1.4角的轴对称性

合集下载

1.4(2)角的轴对称性

1.4(2)角的轴对称性

角的轴对称性
角平分线上的点到角的两边距离相等. 角平分线上的点到角的两边距离相等.
几何语言: 几何语言:
平分∠ 平分 , ∵OP平分∠MON, 点C在OP上,且CA⊥OM于A, 在 上 ⊥ 于 , CB⊥ON于B, ⊥ 于 , = . ∴CA=CB.
M A C B P N
O
我们已经知道: 我们已经知道:
如果点P 如果点P在∠AOB的平分线上,那么点P到 AOB的平分线上,那么点P 的平分线上 边OA、OB的距离相等. OA、OB的距离相等. 的距离相等
反过来: 反过来:
如果点P在∠AOB的内部,且点P到边OA、 如果点P AOB的内部,且点P到边OA、 的内部 OA OB的距离相等,那么点P的位置如何呢? OB的距离相等,那么点P的位置如何呢? 的距离相等
4.到三角形的三个顶点距离相等的点是 到三角形的三个顶点距离相等的点是 ( ) A.三条角平分线的交点 三条角平分线的交点 B.三条中线的交点 三条中线的交点 C.三条高的交点 三条高的交点 D.三条边的垂直平分线的交点 三条边的垂直平分线的交点
5、如图,在△ABC中,AD平分∠BAC,交BC于D, 、如图, 平分∠ 中 平分 , 于 , DE⊥AB,DF⊥AC,且BD = DC,问EB = FC吗? ⊥ , ⊥ , , 吗 说明理由 A
在∠AOB的内部任取折痕上的一点P,分 AOB的内部任取折痕上的一点P 的内部任取折痕上的一点 别作P OA、OB的垂线段PC、PD, 别作P到OA、OB的垂线段PC、PD,再 的垂线段PC 沿原折痕重新折叠,你有什么发现? 沿原折痕重新折叠,你有什么发现? C O D A P B
PC与PD重合, PC=PD. PC与PD重合,即PC=PD. 重合

14角的对称性讲解

14角的对称性讲解

A
M
E
D
B
NF
C
检测与练习
1.角 是 轴对称图形(填“是”或“不
是”),角的对称角平轴分线所在的直线


2.如图,OP是∠AOB的平分线,C是OP上
一点,CE⊥OA于点E,CF⊥OB于点F,
CE=6㎝,CF= 6 ㎝,理由是
.
角平分线上的点到角两 边的距离相等
A E
CP
O
FB
检测与练习
3.到三角形的三个顶点距离相等的点是( D ) A.三条角平分线的交点 B.三条中线的交点 C.三条高的交点 D.三条边的垂直平分线的交点
原折痕重新折叠,由此你能发现角平分线
上的点有什么性质?
角平分线上的点到这个角的两边的距离相等.
书写格式:
O ∵OC平分∠AOB,
A
D
P

C
EB
PD⊥OA,PE⊥OB,D、E为垂足,
∴PD=PE (角平分线上的点到这个角的两 边的距离相等).
A
动动手
D
P
C

O B
E
反之,如果一个角内一点具备到这个角 两边的距离相等,那么这个点的位置有 何特征?
1.4线段、角的轴对B
1、在一张薄纸上任意画一个角(∠AOB ), 折纸,使两边OA、OB重合,你发现折痕与 ∠AOB有什么关系?
角是轴对称图形,对称轴是角平分线 所在的直线.
A
动动手
D
C
P ●
O
B E
2、在∠AOB的内部任意取折痕上的一点P,
分别画点P到OA和OB的垂线段PC和PD,再沿
请问:同时满足这两个要求的地点存在吗?如果存在, 请说明这个地点的位置,并在图中表示出来。(留下 你的作图痕迹)

1.4 线段、角的轴对称性(2)教案

1.4 线段、角的轴对称性(2)教案

怀文中学2012---2013学年度第一学期教学设计初二数学(1.4线段、角的轴对称性2)主备:陈秀珍审核:陈曼玉日期:2012-8-31 学习目标:1.经历探索角的轴对称性的过程,进一步体验轴对称的特征,发展空间观念;2.探索并掌握角平分线的性质;3.了解角的平分线是具有特殊性的点的集合;4.在“操作---探究----归纳----说理”的过程中学会有条理地思考和表达,提高演绎推理能力.教学重点:角平分线的性质.教学难点:角的平分线是具有特殊性值的点的集合.教学过程:一.自主学习(导学部分)1.同学们用纸片做过纸箭和纸飞机吗?说说你的方法.2.试用如图所示的等腰三角形AOB纸片,折一只以点头的纸箭,再展开纸箭,观察折痕,你有什么发现?二.合作、探究、展示活动一画角、折纸,探索角的轴对称性和角平分线的性质1.(1)画∠AOB,折纸使OA、OB重合,折痕与∠AOB有什么关系?.(2)在折痕上任取一点P,作PD⊥OA,PE⊥OB,垂足为D、E,那么PD与PE有什么关系?得出结论:.2.在上面第二个结论中,有两个条件(1)OC是∠AOB的平分线;(2)点P在OC上,PD⊥OA,PE⊥OB.两者缺一不可.结论是:PD=PE,3.讨论:点P在∠AOB的平分线上,那么点P到OA、OB的距离相等;反过来,你能得到什么猜想?得出结论:到角的两边距离相等的点,在这个角的平分线上;角的平分线是到角的两边距离相等的点的集合.4.例题:(投影展示)三.巩固练习1.练习:P25 1、22.P25 习题4、53.射线OC平分∠AOB,点P在OC上,且PM⊥OA于M,PN垂直OB于N,且PM=2cm时,则PN=__________cm.4.如图,在△ABC中,∠ABC和∠BAC的角平分线交于点O,OD⊥BC,OE⊥AC,OF⊥AB,垂足分别为D、E、F.(1)OD与OF相等吗?为什么?(2)OE与OF相等吗?为什么?(3)OD与OE相等吗?为什么?(4)OC平分∠ACB吗?为什么?5.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.(1)若BC=8,BD=5,则点D到AB的距离是.(2)若BD:DC=3:2,点D到AB的距离为6,则BC的长是.理由:6.如图,直线a,b,c表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可供选择的地址有几处?如何选?四.课堂小结五.布置作业六.预习指导教学反思:BOAFED CBAcba。

1.4 线段、角是轴对称性(1)

1.4  线段、角是轴对称性(1)

1.4 线段、角是轴对称性(1)【课后作业】1. 到一条线段两端距离相等的点有 个.2. 画图,填空:在△ ABC 中,画出AB 、AC 的垂直平分线,它们相交于点O .连结OA 、OB 、OC .(1)∵ 点O 在线段AB 的垂直平分线上, ∴ _________=__________(_____________). 同理_________=__________, ∴ _________=__________, ∴ 点O 在线段BC 的垂直平分线上.(2)过点O 作OM ⊥ BC ,则直线OM 是线段BC 的__________,由此可知,三角形两边垂直平分线的交点到三角形__________距离相等.3.如图,△ABC 中,DE 垂直平分AC ,与AC 交于E ,与BC 交于D ,∠C=150, ∠BAD=600,则△ABC 是__________三角形.4. 如图,△ABC 中,∠C=900,DE 是AB 的垂直平分线,且∠BAD ,∠CAD=4:1,则∠B =_______.5.如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为__________________.6、 如图,DE 是BC 的垂直平分线,如果△ACD 的周长为17 cm ,△ABC 的周长为25 cm ,根据这些条件,你可以求出哪条线段的长?ABCDE BCA DE CABOPA B7、如右图,在直线MN上求作一点P,使PA=PB8、已知:如图,AB=AC=12 cm,AB的垂直平分线分别交AC、AB于D、E,△ABD的周长等于29 cm,求DC的长.9、已知:在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8 cm,△ABE的周长是14 cm,求AB的长.。

1.4 线段、角的轴对称性 练习(1)

1.4 线段、角的轴对称性 练习(1)

学案1.4 线段、角的轴对称性知识与基础1、在下列图形中,不是轴对称图形的是( )A 、一条线段B 、两条相交直线C 、有公共端点的两条相等的线段D 、有公共端点的两条不相等的线段2、有下列图形:(1)两个点;(2)一条线段;(3)一个角;(4)一个长方形;(5)两条相交直线;(6)两条平行线。

