2015-2016学年高中数学 综合素质测试 新人教B版选修2-2

合集下载

高二数学(人教B版)选修2-1单元 第2章综合素质检测

高二数学(人教B版)选修2-1单元 第2章综合素质检测

第二章综合素质检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.双曲线x 2m -y2n =1(mn ≠0)的离心率为2,有一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A.316B.38 C.163D.83[答案] A[解析] 依题意,e =m +n m=2,c =1,即:⎩⎪⎨⎪⎧m +n =1,1m =2,解得m =14,n =34,mn =316,选A.2.与抛物线x 2=4y 关于直线x +y =0对称的抛物线的焦点坐标是( ) A .(1,0)B .(116,0) C .(-1,0)D .(0,-116) [答案] C[解析] x 2=4y 关于x +y =0,对称的曲线为y 2=-4x ,其焦点为(-1,0).3.过点C (4,0)的直线与双曲线x 24-y 212=1的右支交于A 、B 两点,则直线AB 的斜率k的取值范围是( )A .|k |≥1B .|k |> 3C .|k |≤ 3D .|k |<1[答案] B[解析] 如图所示,l 1平行于y =3x ,l 2平行于y =-3x ,由图可看出,当过C 由l 1位置逆时针方向转到l 2位置之间的直线与双曲线x 24-y 212=1的右支都有两个交点,此时k >3或k <- 3.4.椭圆x 212+y 23=1的一个焦点为F 1,点P 的椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( )A .±34B .±32C .±22D .±34[答案] A[解析] 由条件可得F 1(-3,0),PF 1的中点在y 轴上,∴P 点坐标(3,y 0).又P 在x 212+y 23=1的椭圆上得y 0=±32.∴M 在坐标⎝⎛⎭⎫0,±34,故选A. 5.已知|AB →|=3,A 、B 分别在y 轴和x 轴上运动;O 为原点,若OP →=13OA →+23OB →,则点P 的轨迹方程是( )A.x 24+y 2=1 B .x 2+y24=1C.x 29+y 2=1D .x 2+y 29=1[答案] A[解析] 设P (x ,y ),A (0,y 0),B (x 0,0),由题知(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,∴x 0=32,y 0=3y ,又∵|AB →|=3,∴x 20+y 20=9, ∴x 24+y 2=1即为点P 的轨迹方程. 6.如图,在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)的曲线大致是( )[答案] D[解析] 解法一:将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x 21a 2+y 21b 21,y 2=-a b x .因为a >b >0,因此1b 1a >0,所以由椭圆的焦点在y 轴,抛物线的开口向左,则D 选项正确.解法二:将方程ax +by 2=0中的y 换成-y ,其结果不变,即说明ax +by 2=0的图形关于x 轴对称;排除B 、C ,又椭圆的焦点在y 轴上,故选D.7.(2010·天津理,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上.则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236 1D.x 227-y 29=1 [答案] B[解析] 由题易知ba =3①且双曲线焦点为(6,0)、(-6,0), 则由a 2+b 2=36②由①②知:a =3,b =33, ∴双曲线方程为x 29-y227=1,故选B.8.F 1,F 2是椭圆的两个焦点,A 是椭圆上任一点,过任何一焦点向∠F 1AF 2的外角平分线作垂线,垂足为P ,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线[答案] A[解析] 如图所示:∠BAF 1为外角,AP 为外角角平分线l 所在直线 设长轴长为2a (a >0),∠BAF 1=∠CAF 2, ∴AP 平分∠CAF 2,延长F 2P 交F 1A 于C , ∴C 、F 2关于P 对称,∴AC =AF 2. 设F 2为(c,0),F 1为(-c,0),P 为(x ,y ), ∴c 为(2x -c,2y )∵AC =AF 2,AF 2+AF 1=2a , ∴F 1C =2a ,即4x 2+4y 2=4a 2, ∴轨迹为圆,选A.9.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=6xD .y 2=42x[答案] B[解析] 如图,∵AF →=FB →,|FD →|=p ,∴|AC |=2p ,∴|AF |=|FB |=2p , 又BA →·BC →=48, ∴|BC |2=48,∴在Rt △ABC 中,(4p )2-(2p )2=48, ∴p =2,∴y 2=4x .10.若椭圆x 2a 2+y 2b 2=(a >b >0)和圆x 2+y 2=(b 2+c )2(c 为椭圆的半焦距)有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .(55,35)B .(25,55) C .(25,35)D .(0,55) [答案] A[解析] 要保证椭圆与圆的4个交点,只要保证圆的半径b <b2+c <a 即可.⎩⎨⎧b <b 2+c b2+c <a⇒⎩⎪⎨⎪⎧2b <b +2c b +2c <2a ⇒⎩⎪⎨⎪⎧2c >b , ①2(a -c )>b . ②由①得4c 2>b 2=a 2-c 2,5c 2>a 2,c 2a 2>15,e 2>15,e >55,由②得4(a 2+c 2-2ac )>b 2=a 2-c 2,得3a 2-8ac +5c 2>0,两边同除以a 2,得5e 2-8e +3>0,(e -1)(5e -3)>0,e >1(舍去)或e <35则55<e <35. 11.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于点P 1,P 2,线段P 1P 2的中点设为P ,设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值等于( )A .2B .-2 C.12D .-12[答案] D[解析] 设直线l 的方程y =k 1(x +2)将y =k 1(x +2)代入x 2+2y 2=2中得(1+2k 21)x 2+8k 21x+8k 21-2=0.设P (x 0,y 0)则x 0=-4k 211+2k 21,y 0=k 1(x 0+2)=2k 11+2k 21∴k 2=y 0-0x 0-0=-12k 1∴k 1k 2=-12k 1·k 1=-12.故选D.12.B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30°方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上选一处M 建一座码头, 向B 、C 两地运转货物.经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km ,那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2)a 万元C .27a 万元D .(7-1)a 万元[答案] B[解析] 设总费用为y 万元,则y =a ·(MB +MC )∵河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km , ∴曲线PG 是双曲线的一支,B 为焦点,且a =1,c =2.由双曲线定义,得MA -MB =2a ,即MB =MA -2, ∴y =a ·(MA +MC -2)≥a ·(AC -2).以直线AB 为x 轴,中点为坐标原点,建立直角坐标系,则A (-2,0),C (3,3). ∴AC =(3+2)2+(3)2=27, 故y ≥(27-2)a (万元).二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.过抛物线y 2=4x 的焦点作倾斜角为3π4的直线,与抛物线交于P ,Q 两点,O 为坐标原点,则△POQ 的面积等于________.[答案] 2 2[解析] 设P (x 1,y 1),Q (x 2,y 2),F 为抛物线焦点,由⎩⎪⎨⎪⎧y =-(x -1),y 2=4x ,得y 2+4y -4=0,|y 1-y 2|=42+42=42,S △POQ =12|OF |·|y 1-y 2|=2 2.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在的直线方程是________. [答案] 2x -y -15=0[解析] 设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),则x 21-4y 21=4,x 22-4y 22=4,两式相减,得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0.∵AB 的中点为P (8,1), ∴x 1+x 2=16,y 1+y 2=2,∴y 1-y 2x 1-x 2=2, ∴直线AB 的方程为y -1=2(x -8), 即2x -y -15=0.15.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程是________.[答案] (x -10)2+y 2=36(y ≠0)[解析] 设A (x ,y ),则D (x 2,y2),由|CD |=3和两点间距离公式求得方程,同时结合图形,除去A ,C ,D 三点共线的情况.16.下列四个关于圆锥曲线的命题:①设A ,B 为两个定点,k 为非零常数,若|PA →|-|PB →|=k ,则动点P 的轨迹为双曲线;②过定点C 上一定点A 作圆的动弦AB ,O 为坐标原点,若OP →=12(OA →+OB →),则动点P 的轨迹为椭圆;③方程2x 2-5x +2=0的两根可分别作为椭圆和双曲线的离心率;④双曲线x 225-y 29=1与椭圆x 235+y 2=1有相同的焦点.其中真命题的序号为________.[答案] ③④三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P (32,6),求抛物线方程和双曲线方程.[解析] 依题意,设抛物线方程为y 2=2px ,(p >0), ∵点(32,6)在抛物线上,∴6=2p ×32∴p =2,∴所求抛物线方程为y 2=4x .∵双曲线左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点(32,6)在双曲线上,∴94a 2-6b 2=1,由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1,解得:a 2=14,b 2=34. ∴所求双曲线方程为 4x 2-43y 2=1.18.(本小题满分12分)已知定点A (a,0),其中0<a <3,它到椭圆x 29+y 24=1上点的距离的最小值为1,求a 的值.[解析] 设椭圆上任一点为P (x ,y )(-3≤x ≤3),则|PA |2=(x -a )2+y 2=(x -a )2+19(36-4x 2)=59(x -95a )2+4-45a 2,当0<a ≤53时,有0<95a ≤3.∴当x =95a 时,|P A |2min =4-45a 2=1,得a =152>53(舍), 当53<a <3时,有3<95a <275, 当且仅当x =3时,|P A |2min =a 2-6a +9=1, 故a =2或a =4(舍),综上得a =2.19.(本小题满分12分)已知双曲线与椭圆x 29+y225=1有公共焦点F 1、F 2,它们的离心率之和为245,(1)求双曲线的标准方程;(2)设P 是双曲线与椭圆的一个交点,求cos ∠F 1PF 2的值. [解析] (1)在椭圆x 29+y 225=1中,a 2=25,b 2=9,∴c =a 2-b 2=4,焦点在y 轴上,离心率为e =45.由题意得:所求双曲线的半焦距c =4, 离心率e ′=245-45=2,又∵e ′=c a ′=4a ′=2, ∴双曲线的实半轴为a ′=2, 则b ′2=c 2-a ′2=16-4=12, ∴所求双曲线的标准方程为y 24-x 212=1.(2)由双曲线、椭圆的对称性可知,不论点P 在哪一个象限,cos ∠F 1PF 2的值是相同的,设点P 是双曲线与椭圆在第一象限的交点,其中|PF 1|>|PF 2|由定义可知|PF 1|+|PF 2|=10① |PF 1|-|PF 2|=4②由①、②得|PF 1|=7,|PF 2|=3.又∵|F 1F 2|=8,在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=72+32-822×7×3=-17,∴cos ∠F 1PF 2的值为-17.20.(本小题满分12分)(2010·辽宁文,20)设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.[解析] 本题考查圆锥曲线中椭圆与直线的位置关系,第(1)问较基础,第(2)问中计算是关键之处.解:(1)设焦距为2c ,则F 1(-c,0)F 2(c,0) ∵k l =tan60°= 3 ∴l 的方程为 y =3(x -c )即:3x -y -3c =0 ∵f 1到直线l 的距离为2 3 ∴|-3c -3c |(3)2+(-1)2=23c2=3c =2 3 ∴c =2∴椭圆C 的焦距为4(2)设A (x 1,y 1)B (x 2,y )由题可知y 1<0,y 2>0 直线l 的方程为y =3(x -2)⎩⎪⎨⎪⎧y =3(x -2)x 2a 2+y 2b 2=1得(3a 2+b 2)y 2+43b 2y -3b 2(a 2-4)=0 由韦达定理可得⎩⎪⎨⎪⎧y 1+y 2=43b23a +b2 ①y 1,y 2=-3b 2(a 2-4)3a 2+b2 ②∵AF →=2F 2B →∴-y 1=2y 2,代入①②得 ⎩⎪⎨⎪⎧-y 2=-43b23a 2+b 2 ③-2y 22=-3b 2(a 2-4)3a 2+b2④③2④得12=48b 4(3a 2+b 2)2·3a 2+b 23b 2(a 2-4)=16b 2(3a 2+b 2)(a -4) ⑤ 又a 2=b 2+4 ⑥ 由⑤⑥解得a 2=9 b 2=5 ∴椭圆C 的方程为x 29+y25=121.(本小题满分12分)已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=42,过椭圆的左焦点F 1作直线交椭圆于M 、N 两点,设∠F 2F 1M =α(0≤α≤π),问α取何值时,|MN |等于椭圆的短轴的长.[解析] 如图所示,a =3,c =22,b =1,∴椭圆方程为x 29+y 2=1.设过F 1的直线方程为y =k (x +22).∴⎩⎪⎨⎪⎧y =k (x +22), ①x 29+y 2=1. ②①代入②,整理得(1+9k 2)x 2+362k 2x +72k 2-9=0,∴x 1+x 2=-362k21+9k 2,x 1·x 2=72k 2-91+9k2.代入|MN |=[(x 1+x 2)2-4x 1x 2](1+k 2),整理得|MN |=6(k 2+1)1+9k 2.∵6(k 2+1)1+9k 22,∴k =±33. 即tan α=±33,∴α=π6或α=5π6.22.(本小题满分14分)如右图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且OP →·QF →=FP →·FQ →.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点M ,已知MA →=λ1AF →,MB →=λ2BF →,求λ1+λ2的值.[解析] 设点P (x ,y ),则Q (-1,y ),由QP →·QF →=FP →·FQ →, 得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简整理,得y 2=4x . 即动点P 的轨迹C 的方程为y 2=4x . (2)设直线AB 的方程为x =my +1(m ≠0), A (x 1,y 1),B (x 2,y 2), 又M (-1,-2m),联立方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x 化简整理,得y 2-4my -4=0,Δ=(-4m )2+16>0,由根与系数的关系, 得y 1+y 2=4m ,y 1y 2=-4. 由MA →=λ1AF →,MB →=λ2BF →,得y 1+2m =-λ1y 1,y 2+2m=-λ2y 2, 整理得λ1=-1-2my 1,λ2=-1-2my 2, ∴λ1+λ2=-2-2m (1y 1+1y 2=-2-2m ·y 1+y 2y 1y 22-2m ·4m -4=0. 即λ1+λ2的值为0.。

