八年级数学下册161二次根式异同知多少素材新人教版
人教版八年级数学下册二次根式的知识点汇总(超值哦)[1]
人教版八年级数学下册二次根式的知识点汇总(超值哦)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版八年级数学下册二次根式的知识点汇总(超值哦)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版八年级数学下册二次根式的知识点汇总(超值哦)(word版可编辑修改)的全部内容。
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1、x、x y+(x≥0,y•≥0).x(x>0)、0、42、-2、1x y+分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义.例2.当x是多少时,31x-在实数范围内有意义?例3.当x是多少时,23在实数范围内有意义?x++11x+知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
八年级数学下册《二次根式》知识点归纳和题型归类素材 新人教版(2021-2022学年)
二次根式知识点归纳和题型归类一、知识框图二。
知识要点梳理ﻫ知识点一、二次根式的主要性质:ﻫ1。
;2.;3.;ﻫ4。
积的算术平方根的性质:;5. 商的算术平方根的性质:。
ﻫ6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算ﻫ(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2) 注意每一步运算的算理;(3)乘法公式的推广:(4)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.2.二次根式的加减运算需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
3.二次根式的混合运算(1)ﻬ明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
(3)二次根式运算结果应化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数.4。
简化二次根式的被开方数,主要有两个途径:错误!因式的内移:因式内移时,若,则将负号留在根号外.即:.错误!因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即:三。
典型题训练一。
利用二次根式的双重非负性(a≥0),a1。
下列各式中一定是二次根式的是( )。
A 、; B 、;C 、; D 、 2。
x取何值时,下列各式在实数范围内有意义。
(1) (2) (3) (4)(5)(6). (7)若,则x 的取值范围是(8)若,则x 的取值范围是。
3。
若有意义,则m 能取的最小整数值是;是一个正整数,则正整数m的最小值是________.4。
当x 为何整数时,有最小整数值,这个最小整数值5,则=_____________; ,则 6.设m、n 满足,则= 。
7,求的值.8。
若三角形的三边a 、b、c 满足=0,则第三边c的取值范围是9。
八年级数学下册16.1二次根式异同知多少素材新人教版(new)
2)(a 与2a 的异同知多少2)(a 与2a 是二次根式中常见的两个代数式,由于它们外貌相似,结构相近,因而许多同学常常把它们混为一谈,特别是在运用公式a a =2)(与||2a a =时,往往认为它们没有什么区别.而事实上两者既有联系,又有区别,现在我就这个问题谈一下自己的认识,与大家分享,希望对同学们有所帮助:不同点:1.两者表示的意义不同严格来说,2)(a 是表示二次根式a 的平方,读做“a 的算术平方根的平方";而2a 是一个二次根式,读做“a 的平方的算术平方根”.2.两者运算的顺序不同若按照两者的意义来进行计算,则前者的运算顺序是:先求a 的算术平方根,再求平方.如2595325922=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛;而后者的运算顺序是:先求a 的平方,再求算术平方根.如259625812592==⎪⎭⎫ ⎝⎛. 3.两者中a 的取值范围不同 虽然二次根式中被开方数的取值范围都是非负数,但由于在2)(a 中的被开方数是a ,所以前者a 的取值范围是a ≥0;而在2a 中,不论a 为何值,被开方数2a 总是个非负数,因此后者a 的取值是全体实数.如2)3(-没有意义,而2)3(-仍有意义.相同点:1.两者运算的结果都是非负数从两式的意义来看,前者是一个实数的完全平方,其结果是个非负数;后者是一个非负数的算术平方根,其结果也是个非负数,故两者的运算结果都是非负数.如化简:3)3(2-=-x x ;|3|)3(2-=-x x .前者隐含着x ≥3,故有x —3≥0;后者的x为全体实数,但不论x 为何值,总有|x-3|≥0.因此,两者运算的结果都是非负数.2.当a ≥0时,两者相等由两者的意义及其相应的公式可知:当a <0时,前者2)(a 没有意义,而后者a a -=2,故当a <0时,两者不等;当a ≥0时,a a a a ==22,)(.故仅当a ≥0时,22)(a a =.应用举例: 隐含条件的应用,由于在2)(a 中的被开方数是a,所以a 的取值范围是a≥0。
人教版八年级下册数学知识点归纳:第十六章二次根式