其中轴对称图形共有( )A 、3个B 、4个C 、5个D 、6个3、如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于D ,PE ⊥OB 于E ,若∠1=20º,则∠3=______º;若PD =1cm ,则PE =_________cm. A AD C DPO E B B E C4、如图,在△ABC 中,AB 的垂直平分线DE 交BC 于点E ,交AB 于点D ,△ACE 的周长为11cm ,AB =4cm ,则△ABC 的周长为__________cm.5、如图,在△ABC 中,∠C =90°,BD 平分∠ABC CD :AD =2:3,则点D 到AB 的距离为A D CPA B6、如图,直线交于点O ,点P 关于l 1、l 2的对称点分别为P 、P 。

(1)若l 1、l 2相交所成的锐角∠AOB =60°,则∠P 1OP 2=_________;(2)若OP =3,P 1P 2=5,则△P 1OP 2的周长为_________。

7、如图,在△ABC 中,AD 是边BC 的垂直平分线,DE ⊥AB 于E ,DF ⊥AC 于F 。

(1)AD 是∠BAC 的角平分线吗?为什么?(2)写出图中所有的相等线段,并说明理由。

应用与拓展8、如图,在四边形ABCD 中,对角线AC 、BD 互相垂直平分,交点为O ,写出图中所有相等的线段和相等的角,A O C并说明理由。

B9、“西气东输”是造福子孙后代的创世工程,现有两条高速公路l 1、l 2和两个城镇A 、B (如1 2 3图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置。

1.4线段、角的轴对称性(1)教案

1.4线段、角的轴对称性(1)教案

教案1.4线段、角的轴对称性(1)【学习目标】:1.经历探索线段的轴对称性的过程,进一步体验轴对称的特征,发展空间观念;2 .探索并掌握线段的垂直平分线的性质.【重点难点】:线段中垂线的性质和判定【预习指导】:自学课本18页到19页,回答下列问题并写下疑惑摘要问题1:线段是轴对称图形吗?为什么问题2线段的对称轴是什么?问题3已知线段MN=3cm ,直线l是MN的垂直平分线。

分别以M,N 为圆心,2cm的长为半径画弧,两弧相交于点G、H,并观察点G,H与直线l有什么关系?课堂活动活动一对折线段问题1:按要求对折线段后,你发现折痕与线段有什么关系?问题2:按要求第二次对折线段后,你发现折痕上任一点到线段两端点的距离有什么关系?结论:1__________________2__________________例题:P18 例1这是一道文字描述的几何说理题,对大多数同学来说容易理解,但不易叙述,因此要做一定的分析,如:你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论?题中的已知条件和要说明的结论能画出图形来表示吗?根据图形你能说明道理吗?活动二用圆规找点问题1:你能用圆规找出一点Q,使AQ=BQ吗?说出你的方法并画出图形(保留作图痕迹),还能找出符合上述条件的点M吗?问题2:观察点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?结论:_____________________活动三用直尺和圆规作线段的垂直平分线1.按课本上19页的方法在书上作出线段的垂直平分线;2.同位可画出不同位置的线段,相互作出线段的垂直平分线结论:__________________【典题选讲】:已知:如图,AB=AC=12 cm,AB的垂直平分线分别交AC、AB于D、E,△ABD的周长等于29 cm,.求DC的长【学习体会】:【课堂练习】:1、如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若BC=25cm ,求△AEG的周长?2.在下图中分别作出点P 关于OA 、OB 的对称点C 、D ,连结C 、D 交OA 于M ,交OB 于N,若CD=5厘米,求ΔPMN 的周长.3、滨海政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.C BA( 编写者:李晓红)· BO A。

角的轴对称性(一)重点

角的轴对称性(一)重点
B B
A
A
L
L
谢谢各位同学 的合作!
M P
B
N
C
2、如图,A、B、C三点不在同一直线上, 求作一点P,使PA=PB=PC.
A
P
C
B
3、在△ABC中,AB⊥AC,AC=8cm,BC 边的垂直平分线DE交BC于点E,交AC于 点D,若AB=6cm,求△ABD的周长
A D
B
E
C
4、如图,点A、B分别表示2个居名小区
1)若直线L 表示公交通道,欲在其旁建一个公 交车站,且使从该站到 2个小区的路程相等, 应如何确定车站的位置? 2)若直线L 表示燃气管道,欲在其旁建一个泵 站,且使从该站到2个小区输气的管道总长最 短,应如何确定泵站的位置
B
我是最棒的!
1)你能用圆规作图在图1-9中找出Q 点吗?使AQ=BQ 2)你能再找一个点M吗?使得 AM=BM 3)过点Q、点M作直线L,想想看直 线L和线段AB的垂直平分线有什么 样的关系呢? 通过刚才的操作你有什么发现吗?
L Q M
A
图1-9
B
线段的垂直平分线的判定
到线段两端距离相等的点,在这条线段的垂 P 直平分线上 若:PA=PB 则:点P在线段AB的垂直平分线上
A B
作 法
1、分别以 A、B为圆心,大于 1/2AB的长为半径画弧,两 弧相交于点C、D 2、过C、D两点作直线 直线CD就是线段AB的垂直平 分线 AB
图 形
A
B
1、已知△ABC中,边AB、BC的垂直平分线 相交于点P A 求证:PA=PB=PC
解:∵PM,PN分别是AB, BC的垂直平分线 ∴PA=PB PB=PC ∴PA=PB=PC
1

1.4角的轴对称性(2)

1.4角的轴对称性(2)

尺规作角的平分线
A E G
观察领悟作法,探索思考证明方法:
C
F
B C
பைடு நூலகம்
8
拓展练习 拓展练习
如图,在△ABC中,∠C等于900,AB 的中垂线DE交BC于D,交AB于E,连接 AD,若AD平分∠BAC,找出图中相等的 A 线段,并说说你的理由。
E C
B
D
9
某一个星期六,某中学初 一年级的同学参加义务劳动 ,其中有四个班的同学分别 在M、N两处参加劳动,另外 四个班的同学分别在道路AB 、AC两处劳动,现要在道路 AB、AC的交叉区域内设一个A 荼水供应点P ,使P到两条道 路的距离相等,且使 PM= PN,请你找出点P的位置,并 说明理由。
1
线段的垂直平分线
线段的对称轴 是这条线段的中垂线。
中垂线也叫 垂直平分线 。
O
A B
2
拓展练习
观察领悟作法,探索思考证明方法: C
A
B
D
3
【垂直平分线的性质 】
线段垂直平分线上的点 到这条线段两个端点的距离相等。 到线段两个端点的距离相等的 点在线段垂直平分线上。 线段垂直平分线是到线段两个 端点的距离相等的所以的点的集合 。
拓展练习
B
P N
M C
10
拓展练习
你能在角平分线外找一点, 使它到角的两边的距离相等吗?
到角的两边距离相等的点在这个角的平分线上 角平分线是到角的两边距离相等 的所有的点的集合
11
拓展练习
任意画∠O,在∠O的两边上分别截取OA、 OB,使OA=OB,过点B画OB的垂线,设 2条垂线相交于点P,点O在∠APB的平分 线上吗?你能说出理由? P B O

八上 1.4 线段、角是轴对称性(2)

八上 1.4  线段、角是轴对称性(2)
1.4 线段、角的轴对称性(2)
苏州市吴中区木渎实验中学
一、情境创设: 张庄、李庄和马庄的位置如图,每两个村庄之 间都有笔直的道路相连,他们计划共同打一眼机井. 希望机井到三条道路的距离相等,你能设计出机井 的位置吗?
张庄 李庄 马庄
苏州市吴中区木渎实验中学
二、探索思考: 1、请同学们将事先准备的薄纸拿出来,在上面任意画一个 角(∠AOB),折纸使两边OA、OB重合,你发现折痕与 ∠AOB有什么关系? 你有什么结论: 角是轴对称图形,角平分线所在的直线是它的对称轴. 2、在∠AOB的内部任意取折痕上的一点P,分别作点P 到OA和OB的垂线段PD、PE,再沿原折痕折纸。 你又有什角的平分线上.
苏州市吴中区木渎实验中学
三、例题示范: 例1、任意画∠O,在∠O的两边上分别截取OA、 OB,使OA=OB,过点A画OA的垂线,过点B画OB 的垂线,设2条垂线相交于点P,点O在∠APB的平 分线上吗?为什么?
苏州市吴中区木渎实验中学
例2、如下图(1)所示,在△ABC中,∠C= 90°, BD是角平分线,交AC于点D,DE⊥AB,垂足为点E, AD=3DE. AD和3DC是什么关系?为什么?
a
b c
苏州市吴中区木渎实验中学
苏州市吴中区木渎实验中学
苏州市吴中区木渎实验中学
6、如图,在△ABC中,AD平分∠BAC,交BC于D, DE⊥AB,DF⊥AC,且BD = DC,问EB = FC吗? 说明理由 A
E B D
F C
苏州市吴中区木渎实验中学
7.已知:如图,在ΔABC中,O是∠B、∠C外角 的平分线的交点,那么点O在∠A的平分线上 吗?为什么?
角平分线上的点到角的两边距离相等.
苏州市吴中区木渎实验中学