高中数学 单元素养评价(二) 统计与概率 新人教B版必修2-新人教B版高一必修2数学试题

高中数学 单元素养评价(二) 统计与概率 新人教B版必修2-新人教B版高一必修2数学试题

单元素养评价(二)(第五章)(120分钟150分)一、单项选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.①一次数学考试中,某班有10人的成绩在100分以上,32人的成绩在90~100分,12人的成绩低于90分,现从中抽取9人了解有关情况;②运动会的工作人员为参加4×100m接力赛的6支队伍安排跑道.针对这两件事,恰当的抽样方法分别为( )A. 简单随机抽样,简单随机抽样B. 分层抽样,分层抽样C.简单随机抽样,分层抽样D.分层抽样,简单随机抽样【解析】选D.①中,考试成绩在不同分数段之间的同学有明显的差异,用分层抽样比较恰当;②中,总体包含的个体较少,用简单随机抽样比较恰当.2.从10个事件中任取一个事件,若这个事件是必然事件的概率为0.2,是不可能事件的概率为0.3,则这10个事件中随机事件的个数是 ( )A.3B.4C.5D.6【解析】选C.这10个事件中,必然事件的个数为10×0.2=2,不可能事件的个数为10×0.3=3.而必然事件、不可能事件、随机事件是彼此互斥的事件,且它们的个数和为10. 故随机事件的个数为10-2-3=5.3.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是( )A. B. C. D.【解析】选A.总体个数为N,样本容量为M,则每一个个体被抽到的概率为P===.4.某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图(单位:分),其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+y 的值为( )A.7B.8C.9D.10【解析】选B.由茎叶图及甲班学生成绩的众数是85,可知x=5,而乙班学生成绩的中位数是83,所以y=3,所以x+y=5+3=8.5.如图为某个容量为100的样本的频率分布直方图,分组为[96,98),[98,100),[100,102),[102,104),[104,106],则在区间[98,100)上的频数为( )C.20【解析】选C.区间[98,100)上小矩形的面积为0.100×2=0.200,所以区间[98,100)上的频数为100×0.200=20.6.对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )B.0.20【解析】选D.由题图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.7.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,得到的点数之和是几就选几班,这种选法( )A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大【解析】选D.P(1)=0,P(2)=P(12)=,P(3)=P(11)=,P(4)=P(10)=,P(5)=P(9)=,P(6)=P(8)=,P(7 )=,故选D.8.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取2个球,则恰好取到2个同色球的概率是( )A. B. C. D.【解析】选C.记3个黑球分别为黑1,黑2,黑3,2个红球分别为红1,红2,从中任取2个球,则基本事件有(黑1,黑2),(黑1,黑3),(黑2,黑3),(红1,红2),(黑1,红1),(黑1,红2),(黑2,红1),(黑2,红2),(黑3,红1),(黑3,红2),共10个,其中为同色球的有4个,故所求概率为=.9.甲、乙两名同学在5次数学考试中,成绩统计图用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用、表示,则下列结论正确的是( )A.>,且甲比乙成绩稳定B.>,且乙比甲成绩稳定C.<,且甲比乙成绩稳定D.<,且乙比甲成绩稳定【解析】选A.=90,=88,所以>,甲的成绩的方差是×(4+1+0+1+4)=2,乙的成绩的方差是×(25+0+1+1+9)=7.2,故甲成绩稳定.10.甲、乙两位同学各拿出6X游戏牌,用作投骰子的奖品,两人商定:骰子朝上的面的点数为奇数时甲得1分,否则乙得1分,先积得3分者获胜,得所有12X游戏牌,并结束游戏.比赛开始后,甲积2分,乙积1分,这时因意外事件中断游戏,以后他们不想再继续这场游戏,下面对这12X游戏牌的分配合理的是( )A.甲得9X,乙得3XB.甲得6X,乙得6XC.甲得8X,乙得4XD.甲得10X,乙得2X【解析】选A.由题意,得骰子朝上的面的点数为奇数的概率为,即甲、乙每局得分的概率相等, 所以甲获胜的概率是+×=,乙获胜的概率是×=.所以甲得到的游戏牌为12×=9(X),乙得到的游戏牌为12×=3(X).二、多项选择题(本大题共3小题,每小题4分,共12分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得4分,选对但不全的得2分,有选错的得0分)11.下列事件中,是随机事件的是( )A.2020年8月18日,市不下雨B.在标准大气压下,水在4℃时结冰C.从标有1,2,3,4的4X号签中任取一X,恰为1号签D.若x∈R,则x2≥0【解析】选AC.AC为随机事件,B为不可能事件,D为必然事件.12.有甲、乙两种报纸供市民订阅,记事件E为“只订甲报纸”,事件F为“至少订一种报纸”,事件G为“至多订一种报纸”,事件H为“不订甲报纸”,事件I为“一种报纸也不订”.下列命题正确的是( )A.E与G是互斥事件B.F与I是互斥事件,且是对立事件C.F与G不是互斥事件D.G与I是互斥事件【解析】选与G不是互斥事件;B.F与I是互斥事件,且是对立事件;C.F与G不是互斥事件;D.G 与I不是互斥事件.13.在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各项中,一定符合上述指标的是( )A.平均数≤3B.标准差s≤2C.平均数≤3且极差小于或等于2D.众数等于1且极差小于或等于4【解析】选CD.A中平均数≤3,可能是第一天0人,第二天6人,不符合题意;B中每天感染的人数均为10,标准差也是0,显然不符合题意;C符合,若极差等于0或1,在≤3的条件下,显然符合指标;若极差等于2且≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.D符合,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.三、填空题(本大题共4个小题,每小题4分,共16分.把答案填在题中的横线上)14.袋中有3只白球和a只黑球,从中任取1只,是白球的概率为,则a=________.【解析】因为=,所以a=18.答案:1815.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员 1 2 3 4 5甲87 91 90 89 93乙89 90 91 88 92则比赛中教练该派运动员________上场参加比赛.【解析】由表中数据计算可得=90,=90,且=[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,=[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2,由于>,故乙的成绩较为稳定,故派乙参赛.答案:乙16.某电子商务公司对10000名网络购物者在2019年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.【解析】(1)由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a×0.1=1,解得a=3.(2)消费金额在区间[0.5,0.9]内的频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.答案:(1)3 (2)6 00017.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为________,________,________.【解析】记“机器甲需要照顾”为事件A,“机器乙需要照顾”为事件B,“机器丙需要照顾”为事件C,由题意可知A,B,C是相互独立事件.由题意可知得所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.答案:0.2 0.25 0.5四、解答题(本大题共6小题,共82分.解答应写出文字说明,证明过程或演算步骤)18.(12分) 某公司为了了解一年内的用水情况,抽取了10天的用水量如表所示:天数 1 1 1 2 2 1 2用水量/吨22 38 40 41 44 50 95(1)在这10天中,该公司用水量的平均数是多少?(2)在这10天中,该公司每天用水量的中位数是多少?(3)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?【解析】(1)=(22+38+40+2×41+2×44+50+2×95)=51(吨).(2)中位数为=42.5(吨).(3)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下,故用中位数描述每天的用水量更合适.19.(14分)某某某某发生地震后,为了重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自某某省,B,C两家企业来自某某省,D,E,F三家企业来自某某省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.(1)列举所有企业的中标情况.(2)在中标的企业中,至少有一家来自某某省的概率是多少?【解析】(1)所有企业的中标情况为:AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF.共15种.(2)在中标的企业中,至少有一家来自某某省的情况有:AB,AC,BC,BD,BE,BF,CD,CE,CF,共9种,在中标的企业中,至少有一家来自某某省的概率是P==.20.(14分)某市化工厂三个车间共有工人1000名,各车间男、女工人数如下表:第一车间第二车间第三车间女工173 100 y男工177 x z已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.(1)求x的值.(2)现用分层抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?【解析】(1)依题意有=0.15,解得x=150.(2)因为第一车间的工人数是173+177=350,第二车间的工人数是100+150=250,所以第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m名工人,则有=,解得m=20,所以应在第三车间抽取20名工人.21.(14分)甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率.(2)2人至少有1人射中目标的概率.【解析】记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B,则A与B,与B,A与,与为相互独立事件,(1)2人都射中的概率为:P(AB)=P(A)P(B)=0.8×0.9=0.72,所以2人都射中目标的概率是0.72.(2)方法一:2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为P=P(AB)+[P(A)+P(B)]=0.72+0.26=0.98.方法二:“2人至少有1人射中”与“2人都未射中”为对立事件,“2人都未射中目标”的概率是P()=P()P()=(1-0.8)(1-0.9)=0.02,所以“两人至少有1人射中目标”的概率为P=1-P()=1-0.02=0.98.22.(14分)一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):轿车A 轿车B 轿车C舒适型100 150 z标准型300 450 600按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值.(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率.(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【解析】(1)设该厂本月生产轿车为n辆,由题意得,=,所以,n=2000,z=2 000-100-300-150-450-600=400.(2)设所抽样本中有m辆舒适型轿车,因为用分层抽样的方法在C类轿车中抽取一个容量为5的样本,所以=,解得m=2,也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2,B1,B2,B3,则从中任取2辆的所有基本事件为(S1,B1),(S1,B2),(S1,B3), (S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3),共10个,其中至少有1辆舒适型轿车的基本事件有7个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以从中任取2辆,至少有1辆舒适型轿车的概率为.(3)样本的平均数为=(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9,那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为P==0.75.23.(14分)先后2次抛掷一枚骰子,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率.(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.【解析】先后2次抛掷一枚骰子,将得到的点数分别记为a,b,包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.(1)因为直线ax+by+5=0与圆x2+y2=1相切,所以=1,整理,得a2+b2=25.由于a,b∈{1,2,3,4,5,6},所以满足条件的情况只有a=3,b=4或a=4,b=3两种情况.所以直线ax+by+5=0与圆x2+y2=1相切的概率是=.word(2)因为三角形的一条边长为5,三条线段围成等腰三角形,所以当a=1时,b=5,共1个基本事件;当a=2时,b=5,共1个基本事件;当a=3时,b=3,5,共2个基本事件;当a=4时,b=4,5,共2个基本事件;当a=5时,b=1,2,3,4,5,6,共6个基本事件;当a=6时,b=5,6,共2个基本事件;所以满足条件的基本事件共有1+1+2+2+6+2=14(个).所以三条线段能围成等腰三角形的概率为=.- 11 - / 11。

人教课标版(B版)高中数学选修2-2第一章 导数及其应用导数

人教课标版(B版)高中数学选修2-2第一章 导数及其应用导数
-x 则 g′(x)=(2x-1)e-x-(x2-x+1)e-x=-(x2-3x+2)e =-(x-1)(x-2)e-x.
感悟高考
由 g′(x)=0,得 x1=1,x2=2. 所以当 x∈(-∞, 1)时, g′(x)<0, g(x)在(-∞, 1)上为减函数;
当 x∈(1,2)时,g′(x)>0,g(x)在(1,2)上为增函数; 当 x∈(2,+∞)时,g′(x)<0,g(x)在(2,+∞)上为减函数; 1 所以,当 x=1 时,g(x)取得极小值 g(1)= ,当 x=2 时函数取 e 3 得极大值 g(2)= 2. e 函数 y=k 与 y=g(x)的图象的大致形状如上, 1 3 由图象可知,当 k= 和 k= 2时,关于 x 的方程 f(x)=kex 恰有两 e e 个不同的实根.
1 1 ①当 x∈-2,0时,h′(x)>0,∴h(x)在-2,0上单调递增.
②当 x∈(0,+∞)时,h′(x)<0,∴h(x)在(0,+∞)上单调递减.
1 1 1-2ln 2 ∴当 x∈-2,0时,h(x)>h-2= . 4
g(3)<0, 即a+4-2ln 2<0, 解得 2ln 3-5≤a<2ln 2-4. g(4)≥0, a+5-2ln 3≥0,
综上所述,a 的取值范围是[2ln 3-5,2ln 2-4). 2 方法二 ∵f(x)=2ln(x-1)-(x-1) ,
∴f(x)+x2-3x-a=0 x+a+1-2ln(x-1)=0, 即 a=2ln(x-1)-x-1, 令 h(x)=2ln(x-1)-x-1, 3-x 2 ∵h′(x)= -1= ,且 x>1, x-1 x-1 由 h′(x)>0,得 1<x<3;由 h′(x)<0,得 x>3. ∴h(x)在区间[2,3]上单调递增,在区间[3,4]上单调递减.

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得

(x0 − 2)2 (x0 + 1) = 0.

