种完全没有污染的工序,有人称它为“绿色工 程”。而CVD的反应气体、反应尾气都可能具有一 定的腐蚀性,可燃性及毒性,反应尾气中还可能有 粉末状以及碎片状的物质,因此对设备、环境、操 作人员都必须采取一定的措施加以防范。
V. 在CVD工艺过程中,要严格控制工艺条件 控制工艺条件,否 控制工艺条件 则,系统中的反应气体或反应产物的腐蚀作用会使 基体脆化。 VI. 比较CVD和PVD这两种工艺的成本 成本比较困难, 成本 有人认为最初的设备投资PVD是CVD的3一4倍,而 PVD工艺的生产周期是CVD的1/10。在CVD的一个 操作循环中,可以对各式各样的工件进行处理,而 PVD就受到很大限制。综合比较可以看出,在两种 工艺都可用的范围内,采用PVD要比CVD代价高。
厚度上的区别正好可以弥补 PVD阶梯覆盖性能的不足 阶梯覆盖性能的不足
III. CVD镀层往往比各种PVD镀层略厚一些,前者厚 厚 度在7.5µm左右,后者通常不到2.5µm厚。CVD镀层的 表面略比基体的表面粗糙些。相反,PVD镀膜如实地 反映材料的表面,不用研磨就具有很好的金属光泽, 这在装饰镀膜方面十分重要。
I. 工艺温度高低 CVD 和 PVD 之间的主要区别。 工艺温度高低是 温度对于高速钢镀膜具有重大意义。 CVD 法的工艺 温度超过了高速钢的回火温度,用 CVD 法镀制的高 速钢工件,必须进行镀膜后的真空热处理,以恢复硬 度。镀后热处理会产生不容许的变形。 II. CVD 工艺对进人反应器工件的清洁 要求 PVD 清洁要求 清洁 要求比 工艺低一些,因为工件表面的一些脏东西很容易在高 温下烧掉。此外,高温下得到的镀层结合强度要更好 些。
PVD与CVD涂层工艺比较区分
物 理 气 相 沉 积
化 学 气 相 沉 积
1000℃, 沉积温度 高,基体 的 硬度、 强度降低 ,需开发 专门的基 体用于涂层 。
5~20μ m 或更厚, 适合于开 发多层厚 膜涂层, 高耐磨性。
TiN TiC TiCN A12o3 ZrO2 金刚石等 。艺比较
沉积温度 500℃或更 低, 沉积温度低 刀具变型 不, 基体的 硬度 强度不降低 。 涂层厚度 2~5μ m, 涂层较薄 ,刃口锋 利。 涂层表面 状态 涂层为压 应力,有 利于抑制 裂缝的扩 展;刃口 可不作钝 处理;表 面致密, 粗糙度低 。 涂层为拉 应力,易 生成裂 缝;刃口 必须作钝 化处理; 表面较粗 糙。 主要涂层 材料 TiN TiCN TiA1N A12o3 A1CrN MoS2 WC/C 等。 涂层 结合 强度 低 对环境 影响 无污染 主要应用领域 1.高速钢通用刀 具:钻头、丝锥 、立铣刀。 2.高速钢精密复 杂刀具:拉刀、 齿轮刀具。 3.整体硬质合金 刀具。 4.可转位螺纹刀 片、切断、切槽 刀片。 1.硬质合金可转 为刀片:车刀片 、铣刀片等。 2.金刚石涂层。
优选薄膜技术中PVD和CVD的区别详解
物理气相沉积(PVD)
PVD
这种薄膜制备方法相对于下面还要介绍的化 学气相沉积方法而言,具有以下几个特点: 1.需要使用固态的或者熔化态的物质作为沉积过 程的源物质。 2.源物质要经过物理过程进入气相。 3.需要相对较低的气体压力环境。 4.在气相中及衬底表面并不发生化学反应。
物理气相沉积(PVD)
真空蒸镀
蒸发源分类
(一)电阻加热蒸发 (二)电子束加热蒸发 (三)电弧加热蒸发 (四)激光加热蒸发
真空蒸镀
真空蒸发的影响因素
1.物质的蒸发速度 2.元素的蒸汽压 3.薄膜沉积的均匀性 4.薄膜沉积的纯度
真空蒸镀
薄膜沉积的纯度
• 蒸发源的纯度; • 加热装置、坩埚可能造成的污染; • 真空系统中的残留气体。
溅射法