初中数学《线段、角的轴对称性》教案

初中数学《线段、角的轴对称性》教案

初中数学《线段、角的轴对称性》教案教学课题:1.4线段、角的轴对称性(一)教学时刻(日期、课时):教材分析:学情分析:教学目标:1.经历探究线段的轴对称性的过程,进一步体验轴对称的特点,进展空间观念;2 .探究并把握线段的垂直平分线的性质;3.了解线段的垂直平分线是具有专门性质的点的集合;4 在“操作---探究----归纳----说理”的过程中学会有条理地摸索和表达,提高演绎推理能力。

探究并把握线段的垂直平分线的性质线段的垂直平分线是具有专门性质的点的集合教学预备《数学学与练》集体备课意见和要紧参考资料页边批注加注名人名言苏州市第二十六中学备课纸第页教学过程一.新课导入问题1:线段是轴对称图形吗?什么缘故?探究活动:活动一对折线段问题1:按要求对折线段后,你发觉折痕与线段有什么关系?问题2:按要求第二次对折线段后,你发觉折痕上任一点到线段两端点的距离有什么关系?二.新课讲授结论:1.线段是轴对称图形,线段的垂直平分线是它的对称轴;2.线段的垂直平分线上的点到线段两端的距离相等(投影)例题:例1P21(投影)这是一道文字描述的几何说理题,对大多数同学来说容易明白得,但不易叙述,因此要做一定的分析,如:你能读明白题目吗?题中已知哪些条件?要说明如何样一个结论?题中的已知条件和要说明的结论能画出图形来表示吗?依照图形你能说明道理吗?活动二用圆规找点问题1:你能用圆规找出一点Q,使AQ=BQ吗?说出你的方法并画出图形(保留作图痕迹),还能找出符合上述条件的点M吗?问题2:观看点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?结论:到线段两端距离相等的点,在这条线段的垂直平分线上。

活动三用直尺和圆规作线段的垂直平分线1.按课本上的方法在书上作出线段的垂直平分线;2.同位可画出不同位置的线段,相互作出线段的垂直平分线加注名人名言苏州市第二十六中学备课纸第页一.巩固练习P23 习题1、2、3二.小结结论:线段的垂直平分线是到线段两端距离相等的点的集合这节课你学到了什么?页边批注加注名人名言板书设计作业设计事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

1.4线段、角的轴对称性(2)

1.4线段、角的轴对称性(2)

学案1.4线段、角的轴对称性(2)【学习目标】:1、让学生经历角的折叠过程探索角的对称性,并发现角平分线的性质和判定点在一个角的平分线上的方法;2、使学生会运用角平分线的性质定理解决生活中的相关问题;3、培养学生实践探索的科学习惯;4、在“操作—探究—归纳—说理”的过程中学会有条理地思考和表达,提高演绎推理能力. 【重点难点】:角平分线的性质和判定【预习指导】:1、在一张薄纸上任意画一个角(∠AOB ),折纸,使两边OA、OB重合,你发现折痕与∠AOB有什么关系?结论:2、在∠AOB的内部任意取折痕上的一点P,分别画点P到OA和OB的垂线段PC和PD,再沿原折痕重新折叠,由此你能发现角平分线上的点有什么性质?结论:几何符号:∵∴3、反之,如果一个角内一点具备到这个角两边的距离相等,那么这个点的位置有何特征?结论:几何符号:∵∴【典题选讲】:例1、任意画∠O,在∠O的两边上分别截取OA、OB,使OA=OB,过点A画OA的垂线,过点B画OB的垂线,设两条垂线相交于点P,点O在∠APB的平分线上吗?为什么?PBA例2、已知:如图,在ΔABC中.O是∠B、∠C外角的平分线的交点,那么点O在∠A的平分线上吗?为什么?F【学习体会】:【课堂练习】:1、 画一画:已知∠AOB 和C 、D 两点,请在图中标出一点E ,使得点E 到OA 、OB 的距离相等,而且E 点到C 、D 的距离也相等.2、 已知:在ΔABC 中,D 是BC 上一点,DF ⊥AB 于E,DE ⊥AC 于F,且DE=DF. 线段AD 与EF有何关系?并说明理由.3、 已知:在∠ABC 中,D 是∠ABC 平分线上一点,E 、F 分别在AB 、AC 上,且DE=DF. 试判断∠BED 与∠BFD 的关系,并说明理由.( 编写者:李晓红)O BAC D· ·A C。

1.4线段、角的轴对称性(1)

1.4线段、角的轴对称性(1)

江苏省苏州市木渎实验中学
二 、探索思考
1请你准备一张薄纸,在这薄张上任意画一条线 段AB,折纸,使两端点重合,你发现了什么? 2如图,直线l⊥AB, 垂足为C, CA=CB,点M在l上,那 么 . 你还能得出一个更一般的结论 吗?
l
பைடு நூலகம்
结论:线段的垂直平分线上的点到这条线段两端点 的距离相等
图 10.2.1
3线段的垂直平分线外的点,到这条线段两端点 的距离相等吗?为什么? 江苏省苏州市木渎实验中学
江苏省苏州市木渎实验中学
C
3.如图,△ABC中,DE垂直平分AC,与AC交于E, 与BC交于D,∠C=150, ∠BAD=600,则△ABC是__________三角形.
A E B D C
江苏省苏州市木渎实验中学
4. 如图,△ABC中,∠C=900,DE是AB的垂 直平分线,且∠BAD,∠CAD=3:1,则∠B =_______.
初中数学八年级上册 (苏科版
1.4 线段、角的轴对称性(1)
江苏省苏州市木渎实验中学
一、情境创设: 如图,A,B,C 三点表示三个村庄,为了解决 村民子女就近入学问题,计划建一所小学, 要使学校到三所村庄的距离相等.请你当一回 设计师,在图中确定学校的位置,你能办到 吗? A B
.
.
.C
江苏省苏州市木渎实验中学
江苏省苏州市木渎实验中学
7、如图,在直线MN上求作一点P,使PA=PB
8、已知:如图,AB=AC=12 cm, AB的垂直平分线分别交AC、AB 于D、E,△ABD的周长等于29 cm, 求DC的长.
江苏省苏州市木渎实验中学
9、已知:在△ABC中,AB<AC, BC边上 的垂直平分线DE交BC于点D,交AC于点E, AC=8 cm,△ABE的周长是14 cm,求AB 的长.

1.4 线段 角的轴对称性》(2) 课件孙老师

1.4 线段 角的轴对称性》(2) 课件孙老师

角的对称性
已知∠AOB和C、D两点,请在图中标出一 点E,使得点E到OA、OB的距离相等,而 且E点到C、D的距离也相等。
A C·
E
O
苏科版八年级数学上 苏科版八年级数学上
·D
B
苏科版八年级数学上
角的对称性
任意画∠O,在∠O的两边上分别截取OA、 OB,使OA=OB,过点A画OA的垂线,过点B 画OB的垂线,设两条垂线相交于点P,点O 在∠APB的平分线上吗?为什么?
角的对称性
A D
P
E
C B
书写格式:
O
∵∠AOC=∠BOC,PD⊥OA于D,PE⊥OB于E ∴PD=PE
角平分线上的点到这个角的两边的距离 相等.
苏科版八年级数学上 苏科版八年级数学上 苏科版八年级数学上
角的对称性
动动手
O
A
D P E B C
反之,如果一个角内一点具备到这个角 两边的距离相等,那么这个点的位置有 何特征?
苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上
角的对称性
●本节课你学到了什么? 本节课你还有哪些疑问?
苏科版八年级数学上
苏科版八年级数学上
苏科版八年级数学上
C E D
A F
苏科版八年级数学上 苏科版八年级数学上
B
苏科版八年级数学上
角的对称性
智力大比拼已知:在∠ABC中,D是
∠ABC平分线上一点,E、F分别在AB、AC 上,且DE=DF. 试判断∠BED与∠BFD的 关系,并说明理由.
E A
M
D
B
N
苏科版八年级数学上 苏科版八年级数学上
F
C 苏科版八年级数学上