高二数学(人教B版)选修2-1单元 第1章综合素质检测

高二数学(人教B版)选修2-1单元 第1章综合素质检测

第一章综合素质检测时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件[答案] A[解析]y=cos2ax-sin2ax=cos2ax,周期T=2π|2a|=π|a|=π,则a=±1.故选A.2.若条件p:|x+1|≤4,条件q:x2<5x-6,则綈p是綈q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件[答案] B[解析]綈p:{x|x<-5或x>3},綈q:{x|x≤2或x≥3},∴綈p⇒綈q,綈q綈p.故选B.3.已知m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m∥n,n⊂α,则m∥α.其中真命题的序号是()A.①③B.①④C.②③D.②④[答案] A[解析]①正确,排除C、D;m⊥α,m∥β,∴β内存在直线n∥m,∴n⊥α,∴α⊥β,③正确,排除B.故选A.4.下列命题中,真命题是()A.∀x∈R,x>0B .如果x <2,那么x <1C .∃x ∈R ,x 2≤-1D .∀x ∈R ,使x 2+1≠0[答案] D[解析] A 显然是假命题,B 中若x ∈[1,2)虽然x <2但x 不小于1.C 中不存在x ,使得x 2≤-1,D 中对∀x ∈R 总有x 2+1≥1,∴x 2+1≠0,故D 是真命题,选D.5.(2009·山东烟台3月考)已知m ,n 是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;②若m ∥α,n ∥β,m ⊥n ,则α∥β;③若m ⊥α,n ∥β,m ⊥n ,则α∥β;④若m ⊥α,n ∥β,α∥β,则m ⊥n .其中正确命题的个数为( )A .1B .2C .3D .4[答案] B[解析] ①④正确,②③不正确.故选B.6.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[答案] B[解析] 直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直的充要条件是:(m +2)(m -2)+3m (m +2)=0,解得m =12或m =-2,故应选B. 7.(2010·广东文,8)“x >0”是“3x 2>0”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 [答案] A[解析] 本题考查了充要条件的判定问题,这类问题的判断一般分两个方向进行,x >0显然能推出3x 2>0,而3x 2>0⇔|x |>0⇔x ≠0,不能推出x >0,故选A.8.已知命题p :∀x ∈R ,sin x ≥0,则下面说法正确的是( )A .綈p 是存在性命题,且是真命题B .綈p 是全称命题,且是真命题C .綈p 是全称命题,且是假命题D .綈p 是存在性命题,且是假命题[答案] A[解析] 綈p :∃x ∈R ,sin x <0,所以是存在性命题也是真命题.故选A.9.给出命题p :“若AB →·BC →>0,则△ABC 为锐角三角形”;命题q :“实数a 、b 、c 满足b 2=ac ,则a 、b 、c 成等比数列”.那么下列结论正确的是( )A .p 且q 与p 或q 都为真B .p 且q 为真而p 或q 为假C .p 且q 为假且p 或q 为假D .p 且q 为假而p 或q 为真[答案] C[解析] p :若AB →·BC →>0,则∠B >90°所以△ABC 为钝角三角形,故p 为假命题.q :a 、b 、c 均为零时b 2=ac 但a 、b 、c 不成等比数列,故q 为假命题,所以p 且q 为假,p 或q 也为假,故选C.10.下列有关命题的说法错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为:若x ≠1,则x 2-3x +2≠0B .x =1是x 2-3x +2=0的充分不必要条件C .若p ∧q 为假命题,则p ,q 均为假命题D .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0[答案] C[解析] p ∧q 为假,则p ,q 至少一个为假.故选C.11.(2009·天津高考)设x ∈R ,则“x =1”是“x 3=x ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] x =1⇒x 3=x ,但x 3=x x =1,故选A. 12.用反证法证明命题:若系数为整数的一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个是偶数D .假设a 、b 、c 至多有两个是偶数[答案] B[解析] a 、b 、c 中至少有一个是偶数的否定是a 、b 、c 都不是偶数,故选B.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.“|x -2|<2成立”是“x (x -3)<0成立”的________条件.[答案] 必要不充分[解析] 由|x -2|<2得-2<x -2<2⇔-1<x <3.由x (x -3)<0⇔0<x <3,显然-1<x <3⇐0<x <3.14.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根,则使p ∨q 为真,p ∧q 为假的实数m 的取值范围是________.[答案] (-∞,-2]∪[-1,3)[解析] 对于方程x 2+2mx +1=0有两个不等正根,∴⎩⎪⎨⎪⎧Δ=4m 2-4>0,-2m >0.∴m <-1, 方程x 2+2(m -2)x -3m +10=0无实根,Δ=4(m -2)2-4(-3m +10)<0,∴-2<m <3,若p 真q 假,则m ≤-2;若p 假q 真,则-1≤m <3.15.函数y =ax 2+bx +c (a ≠0)的图象过原点的充要条件是________________.[答案] c =016.设A 、B 为两个集合,下列四个命题:①AB ⇔对∀x ∈A ,有x ∉B ; ②AB ⇔A ∩B =∅; ③AB ⇔A ⊉B ; ④A B ⇔∃x ∈A ,使得x ∉B ,其中真命题的序号是________________. [答案] ④[解析] 通过举反例说明:若A ={1,2,3},B ={1,2,4},满足A B ,但1∈A 且1∈B ,A ∩B ={1,2},所以①,②是假命题;若A ={1,2,4},B ={1} 满足A B ,但B ⊆A ,所以③是假命题;只有④为真命题.三、解答题(本大题共6个大题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.[解析] 逆命题:若x =2且y =-1,则x -2+(y +1)2=0;(真) 否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1;(真)逆否命题:若x ≠2或y ≠-1,则x -2+(y +1)2≠0(真)18.(本题满分12分)已知a >0设命题p :函数y =(1ax 为增函数. 命题q :当x ∈[12,2]时函数f (x )=x +1x >1a恒成立. 如果p ∨q 为真命题,p ∧q 为假命题,求a 的范围.[解析] 当y =(1a)x 为增函数,得0<a <1. 当x ∈[12,2]时,因为f (x )在[12,1]上为减函数,在[1,2]上为增函数. ∴f (x )在x ∈[12,2]上最小值为f (1)=2. 当x ∈[12,2]时,由函数f (x )=x +1x >1a恒成立. 得2>1a 解得a >12. 如果p 真且q 假,则0<a ≤12; 如果p 假且q 真,则a ≥1.所以a 的取值范围为(0,12]∪[1,+∞). 19.(本题满分12分)已知a >0,函数f (x )=ax -bx 2.(1)当b >0时,若对任意x ∈R ,都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b .[证明] (1)∵f (x )=-b (x -a 2b )2+a 24b对任意x ∈R ,都有f (x )≤1,∴f (a 2b )=a 24b≤1. 又∵a >0,b >0,∴a 2≤4b ,即a ≤2b .(2)必要性:对任意x ∈[0,1],|f (x )|≤1,即-1≤f (x )≤1,∴f (1)≥-1,即a -b ≥-1,∴a ≥b -1.∵b >1,∴0<1b<1,∴f ⎝⎛⎭⎫1b ≤1. 即a ·1b -b ·(1b)2≤1, ∴ab -1≤1,∴a ≤2b .所以b -1≤a ≤2b .充分性:∵b >1,∴f (x )的图象是开口向下的抛物线.由a ≤2b ,得0<a 2b <a 2b≤1. ∴0<a 2b <1. ∴y max =f (a 2b )=a 24b =(a 2b)2≤1. ∴f (x )≤1.∵f (0)=0,∴f (0)>-1.又∵f (1)=a -b ,由b -1≤a ,即a ≥b -1,知f (1)≥b -1-b =-1.而函数f (x )在(0,a 2b)上单调递增,在⎣⎡⎭⎫a 2b ,1上单调递减,所以当x ∈[0,1]时,f (x )≥-1.综上所述,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b .20.(本小题满分12分)求使函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象全在x 轴上方成立的充要条件.[解析] 要使函数f (x )的图象全在x 轴上方的充要条件是:⎩⎪⎨⎪⎧a 2+4a -5>0Δ=16(a -1)2-4(a 2+4a -5)×3<0, 或⎩⎨⎧a 2+4a -5=0y >0 解得1<a <19或a =1.所以使函数f (x )的图象全在x 轴上方的充要条件是1≤a <19.21.(本小题满分12分)已知命题p :lg (x 2-2x -2)≥0;命题q :|1-x 2|<1.若p 是真命题,q 是假命题,求实数x 的取值范围.[解析] 由lg (x 2-2x -2)≥0得x 2-2x -2≥1,即x 2-2x -3≥0,即(x -3)(x +1)≥0,∴x ≥3或x ≤-1.由|1-x2|<1,-1<1-x2<1∴0<x<4.∵命题q为假,∴x≤0或x≥4,则{x|x≥3或x≤-1}∩{x|x≤0或x≥4}={x|x≤-1或x≥4},∴满足条件的实数x的取值范围为(-∞,-1]∪[4,+∞).22.(本小题满分14分)证明二次函数f(x)=ax2+bx+c(a≠0)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.[解析]充分性:设△=b2-4ac≤0则af(x)=a2x2+abx+ac=a2(x+b2a )2-b24+ac=a2(x+b2a)2-14(b2-4ac)≥0,所以af(m)≥0,这与af(m)<0矛盾,即b2-4ac>0.故二次函数f(x)=ax2+bx+c(a≠0)有两个不等的零点,设为x1,x2,且x1<x2,从而f(x)=a(x-x1)(x-x2),af(m)=a2(m-x1)(m-x2)<0,所以x1<m<x2.必要性:设x1,x2是方程的两个零点,且x1<x2,由题意知x1<m<x2,因为f(x)=a(x-x1)(x-x2),且x1<m<x2.∴af(m)=a2(m-x1)(m-x2)<0,即af(m)<0.综上所述,二次函数f(x)的两个零点在点(m,0)的两侧的充要条件是af(m)<0.。

2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.2.1、1.2.2

2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.2.1、1.2.2

1.2 导数的运算1.2.1 常数函数与幂函数的导数 1.2.2 导数公式表及数学软件的应用1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.(难点) 2.掌握基本初等函数的导数公式,并能进行简单的应用.(重点、易混点)[基础·初探]教材整理1 几个常用函数的导数 阅读教材P 14~P 15,完成下列问题.【答案】 0 1 2x -1x2判断(正确的打“√”,错误的打“×”) (1)若y =x 3+2,则y ′=3x 2+2.( ) (2)若y =1x ,则y ′=1x2.( ) (3)若y =e ,则y ′=0.( )【解析】(1)由y=x3+2,∴y′=3x2.(2)由y=1x,∴y′=-1x2.(3)由y=e,∴y′=0.【答案】(1)×(2)×(3)√教材整理2基本初等函数的导数公式阅读教材P17,完成下列问题.【答案】0 nx n-1μxμ-1a x ln a e x1xln a1xcos x-sin x1.给出下列命题:①y=ln 2,则y′=1 2;②y=1x2,则y′=-2x3;③y=2x,则y′=2x ln 2;④y=log2x,则y′=1 xln 2.其中正确命题的个数为( )A.1 B.2C.3 D.4【解析】对于①,y′=0,故①错;显然②③④正确,故选C.【答案】 C2.若函数f (x )=10x ,则f ′(1)等于( ) A.110 B .10 C .10ln 10D.110ln 10【解析】 ∵f ′(x )=10x ln 10,∴f ′(1)=10ln 10. 【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)y =x 12;(2)y =1x4;(3)y =5x3;(4)y =3x ;(5)y =log 5x .【精彩点拨】 首先观察函数解析式是否符合求导形式,若不符合可先将函数解析式化为基本初等函数的求导形式.【自主解答】 (1)y ′=(x 12)′=12x 11. (2)y ′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -5=-4x5.(3)y ′=(5x3)′=(x 35)′=35x -25. (4)y ′=(3x )′=3x ln 3. (5)y ′=(log 5x )′=1xln 5.1.若所求函数符合导数公式,则直接利用公式求解.2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原则,避免不必要的运算失误.3.要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.[再练一题]1.若f (x )=x 3,g (x )=log 3x, 则f ′(x )-g ′(x )=__________.【导学号:05410008】【解析】 ∵f ′(x )=3x 2,g ′(x )=1xln 3, ∴f ′(x )-g ′(x )=3x 2-1xln 3. 【答案】 3x 2-1xln 3(1)求质点在t =π3时的速度; (2)求质点运动的加速度.【精彩点拨】 (1)先求s ′(t ),再求s ′⎝ ⎛⎭⎪⎫π3.(2)加速度是速度v (t )对t 的导数,故先求v (t ),再求导. 【自主解答】 (1)v (t )=s ′(t )=cos t ,∴v ⎝ ⎛⎭⎪⎫π3=cos π3=12.即质点在t =π3时的速度为12. (2)∵v (t )=cos t ,∴加速度a (t )=v ′(t )=(cos t )′=-sin t .1.速度是路程对时间的导数,加速度是速度对时间的导数.2.求函数在某定点(点在函数曲线上)的导数的方法步骤是:(1)先求函数的导函数;(2)把对应点的横坐标代入导函数求相应的导数值.[再练一题]2.(1)求函数f (x )=13x在(1,1)处的导数;(2)求函数f (x )=cos x 在⎝ ⎛⎭⎪⎫π4,22处的导数.【解】 (1)∵f ′(x )=⎝ ⎛⎭⎪⎪⎫13x ′=(x -13)′=-13x -43=-133x4, ∴f ′(1)=-1331=-13.(2)∵f ′(x )=-sin x , ∴f ′⎝ ⎛⎭⎪⎫π4=-sin π4=-22.[探究共研型]探究1 f (x )=x ,f (x ) 【提示】 ∵(x )′=1·x 1-1,(x 2)′=2·x 2-1,(x)′=⎝ ⎛⎭⎪⎫x 12′=12x 12-1,∴(x α)′=α·x α-1.探究2 点P 是曲线y =e x 上的任意一点,求点P 到直线y =x 的最小距离.【提示】 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近,则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , ∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22.求过曲线f (x )=cos x 上一点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点的切线垂直的直线方程.【精彩点拨】 错误!→错误!→所求直线斜率k =-1f′⎝ ⎛⎭⎪⎫π3→利用点斜式写出直线方程【自主解答】 因为f (x )=cos x ,所以f ′(x )=-sin x ,则曲线f (x )=cos x 在点P ⎝ ⎛⎭⎪⎫π3,12的切线斜率为f ′⎝ ⎛⎭⎪⎫π3=-sin π3=-32, 所以所求直线的斜率为23 3, 所求直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3, 即y =23 3x -239π+12.求曲线方程或切线方程时应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.[再练一题]3.若将上例中点P 的坐标改为(π,-1),求相应的直线方程. 【解】 ∵f (x )=cos x ,∴f ′(x )=-sin x ,则曲线f (x )=cos x 在点P (π,-1)处的切线斜率为f ′(π)=-sin π=0, 所以所求直线的斜率不存在, 所以所求直线方程为x =π.[构建·体系]1.已知f (x )=x α(α∈Q +),若f ′(1)=14,则α等于( ) 【导学号:05410009】 A.13 B.12 C.18D.14【解析】∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=1 4.【答案】 D 2.给出下列结论:①若y=1x3,则y′=-3x4;②若y=3x,则y′=133x;③若f(x)=3x,则f′(1)=3.其中正确的个数是( )A.1 B.2C.3 D.0【解析】对于①,y′=错误!=错误!=错误!,正确;对于②,y′=13x13-1=13x-23,不正确;对于③,f′(x)=3,故f′(1)=3,正确.【答案】 B3.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 【解析】∵f′(x)=3ax2+1,∴f′(1)=3a+1.又f(1)=a+2,∴切线方程为y-(a+2)=(3a+1)(x-1).∵切线过点(2,7),∴7-(a+2)=3a+1,解得a=1.【答案】 14.已知函数y=kx是曲线y=ln x的一条切线,则k=__________.【解析】设切点为(x0,y0),∵y′=1x,∴k=1x0,∴y=1x0·x,又点(x0,y0)在曲线y=ln x上,∴y0=ln x0,∴ln x0=x0x0,∴x0=e,∴k=1e.【答案】1 e5.已知直线y=kx是曲线y=3x的切线,则k的值为________. 【解析】设切点为(x0,y0).因为y′=3x ln 3,①所以k=3x0ln 3,所以y=3x0ln 3·x,又因为(x0,y0)在曲线y=3x上,所以3x0ln 3·x0=3x0,②所以x0=1 ln 3=log3 e.所以k=eln 3.【答案】eln 3我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。