人教版八年级下册数学知识点归纳第十六章 二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=. (3)积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (b a b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (ba b a>≥=;(2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式:a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.。
人教版八年级数学下册二次根式的知识点汇总(超值哦)
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
例1.下列式子,哪些是二次根式,、1xx>0)、-、1x y+x ≥0,y•≥0).”;第二,被开方数是正数或0.知识点二:取值范围1、 二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
例2.当x在实数范围内有意义?例3.当x11x+在实数范围内有意义?知识点三:二次根式()的非负性()表示a 的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
的值.(2)=0,求a2004+b2004的值例4(1)已知y=,求xy知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.例1 计算1.)22.(23.24. 2例2在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
八年级数学下册16二次根式161二次根式1教案新人教版
16.1.1二次根式(1) 教学目标 知识与技能 1.知道二次根式与数的平方之间的联系,掌握二次根式的概念. 2.会根据二次根式有意义的条件确定二次根式里被开方数中字母的取值范围.过程与方法 1.经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力。
2.通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力。
情感态度与价值观 经历观察、比较、总结和应用等数学活,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。
重点会根据二次根式有意义的条件确定二次根式里被开方数中字母的取值范围. 难点会根据二次根式有意义的条件确定二次根式里被开方数中字母的取值范围. 教学过程第一步:复习回顾求下列各数的平方根和算术平方根.9的平方根,算术平方根0.64的平方根,算术平方根0的平方根,算术平方根39±=±39=8.064.0±=±8.064.0=00=3±8.0±0.8003复习回顾第二步:探究新知:第三步:应用举例:第四步、课堂练习八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)一定在第四象限C.已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴D.已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)【答案】C【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A、若ab=0,则点P(a,b)表示在坐标轴上,故此选项错误;B、点(1,﹣a2)一定在第四象限或x轴上,故此选项错误;C、已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴,正确;D、已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)或(1,﹣7),故此选项错误.故选C.【点睛】本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键2.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环),下列说法中正确的个数是()x=;①若这5次成绩的平均数是8,则8x=;②若这5次成绩的中位数为8,则8x=;③若这5次成绩的众数为8,则8x=④若这5次成绩的方差为8,则8A.1个B.2个C.3个D.4个【答案】A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则8589788x =⨯----=,故正确;②若这5次成绩的中位数为8,则x 可以任意数,故错误;③若这5次成绩的众数为8,则x 只要不等于7或9即可,故错误;④若8x =时,方差为2221[3(88)(98)(78)]0.45⨯-+-+-=,故错误.所以正确的只有1个故选:A .【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.3.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .15 B .13 C .58 D .38【答案】C【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球, 故摸到红球的概率为58, 故选:C .【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)= m n,难度适中. 4.已知y 2+my+1是完全平方式,则m 的值是( )A .2B .±2C .1D .±1【分析】完全平方公式:a 1±1ab+b 1的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是y 和1的平方,那么中间项为加上或减去y 和1的乘积的1倍.