八上数学评价手册答案

八上数学评价手册答案

初二数学(八上)创新教育实验手册参考答案(苏科版)第一章轴对称图形1. 1 轴对称与轴对称图形【实践与探索】例1 请观察26个大写英文字母,写出其中成轴对称的字母.解:成轴对称的字母有:A、B、C、D、E、H、I、K、M、O、T、U、V、W、X、Y.注意:字母“N、S、Z”也具有对称的特点,但它们不是轴对称图形.例2 国旗是一个国家的象征,观察图1.1.1中的国旗,说说哪些是轴对称图形,并找出它们的对称轴.(略)【训练与提高】一、选择题:1.A2.D3.B4.A5.A二、填空题:6.(1)(2)(5)(6)7.2,3,1,4 8.10∶21三、解答题:9.如图:10.长方形、正方形、正五边形【拓展与延伸】1.(3)比较独特,有无数条对称轴ABCD 1D 2B 1CBAC 1A 1图1.2.12.1.2 轴对称的性质(1)【实践与探索】例1 已知△ABC 和△A 1B 1C 1是轴对称图形,画出它们的对称轴.解: 连接AA 1,画出AA 1的垂直平分线L ,直线L 就是△ABC 和△A 1B 1C 1的对称轴.回顾与反思 连接轴对称图形的任一组对称点,再画对称点所连接线段的垂直平分线,就得该图形的对称轴.例2 如图1.2.2,用针扎重叠的纸得到关于L 对称的两个图案,并从中找出两对对称点、两条对称线段.解:可标注不同的对称点.例如:A 与A '是对称点,B 与B '是对称点. 对称线段有AB 与A 'B ',CD 与C 'D '等.回顾与反思 研究对称点是研究对称图形的基础,一般先研究对称点,再研究对称线段,这能更清楚地了解轴对称的性质. 【训练与提高】 一、选择题:1.B 2.D 3.B 4.A 二、填空题:5.轴对称,3条 6.略 7.810076 8.AB =CD BE =DE ∠B =∠D 三、解答题:9.2,4,5 10.略 11.不是,不是 12.略 13.在对称轴上 【拓展与延伸】 1.如图:图1.2.2图1.2.3(1) (2)图1.2.4 图1.2.52.如图:1.2轴对称的性质(2)【实践与探索】例1 画出图1.2.3中△ABC 关于直线L 的对称图形.解: 在图1.2.3(1)和图1.2.3(2)中,先分别画出点A 、B 、C 关于直线L 的对称点1A 、1B 和1C ,然后连接11B A 、11C B 、11A C ,则△111C B A 就是△ABC 关于直线L 对称的图形.回顾与反思 (1)如果图形是由直线、线段或射线组成时,那么在画出它关于某一条直线对称的图形时,只要画出图形中的特殊点(如线段的端点、角的顶点等)的对称点,然后连接对称点,就可以画出关于这条直线的对称图形; (2)对称轴上的点(如图1.2.3(1)中的点B ),其对称点就是它本身.例2 问题1:如图1.2.4,在一条笔直的河两岸各有一个居民点A 和B ,为方便往来,必须在河上架桥,在河的什么位置架桥,才能使A 和B 两地的居民走的路最短?问题2:如图1.2.5,在一条河的同岸有两个居民点A 和B ,现拟在岸上修建一个码头,问码头修在何处,才能使码头到A 和B 两地的总长最短?①②③④图1.2.4 问题1和问题2之间有联系吗?能从前一个问题受到启发来解决这个问题吗? 探索:对问题1,显然只要连接AB ,AB 与a 的交点就是所要找的点. 对问题2,即要在直线a 上找一点C ,使AC +BC 最小. 分析: 我们用“翻折”———轴对称的方法.画点C :(1)作点A 关于直线a 的对称点A ';(2)连结A 'B 交a 于点C ,点C 就是所求作的点.理由:如图1.2.4,如果C '是直线a 上异于点C 的任意一点,连A C '、B C '、A ' C ',则由于A 、A '关于直线a 对称,所以有'''',C A AC C A AC ==.所以 '''''BC C A BC AC +=+>BC AC BC C A B A +=+=''. 这说明,只有C 点能使AC +BC 最小.【训练与提高】 一、选择题:1.C 2.C 3.B 4.A 二、填空题:5.(1)等腰三角形 (2)矩形 (3)等边三角形 (4)正方形 (5)五角星 (6)圆 6.不对称、不对称 7.5个 三、解答题: 8.略 9.略10.画图略 11.如图:12.画出点A 关于直线L 的对称点A ',连结A 'B 与直线L 的交点即为所求停靠点.【拓展与延伸】图1.3.11.图略2.图略1.3设计轴对称图形【实践与探索】例1 剪纸,千百年来在民间时代流传,给我们的生活带来无限的美丽!动手学一学:观察一下,图1.3.1中最后的展开图是一个轴对称图形吗?它有几条对称轴?例2 如图1.3.2,以直线L为对称轴,画出图形的另一半.图1.4.1【训练与提高】 一、选择题: 1.B 2.B 二、填空题: 3.M 、P 、N 、Q 三、解答题: 4.如图:5.略 6.如日本、韩国 、等 7.略 8.图略 【拓展与延伸】 1.图略2.图略,答案不唯一1.4 线段、角的轴对称性(1)【实践与探索】例1 如图1.4.1,在△ABC 中,已知边AB 、BC 的垂直平分线相交于点P . (1)你知道点P 与△ABC 的三顶点有什么关系? (2)当你再作出AC 的垂直平分线时,你发现了什么?解:(1)点P 与△ABC 的三顶点距离相等,即P A =PB =PC . (2)如图,AC 的垂直平分线也经过P 点.即三角形的三条中垂线交于一点. 例2 如图1.4.2,在△ABC 中,已知AB =AC ,D 是AB 的中点,且DE ⊥AB ,交AC 于E .已知△BCE 周长为8,且AB -BC =2,求AB 、BC 的长.分析:由题意可知,DE垂直平分AB,则有AE=BE,因此△BCE的周长就转化为AC+BC,问题即可解决.解:因为D是AB的中点,且DE上AB,所以AE=BE,则△BCE的周长=BE+CE+BC-AE+CE+BC=AC+BC=8.又因为AB-BC=2,AB=AC,所以AC-BC=2.由上可解得AC=5,BC=3.回顾与反思(1)本题中利用“E是线段AB的垂直平分线上的点”得到“AE=BE”,从而实现了“线段BE"的转移,这是我们常用的方法;(2)利用“线段的中垂线的性质”可以说明两条线段相等.【训练与提高】一、选择题:1.C2.D3.D4.A二、填空题:5.无数个6.6,2 7.10,8 cm 8.9 cm三、解答题:9.24010.连结AB,作AB的中垂线交直线L于P,点P即为所求作的点11.24 cm 12.(1) 35 0(2)55 0【拓展与延伸】1.图略(1)只要任意找一个以A为顶点的格点正方形,过点A的对角线或其延长线与BC的交点就是点P(2)找与A为顶点的正方形中与A相对的顶点.2.9 cm1.4 线段、角的轴对称性(2)【实践与探索】例1 如图1.4.3,在△ABC中,已知∠ABC和∠ACB的角平分线相交于O.请问:(1)你知道点O与△ABC的三边之间有什么关系吗?图1.4.3(2)当你再作出∠A的平分线时,你发现了什么?解:(1)点O到△ABC的三边的距离相等;(2)如图1.4.3,∠A的平分线也经过点D,即三角形的三条角平分线交于一点.例2 已知:如图1.4.4,AD∥BC,DC⊥BC,AE平分∠BAD,且点E是DC的中点.问:AD、BC与AB之间有何关系?试说明之.分析:此题结论不确定,从已知中收集有效信息,并大胆尝试(包括用刻度尺测量)是探索、猜想结论的方法.图1.4.4 (1)将“AE平分∠BAD"与“DE⊥AD"结合在一起考虑,可以联想到,若作EF⊥AB于F,就构成角平分线性质定理的基本图形,可得AF=AD.(2)再结合“点E是DC的中点”,可得:ED=EF=EC.于是连接BE,可证BF=BC.这样,AD+BC=AF+BF=AB.解:AD、BC与AB之间关系:AD+BC=AB.证明思路简记如下:作EF⊥AB,连接BE,易证△ADE≌△AFE( AAS),∴AD=AF.再由EF=ED,EF=EC,可得△BFE≌△BCE( HL),∴BF=BC,AD+BC=AB.回顾与反思(1)根据例1的结论,我们可以在三角形内找到一点,使它到三角形三边距离都相等;(2)利用角平分线的性质,可以说明两条线段相等,这也是我们常用的办法.【训练与提高】一、选择题:1.A2.B3.A4.C二、填空题:5.线段的垂直平分线、角平分线6.3 7.900三、解答题:8.略9.过P点分别作垂线10.作图略11.作MN的中垂线,∠AOB 的平分线交点即是12.6 cm【拓展与延伸】图1.5.1BE D CFA1.600 2.略1.5 等腰三角形的轴对称性(1)【实践与探索】例1 (1)已知等腰三角形的一个角是1000,求它的另外两个内角的度数; (2)已知等腰三角形的一个角是800,求它的另外两个角的度数.