【人教B版】高中数学选修2-2学案全集(全册 共65页 附答案)

【人教B版】高中数学选修2-2学案全集(全册 共65页 附答案)

【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。

人大附数学 选修2-2导数练习册(学生用)

人大附数学 选修2-2导数练习册(学生用)

()
A. a b
B. a b
C. a b
D.不确定
二、填空题
7.函数 y x2 在区间1, 2上的平均变化率为__________.
8.已知函数
y
x3
-2
,当
x0
=2
时,则
y x
=
__________.
9.将半径为 R 的球加热,若球的半径增加量为 R ,则球的体积增量 V __________.
2.过曲线 f (x) x3 上两点 P(1,1) 和 Q(1 x,1 y) 作曲线的割线,当 x 0.1时割线的
斜率为
()
A. 3.31
B. 3
C.1
D. 1
3.曲线
y
1
x2
在点 (1,
1 )
处切线的倾斜角为
2
2
A.1
B. 4
C. 4
()
D. 5 4
4.曲线 C: y=x3 在点 P 处的切线的斜率等于 3 ,则点 P 的坐标为
率为 b ,则下列结论中正确的是
()
A. a b
B. a b
C. a b
D.不确定
5.如果质点 M 按规律 s 3 t 2 运动,则在一小段时间 2,2.1 中相应的平均速度是
()
A.4
B.4.1
C.0.41
D.3
6.已知 f (x) 2x 1和 g(x) 3x 2 在区间m, n 上的平均变化率分别为 a 和 b ,则
1.1 导数
一、选择题:
1.1.1 函数的平均变化率
1.在函数平均变化率的定义中,自变量的增量 x 满足
()
A. x>0
B. x<0

人教版B版高中数学选修2-2:合情推理_课件1(2)

人教版B版高中数学选修2-2:合情推理_课件1(2)
因为当n=40时,f(40)=402+40+41=41×41, 所以f(40)是合数,因此上面有归纳推理得 到的猜想不正确。
虽然归纳推理所得到的结论未必是正确 的,但它所具有的由特殊到一般,由具体 到抽象的认识功能,对于数学的发现是十 分有用的。观察、实验、对有限的资料作 归纳整理,提出带有规律性的猜想,是数 学研究的基本方法之一。
归纳推理与演绎推理虽有上述区别,但 它们在人们的认识过程中是紧密的联系着 的,两者互相依赖、互为补充,比如说, 演绎推理的一般性知识的大前提必须借助 于归纳推理从具体的经验中概括出来,从 这个意义上我们可以说,没有归纳推理也 就没有演绎推理。当然,归纳推理也离不 开演绎推理。
比如,归纳活动的目的、任务和方向是归纳 过程本身所不能解决和提供的,这只有借助 于理论思维,依靠人们先前积累的一般性理 论知识的指导,而这本身就是一种演绎活动。 而且,单靠归纳推理是不能证明必然性的, 因此,在归纳推理的过程中,人们常常需要 应用演绎推理对某些归纳的前提或者结论加 以论证。从这个意义上我们也可以说,没有 演绎推理也就不可能有归纳推理。
(3)因为三角形的内角和是180°×(3- 2),四边形的内角和是180°×(4-2),五 边形的内角和是180°×(5-2),……,所 以n边形的内角和是180°×(n-2)。
从上述事例中可以发现,其中的推理得 到的结论都是可能为真的判断,像这种前 提为真时,结论可能为真的推理,叫做合 情推理。
在学习等差数列时,我们是这样推导首 项为a1,公差为d的等差数列{an}的通项公 式的:
a1=a1+0d; a2=a1+1×d; a3=a1+2×d; a4=a1+3×d; …………
等差数列{an}的通项公式是an=a1+(n-1)d.

高中数学 第二章 平面解析几何初步综合测试A(含解析)新人教B版必修2

高中数学 第二章 平面解析几何初步综合测试A(含解析)新人教B版必修2

【成才之路】2015-2016学年高中数学 第二章 平面解析几何初步综合测试A 新人教B 版必修2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.数轴上三点A 、B 、C ,已知AB =2.5,BC =-3,若A 点坐标为0,则C 点坐标为( ) A .0.5 B .-0.5 C .5.5 D .-5.5[答案] B[解析] 由已知得,x B -x A =2.5,x C -x B =-3,且x A =0,∴两式相加得,x C -x A =-0.5,即x C =-0.5.2.(2015·福建南安一中高一期末测试)已知直线经过点A (0,4)和点B (1,2),则直线AB 的斜率为( )A .3B .-2C .2D .不存在[答案] B[解析] 由斜率公式得,直线AB 的斜率k =2-41-0=-2.3.已知点A (1,2,2)、B (1,-3,1),点C 在yOz 平面上,且点C 到点A 、B 的距离相等,则点C 的坐标可以为( )A .(0,1,-1)B .(0,-1,6)C .(0,1,-6)D .(0,1,6)[答案] C[解析] 由题意设点C 的坐标为(0,y ,z ), ∴1+y -22+z -22=1+y +32+z -12,即(y -2)2+(z -2)2=(y +3)2+(z -1)2. 经检验知,只有选项C 满足.4.过两点(-1,1)和(3,9)的直线在x 轴上的截距是( ) A .-32B .-23C .25D .2[答案] A[解析] 由题意,得过两点(-1,1)和(3,9)的直线方程为y =2x +3.令y =0,则x =-32, ∴直线在x 轴上的截距为-32,故选A .5.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A .1或3B .1或5C .3或5D .1或2[答案] C[解析] 当k =3时,两直线显然平行;当k ≠3时,由两直线平行,斜率相等,得-k -34-k=2k -32.解得k =5,故选C .6.在平面直角坐标系中,正△ABC 的边BC 所在直线的斜率为0,则AC 、AB 所在直线的斜率之和为( )A .-2 3B .0C . 3D .2 3[答案] B[解析] 如图所示.由图可知,k AB =3,k AC =-3,∴k AB +k AC =0.7.直线3x -2y +m =0与直线(m 2-1)x +3y +2-3m =0的位置关系是( ) A .平行B .垂直C .相交D .与m 的取值有关[答案] C[解析] 由3×3-(-2)×(m 2-1)=0,即2m 2+7=0无解.故两直线相交. 8.若点(2,2)在圆(x +a )2+(y -a )2=16的内部,则实数a 的取值范围是( ) A .-2<a <2 B .0<a <2 C .a <-2或a >2 D .a =±2[答案] A[解析] 由题意,得(2+a )2+(2-a )2<16, ∴-2<a <2.9.(2015·辽宁沈阳二中高一期末测试)设A 、B 是x 轴上的点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .2x +y -7=0[答案] A[解析] 由题意知,点P 在线段AB 的垂直平分线x =2上.由⎩⎪⎨⎪⎧x =2x -y +1=0,得y =3.∴P (2,3).令x -y +1=0中y =0,得x =-1, ∴A (-1,0).又∵A 、B 关于直线x =2对称, ∴B (5,0).∴直线PB 的方程为y 3-0=x -52-5,即x +y -5=0.10.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( ) A .相切 B .相交 C .相切或相离 D .相交或相切[答案] C[解析] ∵m >0,∴圆心(0,0)到直线2(x +y )+1+m =0的距离d =|1+m |2+2=1+m2,圆x 2+y 2=m 的半径r =m ,由1+m 2-m =1-2m +m2=1-m22≥0,得d ≥r ,故选C .11.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公切线有( )A.1条B.2条C.3条D.4条[答案] C[解析]x2+y2-4x+2y+1=0的圆心为(2,-1),半径为2,圆x2+y2+4x-4y-1=0的圆心为(-2,2),半径为3,故两圆外切,即两圆有三条公切线.12.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m)则这辆卡车的平顶车篷篷顶距地面高度不得超过( )A.1.4 m B.3.5 mC.3.6 m D.2.0 m[答案] B[解析]圆半径OA=3.6 m,卡车宽1.6 m,∴AB=0.8 m,∴弦心距OB= 3.62-0.82≈3.5 m.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.若点(2,k)到直线3x-4y+6=0的距离为4,则k的值等于________.[答案]-2或8[解析]由题意,得|6-4k+6|32+-42=4,∴k=-2或8.14.以点A(2,0)为圆心,且经过点B(-1,1)的圆的方程是________.[答案](x-2)2+y2=10[解析]由题意知,圆的半径r=|AB|=-1-22+1-02=10.∴圆的方程为(x -2)2+y 2=10.15.若直线x +3y -a =0与圆x 2+y 2-2x =0相切,则a 的值为________. [答案] -1或3[解析] 圆心为(1,0),半径r =1,由题意,得|1-a |1+3=1,∴a =-1或3.16.(2015·山东莱州市高一期末测试)已知直线l 垂直于直线3x +4y -2=0,且与两个坐标轴构成的三角形的周长为5个单位长度,直线l 的方程为________.[答案] 4x -3y +5=0或4x -3y -5=0[解析] 由题意可设直线l 的方程为y =43x +b ,令x =0,得y =b ,令y =0,得x =-34b .∴三角形的周长为|b |+34|b |+54|b |=5,解得b =±5,故所求直线方程为4x -3y +5=0或4x -3y -5=0.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)正方形ABCD 的对角线AC 在直线x +2y -1=0上,点A 、B 的坐标分别为A (-5,3)、B (m,0)(m >-5),求B 、C 、D 点的坐标.[解析] 如图,设正方形ABCD 两顶点C 、D 坐标分别为(x 1,y 1)、(x 2,y 2).∵直线BD ⊥AC ,k AC =-12,∴k BD =2,直线BD 方程为y =2(x -m ),与x +2y -1=0联立解得⎩⎪⎨⎪⎧x =15+45m y =25-25m,点E 的坐标为⎝ ⎛⎭⎪⎫15+45m ,25-25m ,∵|AE |=|BE |, ∴⎝ ⎛⎭⎪⎫15+45m +52+⎝ ⎛⎭⎪⎫25-25m -32 =⎝ ⎛⎭⎪⎫15+45m -m 2+⎝ ⎛⎭⎪⎫25-25m 2, 平方整理得m 2+18m +56=0,∴m =-4或m =-14(舍∵m >-5),∴B (-4,0).E 点坐标为(-3,2),∴⎩⎪⎨⎪⎧-3=-5+x 122=3+y12,∴⎩⎪⎨⎪⎧x 1=-1y 1=1.即点C (-1,1), 又∵⎩⎪⎨⎪⎧-3=-4+x 222=0+y22,∴⎩⎪⎨⎪⎧x 2=-2y 2=4,即点D (-2,4).∴点B (-4,0)、点C (-1,1)、点D (-2,4).18.(本题满分12分)已知一直线通过点(-2,2),且与两坐标轴所围成的三角形的面积为1,求这条直线的方程.[解析] 设直线方程为y -2=k (x +2),令x =0得y =2k +2,令y =0得x =-2-2k,由题设条件12⎪⎪⎪⎪⎪⎪-2-2k ·||2k +2=1,∴2(k +1)2=|k |,∴⎩⎪⎨⎪⎧k >02k 2+3k +2=0或⎩⎪⎨⎪⎧k <02k 2+5k +2=0,∴k =-2或-12,∴所求直线方程为:2x +y +2=0或x +2y -2=0.19.(本题满分12分)已知直线y =-2x +m ,圆x 2+y 2+2y =0. (1)m 为何值时,直线与圆相交? (2)m 为何值时,直线与圆相切? (3)m 为何值时,直线与圆相离?[解析] 由⎩⎪⎨⎪⎧y =-2x +mx 2+y 2+2y =0,得5x 2-4(m +1)x +m 2+2m =0.Δ=16(m +1)2-20(m 2+2m )=-4[(m +1)2-5], 当Δ>0时,(m +1)2-5<0, ∴-1-5<m <-1+ 5. 当Δ=0时,m =-1±5,当Δ<0时,m <-1-5或m >-1+ 5.故(1)当-1-5<m <-1+5时,直线与圆相交; (2)当m =-1±5时,直线与圆相切;(3)当m <-1-5或m >-1+5时,直线与圆相离.20.(本题满分12分)求与圆C 1:(x -2)2+(y +1)2=4相切于点A (4,-1),且半径为1的圆C 2的方程.[解析]解法一:由圆C 1:(x -2)2+(y +1)2=4,知圆心为C 1(2,-1), 则过点A (4,-1)和圆心C 1(2,-1)的直线的方程为y =-1, 设所求圆的圆心坐标为C 2(x 0,-1), 由|AC 2|=1,即|x 0-4|=1, 得x 0=3,或x 0=5,∴所求圆的方程为(x -5)2+(y +1)2=1,或(x -3)2+(y +1)2=1. 解法二:设所求圆的圆心为C 2(a ,b ), ∴a -42+b +12=1,①若两圆外切,则有a -22+b +12=1+2=3,②联立①、②解得a =5,b =-1, ∴所求圆的方程为(x -5)2+(y +1)2=1; 若两圆内切,则有a -22+b +12=2-1=1,③联立①、③解得a =3,b =-1, ∴所求圆的方程为(x -3)2+(y +1)2=1.∴所求圆的方程为(x -5)2+(y +1)2=1,或(x -3)2+(y +1)2=1.21.(本题满分12分)(2014·甘肃庆阳市育才中学高一期末测试)已知两圆x 2+y 2+6x -4=0,x 2+y 2+6y -28=0.求:(1)它们的公共弦所在直线的方程; (2)公共弦长.[解析] (1)由两圆方程x 2+y 2+6x -4=0,x 2+y 2+6y -28=0相减,得x -y +4=0. 故它们的公共弦所在直线的方程为x -y +4=0.(2)圆x 2+y 2+6x -4=0的圆心坐标为(-3,0),半径r =13, ∴圆心(-3,0)到直线x -y +4=0的距离d =|-3-0+4|12+-12=22, ∴公共弦长l =2132-222=5 2.22.(本题满分14分)(2015·湖南郴州市高一期末测试)已知圆的方程为x 2+y 2-2x -4y +m =0.(1)若圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(2)在(1)的条件下,求以MN 为直径的圆的方程. [解析] (1)圆的方程可化为(x -1)2+(y -2)2=5-m , ∴m <5.设M (x 1,y 1)、N (x 2,y 2).由⎩⎪⎨⎪⎧x +2y -4=0x 2+y 2-2x -4y +m =0,得5y 2-16y +m +8=0, ∴y 1+y 2=165,y 1y 2=m +85.x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,∵OM ⊥ON ,∴k OM ·k ON =-1, 即x 1x 2+y 1y 2=0.∴16-8(y 1+y 2)+5y 1y 2=0, ∴16-8×165+8+m =0,∴m =85.(2)以MN 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0, 即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.又x 1+x 2=4-2y 1+4-2y 2=8-2(y 1+y 2)=85,∴以MN 为直径的圆的方程为x 2+y 2-85x -165y =0.。