【详解】∵(y±1)1=y 1±1y+1, ∴在y 1+my+1中,my =±1y ,解得m=±1. 故选B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的1倍,就构成了一个完全平方式.注意积的1倍的符号,避免漏解.5.若实数,m n 满足等式 40m -=,且mn 、恰好是等腰ABC ∆的两条的边长,则ABC ∆的周长是( )A .6或8B .8或10C .8D .10【答案】D【分析】根据 40m -=可得m ,n 的值,在对等腰△ABC 的边长进行分类讨论即可.【详解】解:∵ 40m -=∴40m -=,20n -=∴4,2m n ==,当m=4是腰长时,则底边为2,∴周长为:4+4+2=10,当n=2为腰长时,则底边为4,∵2+2=4,不能构成三角形,所以不符合题意,故答案为:D .本题考查了非负数的性质,等腰三角形的定义以及三角形的三边关系,解题的关键是对等腰三角形的边长进行分类讨论,注意运用三角形的三边关系进行验证.6.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.8 B.10 C.8 或10 D.6【答案】B【解析】题目给出等腰三角形有两条边长为2和4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当2是腰时,2,2,4不能组成三角形,应舍去;当4是腰时,4,4,2能够组成三角形.∴周长为10cm,故选B.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.8.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)【答案】C【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2),故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.9.已知111ABC A B C ∆≅∆,A 与1A 对应,B 与1B 对应,170,50A B ∠=︒∠=︒,则C ∠的度数为( ) A .70︒B .50︒C .120︒D .60︒ 【答案】D【分析】根据全等三角形的对应角相等,得到150B B ∠=∠=︒,然后利用三角形内角和定理,即可求出C ∠. 【详解】解:∵111ABC A B C ∆≅∆,∴150B B ∠=∠=︒,∵180A B C ∠+∠+∠=︒,70A ∠=︒,∴180705060C ∠=︒-︒-︒=︒;故选择:D.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解题的关键是掌握全等三角形的对应角相等,以及熟练运用三角形内角和定理解题.10.下列四组数据中,能作为直角三角形三边长的是( )A .1,2,3B .3,3,5C .23,24,25D .0.3,0.4,0.5【答案】D 【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;B 、(3)2+(5)2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C 、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;D 、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题11.如图,在平面直角坐标系中,111A B C ∆、222A B C ∆、333A B C ∆、…、n n n A B C ∆均为等腰直角三角形,且123n C C C C ∠=∠=∠==∠90=︒,点1A 、2A 、3A 、……、n A 和点1B 、2B 、3B 、……、n B 分别在正比例函数12y x =和y x =-的图象上,且点1A 、2A 、3A 、……、n A 的横坐标分别为1,2,3…n ,线段11A B 、22A B 、33A B 、…、n n A B 均与y 轴平行.按照图中所反映的规律,则n n n A B C ∆的顶点n C 的坐标是_____.(其中n 为正整数)【答案】71,44n n ⎛⎫- ⎪⎝⎭【分析】当x=1代入12y x =和 y x =-中,求出A 1,B 1的坐标,再由△A 1B 1C 1为等腰直角三角形,求出C 1的坐标,同理求出C 2,C 3,C 4的坐标,找到规律,即可求出n n n A B C ∆的顶点n C 的坐标.【详解】当x=1代入12y x =和y x =-中,得:11122y =⨯=,1y =-, ∴111,2A ⎛⎫⎪⎝⎭,()11,1B -, ∴()1113122A B =--=, ∵△A 1B 1C 1为等腰直角三角形,∴C 1的横坐标为111137112224A B +=+⨯=, C 1的纵坐标为111131112224A B -+=-+⨯=-, ∴C 1的坐标为71,44⎛⎫- ⎪⎝⎭; 当x=2代入12y x =和y x =-中,得:1212y =⨯=,2y =-, ∴()22,1A ,()22,2B -,∴()22123A B =--=,∵△A 2B 2C 2为等腰直角三角形,∴C 2的横坐标为22117223222A B +=+⨯=, C 2的纵坐标为22111223222A B -+=-+⨯=-, ∴C 2的坐标为71,22⎛⎫- ⎪⎝⎭; 同理,可得C 3的坐标为213,44⎛⎫- ⎪⎝⎭;C 4的坐标为()7,1-; ∴n n n A B C ∆的顶点n C 的坐标是71,44n n ⎛⎫-⎪⎝⎭,故答案为:71,44n n ⎛⎫- ⎪⎝⎭. 