溅射法利用带有电荷的离子在电 场中加速后具有一定动能的特点,将 离子引向欲被溅射的靶电极。在离子 能量合适的情况下,入射的离子将在 与靶表面的原子的碰撞过程中使后者 溅射出来。这些被溅射出来的原子将 带有一定的动能,并且会沿着一定的 方向射向衬底,从而实现在衬底上薄 膜的沉积。
溅射法
直流溅射沉积装置
真空蒸镀
• 装置: • 真空系统 • 蒸发系统 • 基片支撑 • 挡板 • 监控系统
真空蒸镀
大量材料皆可以在真空中蒸发,最终 在基片上凝结以形成薄膜。真空蒸发沉积 过程由三个步骤组成: ①蒸发源材料由凝聚相转变成气相; ②在蒸发源与基片之间蒸发粒子的输运; ③蒸发粒子到达基片后凝结、成核、长大、 成膜。
薄膜的化学气相沉积(CVD)
CVD所涉及的化学反应类型
1.热解反应 2.还原反应 3.氧化反应 4.化合反应 5.歧化反应 6.可逆反应
薄膜的化学气相沉积(CVD)
pvd与cvd技术适用的薄膜制程
pvd与cvd技术适用的薄膜制程薄膜制程是一种利用物理或化学方法在基底上形成一层薄膜的工艺。
在材料科学和工程中,薄膜制程被广泛应用于各种领域,如电子器件、光学器件、表面涂层等。
其中,物理气相沉积(Physical Vapor Deposition,PVD)和化学气相沉积(Chemical Vapor Deposition,CVD)是两种常见的薄膜制备技术。
PVD技术是一种将固态材料通过物理蒸发或溅射的方式沉积在基底上的方法。
它通常包括蒸发、溅射和离子镀三种方式。
蒸发是将材料加热至高温,使其蒸发并沉积在基底上;溅射是通过离子轰击的方式将材料从固态转变为气态,并在真空环境中沉积在基底上;离子镀是利用离子束轰击材料表面,使其释放出离子,并将离子沉积在基底上。
PVD技术具有高纯度、致密性好、结构均匀等优点,适用于制备金属薄膜、合金薄膜、氧化物薄膜等。
CVD技术是一种将气态或液态前体物质在基底表面化学反应生成固态产物的方法。
它通常包括化学气相沉积和低压化学气相沉积两种方式。
化学气相沉积是将气态前体物质与氧化剂在基底表面进行反应,生成固态产物;低压化学气相沉积是在较低的压力和温度下进行沉积。
CVD技术具有成膜速度快、控制性好、沉积均匀等优点,适用于制备金属薄膜、氧化物薄膜、氮化物薄膜等。
PVD和CVD技术在薄膜制程中有着不同的适用性。
PVD技术适用于制备厚度较薄的薄膜,通常在几纳米到几十微米之间。
由于PVD 技术在沉积过程中,材料以固态形式进行转移,因此PVD制备的薄膜具有较高的致密性和纯度。
此外,PVD技术还可以在复杂的表面结构上进行沉积,如孔洞、凹槽等,适用于制备具有特殊形状要求的薄膜。
相比之下,CVD技术适用于制备较厚的薄膜,通常在几十纳米到几百微米之间。
由于CVD技术是通过化学反应生成固态产物,因此可以在基底表面上形成较为均匀的薄膜。
此外,CVD技术还可以在较低的温度下进行沉积,适用于对基底温度敏感的材料。
pvd和cvd的应用场景
pvd和cvd的应用场景
PVD(Physical Vapor Deposition)和CVD(Chemical Vapor Deposition)是两种常见的薄膜沉积技术,它们在许多不同的应用场景中发挥着重要作用。
首先,让我们来看PVD的应用场景。
PVD技术广泛应用于表面涂层领域,比如在工具涂层、装饰涂层和光学薄膜等方面。
在工具涂层方面,PVD被用于在刀具、模具和车削刀具等工具上涂覆陶瓷涂层或金属涂层,以提高工具的耐磨性和延长使用寿命。
在装饰涂层方面,PVD技术可用于在钟表、珠宝、门把手和卫浴设备等产品上制作金属薄膜,赋予其金属光泽和耐腐蚀性。
在光学薄膜方面,PVD技术被广泛应用于制造镜片、滤光片和反射镜等光学元件,以改善光学性能。
接下来,我们来看CVD的应用场景。
CVD技术在半导体制造、光学薄膜、涂层和纳米材料合成等领域有着广泛的应用。