高中数学 1.1.4投影与直观图课时作业(含解析)新人教B版必修2-新人教B版高一必修2数学试题

高中数学 1.1.4投影与直观图课时作业(含解析)新人教B版必修2-新人教B版高一必修2数学试题

【成才之路】2015-2016学年高中数学投影与直观图课时作业新人教B版必修2一、选择题1.下列命题中正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点[答案] D[解析]梯形的平行投影是梯形或线段,∴B不对;平行投影把平行直线投射成平行直线或一条直线,把相交直线投射成相交直线或一条直线,把线段中点投射成投影的中点,∴C错,D对,矩形的平行投影可以是线段、矩形或平行四边形,∴A错.2.下列图形中采用中心投影画法的是( )[答案] A[解析]由中心投影与平行投影的图形特征及性质可知选A.3.夜晚,人在路灯下的影子是________投影,人在月光下的影子是________投影.( ) A.平行中心B.中心中心C.平行平行D.中心平行[答案] D[解析]路灯的光是从一点发出的,故影子是中心投影;而月光可以近似看作平行的,月光下的影子是平行投影.4.(2015·某某市重点中学高一期末测试)利用斜二测画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是( )A.正三角形的直观图仍然是正三角形B .平行四边形的直观图一定是平行四边形C .正方形的直观图是正方形D .圆的直观图是圆 [答案] B[解析] 平行四边形的直观图一定是平行四边形.5.水平放置的矩形ABCD 长AB =4,宽BC =2,以AB 、AD 为轴作出斜二测直观图A ′B ′C ′D ′,则四边形A ′B ′C ′D ′的面积为( )A .4 2B .2 2C .4D .2[答案] B[解析] 平行线在斜二测直观图中仍为平行线,∴四边形A ′B ′C ′D ′为平行四边形,∠D ′A ′B ′=45°,A ′B ′=4,A ′D ′=12×2=1,∴D ′E =1×sin45°=22, ∴S 四边形A ′B ′C ′D ′=A ′B ′·D ′E =4×22=2 2. 6.给出以下关于斜二测直观图的结论,其中正确的个数是( ) ①角的水平放置的直观图一定是角. ②相等的角在直观图中仍相等. ③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行. A .0 B .1 C .2 D .3[答案] C[解析] 由斜二测画法规则可知,直观图保持线段的平行性,∴④对,①对,而线段的长度,角的大小在直观图中都会发生改变,∴②③错.二、填空题7.如图所示的是水平放置的三角形ABC 在直角坐标系中的直观图,其中D ′是A ′C ′的中点,且∠A ′C ′B ′≠30°,则原图形中与线段BD 的长相等的线段有________条.[答案] 2[解析]△ABC 为直角三角形,由D 为AC 中点,∴BD =AD =CD .∴与BD 的长相等的线段有两条.8.如图所示为一个水平放置的正方形ABCO ,在直角坐示系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为________.[答案]22[解析] 画出该正方形的直观图,则易得点B ′到x ′轴的距离等于点A ′到x ′轴的距离d ,则O ′A ′=12OA =1,∠C ′O ′A ′=45°,所以d =22O ′A ′=22. 三、解答题9.如图所示,有一灯O ,在它前面有一物体AB ,灯所发出的光使物体AB 在离灯O 为10 m 的墙上形成了一个放大了3倍的影子A ′B ′,试求灯与物体之间的距离.[解析] 如图所示,作OH ⊥AB 于H ,延长OH 交A ′B ′于H ′,则OH 即为所求. 由平面几何及光线沿直线传播知,△AOB ∽△OA ′B ′, ∴AB A ′B ′=OH OH ′,∵AB A ′B ′=13,且OH ′=10 m. ∴OH =103 m ,即灯与物体AB 之间的距离为103m.一、选择题1.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20m,5m,10m ,四棱锥的高为8m ,若按1500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和四棱锥的高应分别为( )A .4 cm,1 cm,2 cm,1.6 cmB .4 cm,0.5 cm,2 cm,0.8 cmC .4 cm,0.5 cm,2 cm,1.6 cmD .2 cm,0.5 cm,1 cm,0.8 cm [答案] C[解析] 由比例尺可知,长方体的长、宽、高和四棱锥的高应分别为 4 cm,1 cm,2 cm 和1.6 cm ,再结合直观图,图形的尺寸应为4 cm,0.5 cm,2 cm,1.6 cm.2.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是103,则皮球的直径是( )A .53B .15C .10D .83[答案] B[解析] 设皮球的半径为R ,由题意得:DC =2R ,DE =103,∠CED =60°,解得DC =DE sin60°=15.3.如图,正方形O ′A ′B ′C ′的边长为a cm(a >0),它是一个水平放置的平面图形的直观图,则它的原图形OABC 的周长是( )A .8a cmB .6a cmC .(2a +22a ) cmD .4a cm[答案] A[解析] 由斜二测画法的规则可知,在原图形中OB =22a ,OA =a ,且OA ⊥OB ,∴AB =3a , ∴OABC 的周长为2(a +3a )=8a cm.4.已知正△ABC 的边长为a ,以它的一边为x 轴,对应的高线为y 轴,画出它的水平放置的直观图△A ′B ′C ′,则△A ′B ′C ′的面积是( )A.34a 2B.38a 2 C.68a 2D.616a 2 [答案]D[解析] 如图为△ABC 及其直观图A ′B ′C ′.则有A ′B ′=AB =a ,O ′C ′=12OC =12·32a =34a ,∠B ′O ′C ′=45°,∴S △A ′B ′C ′=12A ′B ′·O ′C ′·sin45°=12a ×34a ×22=616a 2,故选D.二、填空题5.如图所示,梯形A ′B ′C ′D ′是平面图形ABCD 的直观图,若A ′D ′∥O ′y ′,A ′B ′∥C ′D ′,A ′B ′=23C ′D ′=2,A ′D ′=1,则四边形ABCD 的面积是____________.[答案] 5[解析] 原图形ABCD 为直角梯形,AD 为垂直于底边的腰,AD =2,AB =2,CD =3,∴S四边形ABCD=5.6.(2015·某某商河弘德中学高一月考)水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.[答案]52[解析] 原图中AC =3,BC =4,且△ABC 为直角三角形,故斜边上的中线长为1232+42=52. 三、解答题7.如图所示的平行四边形A ′B ′C ′D ′是一个平面图形的直观图,且∠D ′A ′B ′=45°,请画出它的实际图形.[解析]①在直观图A ′B ′C ′中建立坐标系x ′A ′y ′,再建立一个直角坐标系xOy ,如图所示.②在x 轴上截取线段AB =A ′B ′,在y 轴上截取线段AD ,使AD =2A ′D ′.③过B 作BC ∥AD ,过D 作DC ∥AB ,使BC 与DC 交于点C ,则四边形ABCD 为四边形A′B′C′D′的实际图形.8.小昆和小鹏两人站成一列,背着墙,面朝太阳,小昆靠近墙,在太阳光照射下,小昆的头部影子正好落在墙角处.如果小昆身高为1.6 m,离墙距离为3 m,小鹏的身高1.5 m,离墙的距离为5 m,则小鹏的身影是否在小昆的脚下,请通过计算说明.[解析]如图设小鹏的影长为x m,根据太阳光平行的特征有x1.5=31.6,x≈2.81,2.81 m+3 m=5.81 m>5 m,所以小鹏的身影会在小昆的脚下.。