【点睛】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确求出C 1、C 2、C 3、C 4的坐标找到规律是解题的关键.12.若不等式组81x x m<⎧⎨+>⎩有解,则m 的取值范围是____. 【答案】9m <【分析】根据题意,利用不等式组取解集的方法即可得到m 的范围.【详解】解:由题知不等式为81x x m <⎧⎨>-⎩, ∵不等式有解,∴18m -<,∴9m <,故答案为9m <.【点睛】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.13.若正比例函数2y x =-的图象经过点()1,4A a -,则a 的值是__________.【答案】-1【分析】把点()1,4A a -代入函数解析式,列出关于a 的方程,通过解方程组来求a 的值.【详解】∵正比例函数2y x =-的图象经过点()1,4A a -,∴2(1)4a --=解得,a=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx (k≠0). 14.因式分解:3x 2-6xy+3y 2=______.【答案】3(x ﹣y )1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x 1﹣6xy+3y 1=3(x 1﹣1xy+y 1)=3(x ﹣y )1.考点:提公因式法与公式法的综合运用15.4的平方根是 .【答案】±1. 【解析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1. 考点:平方根.16.据统计分析2019年中国互联网行业发展趋势,3年内智能手机用户将达到1.2亿户,用科学记数法表示1.2亿为_______户.【答案】3.32×2【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将1.2亿用科学记数法表示为:3.32×2.故答案为3.32×2.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.点(3,2-)关于x 轴的对称点的坐标是__________.【答案】(3,2)【解析】利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P'的坐标是(x,﹣y),进而求出即可.【详解】点(3,﹣2)关于x轴的对称点坐标是(3,2).故答案为(3,2).【点睛】本题考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.三、解答题18.有一家糖果加工厂,它们要对一款奶糖进行包装,要求每袋净含量为100g.现使用甲、乙两种包装机同时包装100g的糖果,从中各抽出10袋,测得实际质量(g)如下:甲:101,102,99,100,98,103,100,98,100,99乙:100,101,100,98,101,97,100,98,103,102(1)分别计算两组数据的平均数、众数、中位数;(2)要想包装机包装奶糖质量比较稳定,你认为选择哪种包装机比较适合?简述理由.【答案】(1)甲:平均数为100、众数为100、中位数为100;乙:平均数为100、中位数是100、乙的众数是100;(2)选择甲种包装机比较合适.【分析】(1)根据平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数进行计算即可.(2)利用方差公式分别计算出甲、乙的方差,然后可得答案.【详解】解:(1)甲的平均数为:110(101+102+99+100+98+103+100+98+100+99)=100;乙的平均数为:110(100+101+100+98+101+97+100+98+103+102)=100;甲中数据从小到大排列为:98,98,99,99,100,100,100,101,102,103 故甲的中位数是:100,甲的众数是100,乙中数据从小到大排列为:97,98,98,100,100,100,101,101,102,103 故乙的中位数是:100,乙的众数是100;(2)甲的方差为:2S 甲=110[(101﹣100)2+(102﹣100)2+(99﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(100﹣100)2+(98﹣100)2+(100﹣100)2+(98﹣100)2)=2.4;乙的方差为:2S 乙=110[(100﹣100)2+(101﹣100)2+(100﹣100)2+(98﹣100)2+(101﹣100)2+(97﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(102﹣100)2]=3.2,∵2S 甲<2S 乙, ∴选择甲种包装机比较合适.【点睛】此题主要考查了中位数、平均数、众数以及方差,关键是掌握三数的计算方法,掌握方差公式. 19.如图,在∆ABC 中,AB=13,BC=14,AC=15.求BC 边上的高.【答案】1【分析】AD 为高,那么题中有两个直角三角形.AD 在这两个直角三角形中,设BD 为未知数,可利用勾股定理都表示出AD 长.求得BD 长,再根据勾股定理求得AD 长.【详解】解:设BD=x,则CD=14-x .在Rt ∆ABD 中,222AD AB BD =-=132-2x在Rt ∆ACD 中,222AD AC CD =-=152-()214x -∴132-2x =152-()214x -解之得x =5∴AD=22AB BD -=22135-=1.【点睛】勾股定理.20.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A 、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A 型号客车x 辆,租车总费用为y 元.(1)求y 与x 的函数关系式,并求出x 的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.【答案】(1)15≤ x <40且x 为整数;(2)若要使租车总费用不超过25200元,一共有6种方案,当租用A 型号客车15辆,B 型号客车25辆时最省钱,此时租车总费用为24700元。