分析: (1)由于等腰三角形两底角相等,且三角形的内角和为1800,所以1000的角一定是这个三角形的顶角;(2)等腰三角形的一个角是800,要分底角为800或顶角为800两种情况. 解:(1)由于等腰三角形两底角相等,且三角形的内角和等于1800,这个三角形的顶角等于1000,所以这个三角形的另两个内角应为21(1800 - 1000)=400. (2)①底角为800时,另外两角分别为800和200;②顶角为800时,另外两角分别为500和500.回顾与反思 :(1)当不知道已知的角是等腰三角形的顶角还是底角,此时须进行讨论;(2)若把已知角改为α,则这个等腰三角形另外两个角的度数是怎样的呢?例2 如图1.5.1,在△ABC 中,AB =AC ,D 为BC 的中点, DE ⊥AB ,垂足为E , DF ⊥AC ,垂足为F .试说明DE =DF 的道理. 分析:本题可以根据“角平分线上的点到角的两边的距离相等”来说明 DE =DF .也可以利用△ADB 和△ACD 面积相等来说明DE =DF , 或用全等来说明.【训练与提高】 一、选择题:1.A 2.C 3.C 4.C 5.A 二、填空题:图1.5.2图1.5.36.5 cm 7.6 cm ,2 cm ,或4 cm ,4 cm8.(1)12.5 (2)3>a ,120<<b 9.3,3,4或4,4,2 三、解答题:10.(1)700、400 或 550,550 (2) 300,300 11.750,750,300 12.33 cm 13.1080 14.BD =CE . 理由:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED .∴∠ADB =∠AEC .∴ΔABD ≌ΔACE .∴BD =CE【拓展与延伸】 1.1000 2.略1.5 等腰三角形的轴对称性(2)【实践与探索】例1 如图1.5.2,在△ABC 中,已知∠A =360,∠C =720, BD 平分∠ABC ,问图中共有几个等腰三角形?为什么? 解:图中共有3个等腰三角形. ∵∠A =360,∠C =720,∴∠ABC =1800一(∠A +∠C )=1800- (360+720) =720=∠C , ∴△ABC 是等腰三角形.又∵BD 平分∠ABC ,∴∠ABD =∠CBD =21∠ABC =360, ∠BDC =∠A +∠ABD =360+360=720, 即有∠A =∠ABD ,∠BDC =∠C .∴△ABD 和△BCD 都是等腰三角形. ∴图1.5.2中共有3个等腰三角形.例2 如图1.5.3所示,在四边形ABCD 中,∠ABC =∠ADC = 900.,M 、N 分别是AC . BD 的中点,试说明: (1)DM =BM ; (2)MN ⊥BD .图1.5.4解: (1) ∵点M 是Rt △ABC 斜边的中点,∴BM =21AC , 同理DM =21AC ,∴BM =BM ; (2) ∵N 是BD 的中点,又BM =DM ,∴MN ⊥BD . 回顾与反思 (1)“等边对等角”和“等角对等边”是证明角相等或边相等的又一手段,要能够将这两条定理结合在一起灵活运用,要分清区别和联系;(2)看见直角三角形斜边的中点时,要联想“直角三角形斜边上的中线等于斜边的一半”,这是我们常用的思维方式之一. 【训练与提高】 一、选择题:1.D 2.B 3.D 4.C 二、填空题:5.等腰 6.8 7.350 , 218.(1)ΔBDE 或ΔADE (2)ΔBCE(3)ΔAGF 三、解答题:9.等腰三角形 10.ΔABC ,ΔAEF ,ΔEBO ,ΔFCO ,ΔOBC BE =CF =21EF 11.平行 12.10 cm 【拓展与延伸】1.延长AE 交BC 延长线于F 2.略1.5 等腰三角形的轴对称性(3)【实践与探索】例1 如图1.5.4,在△ABC 中,AB =AC ,∠BAC = 1200,点D 、E 在BC 上,且BD =AD ,CE =AE .判断△ADE 的形 状,并说明理由.解: △ADE 是等边三角形.理由:∵AB=AC,∠BAC=120.,∴∠B=∠C=300.∵BD=AD,AE=CE,∴∠B=∠BAD=300,∠C=∠CAE=300,∴∠ADE=∠DAE=∠AED =600.∴△ADE是等边三角形.例2 等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分为两部分之差为3 cm,则腰长为( ) A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对分析可以先画出草图,题中所给条件实质是腰长与底边长之差的绝对值为3 cm.因为底边长为5 cm,所以腰长可能为8 cm或2 cm,但由于2 cm +2 cm <5 cm,故腰长不能为2 cm,只能为8 cm.解:选B.回顾与反思涉及求等腰三角形边或角时,常会出现“两解”的情况.这样的“解”需要检验它是否满足三角形的三边或三角之间的关系.【训练与提高】一、选择题:1.D2.D3.C4.A5.C二、填空题:6.等边、等边7.150 8.1200三、解答题:9.cm1010、略11.(1)EC=BD(2)添加条件:AB=AC,是轴对称图形,此时,∠BOC=1200,12.过D点作AC平行线【拓展与延伸】1.添辅助线,通过ΔACD≌ΔBCE来说明2.略1.6 等腰梯形的轴对称性(1)图1.6.1图1.6.2【实践与探索】例1 如图1.6.1,在梯形ABCD 中,AD ∥BC , AB =CD , 点E 在BC 上,DE ∥AB 且平分∠ADC ,△CDE 是什么三角形? 请说明理由.解: △CDE 是等边三角形.因为AD ∥BC , AB =CD ,所以∠B =∠C .理由:“等腰梯形在同一底上的两个角相等”又因为AD ∥BC ,所以∠ADE =∠CED .由DE 平分∠ADC ,可得∠ADE =∠CDE , 于是∠CED =∠CDE .又因为AB ∥DE ,所以∠B =∠CED ,从而有∠C =∠CED =∠CDE ,所以△CDE 是等边三角形.回顾与反思 等腰梯形与等腰三角形有着紧密的联系.在研究等腰梯形时,要联想到等腰三角形中的知识.例2 如图1.6.2,在梯形纸片ABCD 中,AD ∥BC , ∠B =600, AB =2,BC =6.将纸片折叠,使得点B 与点D 恰好重合,折痕为AE ,求AE 和CE 的长. 解 ∵点B 与点D 沿折痕AE 折叠后重合,∴△ABE ≌△ADE , ∴ ∠1 = ∠B =600, ∠3 =∠4. ∵AD ∥BC , ∴∠1 = ∠2=600.而∠2 + ∠3 + ∠4= 1800, ∴ ∠3 + ∠4 =1200, ∴ ∠3 =∠4=600,而∠B =600,∴∠5 =600,因此,△ABE 是等边三角形. ∴AE - BE =AB =2, ∴CE =BC - BE =4.回顾与反思 解题过程中要把等腰梯形和一般梯形的特征区分开,不可误用. 【训练与提高】 一、选择题: 1.B 2.C 3.B图1.6.3BCFADE二、填空题:4.1080,1080,720 5.27 6.①②③④ 7.1 cm 8.150 三、解答题:9.∠A =∠E 10.72 0 、72 0 、108 0、108 0,11.成立 【拓展与延伸】 1.CE =21(AB +BC ) 过点C 作CF ∥DB ,交AB 的延长线于点F ,先证:ΔDCB ≌ΔFBC ,则CF =DB ,又四边形ABCD 是等腰梯形,则AC =DB ,故AC =CF , 易证:∠AOB =∠ACF ,所以ΔACF 为等腰直角三角形. 又因为CE ⊥AB ,易证:CE =AE =EF =2BCAB . 2.4,61.6等腰梯形的轴对称性(2)【实践与探索】例1 如图1.6.3,△ABC 中,∠ACB =900,D 是AB 的中点,DE ∥AC ,且DE =AC 21,点F 在AC 延长线上,且CF =AC 21,请说明四边形AFED 是等腰梯形.略证:先说明四边形CFED 是平行四边形.由CD ∥EF ,∠F =∠ACD ,且CD 是RT △ABC 斜边上的中线 得∠A =∠F ,证得四边形AFED 是等腰梯形回顾与反思 要证明梯形是等腰梯形时,只要证明同一底上的两个角相等.例2 阅读下面的分析过程,并按要求回答问题.已知在四边形ABCD 中,AB =CD ,AC =BD ,AD ≠BC .则四边形ABCD 是等腰梯形.你能说明理由吗?分析:要证明四边形ABCD 是等腰梯形,因为AB =DC ,所以只需证四边形ABCD(1)(2)(3)(4)图1.6.4是梯形即可;又因为AD ≠BC ,故只需证AD ∥BC .