义务教育人教b版选修2-3高中数学综合素质测试(含解析)高三数学试题试卷.doc

义务教育人教b版选修2-3高中数学综合素质测试(含解析)高三数学试题试卷.doc

选修2 — 3综合素质测试木测试仅供教师备用,学生书中没有。

时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合题目要求的•)1. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 ()A. 192 种B. 216 种C. 240 种D. 288 种[答案]B[解析]分两类:最左端排甲有Al=20种不同的排法,最左端排乙,由于甲不能排在最右 端,所以有C ;A : = 96种不同的排法,由加法原理可得满足条件的排法共有216种.2. (2015 •新课标II 理,3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论屮不正确的是()A. 逐年比较,2008年减少二氧化硫排放量的效果最显著B. 2007年我国治理二氧化硫排放显现成效C. 2006年以来我国二氧化硫年排放量呈减少趋势D. 2006年以来我国二氧化硫年排放量与年份正相关 [答案]D[解析]考查正、负相关及对柱形图的理解.由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关, 故选0.3. (0—276 (^e R )展开式中的常数项是() A. -20 B. -15 C. 15D. 202 7002 600- 2 500- 2 4()0・ 2 300・ 2 200- 2 100- 2 000- 2004年2005年 2006年2007年2008年2009年 2010年 2011 年 2012 年 2013年[答案]C[解析]本小题考查二项展开式的指定项的求法.九=以(們宀・(一2一丁=賦一1)空心化 令 12—3厂=0, Ar=4, ・・・%=a=15.n v4. 设随机变量才服从二项分布X 〜B5, p ),则 一等于() A. 6 B.仃一Q ), C. 1-p D.以上都不对[答案]Bn v[解析]因为 X 〜BG p ), (ZO )2=["(l —刀)]2, UU ))2=(%)2,所以 _ = 血□]二(1-旅故选氏"P5-某地区空气质量监测资料表明,一夭的空气质量为优良的概率是0. 75,连续两天为优良的 概率是0・6,已知某夭的空气质量为优良,则随后一天的空气质量为优良的概率是()B. 0. 75C. 0.6D. 0. 45[答案]A[解析]木题考查条件概率的求法.设弭=“某一天的空气质量为优良” ,3= “随后一天的空气质量为优2 ,则P(B\A)=P =拾=0.8,故选 A.6. (2015 •广东理,4)袋中共冇15个除了颜色外完全相同的球,其中冇10个白球,5个红11 c-刃 [答案]B[解析]从袋中任取2个球共有C215 = 105种,其中恰好1个白球1个红球共有C110C15 = 50种,所以恰好1个白球1个红球的概率为語=普,故选B.7. 某校高三年级举行一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他 班有5位,若采用抽签方式确定他们的演讲顺序,则一班3位同学恰好被排在一起,而二班2位同 学没A. 0.8 球•从袋中任取2个球, 所取的2个球中恰有1个白球,1个红球的概率为(A.5 21B. 102? D. 1有被排在一起的概率为()A丄B丄10 20[答案]B[解析]基本事件总数为A 粘而事件力包括的基本事件可按“捆绑法”与“插空法”求解. 10个人的演讲顺序有A 幣种可能,即基本事件总数为A ;:, —班同学被排在-•起,二班的同学没有被排在一起这样来考虑:先将一班的3位同学当作一个元素与其他班的5位同学一起排列有皿 种,二班的2位同学插入到上述6个元素所留7个空当中,有朋种方法.依分步计数原理得不同的战・・住 1排法有皿•用•為中.・••所求概率A .o故选B.8. 为了评价某个电视栏目的改革效果,在改革前后分别从居民点随机抽取了 100位居民进行 调查,经过计算 疋的观测值 塔=99,根据这一数据分析,下列说法正确的是()A. 有99%的人认为该栏日优秀B. 有99%的人认为栏目是否优秀与改革有关C. 冇99%的把握认为电视栏冃是否优秀与改革冇关系D. 以上说法都不对 [答案]C[解析]当">6.635时有99%的把握认为电视栏冃是否优秀与改革有关系.故选C.9. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局 才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()1 A.-D.[答案]D局甲赢和第一局甲没赢,第二局甲贏.・・・Q*+*X(1-寺岭 选D.10. (2015 •新课标I 理,4)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某 同学每次投篮投屮的概率为0.6, 口各次投篮是否投屮相互独立,则该同学通过测试的概率为B. 0. 432D.1 120B. [解析] 考查互斥事件的概率加法公式. 甲获得冠军包括两种情况:在接下来的比赛屮,第一A. 0. 648C.0. 36D. 0.312 [答案]A[解析1考查独立重复试验;互斥事件和概率公式.根据独立重复试验公式得,该同学通过测试的概率为C^O. 62X0.4 + 0.6;5=0. 648,故选A.11. 如图,已知面积为1的正三角形昇%三边的屮点分别为〃、E 、F,从畀,B, C, D, E, F 六个点中任取三个不同的点,所构成的三角形的面积为才(三点共线时,规定/=0),则E3 = ()11[答案]B1 I3 3[解析]由题意知尤可取0,1,戶(*=0)=忑=帀W_| 20=?12. 已知(1 —2方〃的展开式中,奇数项的二项式系数之和是64,则(1 —2方”(1 +力的展开式 中,卫的系数为()A. -672B. 672C. -280 [答案]D[解析]由2宀=64,所以/7-1=6, n=l.则(1一2方"1+0的展开式中含"的项为:C?(- 2"+C ;(—2力S= (24C}-23C?)?=280y,所以”的系数为 280.故选 D.二、填空题(本大题共4个小题,每小题4分,共16分,将止确答案填在题中横线上) 13. (2015 •广东理,13)己知随机变量才服从二项分布B5, p ).若以力=30,=20,则p= _________ -z 1、 6=20 = 3T oz 、 1 'm=1)=20-3 To J_13 20 = 40*D. 2809[答案]I[解析]依题可得=%=30且〃(x)=®仃一p) =20,解得p=|.14. 如下图,A. B 、a 〃为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同[答案]16[解析]一类:从一个岛出发向其它三岛各建一桥.共有C=4种;二类:一个岛最多建两座桥如〃一旷—〃与这样两个排列对应一种建桥方法,因 此共有¥=12种,据分类计数原理共有16种.15. 设/为平面上过点(0,1)的直线,/的斜率等可能地取一2萌、—£、—爭、0、平羽、2品 用§表示坐标原点到/的距离,则随机变量§的数学期望£(§) =[答案] 求数学期望,关键是求出其分布列.根据题意,先确定§的所有可能的取值,再计算概率,从而列出分布列.当Z 的斜率&为土2応时,直线方程为土2侮一y+l=0,此时/=*; k=±书时,k2寸,厶=亍;&=0时,d ;=\.由等可能事件的概率可得分布列如卜•:4丄3 丄2 23 1P2 2 2 1 7777z rX 12,1 2,2 2 , ...Mn=-x 7+-x ?+-x-+ix ?=-16. (2015 •上海理,11)在(1+龙+古『°的展开式中,"项的系数为 示) [答案]45的建桥方案共有 种.[解析](结果用数值表[解析]因为(1+卄占)”=[(1+力+占]”=(1+方” + (:;。

2015-2016学年人教B版高中数学课件选修2-2第一章导数及其应用2.2《基本初等函数的导数公式及导数的运算法则

2015-2016学年人教B版高中数学课件选修2-2第一章导数及其应用2.2《基本初等函数的导数公式及导数的运算法则

常函数 幂函数 三角函数
2、若f ( x) xn , 则 f ( x) n x n1
3、若f ( x) sin x , 则 f ( x) cos x
4、若f ( x) cos x , 则 f ( x) sin x
5、若f ( x) a x , 则 f ( x) a x ln a
分形与函数
1.导数的几何意义?
导数的几何意义是曲线在某一点处的切线的斜率. 2.导数的物理意义?
导数的物理意义是运动物体在某一时刻的瞬时速度. 3.导函数的求解公式是什么?
f x x f x lim 导函数的求解公式是:f x y x 0 x
解:由导数公式:p '(t ) 1.05t p0 ln1.05
p '(10) 1.0510 ln1.05 0.08(元/年)
答:在第10个年头,这种商品的价格约以0.08元/年的速度上涨。
变式练习2:若某种商品的p0 5,那么在第10个年头, 这种商品的价格上涨的速度大约是多少?
.
4.四种常见函数的导数及应用:
思考
函数
导数
上述四个函数是 哪类初等函数? 导数有什么规律? 幂函数
yx
y 1
y x2
1 y x
y 2 x
y
y
1 x2
yx
n
y x
1 2 x
y nx
n1
基本初等函数的导数公式
1、若f ( x) c , 则 f ( x) 0
所以,函数y x3 2x 3的导数是y 3x2 2
(2) y sin 2 x 2sin x cos x

2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.3.1

2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.3.1

1.3导数的应用1.3.1利用导数判断函数的单调性1.理解导数与函数的单调性的关系.(易混点)2.掌握利用导数判断函数单调性的方法.(重点)3.会用导数求函数的单调区间.(重点、难点)[基础·初探]教材整理函数的单调性与导数之间的关系阅读教材P24,完成下列问题.用函数的导数判定函数单调性的法则(1)如果在(a,b)内,________,则f(x)在此区间是增函数,(a,b)为f(x)的单调增区间;(2)如果在(a,b)内,________,则f(x)在此区间是减函数,(a,b)为f(x)的单调减区间.【答案】f′(x)>0 f′(x)<0判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )【答案】(1)×(2)×(3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)函数y=f(图1-3-1①函数y=f(x)的定义域是[-1,5];②函数y=f(x)的值域是(-∞,0]∪[2,4];③函数y=f(x)在定义域内是增函数;④函数y=f(x)在定义域内的导数f′(x)>0.其中正确的序号是( )A.①②B.①③C.②③D.②④(2)设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-2所示,则导函数y=f′(x)的图象可能为( )图1-3-2【精彩点拨】研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.【自主解答】(1)由图象可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图象可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.【答案】(1)A (2)D1.利用导数判断函数的单调性比利用函数单调性的定义简单的多,只需判断导数在该区间内的正负即可.2.通过图象研究函数单调性的方法(1)观察原函数的图象重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图象重在找出导函数图象与x轴的交点,分析导数的正负.[再练一题]1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不正确的是( )A B C D(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )A B C D【解析】(1)A,B,C均有可能;对于D,若C1为导函数,则y=f(x)应为增函数,不符合;若C2为导函数,则y=f(x)应为减函数,也不符合.(2)因为y=f(x)的导函数在区间[a,b]上是增函数,则从左到右函数f(x)图象上的点的切线斜率是递增的.【答案】(1)D (2)A求函数f(x)=x+ax(a≠0)的单调区间.【精彩点拨】求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.【自主解答】f(x)=x+ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-a x2.当a>0时,令f′(x)=1-ax2>0,解得x>a或x<-a;令f′(x)=1-ax2<0,解得-a<x<0或0<x<a;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a,+∞);单调递减区间为(-a,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域.2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.[再练一题]2.(1)函数f(x)=e x-e x,x∈R的单调递增区间为( ) 【导学号:05410017】A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)(2)函数f(x)=ln x-x的单调递增区间是( )A.(-∞,1) B.(0,1)C .(0,+∞)D .(1,+∞)【解析】 (1)∵f ′(x )=(e x -e x )′=e x -e , 由f ′(x )=e x -e>0,可得x >1.即函数f (x )=e x -e x ,x ∈R 的单调增区间为 (1,+∞),故选D.(2)函数的定义域为(0,+∞),又f ′(x )=1x -1, 由f ′(x )=1x -1>0,得0<x <1,所以函数f (x )=ln x -x 的单调递增区间是(0,1),故选B. 【答案】 (1)D (2)B[探究共研型]探究1 【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x 3-ax -1的单减区间为(-1,1),如何求a 的取值范围. 【提示】 由f ′(x )=3x 2-a , ①当a ≤0时,f ′(x )≥0, ∴f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0,得x =±3a3, 当-3a 3<x <3a3时,f ′(x )<0. ∴f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数, ∴f (x )的单调递减区间为⎝⎛⎭⎪⎫-3a 3,3a 3,∴3a3=1,即a=3.已知关于x的函数y=x3-ax+b.(1)若函数y在(1,+∞)内是增函数,求a的取值范围;(2)若函数y的一个单调递增区间为(1,+∞),求a的值.【精彩点拨】(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a的取值范围.(2)函数y的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】y′=3x2-a.(1)若函数y=x3-ax+b在(1,+∞)内是增函数.则y′=3x2-a≥0在x∈(1,+∞)时恒成立,即a≤3x2在x∈(1,+∞)时恒成立,则a≤(3x2)最小值.因为x>1,所以3x2>3.所以a≤3,即a的取值范围是(-∞,3].(2)令y′>0,得x2>a3.若a≤0,则x2>a3恒成立,即y′>0恒成立,此时,函数y=x3-ax+b在R上是增函数,与题意不符.若a>0,令y′>0,得x>a3或x<-a3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a=3.1.解答本题注意:可导函数f(x)在(a,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a,b)上的单调性,求参数范围的方法(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题,则区间(a,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.函数y=f(x)的图象如图1-3-3所示,则导函数y=f′(x)的图象可能是( )图1-3-3【解析】∵函数f(x)在(0,+∞),(-∞,0)上都是减函数,∴当x>0时,f′(x)<0,当x<0时,f′(x)<0.【答案】 D2.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)【解析】 因为在定义域(0,+∞)上,f ′(x )=12x+1x >0,所以f (x )在(0,+∞)上是增函数,所以有f (2)<f (e)<f (3).故选A.【答案】 A3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. 【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 【答案】 ⎝ ⎛⎭⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞), 所以h ′(x )=1x -ax -2. 因为h (x )在[1,4]上单调递减, 所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 即a ≥1x2-2x 恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )最大值=-716(此时x =4),所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x 16x=错误!. 因为x ∈[1,4], 所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。