(2021年整理)新人教版八年级数学下册二次根式的知识点汇总
(完整版)新人教版八年级数学下册二次根式的知识点汇总编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)新人教版八年级数学下册二次根式的知识点汇总)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)新人教版八年级数学下册二次根式的知识点汇总的全部内容。
(完整版)新人教版八年级数学下册二次根式的知识点汇总编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)新人教版八年级数学下册二次根式的知识点汇总这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)新人教版八年级数学下册二次根式的知识点汇总〉这篇文档的全部内容。
二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x〉0)、0、42、—2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
新人教版八年级数学下册知识点归纳总结
八年级数学(下册)知识点总结第十六章二次根式1.二次根式观点:式子a (a≥ 0)叫做二次根式。
2.最简二次根式:一定同时知足以下条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数同样,则这几个二次根式就是同类二次根式。
4.二次根式的性质:a (a>0)( 1)(a)2= a(a≥ 0);( 2) a 2a0 (a =0);5. 二次根式的运算: a (a< 0)( 1)因式的外移和内移:假如被开方数中有的因式能够开得尽方,那么,就能够用它的算术根取代而移到根号外面;假如被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也能够将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再归并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·( a≥0,b≥0);(b≥0,a>0).( 4)有理数的加法互换律、联合律,乘法互换律及联合律,?乘法对加法的分派律以及多项式的乘法公式,都合用于二次根式的运算.△比较数值的方法( 1)、根式变形法当 a 0, b 0 时,①假如 a b ,则a b ;②假如a b ,则a b 。
( 2)、平方法当 a 0, b 0 时,①假如a2b2,则a b ;②假如a2b2,则a b 。
(3)、分母有理化法经过分母有理化,利用分子的大小来比较。
2 1例 3、比较与的大小。
3 121( 4)、分子有理化法经过分子有理化,利用分母的大小来比较。
例 4、比较15 14 与 14 13 的大小 。
( 5)、倒数法例 5、比较 7 6 与 6 5 的大小。
例 6、比较7 3 与 87 3 的大小。
第十七章勾股定理1. 勾股定理: 假如直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2。
(2021年整理)新人教版八年级数学下册二次根式的知识点汇总
新人教版八年级数学下册二次根式的知识点汇总编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版八年级数学下册二次根式的知识点汇总)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版八年级数学下册二次根式的知识点汇总的全部内容。
二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x〉0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“";第二,被开方数是正数或0.知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义.例2.当x是多少时,31x-在实数范围内有意义?例3.当x是多少时,23x++11x+在实数范围内有意义?知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似.这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
新人教版八年级数学下册知识点总结归纳
新人教版八年级数学下册知识点总结归纳八年级数学(下册)知识点总结:二次根式二次根式是指形如a(a≥0)的式子。
最简二次根式需要同时满足以下三个条件:(1)被开方数中不含开方开的尽的因数或因式;(2)被开方数中不含分母;(3)分母中不含根式。
同类二次根式是指被开方数相同的二次根式。
二次根式有以下性质:(1)a²=a(a≥0);(2)a=0时,a²=0;(3)a<0时,a²是正数。
二次根式的运算包括因式的外移和内移、加减法、乘除法。
在运算中,需要将二次根式化为最简二次根式,合并同类项,将乘除法转化为被开方数相乘(除)的形式,并将结果化为最简二次根式。