现有如图1.6.4所示的几种添辅助线的方法,可以任意选择其中一种图形,对原题进行证明.友情提示:充分利用全等三角形与等腰三角形来完成.回顾与反思 在研究等腰梯形时,常常通过辅助线,使等腰梯形与等腰三角形、平行四边形联系起来. 【训练与提高】 一、选择题:1.C 2.C 3.B 4.B 5.C 二、填空题:6.24 7.50 0 、50 0 、130 0、130 0, 8.是 9.80 0 、80 0 、100 0, 等腰 三、解答题:10.略 11.ΔABC ≌ΔDCB12.是,理由:∵∠E =∠ACE ,∴AE =AC ∵AD ∥BC ,∴∠DAC =∠ACE ∴∠E =∠DAC ∵AD =BE ,∴ΔABE ≌ΔCDA ∴AB =CD ∴梯形ABCD 是等腰梯形.13.∵AB =AC ,∴∠ABC =∠ACB .∵BD ⊥AC ,CE ⊥AB ,∴∠BEC =∠CDB =900,BC =BC ∴ΔBEC ≌ΔCDB .∴BE =CD ∴AE =AD .∴AED =∠ADE =21800A ∠-.∵∠ABC =∠ACB =21800A∠-,∴∠AED =∠ABC .∴ED ∥BC .∵BE 与CD 相交于点A ,∴BE 与CD 不平行.∴四边形BCDE 是梯形.∵∠EBC =∠DCB ,∴梯形BCDE 是等腰梯形.M NF DCBA E 【拓展与延伸】 1.26,322.解:设经过x 秒后梯形MBND 是等腰梯形, ∵作ME ⊥BC 于点E ,DF ⊥BC 于点F .∴BE =FN =AM =x .∴EF =MD =21-x ,CN =2x ,BN =24-2x . ∴BN =2AM +MD .即24-2x =2x +21-x ,∴x =1.第一章复习题A 组:1.A 2.C 3.B 4.D 5.C 6.、18或21,22 7.35 0 、35 0 ;40 0、100 0或700、700 8.3 cm 或7 cm 9.7,10或8.5, 8.5 10.(1)300, (2)19 11.1000 12.(1)400,(2)350,(3)360 13.450 1350 等腰 14.等腰梯形 15.3 B 组:16.略 17.略 18.27 300 19.提示:先证:ΔADE ≌ΔADC ,则DE =DC ,所以∠DEC =∠DCE ,又EF ∥BC ,所以∠DCE =∠FEC ,则∠FEC =∠DEC 20.51221.略 22.提示:连结CR 、BP ,利用直角三角形斜边上的中线等于斜边的一半.第二章 勾股定理与平方根答案2.1 平方根⑴例1解: ⑴∵(±10)2=100,∴100的平方根是±10,即10100±=±;⑵∵(±1.3)2=1.69,∴1.69的平方根是±1.3,即3.169.1±=±; ⑶∵49412= ,(±23)2=49,∴49的平方根是±23,即23412±=±;⑷∵02=0,∴0的平方根是0,即00=.回顾与反思:⑴正数的平方根有两个,它们互为相反数,要防止出现100的平方根是10的错误;⑵当被开方数是带分数时.应先将它化成假分数后再求平方根; ⑶ 0的平方根只有一个,就是0,负数没有平方根. 例2解: ⑴∵-64<0,∴-64没有平方根;⑵∵(-4)2=16>0; ∴(-4)2有两个平方根,即416)4(2±=±=-±; ⑶∵-52=-25<0, ∴-52没有平方根;⑷∵81表示81的正的平方根是9,∵9>0, ∴81的平方根有两个是±3.回顾与反思:象(-4)2、81这样的数求平方根时,应先将这些数化简,再求化简后的数的平方根.例3解:⑴ ∵1962=x ,∴x 是196的平方根,即14196±=±=x ;⑵ ∵01052=-x ,∴22=x ,x 是2的平方根,即2±=x ;⑶ ∵()0253362=--x , ∴()362532=-x , ∴()3-x 是3625的平方根,即653±=-x ; ∴6231=x ,6132=x【训练与提高】1. B ; 2D ; 3B . 4.3; 5.±17;±4; 6.±15;54-; 7.-1; 49; 8.9;81; 9.0. 10.⑴-8;⑵±1.3;⑶35-;⑷-9;11.⑴±5;⑵±9;⑶21±;⑷3,-1;12.25; 13.±4.【拓展与延伸】1. ±9;2.±3. 2.1 平方根⑵例1分析:10000表示10000的_________根; 225121-表示225121的算术平方根的相反数; 8149±表示8149的__________根.解 ⑴100100100002==; ⑵ 1511)1511(2251212-=-=-; ⑶ 97)97(81492±=±=±. 回顾与反思:10000表示10000的算术平方根,要防止出现10000=±100的错误.探索:⑴发现: 当0≥a 时,a a =2)(.⑵发现:当0>a 时,a a =2, 当0<a 时, a a -=2;当0=a 时, 02=a .即⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||2a a a a a a a .例2解: ⑴ 2)3(-=3; ⑵2)3(-=3;⑶ 当x >0时,x x =2)(; ⑷当0<a 时,03<a ,a a a a 3|3|)3(922-===.回顾与反思:等式)0(2≥=a a a 和⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||2a a a a a a a ,是算术平方根的两个重要性质.以后经常会用到它们. 【训练与提高】1.B ;2.A ;3.B4.D ;5.D ;6.C .7.⑴±15,15;⑵127± , 127;⑶±0.1,0.1;⑷17,17±.⑸±2,2;8.169;3± 9.0≥a ,2;10.9=x ;11.-1; 12.-3,互为相反数. 13.⑴ 1;⑵65-; ⑶136±;⑷0.17;⑸.5;⑹.-0.3;⑺954.⑻152.【拓展与延伸】1. ±5,±1 ;12. 5. 2.2立方根例1分析 因为立方与开方互为逆运算,因此我们可以用立方运算来求一个数的立方根,也可以通过立方运算来验证一个数是否为另一个数的立方根.例1解 ⑴∵278)32(3=,∴322783=; ⑵∵278)32(3-=-,∴322783-=-;⑶、⑷、⑸略.例2解 ⑴34)34(2764271023333-==-=--; ⑵52)52(125812583333===--. ⑶略.回顾与反思:⑴当被开方数带“-”号时,可把“-”提取到根号外后再计算; ⑵当被开方数是带分数时,应先化成假分数; ⑶当被开方数没化简时,应先化简后再求值.例3解 ⑴28,8,16233-=-=-=-=3x x x ;⑵略回顾与反思:平方根与立方根的区别如下:⑴表示的意义不同;⑵a 与3a 中的被开方数a 的取值范围不同,a 中的a 应满足a ≥0,3a 中的a 可为任何数;⑶一个数的平方根与立方根的个数也不同,一个数的平方根最多有两个,也可能是一个或者不存在,而它的立方根总有且只有一个;⑷负数没有平方根,但负数有立方根. 【训练与提高】1. B ;2.C ;3.D ;4.B ;5.±8,4,8;6.-1,5,65-,23. 7. 100;±8; 8.7,-3; 9.⑴-10; ⑵45-;⑶72;⑷23;⑸34-;⑹3. ⑺0.3;⑻6. 10.⑴56-.⑵8;⑶-16;⑷-4. 11.⑴5;⑵39;⑶-4;⑷-2. 【拓展与延伸】 1.39; 2. 37.5㎝2.2.3实数⑴例1如图将两个边长为1的正方形分别沿它的对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形,容易知道,这个大正方形的面积是2,所以大正方形的边长是2.这就是说,边长为1的正方形的对角线长是2,利用这个事实,我们容易在数轴上画出表示2的点,如图2.3.2所示.图2.3.1例2分析 无理数有两个特征:一是无限小数,二是不循环.因此,要判定一个数是不是无理数,应从它的定义去判断,而不是从表面上去判断.如带根号的数不一定是无理数,而我们熟悉的圆周率π就是无理数.解 有理数有-3.1415926,113335, •31.0 ,3625.无理数有π-,39 ,22, 0.1010010001…. 回顾与反思:有理数与无理数的区别是:前者是有限小数或无限循环小数,而后者一定是无限不循环小数.例3解 ⑴ 不正确.如••53.2是无限小数,但它不是无理数; ⑵ 不正确. 如••53.2是有理数,但它是无限小数;⑶ 正确.因为无理数是无限不循环小数,当然是无限小数; ⑷ 不正确.如4是有理数. 【训练与提高】1.B ;2. C ;3.C .4.