高中数学 2.3.4圆与圆的位置关系课时作业(含解析)新人教B版必修2-新人教B版高一必修2数学试题

高中数学 2.3.4圆与圆的位置关系课时作业(含解析)新人教B版必修2-新人教B版高一必修2数学试题

【成才之路】2015-2016学年高中数学圆与圆的位置关系课时作业新人教B版必修2一、选择题1.(2015·某某某某市高一期末测试)圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是( )A.外切B.内切C.外离D.内含[答案] A[解析]圆x2+y2=1的圆心C1(0,0),半径r1=1,圆x2+y2-6y+5=0的圆心C2(0,3),半径r2=2,∴两圆心的距离|C1C2|=0-02+3-02=3,∴|C1C2|=r1+r2=3,故两圆外切.故选A.2.两圆x2+y2=r2,(x-3)2+(y+4)2=4外切,则正实数r的值为( )A.1 B.2C.3 D.4[答案] C[解析]两圆心的距离d=5,由题意,得r+2=5,∴r=3.3.(2015·某某某某一中高一期末测试)圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程是( )A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=0[答案] C[解析]圆x2+y2-4x+6y=0和圆x2+y2-6x=0的圆心坐标分别为(2,-3)和(3,0),AB的垂直平分线必过两圆圆心,只有选项C正确.4.两圆C1:x2+y2+2x+2y-2=0和C2:x2+y2-4x-2y+1=0的公切线有且仅有( ) A.1条B.2条C.3条D.4条[答案] B[解析]⊙C1圆心C1(-1,-1),半径r1=2,⊙C2圆心C2(2,1),半径r2=2,|C1C2|=13,0<13<4,∴两圆相交.5.圆(x -2)2+(y +3)2=2上与点(0,-5)距离最大的点的坐标是( ) A .(1,-2) B .(3,-2) C .(2,-1) D .(2+2,2-3)[答案] B[解析] 验证法:所求的点应在圆心(2,-3)与点(0,-5)确定的直线x -y -5=0上,故选B.6.动点P 与定点A (-1,0),B (1,0)连线的斜率之积为-1,则P 点的轨迹方程为( ) A .x 2+y 2=1 B .x 2+y 2=1(x ≠±1) C .x 2+y 2=1(x ≠0) D .y =1-x 2[答案] B[解析] 直接法,设P (x ,y ),由k PA =y x +1,k PB =y x -1及题设条件yx +1·yx -1=-1(x ≠±1)知选B.二、填空题7.(2015·某某某某市一中高一期末测试)圆x 2+y 2+6x -7=0和圆x 2+y 2+6y -27=0的位置关系是________.[答案] 相交[解析] 圆x 2+y 2+6x -7=0的圆心为O 1(-3,0),半径r 1=4,圆x 2+y 2+6y -27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=-3-02+0+32=32,∴r 2-r 1<|O 1O 2|<r 1+r 2. 故两圆相交.8.两圆x 2+y 2-6x =0和x 2+y 2=4的公共弦所在直线的方程是____________. [答案]x =23[解析] 两圆的方程x 2+y 2-6x =0和x 2+y 2=4相减,得公共弦所在直线的方程为x =23. 三、解答题9.判断下列两圆的位置关系.(1)C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0; (2)C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0;(3)C 1:x 2+y 2-4x -6y +9=0,C 2:x 2+y 2+12x +6y -19=0; (4)C 1:x 2+y 2+2x -2y -2=0,C 2:x 2+y 2-4x -6y -3=0.[解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=2-12+-12= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),r1=2,圆C2的圆心坐标为(-6,-3),r2=8,d=|C1C2|=2+62+3+32=10.∵r1+r2=10,∴d=r1+r2,两圆外切.(4)∵C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),r1=2,圆C2的圆心坐标为(2,3),r2=4,d=|C1C2|=2+12+3-12=13.∵r1+r2=6,r2-r1=2,∴r2-r1<d<r1+r2,两圆相交.10.已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l:mx+y-7=0与C2相切.求:(1)圆C2的标准方程;(2)m的值.[解析](1)由题知C1:(x-1)2+(y-2)2=18,C2:(x-a)2+(y-3)2=8.因为C1与C2相外切,所以圆心距d=r1+r2,即a-12+3-22=32+22,所以a=8或-6(舍去).所以圆C2的标准方程为(x-8)2+(y-3)2=8.(2)由(1)知圆心C 2(8,3),因为l 与C 2相切, 所以圆心C 2到直线l 的距离d =r , 即|8m +3-7|m 2+1=22,所以m =1或17.一、选择题1.半径为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程是( ) A .(x -4)2+(y -6)2=6B .(x +4)2+(y -6)2=6或(x -4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x +4)2+(y -6)2=36或(x -4)2+(y -6)2=36 [答案] D[解析] 由题意可设圆的方程为(x -a )2+(y -6)2=36, 由题意,得a 2+9=5,∴a 2=16,∴a =±4.2.过圆x 2+y 2-2x +4y -4=0内的点M (3,0)作一条直线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=0[答案] A[解析] 圆x 2+y 2-2x +4y -4=0的圆心C (1,-2),当CM ⊥l 时,l 截圆所得的弦最短,k CM =-2-01-3=1,∴k l =-1,故所求直线l 的方程为y -0=-(x -3),即x +y -3=0.二、填空题3.⊙O :x 2+y 2=1,⊙C :(x -4)2+y 2=4,动圆P 与⊙O 和⊙C 都外切,动圆圆心P 的轨迹方程为______________________.[答案] 60x 2-4y 2-240x +225=0[解析]⊙P 与⊙O 和⊙C 都外切,设⊙P 的圆心P (x ,y ),半径为R , 则|PO |=x 2+y 2=R +1, |PC |=x -42+y 2=R +2,∴x -42+y 2-x 2+y 2=1,移项、平方化简得:60x 2-4y 2-240x +225=0.4.已知集合A ={(x ,y )|y =49-x 2},B ={(x ,y )|y =x +m },且A ∩B ≠∅,则m 的取值X 围是________________.[答案] -7≤m ≤7 2[解析] 由A ∩B ≠∅,即直线y =x +m 与半圆y =49-x 2有交点,如图所示.如图可知,-7≤m ≤7 2. 三、解答题5.求经过两圆x 2+y 2-2x -3=0与x 2+y 2-4x +2y +3=0的交点,且圆心在直线2x -y =0上的圆的方程.[解析] 解法一:由两圆方程联立求得交点A (1,-2),B (3,0),设圆心C (a ,b ),则由|CA |=|CB |及C 在直线2x -y =0上,求出a =13,b =23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.解法二:同上求得A (1,-2)、B (3,0),则圆心在线段AB 的中垂线y =-x +1上,又在y =2x 上,得圆心坐标⎝ ⎛⎭⎪⎫13,23.∴所求圆的方程为3x 2+3y 2-2x -4y -21=0.6.求⊙C 1:x 2+y 2-2y =0与⊙C 2:x 2+y 2-23x -6=0的公切线方程. [解析]⊙C 1:x 2+(y -1)2=12,圆心C 1(0,1),半径r =1, ⊙C 2:(x -3)2+y 2=32,圆心C 2(3,0),半径R =3,圆心距|C 1C 2|=2,∴|C 1C 2|=R -r ,故两圆内切,其公切线有且仅有一条过该两圆的公共点(切点),又由内切两圆的连心线过切点且垂直于两圆的公切线知,切点在直线C 1C 2上, ∵C 1C 2:x +3y -3=0,∴切线斜率k = 3.设切线方程为y =3x +b ,由圆心C 1(0,1)到切线距离d =1,得|-1+b |2=1,∴b =3或-1.由C 2(3,0)到切线距离d ′=3,得|3+b |2=3,∴b =3或-9,∴b =3,∴公切线方程为y =3x +3,即3x -y +3=0.7.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程.[解析] 解法一:设圆B 的半径为r ,∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2,即x 2+y 2-2tx -4ty +5t 2-r 2=0. ①∵圆A 的方程x 2+y 2+2x +2y -2=0. ②∴②-①,得两圆的公共弦方程(2+2t )x +(2+4t )y -5t 2+r 2-2=0. ③又∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③,并整理得:r 2=5t 2+6t +6=5⎝ ⎛⎭⎪⎫t +352+215≥215,所以t =-35时,r min=215. 此时,圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.解法二:如图,设圆A 、圆B 的圆心分别为A 、B .则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M 、N 两点.∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M 、N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4. 欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得B ⎝ ⎛⎭⎪⎫-35,-65,r min =215, 故圆B 的方程是⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=215.。

《成才之路》2015-2016学年人教B版高中数学必修2习题综合测试AWord版含解析

《成才之路》2015-2016学年人教B版高中数学必修2习题综合测试AWord版含解析

本册综合测试(A)时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知点A(a,3)、B(-1,b+2)且直线AB的倾斜角为90°,则a、b的值为()A.a=-1,b∈R且b≠1B.a=-1,b=1C.a=3,b=1 D.a=3,b=-1[答案] A[解析]∵直线AB的倾斜角为90°,∴AB⊥x轴,∴a=-1,b∈R且b≠1.2.不论m为何值,直线(m-2)x-y+3m+2=0恒过定点()A.(3,8) B.(8,3)C.(-3,8) D.(-8,3)[答案] C[解析]直线方程(m-2)x-y+3m+2=0可化为m(x+3)-2x-y+2=0,∴x=-3时,m∈R,y=8,故选C.3.(2015·陕西西安市一中高一期末测试)垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能[答案] D[解析]如图正方体ABCD-A1B1C1D1,AD⊥AB,BC⊥AB,AD∥BC,BB1⊥AB,AD与BB1异面,AA1⊥AB,AA1与AD相交,故选D.4.对两条不相交的空间直线a与b,必存在平面α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α[答案] B[解析]已知两条不相交的空间直线a和b,可以在直线a上任取一点A,使得A∉b.过A 作直线c∥b,则过a、b必存在平面α,且使得a⊂α,b∥α.5.若点P(a,b)在圆C:x2+y2=1的外部,则有直线ax+by+1=0与圆C的位置关系是()A .相切B .相离C .相交D .相交或相切[答案] C[解析] ∵点P (a ,b )在圆C :x 2+y 2=1的外部,∴a 2+b 2>1. ∴圆C 的圆心(0,0)到直线ax +by +1=0的距离d =1a 2+b 2<1, 即直线ax +by +1=0与圆C 相交.6.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是( )[答案] C[解析] 当a >0时,直线y =ax 的斜率k =a >0,直线y =x +a 在y 轴上的截距等于a >0,此时,选项A 、B 、C 、D 都不符合;当a <0时,直线y =ax 的斜率k =a <0,直线y =x +a 在y 轴上的截距等于a <0,只有选项C 符合,故选C .7.已知平面α外不共线的三点A 、B 、C 到平面α的距离相等,则正确的结论是( ) A .平面ABC 必平行于α B .平面ABC 必不垂直于α C .平面ABC 必与α相交D .存在△ABC 的一条中位线平行于α或在α内 [答案] D[解析] 平面ABC 与平面α可能平行也可能相交,排除A 、B 、C ,故选D.8.(2015·甘肃天水一中高一期末测试)圆O 1:x 2+y 2-4x -6y +12=0与圆O 2:x 2+y 2-8x -6y +16=0的位置关系是( )A .内切B .外离C .内含D .相交[答案] A[解析] 圆O 1的圆心O 1(2,3),半径r 1=1,圆O 2的圆心O 2(4,3),半径r 2=3.|O 1O 2|=(4-2)2+(3-3)2=2,r 2-r 1=2,∴|O 1O 2|=r 2-r 1,故两圆内切.9.光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6B .a =-13,b =-6C .a =3,b =-16D .a =-3,b =16[答案] B[解析] 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称,故直线y =ax+2上点(0,2)关于y =-x 的对称点(-2,0)在直线y =-3x +b 上,∴b =-6,y =-3x -6上的点(0,-6),关于直线y =-x 对称点(6,0)在直线y =ax +2上,∴a =-13选B.10.(2015·福建南安一中高一期末测试)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B .94C .3D .92[答案] C[解析] 由三视图可知,该几何体是底面为直角梯形的四棱锥,且直角梯形的上底长为1,下底长为2,高为2,四棱锥的高为x ,其体积为13×(1+2)×22·x =3,∴x =3.11.圆x 2+y 2-4x -4y +7=0上的动点P 到直线y =-x 的最小距离为( ) A .22-1 B .2 2 C . 2 D .1 [答案] A[解析] 圆x 2+y 2-4x -4y +7=0可化为(x -2)2+(y -2)2=1,故圆心坐标为(2,2),半径r =1.圆心(2,2)到直线y =-x 的距离d =|2+2|2=2 2.故动点P 到直线y =-x 的最小距离为22-1.12.一个几何体的三视图如下图所示,该几何体的表面积为( )A .280B .292C .360D .372 [答案] C[解析] 该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面的面积之和.S =2×(10×8+10×2+8×2)+2×(6×8+8×2)=360.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·云南曲靖市陆良县二中高一期末测试)两平行直线l 1:3x +4y -2=0与l 2:6x +8y -5=0之间的距离为________.[答案]110[解析] 直线l 2的方程可化为3x +4y -52=0,故两平行直线l 1、l 2之间的距离d =|-2-(-52)|32+42=110. 14.一个正四棱柱的侧面展开图是一个边长为4的正方形,则它的体积为__________. [答案] 4[解析] 由已知得,正四棱柱的底面边长为1,高为4,体积V =12×4=4.15.若点P 在坐标平面xOy 内,点A 的坐标为(0,0,4)且d (P ,A )=5,则点P 的轨迹方程为________.[答案] x 2+y 2=9[解析] 设P (x ,y,0),则d (P ,A )=(x -0)2+(y -0)2+(0-4)2=5,即x 2+y 2=9. 16.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中两个为条件,余下的一个为结论,构成三个命题,写出你认为正确的一个命题:__________________.[答案] ①②⇒③或(①③⇒②)三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)设A (1,-2,x ),B (x,3,0),C (7,x,6),且A 、B 、C 三点能构成直角三角形,求x 的值.[解析] AB 2=2x 2-2x +26,BC 2=2x 2-20x +94,AC 2=2x 2-8x +76, 由(2x 2-2x +26)+(2x 2-20x +94)=2x 2-8x +76得x 2-7x +22=0无解;由(2x 2-2x +26)+(2x 2-8x +76)=2x 2-20x +94得x 2+5x +4=0,∴x 1=-4,x 2=-1; 由(2x 2-20x +94)+(2x 2-8x +76)=2x 2-2x +26得x 2-13x +72=0无解, ∴x 的值为-4或-1.18.(本题满分12分)(2015·甘肃天水市泰安县二中高一月考)直线l 经过直线x +y -2=0和直线x -y +4=0的交点,且与直线3x -2y +4=0平行,求直线l 的方程.[解析] 解法一:由⎩⎪⎨⎪⎧ x +y -2=0x -y +4=0,得⎩⎪⎨⎪⎧x =-1y =3.即直线l 过点(-1,3).∵直线l 的斜率为32,∴直线l 的方程为y -3=32(x +1),即3x -2y +9=0.解法二:由题意可设直线l 的方程为x -y +4+λ(x +y -2)=0, 整理得(1+λ)x +(λ-1)y +4-2λ=0, ∵直线l 与直线3x -2y +4=0平行,∴-2(1+λ)=3(λ-1), ∴λ=15.∴直线l 的方程为65x -45y +185=0,即3x -2y +9=0.19.(本题满分12分)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,AC ∩BD =E ,AD =2,AB =23,BC =6,求证:平面PBD ⊥平面P AC .[解析] ∵P A ⊥平面ABCD , BD ⊂平面ABCD , ∴BD ⊥P A .又tan ∠ABD =AD AB =33.tan ∠BAC =BCAB= 3.∴∠ABD =30°,∠BAC =60°, ∴∠AED =90°,即BD ⊥AC . 又P A ∩AC =A ,∴BD ⊥平面P AC . ∵BD ⊂平面PBD .所以平面PBD ⊥平面P AC .20.(本题满分12分)在△ABC 中,BC 边上的高所在的直线方程为x -2y +1=0,∠A 的平分线所在的直线方程为y =0.若B 的坐标为(1,2),求△ABC 三边所在直线方程及点C 坐标.[解析] BC 边上高AD 所在直线方程x -2y +1=0, ∴k BC =-2,∴BC 边所在直线方程为:y -2=-2(x -1)即2x +y -4=0.由⎩⎪⎨⎪⎧ x -2y +1=0y =0,得A (-1,0), ∴直线AB :x -y +1=0,点B (1,2)关于y =0的对称点B ′(1,-2)在边AC 上, ∴直线AC :x +y +1=0,由⎩⎪⎨⎪⎧x +y +1=02x +y -4=0,得点C (5,-6). 21.(本题满分12分)降水量是指水平地面上单位面积所降雨水的深度,用上口直径为38 cm ,底面直径为24 cm ,深度为35 cm 的圆台形容器(轴截面如图)来测量降水量,若在一次降水中,此桶盛得的雨水正好是桶深的17,则本次降雨的降水量是多少?(精确到mm)[解析] 如图,作BE ⊥CD 于点E ,交MN 于点G ,作AH ⊥CD 于H ,交MN 于点P ,则BG BE =17,四边形ABEH 、PGEH 均为矩形.∴BG =17·BE =17×35=5(cm).EH =PG =AB =24 cm.又∵四边形ABCD 为等腰梯形, ∴MN =PG +2GN .又∵EC =12(CD -AB )=12(38-24)=7(cm),∴GN =17EC =1(cm),∴MN =PG +2GN =24+2=26(cm). ∴此次降雨中雨水的体积为 V =13π[(MN 2)2+(AB 2)2+(MN 2·AB 2)]·BG=13π×5×(132+122+13×12) =23453(cm 3), 降雨中雨水面的面积S =π(CD2)2=361π(cm 2).∴此次降雨的降水量为h =V S =2345π3×361π≈2.2(cm)=22(mm).即本次降雨的降水量约是22 mm.22.(本题满分14分)已知⊙C :x 2+y 2+2x -4y +1=0. (1)若⊙C 的切线在x 轴、y 轴上截距相等,求切线的方程;(2)从圆外一点P (x 0,y 0)向圆引切线PM ,M 为切点,O 为原点,若|PM |=|PO |,求使|PM |最小的P 点坐标.[解析] ⊙C :(x +1)2+(y -2)2=4, 圆心C (-1,2),半径r =2. (1)若切线过原点设为y =kx , 则|-k -2|1+k 2=2,∴k =0或43.若切线不过原点,设为x +y =a , 则|-1+2-a |2=2,∴a =1±22, ∴切线方程为:y =0,y =43x ,x +y =1+22和x +y =1-2 2.(2)x 20+y 20+2x 0-4y 0+1=x 20+y 20,∴2x 0-4y 0+1=0,|PM |=x 20+y 20+2x 0-4y 0+1=5y 20-2y 0+14∵P 在⊙C 外,∴(x 0+1)2+(y 0-2)2>4, 将x 0=2y 0-12代入得5y 20-2y 0+14>0, ∴|PM |min =510.此时P ⎝⎛⎭⎫-110,15.。