在半导体制造方面,CVD被用于沉积绝缘层、导电层和掺杂层等薄膜,用于制造集成电路和光伏电池等器件。
在光学薄膜方面,CVD技术可用于制备具有特定光学性能的薄膜,如抗反射膜、光学滤波器和激光膜等。
在涂层方面,CVD可用于制备防腐蚀涂层、耐磨涂层和导热
涂层等功能性涂层。
此外,CVD还被广泛应用于纳米材料的合成,如碳纳米管、石墨烯和纳米颗粒等。
总的来说,PVD和CVD技术在工业生产、科研领域和日常生活中都有着重要的应用,它们通过沉积不同性质的薄膜,为各种材料赋予特定的功能和性能,推动着许多领域的发展和进步。
薄膜技术中PVD和CVD的区别详解
24LOGO25来自缺点:需要制备专用膜料,靶利用率低
17
薄膜的化学气相沉积(CVD)
CVD
• 技术被称化学气相沉积(CVD)顾名思义,利 用气态的先驱反应物,通过原子、分子间 化学反应的途径生成固态薄膜的技术。
• 特别值得一提的是,在高质量的半导体晶 体外延技术以及各种绝缘材料薄膜的制备 中大量使用了化学气相沉积技术。比如, 在MOS场效应管中,应用化学气相方法沉 积的薄膜就包括多晶Si、 SiO2、SiN等。
4
物理气相沉积(PVD)
PVD
这种薄膜制备方法相对于下面还要介绍的化 学气相沉积方法而言,具有以下几个特点: 1.需要使用固态的或者熔化态的物质作为沉积过 程的源物质。 2.源物质要经过物理过程进入气相。 3.需要相对较低的气体压力环境。 4.在气相中及衬底表面并不发生化学反应。
5
物理气相沉积(PVD)
13
溅射法
溅射法利用带有电荷的离子在电 场中加速后具有一定动能的特点,将 离子引向欲被溅射的靶电极。在离子 能量合适的情况下,入射的离子将在 与靶表面的原子的碰撞过程中使后者 溅射出来。这些被溅射出来的原子将 带有一定的动能,并且会沿着一定的 方向射向衬底,从而实现在衬底上薄 膜的沉积。
14
溅射法
溅射法也具有自己的一些优势,包括在沉积 多元合金薄膜时化学成分容易控制,沉积层对衬 底的附着力较好等。
7
物理气相沉积(PVD) 真空蒸镀
在真空蒸镀技术中,人们只需要产生 一个真空环境。在真空环境下,给待蒸发 物提供足够的热量以获得蒸发所必需的蒸 气压。在适当的温度下,蒸发粒子在基片 上凝结,这样即可实现真空蒸镀薄膜沉积。
直流溅射沉积装置
真空系统中,靶 材是需要溅射的材料, 它作为阴极。相对于 作为阳极的衬底加有 数千伏的电压。在对 系统预抽真空以后, 充入适当压力的惰性 气体。
薄膜沉积PVD和CVD
CVD材料及其沉積方式
AP:常壓(1atm) LP:低壓(100Torr) PE:電漿 HDP:高密度電漿
電漿密度較高之系統
一般PECVD:使用頻率為13.56MHz, 電漿內離子濃度為1010~ 1011cm-3 HDP CVD:電漿內離子濃度為1011~ 1013cm-3 同時存在“沉積”與“蝕刻”之CVD HDP CVD包含有:
阻障金屬的濺鍍製程
為防止鋁與矽發生尖峰現象,通常於其間加入一層 阻障金屬層,至於插塞鎢因為鎢的CVD反應氣體與底材 矽會發生反應,因而造成接合漏電或接觸失敗等問題 。 所以也會在鎢與矽之間加入阻障金屬,常見的金屬有:
1.氮化鈦 (TiN) 2.鈦鎢合金(TiW) 3.Ta與 TaN: 主要作為銅製程阻障層材料 銅: (a) 低電阻率(銅約1.8 µ -cm,鋁約 3 µ -cm ) (b) 與SiO2 附著力不佳 (c) 對SiO2 及矽擴散速率快,易造成元件惡化
(b)BST與STO BST, (Ba, Sr) TiO3 : >1Gb 以上之DRAM STO, SrTiO3 : 控制較 BST容易
新CVD材料
2.低介電材料(Low k):