实数;5.25 ,722,0,252252225 ,•64.3; 5.121121121…,2π,18-,32. 6.6;7.±5. 【拓展与延伸】 1. C ; 2. 8. 2.3实数⑵例1分析 在实数范围内,相反数、绝对值、倒数的意义与有理数范围内的意义完全相同.所以我们可以用在有理数范围内的同样方法来求一个实数的相反数、绝对值.解 ⑴ ∵4646433-=-=-,∴364-的相反数是4,绝对值是4;π-3的相反数是3-π,∵π-3<0,∴3|3|-=-ππ.⑵ ∵3|3|=,3|3|=-,∴这个数是±3解 由图可知,,0<a ∴a a -=.∵c b <,∴0>-b c ,∴b c b c -=- ∵0,0<<b a ,∴b a b a --=+,∴c b a b c a b a b c a b a b c a =++-+-=----+-=+--+)()(回顾与反思:⑴根据实数在数轴上的位置可以确定各数的符号以及这些数的大小关系; ⑵在求一个数的绝对值时,首先要确定这个数的符号,然后根据“正数和零的绝对值是本身,负数和零的绝对值是它的相反数”来求出它的绝对值.⑶每个有理数都可以用数轴上的点来,但数轴上的点并不都表示有理数,数轴上的点与实数是一一对应的,即每个实数都可以用数轴上的一个点来表示,反过来数轴上的每一个点都表示一个实数.例3解: (1)∵5)5(2= ,425)25(2=,又4255<, ∴ 255<. (2)∵255<,∴2315<-, ∴43215<- 回顾与反思:比较两个无理数的大小,通常可以用计算器求它们的近似值再进行比较.估算一个无理数的大小 ,还可以用与它相近的有理数逐步逼近的方法来实现.【训练与提高】1. D ;2.B ;3.⑴2,2;⑵ 312,312;⑶-3,3;⑷25-, 25-. 4. <, <,<; 5.-1,0,1; 6.37-; 7.⑴2.02;⑵-10.95;⑶-0.98 ;⑷1.29; 8.⑴-5;⑵-4;⑶535--;⑷-9. 9.b -2 a -2c . 10<; <; <; >. 【拓展与延伸】1. 2a -b .2. 4-2. 2.3近似数与有效数字例1分析 生活中形形色色的数, 哪些是近似数?哪些是准确数?需要我们仔细去辨别.脱离了现实背景的数,有时则无法区分.解 略.例2解 ⑴ 43.8精确到十分位(即精确到0.1),有3个有效数字, 分别为4、3、8. ⑵ 0.03086精确到十万分位,有4个有效数字,分别为3、0、8、6. ⑶ 2.40万精确到百位,有3个有效数字,分别为2、4、0.回顾与反思:由于2.40万的单位是万,所以不能看成精确到百分位,另外2.4万和2.40万作为近似数,它们是不一样的.例3解 ⑴3.4802≈3.48 ; ⑵ 3.4802≈3.480; ⑶3.1415926≈3.14; ⑷ 26802≈2.7×104. 回顾与反思:(1)本题⑴、⑵小题,由于精确度要求不同,同一个数的近似结果是不一样的,所以第⑵题中3.480后面的0不能省略不写;反之同一个近似结果所对应的原数也不一定相同,你能举例说明吗?(2)第⑷小题中若把结果写成27000,就看不出哪些是保留的有效数字,所以此时要用科学计数法,把结果写成2.7×104. 【训练与提高】1. D ;2.C ;3.A ;4.略;5. ⑴ 百分位,4个; ⑵ 个位,2个; ⑶ 千分位,3个; ⑷ 个位,5个;⑸ 万分位,3个; ⑹万位,3个; ⑺ 百分位,3个; ⑻百万位,3个.【拓展与延伸】 ⑴1×102;⑵-0.54;⑶-3.64×103;;⑷3.5. 2.4 勾股定理(1)例1解:⑴在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵a =6,c =10,∴b 2=c 2-a 2=64,∴b =8.(b =-8舍去) ⑵在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵a =40, b =9,∴c 2=a 2+b 2=1681,∴c =41. .(c =-41舍去) ⑶在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵b =15,c =25, ∴a 2=c 2-b 2=400, ,∴a =20. .(a =-20舍去) ⑷在Rt △ABC 中, ∠C =90°,∴a 2+b 2=c 2,∵3a =4b ,∴a ︰b =4︰3, ∴设a =4k ,b =3k ,则c =5k .∵c =2.5,∴k =0.5,∴a =2,,b =1.5. 回顾与反思:勾股定理反映直角三角形.....中三边的关系,运用勾股定理在直角三角形的三边中已知任意两边就可以求出第三边.例2解 ①∵△ABC 中, ∠ACB =90°,AC =BC =1, ∴AB =2112222=+=+BC AC ,②∵△ABC 中, ∠ACB =90°, BC =1,AB =2,∴AC =3122222=-=-BC AB回顾与反思:运用勾股定理的前提是三角形必须是直角三角形.若已知条件中没有直角三角形时,应构造直角三角形后方可运用勾股定理. 【训练与提高】1.D ;2.A ;3. 13,60;4. 225,39, 225;5. 5,76.5;7. 49;8.13;9. a 3【拓展与延伸】4. 2.4 勾股定理(2)例1略例2解:由题意得∠AOB =90°,AO =30,BO =40.5040302222=+=+=BO AO AB (海里)答:1小时后两舰相距50海里例3分析 此题首先要解决△ABC 的面积,为此,可考虑作AD ⊥BC 于D .解 过A 作AD ⊥BC 于D ,则AD 2=AB 2-BD 2=AC 2-CD 2. 设BD =x ,则CD =14-x ,∴132―x 2=152―(14-x )2, ∴x =5即BD =5,∴AD 2=144.∴AD =12,S △ABC =21BC ·AD =84m 2. ∴费用84×50=4200元. 回顾与反思:(1)勾股定理揭示了直角三角形的三边之间的关系,已知直角三角形中任意两边就可以依据勾股定理求出第三边.在实际问题中若存在现成的直角三角形,就可以直接运用勾股定理解决问题.(2)涉及面积计算往往需要添加辅助线(高)来构造直角三角形,从而运用勾股定理求得相应的线段,进而求出所需面积. 【训练与提高】1. D . 2.D . 3.4,6 ,2. 4. 7 ,1.8 ; 5. 3㎝; 6. 略. 【拓展与延伸】 1.图略; 2. 图略. 2.5 神秘的数组(例1解 ⑴∵22222225625247c b a ===+=+.根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形是直角三角形,且∠C =90°.⑵∵2222225.225.65.12a c b ===+=+.根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形是直角三角形,且∠A =90°.⑶∵c > a , c > b , 16411452222=+⎪⎭⎫ ⎝⎛=+b a ,而9253522=⎪⎭⎫ ⎝⎛=c ,∴222c b a ≠+,根据直角三角形的判定条件知,由a 、b 、c 为三边组成的三角形不是直角三角形.回顾与反思:要判定一个三角形是否为直角三角形,只要计算两条较短边的平方和,以及最长边的平方,然后看它们是否相等即可.例2解 ∵在△ABD 中,AB 2+AD 2=9+16=25=BD 2,∴△ABD 是直角三角形,∠A 是直角.∵在△BCD 中,BD 2+BC 2=25+144=169=CD 2, ∴△BCD 是直角三角形,∠DBC 是直角. ∴这个零件符合要求.回顾与反思:像(3,4,5)、(6,8,10)、(5,12,13)等满足a 2+b 2=c 2的一组正整数,通常称为勾股数.利用勾股数可以构造直角三角形.例3解 ∵12412)2()1(2422422222++=++-=+-=+n n n n n n n b a .222)1(c n =+=根据直角三角形的判定条件,得∠C =90°.【训练与提高】1. B ;2.B ;3.C ;4. C ;5.C ;6. 直角三角,B ;7. 12,13,5;直角三角形;8. 直角三角形,略9. ∵AB ⊥BC ,∴∠B =90°,∴AC 2=AB 2+BC 2=5,又∵AC 2+CD 2=5+4=9=AD 2.∴∠ACD =90°,∴AC ⊥CD . 10.是,略; 11.连接AC ,∵∠ADC =90°,AD =4,CD =3,∴AC 2=AD 2+CD 2=25,∴AC =5,∵AB =13,BC =12,∴AC 2+BC 2=25+144=169=AB 2,∠ACB =90°,S =30-6=24. 