高中数学人教B版选修2-2教案:1.3常数与幂函数的导数导数公式表6+

高中数学人教B版选修2-2教案:1.3常数与幂函数的导数导数公式表6+

20XX—20XX学年度第一学期高二教案主备人:使用人:精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2综合素质测试时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.z -是z 的共轭复数.若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( ) A .1+i B .-1-i C .-1+i D .1-i[答案] D[解析] 本题考查复数、共轭复数的运算. 设z =a +b i ,则z -=a -b i. 由题设条件可得a =1,b =-1.选D.2.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)[答案] C[解析] 本题主要考查导数的概念及分式不等式的解法和对数的概念.因为f (x )=x 2-2x -4ln x ,∴f ′(x )=2x -2-4x =2 x 2-x -2x>0,即⎩⎪⎨⎪⎧x >0x x 2-x -2 >0,解得x >2,故选C.3.下列命题中正确的是( )A .复数a +b i 与c +d i 相等的充要条件是a =c 且b =dB .任何复数都不能比较大小C .若z 1=z 2,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=z 2 [答案] C[解析] A 选项未注明a ,b ,c ,d ∈R .实数是复数,实数能比较大小.z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1.故选C.4.数列1,12,12,13,13,13,14,14,14,14,…,的前100项的和等于( )A .13914B .131114C .14114D .14314[答案] A[解析] 从数列排列规律看,项1n 有n 个,故1+2+…+n =n n +12≤100.得n (n +1)≤200,所以n ≤13,当n =13时,n n +12=13×7=91(个),故前91项的和为13,从第92项开始到第100项全是114,共9个114,故前100项的和为13914.故选A. 5.对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是( ) A .(-∞,-2] B .[-2,2] C .[-2,+∞) D .[0,+∞)[答案] C[解析] 用分离参数法可得a ≥-⎝ ⎛⎭⎪⎫|x |+1|x |(x ≠0),则|x |+1|x |≥2,∴a ≥-2.当x=0时,显然成立.6.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( ) A.94 B .2e 2C .e 2D .e22[答案] D[解析] y ′=(e x )′=e x ,曲线在点(2,e 2)处的切线斜率为e 2,因此切线方程为y -e 2=e 2(x -2),则切线与坐标轴交点为A (1,0),B (0,-e 2),所以:S △AOB =12×1×e 2=e 22.7.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是( )A .-1≤m ≤1B .-1<m ≤1C .-1<m <1D .-1≤m <1[答案] D[解析] 因为f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )<0⇒-2<x <2,所以函数f (x )=x 3-12x 的单调递减区间为(-2,2),要使f (x )在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以⎩⎪⎨⎪⎧2m ≥-2,m +1≤2,m +1>2m .从中解得-1≤m <1,选D.8.三次函数当x =1时有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( )A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x[答案] B[解析] 由条件设f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c =3a (x -1)(x -3),∴b =-6a ,c =9a ,∴f (x )=ax 3-6ax 2+9ax ,∵f (1)=4,∴a =1. ∴f (x )=x 3-6x 2+9x ,故选B.9.若xy 是正实数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( )A .3B .72C .4D .92[答案] C[解析] 因为xy 是正实数,所以⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2=x 2+x y +14y 2+y 2+y x +14x 2 =⎝⎛⎭⎪⎫x 2+14x 2+⎝ ⎛⎭⎪⎫x y +y x +⎝ ⎛⎭⎪⎫y 2+14y 2≥1+2+1=4,当且仅当x =y =±22时,等号成立.故选C.10.复数z 满足方程⎪⎪⎪⎪⎪⎪z +21+i =4,那么复数z 在复平面内对应的点P 组成的图形为( )A .以(1,-1)为圆心,以4为半径的圆B .以(1,-1)为圆心,以2为半径的圆C .以(-1,1)为圆心,以4为半径的圆D .以(-1,1)为圆心,以2为半径的圆 [答案] C[解析] 原方程可化为|z +(1-i)|=4,即|z -(-1+i)|=4,表示以(-1,1)为圆心,以4为半径的圆.故选C.11.已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( ) A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152[答案] B[解析] 由题意f ′(x )=3x 2+2bx +c 在[-1,2]上,f ′(x )≤0恒成立.所以⎩⎪⎨⎪⎧f ′ -1 ≤0f ′ 2 ≤0,即⎩⎪⎨⎪⎧2b -c -3≥04b +c +12≤0,令b +c =z ,b =-c +z ,如图A ⎝ ⎛⎭⎪⎫-6,-32是使得z 最大的点,最大值为b +c =-6-32=-152.故应选B.12.(2015·福建理,10)若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>k k -1[答案] C[解析] 由已知条件,构造函数g (x )=f (x )-kx ,则g ′(x )=f ′(x )-k >0,故函数g (x )在R 上单调递增,且1k -1>0,故g (1k -1)>g (0),所以f (1k -1)-k k -1>-1,f (1k -1)>1k -1,所以结论中一定错误的是C ,选项D 不确定;构造函数h (x )=f (x )-x ,则h ′(x )=f ′(x )-1>0,所以函数h (x )在R 上单调递增,且1k >0,所以h (1k )>h (0),即f (1k )-1k>-1,f (1k )>1k-1,选项A ,B 无法判断,故选C.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.(2015·天津理,9)i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.[答案] -2[解析] (1-2i)(a +i)=a +2+(1-2a )i 是纯虚数,所以a +2=0,即a =-2. 14.已知f (x )=x1+x ,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +, 则f 2015(x )的表达式为________.[答案] f 2015(x )=x1+2015x[解析] 本题考查了函数的解析式.f 1(x )=f (x )=x1+x ,f 2(x )=f (f 1(x ))=x1+x1+x 1+x =11+2x ,f 3(x )=f (f 2(x ))=x1+21+x1+2x =x1+3x,…,f 2015(x )=x1+2015x.15.定积分⎠⎜⎛0π2sin t cos tdt =________.[答案] 12[解析] ⎠⎜⎛0π2sin t cos t d t =12⎠⎜⎛0π2sin2t d t=14(-cos2t )⎪⎪⎪π20=14×(1+1)=12. 16.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.[答案] -2[解析] 本小题主要考查导数的几何意义和对数函数的有关性质. ∵k =y ′|x =1=n +1,∴切线l :y -1=(n +1)(x -1), 令y =0,x n =n n +1,∴a n =lg nn +1,∴原式=lg 12+lg 23+…+lg 99100=lg 12×23×…×99100=lg 1100=-2.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)已知a >b >0,求证: a -b 28a <a +b 2-ab < a -b 28b .[证明] 要证明原不等式成立,只需证 a -b 24a <a +b -2ab < a -b24b,即证 a -b 24a <(a -b )2< a -b 24b .因为a >b >0,所以a -b >0,a -b >0. 所以只需证a -b 2a <a -b <a -b2b, 即证a +b a <2<a +b b , 即证b a <1<a b,即证b a <1<a b .因为a >b >0,所以b a<1<a b成立. 故原不等式成立.18.(本题满分12分)请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[解析] 设包装盒的高为h cm ,底面边长为a cm. 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值.此时h a =12.即包装盒的高与底面边长的比值为12.19.(本题满分12分)求同时满足下列条件的所有复数z : (1)z +10z 是实数,且1<z +10z≤6;(2)z 的实部和虚部都是整数.[解析] 设z =a +b i(a ,b ∈R ,且a 2+b 2≠0). 则z +10z =a +b i +10a +b i =a +b i +10 a -b i a 2+b 2=a ⎝⎛⎭⎪⎫1+10a 2+b 2+b ⎝ ⎛⎭⎪⎫1-10a 2+b 2i. 由(1)知z +10z 是实数,且1<z +10z≤6,∴b ⎝⎛⎭⎪⎫1-10a 2+b 2=0,即b =0或a 2+b 2=10. 又1<a ⎝⎛⎭⎪⎫1+10a +b ≤6,(*) 当b =0时,(*)化为1<a +10a≤6无解.当a 2+b 2=10时,(*)化为1<2a ≤6, ∴12<a ≤3. 由题中条件(2)知a =1,2,3. ∴相应的b =±3,±6(舍),±1. 因此,复数z 为:1±3i 或3±i.20.(本题满分12分)设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.[解析] (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2, 令f ′(x )=0得x 1=-1-4+3a3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2),当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0,故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,所以f (x )在x =x 2=-1+4+3a3处取得最大值,又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值, 当a =1时,f (x )在x =0处和x =1处同时取得最小值. 当1<a <4时,f (x )在x =0处取得最小值.21.(本题满分12分)已知数列{a n }满足a 1=a ,a n +1=12-a n(n ∈N *). (1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明. [解析] (1)由a n +1=12-a n ,可得a 2=12-a 1=12-a ,a 3=12-a 2=12-12-a=2-a3-2a,a 4=12-a 3=12-2-a 3-2a=3-2a 4-3a. (2)猜测a n = n -1 - n -2 a n - n -1 a (n ∈N *).下面用数学归纳法证明: ①当n =1时,左边=a 1=a ,右边= 1-1 - 1-2 a 1- 1-1 a =a ,猜测成立.②假设当n =k (k ∈N *)时猜测成立, 即a k = k -1 - k -2 a k - k -1 a.则当n =k +1时,a k +1=12-a k =12-k -1 - k -2 ak - k -1 a=k k -1 a2[k - k -1 a ]-[ k -1 - k -2 a ]=k - k -1 ak +1 -ka.故当n =k +1时,猜测也成立. 由①,②可知,对任意n ∈N *都有a n =n -1 - n -2 an - n -1 a成立.22.(本题满分14分)(2015·新课标Ⅱ理,21)设函数f (x )=e mx+x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e-1,求m 的取值范围. [解析] (1)f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0.所以,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是:⎩⎪⎨⎪⎧f 1 -f 0 ≤e-1,f -1 -f 0 ≤e-1,即⎩⎪⎨⎪⎧e m-m ≤e-1,e -m+m ≤e-1,①,设函数g (t )=e t-t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0,故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g (1)=0,g (-1)=e -1+2-e<0,故当t ∈[-1,1]时,g (t )≤0,当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立.当m >1时,由g (t )的单调性,g (m )>0,即e m-m >e -1;当m <-1时,g (-m )>0,即e -m+m >e -1.综上,m 的取值范围是[-1,1].。

相关文档
最新文档