選擇低介電材料來取代SiO2以解決多重內連線所造成RC時間延遲 問題 ,薄膜製作方法有 (a)漩塗式(spin coating) 溫度與濕度控制需較精準
化學氣相沈積
利用化學反應將反應物(通常為氣體)生成固態的生成 物沉積於晶片表面之技術,簡稱 CVD。所沉積的薄膜包 含,導體、半導體、介電材料。主要的材料有: 導體 : WSix,W,TiN 介電材料 : SiO2,Si3N4,PSG,BPSG 半導體 : poly Si,amorphous Si 磊晶(epitaxy):c-Si
涂层基础知识
涂层基础刀具涂层技术通常可分为化学气相沉积(CVD)技术和物理气相沉积(PVD)技术两大类。
CVDCVD法是利用金属卤化物的蒸气、氢气和其它化学成分,在950~1050℃的高温下,进行分解、热合等气、固反应,或利用化学传输作用,在加热基体表面形成固态沉积层的一种方法。
CVD法工艺要求高[7],而且由于氯的侵蚀及氢脆变形可能导致涂层易碎裂、基体断面强度下降,涂层硬质合金时还易产生脱碳现象而形成η相。
近年来,中、低温CVD法和PCVD法开发成功,改善了原有CVD工艺。
CVD:CVD工艺气相沉积所需金属源的制备相对容易,可实现TiN、TiC、TiCN、TiBN、TiB2、Al2O3等单层及多元多层复合涂层的沉积,涂层与基体结合强度较高,薄膜厚度可达7~9μm。
先天不足:一是工艺处理温度高,易造成刀具材料抗弯强度下降;二是薄膜内部呈拉应力状态,易导致刀具使用时产生微裂纹;三是CVD工艺排放的废气、废液会造成较大环境污染,与目前大力提倡的绿色制造观念相抵触,因此自九十年代中期以来,高温CVD技术的发展和应用受到一定制约。
PCVD:低温化学气相沉积技术,工艺处理温度450~650℃,可抑制η相1的产生,可用于螺纹刀具、铣刀、模具的TiN、TiCN、TiC等涂层。
但在刀具涂层领域的应用并不广泛。
MT-CVD:中温化学气相沉积,以含C/N的有机物乙腈(CH3CN)作为主要反应气体、与TiCL4、H2、N2在700~900℃下产生分解、化学反应生成TiCN的新工艺。
可获得致密纤维状结晶形态的涂层,涂层厚度可达8~10μm。
HT-CVD:高温化学气相沉积。
目前,CVD(包括MT-CVD)技术主要用于硬质合金车削类刀具的表面涂层,涂层刀具适用于中型、重型切削的高速粗加工及半精加工。
采用CVD技术还可实现α-Al2O3涂层,这是PVD技术目前难以实现的,因此在干式切削加工中,CVD 涂层技术仍占有极为重要的地位。
1基于Ni3Ti成分的一种金属间化合物相,为密排六方有序相。
PVD与CVD表面处理技术
PVD与CVD表面处理技术1. PVD简介PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
2. PVD技术的发展PVD技术出现于二十世纪七十年代末,制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。
最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。
与CVD工艺相比,PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层;PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。
目前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。
PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。
3. 星弧涂层的PVD技术增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。