此外,二次根式的运算也适用于有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式。
勾股定理是指在直角三角形中,两直角边长分别为a、b,斜边长为c时,a²+b²=c²。
勾股定理逆定理是指如果三角形三边长a、b、c满足a²+b²=c²,那么这个三角形是直角三角形。
直角三角形的性质包括:(1)直角三角形的两个锐角互余,即∠A+∠B=90°;(2)在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=1/2AB,且∠C=90°;(3)直角三角形斜边上的中线等于斜边的一半,即CD=1/2AB,且∠ACB=90°。
直角三角形的面积公式为(1/2)ab=ch,其中a、b是直角边,c是斜边,h是斜边上的高。
直角三角形的判定方法包括:(1)有一个角是直角的三角形是直角三角形;(2)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形。
XXXA line XXX is called a median line of the triangle.1) A triangle has three median lines。
八年级数学下册16.1二次根式趣味数学根号的由来素材(新版)新人教版
根号的由来早在1480年,德国人便开始用一个点来表示方根,如 3表示3的平方根, 3表示3的4次方根, 3表示3的立方根,到了16世纪初,平方根用小点带上一条小尾巴来表示,就像一个小蝌蚪,因而很难标准。
1525年,德国数学家鲁道夫的代数书中用√8表示8的平方根,显然用“小钩子”要比“小蝌蚪”好多了,不过后来又发现了新问题。
传说,两个工程人员为式中“√2100g +”引起了矛盾,差一点要上法庭打官司。
究其原因,是因为小钩子“√”的意义不明确,不知道它能管后面几个字母及数字。
,并把立方根写成“如果我想求22a b +的平方根,就写作求3310100a <<33a b abc ++。
”笛卡尔的根号与鲁道夫的根号最大区别在于:笛卡尔考虑到,当被开方数有几项时,鲁道夫的根号会引起混淆,因次,他在上方用直线把这几项括起来,前面再放上记号“√”,也就是现在使用的根号了。
现代的立方根号出现的很晚,一直到18世纪才在一些书中看到,在1732年以后才渐渐通行。
之后,一般的n 次方根符号也就相继出现了。
逐步逼近法估算在数学计算中,“逐步逼近法”是常用的计算方法。
的近似值,但是若是生活在荒岛上,又未带计算器和其他资料,人们就可以用逐步逼近的方法计算这种方法可以运用到其他问题中。
由于34<<,所以可设3x =+(x 是一个正的纯小数)。
两边平方,得21396x x =++.由于x 是一个小量,所以2x 是一个比x 更小的高次小量。
可以忽略掉,故1396x ≈+。
即23x ≈233≈ 再作第二次逼近:233y =+,两边平方,得21212212122139393y y y =++≈+ 所以233y ≈-221193 3.60633333≈-=≈如果继续逼近下去,就可以得到更精确的近似值。
近似求解立方根 当立方根是一位整数时,很容易求出这个立方根,但当立方根是两位或两位以上的整数时,也能容易地求出吗?例如140608的立方根,怎样求容易?下面就介绍它的巧妙求法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)(a 与2a 的异同知多少
2)(a 与2a 是二次根式中常见的两个代数式,由于它们外貌相似,结构相近,因而许多同学常常把它们混为一谈,特别是在运用公式a a =2)(与||2a a =时,往往认为它们没有什么区别.而事实上两者既有联系,又有区别,现在我就这个问题谈一下自己的认识,与大家分享,希望对同学们有所帮助:
不同点:
1.两者表示的意义不同 严格来说,2)(a 是表示二次根式a 的平方,
读做“a 的算术平方根的平方”;而2a 是一个二次根式,读做“a 的平方的算术平方根”.
2.两者运算的顺序不同
若按照两者的意义来进行计算,则前者的运算顺序是:先求a 的算术平方根,再求平
方.如2595325922
=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛;而后者的运算顺序是:先求a 的平方,再求算术平方根.如25
9625812592==⎪⎭⎫ ⎝⎛. 3.两者中a 的取值范围不同 虽然二次根式中被开方数的取值范围都是非负数,但由于在2)(a 中的被开方数是a ,所以前者a 的取值范围是a ≥0;而在2a 中,不论a 为何值,被开方数2
a 总是个非负数,
因此后者a 的取值是全体实数.如2)3(-没有意义,而2)3(-仍有意义. 相同点:
1.两者运算的结果都是非负数
从两式的意义来看,前者是一个实数的完全平方,其结果是个非负数;后者是一个非负数的算术平方根,其结果也是个非负数,故两者的运算结果都是非负数.如化简:3)3(2-=-x x ;|3|)3(2-=-x x .前者隐含着x ≥3,故有x-3≥0;后者的x 为全体实数,但不论x 为何值,总有|x-3|≥0.因此,两者运算的结果都是非负数.
2.当a ≥0时,两者相等
由两者的意义及其相应的公式可知:当a <0时,前者2)(a 没有意义,而后者
a a -=2,故当a <0时,两者不等;当a ≥0时,a a a a ==22,)(.故仅当a ≥0时,22)(a a =.
应用举例: 隐含条件的应用,由于在2)(a 中的被开方数是a ,所以a 的取值范围是a≥0。
例如:化简222)4()3()2(---+-x x x .
分析:由第三个式子2)4(-x ,可知x-4≥0,x ≥4,从而x-2>0,3-x <0,故原式=|x-2|+|3-x |-(x-4)=x-2+x-3-x+4=x-1.。