增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。
过滤阴极弧:过滤阴极电弧(FCA )配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。
磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。
镀铬替代方法
镀铬替代方法1. 引言镀铬是一种常用的表面处理方法,它可以提供金属表面的防腐、美观和耐磨性能。
然而,由于镀铬过程中使用的六价铬对环境和人体健康造成潜在风险,寻找替代方法已成为迫切的需求。
本文将介绍一些可行的镀铬替代方法,包括物理气相沉积(PVD)、化学气相沉积(CVD)、喷涂技术和电镀替代方法。
2. 物理气相沉积(PVD)物理气相沉积(Physical Vapor Deposition,简称PVD)是一种通过蒸发或溅射金属材料来形成薄膜的技术。
PVD技术可以在金属表面形成一层均匀、致密的薄膜,具有良好的耐磨性和抗腐蚀性能。
常用的PVD方法包括磁控溅射、电子束蒸发和激光熔化。
PVD技术的主要优点是不需要使用有害的六价铬盐,因此对环境友好。
此外,PVD薄膜可以具有不同的颜色和质感,可以实现更多的设计选择。
然而,PVD技术的成本较高,设备复杂,生产效率相对较低。
3. 化学气相沉积(CVD)化学气相沉积(Chemical Vapor Deposition,简称CVD)是一种利用气相反应在材料表面沉积薄膜的技术。
CVD技术可以在金属表面形成均匀、致密的薄膜,具有良好的耐磨性和抗腐蚀性能。
常用的CVD方法包括热CVD、等离子体增强化学气相沉积(PECVD)和金属有机化学气相沉积(MOCVD)。
与PVD相比,CVD技术的优点是可以在复杂形状的工件表面形成薄膜,并且可以实现更高的生产效率。
然而,CVD技术的缺点是需要使用高温和有害的化学物质,对设备要求较高,并且不适用于某些材料。
4. 喷涂技术喷涂技术是一种通过喷射涂料或粉末在基材表面形成涂层的方法。
常用的喷涂技术包括喷涂涂料、热喷涂和冷喷涂。
喷涂技术的优点是成本低、操作简单,并且适用于各种材料和形状复杂的工件。
喷涂涂料通常可以提供良好的耐磨性和抗腐蚀性能。
然而,喷涂技术的涂层质量和附着力可能受到一些限制,需要进行定期维护和修复。
5. 电镀替代方法除了上述的物理和化学沉积技术外,还有一些其他的电镀替代方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物 理 气 相 沉 积
化 学 气 相 沉 积
1000℃, 沉积温度 高,基体 的 硬度~20μ m 或更厚, 适合于开 发多层厚 膜涂层, 高耐磨性。
TiN TiC TiCN A12o3 ZrO2 金刚石等 。
高
排出的 废气对 环境 有污染 。
PVD与CVD涂层工艺比较
沉积温度 500℃或更 低, 沉积温度低 刀具变型 不, 基体的 硬度 强度不降低 。 涂层厚度 2~5μ m, 涂层较薄 ,刃口锋 利。 涂层表面 状态 涂层为压 应力,有 利于抑制 裂缝的扩 展;刃口 可不作钝 处理;表 面致密, 粗糙度低 。 涂层为拉 应力,易 生成裂 缝;刃口 必须作钝 化处理; 表面较粗 糙。 主要涂层 材料 TiN TiCN TiA1N A12o3 A1CrN MoS2 WC/C 等。 涂层 结合 强度 低 对环境 影响 无污染 主要应用领域 1.高速钢通用刀 具:钻头、丝锥 、立铣刀。 2.高速钢精密复 杂刀具:拉刀、 齿轮刀具。 3.整体硬质合金 刀具。 4.可转位螺纹刀 片、切断、切槽 刀片。 1.硬质合金可转 为刀片:车刀片 、铣刀片等。 2.金刚石涂层。