【拓展与延伸】1. 连结EC ,∵D 是BC 的中点,DE ⊥BC 于D ,交AB 于E ,∴BE =CE ∵BE 2-EA 2=AC 2,∴CE 2-EA 2=AC 2,∴CE 2=EA 2+AC 2∴∠A =90°.2.略 2.6 勾股定理的应用(1)例1分析 ⑴根据勾股定理,直角三角形中若两直角边长分别为1个单位和3个单位,则斜边长为10个单位,因此,以原点为圆心,10个单位长为半径画圆与数轴的交点表示的数即分别为±10.解:⑴如图图2.6.1①; ⑵如图图2.6.1②例2分析:几何应用问题重在将实际问题转化为数学问题,此题若设AE =x km ,由△DAE 、△EBC 均为直角三角形,且它们的斜边相等,运用勾股定理可建立方程.解:设AE =x km ,则BE =(25-x )km. ∵CE =DE ,∴CE 2=DE 2 .由勾股定理得 152+x 2=(25-x ) 2+102解得 x =10 . 答:E 站应建在距A 站10km 处.回顾与反思:(1)运用勾股定理的前提是三角形必须是直角三角形.若已知条件中没有直角三角形时,应构造直角三角形后方可运用勾股定理.(2)勾股定理是直角三角形中三边数量之间的一个关系式,也常被用作列方程的等量关系;【训练与提高】1. B .2.C ;3.34;4. 5,13;5. 24,4.8.6. 2.7. 能,略8. 能,略;9. 略; 10.10;11. 4; 12. 25 . 【拓展与延伸】1. 19.5m ;2. 作AD ⊥BC 于D ,设BD =x ,由题意10―x 2=172―(x +9)2,解得x =6.由勾股定理得AD =8.2.6 勾股定理的应用⑵例1分析:设EC =x ,则DE =8-x ,由于折叠长方形的边AD ,且D 落在点F 处,故△AFE 和△ADE 全等,则EF =8-x ,AF =AD =10,在Rt △EFC 中,运用勾股定理得到关于x 的方程,可以求出x 的值.解:设EC =x cm ,则DE =(8-x )cm ,∵D 、F 关于AE 对称∴△AFE ≌△ADE , ∴AF =AD =BC =10,EF = DE =8-x .在Rt △ABF 中,6222=-=AB AF BF∴FC =BC -BF =4.在Rt △EFC 中,由勾股定理得:222)8(4x x -=+ ,解得 x =3.答:EC 长为3cm.. 回顾与反思:(1)折叠问题和轴对称密切相关,要注意翻折图形的特征;(2)从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a 2+b 2=c 2”,看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把实际问题的条件转化为解方程.例2分析 求证的结论中出现平方的形式,我们常可联想勾股定理.要运用勾股定理,首先要找到与结论中的线段有关的直角三角形,若题中没有现成的直角三角形,则需要构造直图2.6.1A FECDB图2.6.3角三角形.解 作AE ⊥BC 于E ,则在△ADE 中,AD 2=DE 2+AE 2; 又∵∠BAC =90°,AB =AC ,∴AE =BE =CE . ∵BD 2+CD 2=(BE -DE )2+(CE +DE )2=BE 2+CE 2+2DE 2=2AE 2+2DE 2=2AD 2,∴BD 2+CD 2=2AD 2. 回顾与反思:(1)在三角形中若要说明某个角是直角,常常想到勾股定理的逆定理. (2)说明含某些线段的平方形式的问题,常通过作垂线构造直角三角形,运用勾股定理来解决.【训练与提高】1. 1.5. 2.直角三角形;2.5. 3.不一定,也可能只是a =b ; 4.略; 5⑴3,⑵设CD =x ,由题意62+x 2= (8- x )2,解得x =47∴CD =47. 【拓展与延伸】 1. 2a 2; 2.略.第二章复习题1. ±8;8;4;±5. 2.π,93- . 3.-1,0,1. 4.<,>. 5. 32-,32-. 6. ±4. 7. ±1,±2. 8. 12. 9. 2,3. 10. 233+. 11. 0≥x . 任何实数.12. ⑴52. ⑵32,⑶10,24. 13.41. 14. 30. 15. B . 16.C . 17.B . 18.B . 19.C . 20.C .21.⑴2±.⑵-3.⑶3,-1; 22.直角三角形. 23. 5㎝. 24. 43.4. 25. ±1. 26. 2. 27. 2010.28. x =6. 29. 2,74. 30. 3. 31. 132. 32. 2,5,10,17,21n +. 33. 12.34. 102,106. 35. 2n. 36. 6(提示:设CD =x ,由勾股定理得x 2+92+x 2+42=132). 37. 327. 38. <,>.第三章 中心对称图形(一)参考答案3.1 图形的旋转例1 如图3.1.1,△ABC 是等边三角形,D 是BC 上的一点,△ABD 经过旋转后达到△ACE 的位置.⑴旋转中心是哪一点? ⑵旋转了多少度? ⑶如果M 是AB 的中点,那么经过上述旋转后点M 转到了什么位置? ⑷图中相等的线段有哪些?相等的角有哪些?分析 解决本题只需利用旋转的定义及其特征. 解 ⑴旋转中心是点A ; ⑵旋转了60°;⑶点M 转到了AC 的中点位置上;⑷相等的线段有:AB=BC=AC ,AD=AE ,BD=CE ;相等的角有:∠B=∠BCA=∠CAB=∠DAE=60°,∠BAD=∠CAE ,∠BDA=∠CEA .回顾与反思:本题应用了旋转的定义及特征,知道旋转图形哪些变,哪些不变.本题的难点在于旋转角度,注意图中∠DAC 不是旋转角度.另外,注意到对应线段AB 、AC 所在直线的夹角是60°(旋转角度),那么对应线段BD 、CE 所在直线的夹角呢?由此你想到什么?例2 已知,如图3.1.2,△ABC 中,∠BAC=120°,⑴以点A 为旋转中心,将△BAC 逆时针旋转60°得△ADE ,画出△ADE ;⑵设题⑴中AD 、BC 交于F ,AC 、DE 交于点G ,请你猜想旋转后△ABF 能否与△ADG 重合?为什么?解 ⑴△ADE 如图所示(画法略);⑵△ABF 能与△ADG 重合,理由如下:∵∠BAC=120°,∠BAD=60°,∴∠DAG=60°=∠BAF ;又由旋转知∠B=∠D ,BA=DA ,∴△ABF ≌△ADG (ASA ).回顾与反思:观察一下△AFC 与△AGE 是否也具备这样的关系?本题中△ABF 与△ADG 能够重合是由∠BAC 及旋转角的特殊性导致的,如果,将△ADE 再绕点A 逆时针旋转过1°,则∠BAD=59°,∠DAG=61°,结论就不成立.【训练与提高】1.D 2.点A ,逆时针旋转45° 3.⑴点A ,⑵△AEF 是等腰直角三角形,⑶略 4.⑴110°或290°,⑵180° 5.以A 为中心逆时针旋转120°得△AEF ,以C 为中心顺时针旋转120°得△CED ,以AC 中点为中心旋转180°得△ACE 6.417.图略8.图略,用SAS 证△EAC ≌△BAD ,再证BD ⊥EC【拓展与延伸】1.图略.△A′′B′′C′′可由△ABC 绕点P 旋转2∠P 得到 2.图略3.2 中心对称与中心对称图形⑴例1 如图3.2.1,已知△ABC 和点O ,试画出△DEF ,使△DEF 和△ABC 关于点O 成中心对称.解 ①连接AO 并延长AO 到D ,使OD =OA ,得到点A 的对称点D ;②同样方法画出点B 、C 的对称点E 、F ; ③顺次连接DE 、EF 、FD . 所以,△DEF 即为所求的三角形.回顾与反思:画出一个别图形关于某一点成中心对称图形,关键在图3.1.2GF EDCBA 图3.2.1EB。

八上 数学1.4线段、角是轴对称性(1)

八上 数学1.4线段、角是轴对称性(1)

1.4 线段、角是轴对称性(1)班级 姓名 学号教学目标:1、线段、角的轴对称的性质的掌握;2、线段的垂直平分线的作法,性质的掌握;3、角平分线的作法、性质的掌握教学重点:探索并掌握线段的垂直平分线的性质教学过程:教学难点:线段的垂直平分线是具有特殊性质的点的集合教学过程:一、情境创设:如图,A ,B ,C 三点表示三个村庄,为了解决村民子女就近入学问题,计划建一所小学,要使学校到三所村庄的距离相等.请你当一回设计师,在图中确定学校的位置,你能办到吗?相信通过本课的学习,你就会轻易的解决这个问题新授:1、让学生准备一张薄纸,在这薄张上任意画一条线段AB ,折纸,使两端点重合,你发现了什么? 学生通过动手和讨论得到结论:线段是轴对称图形,线段的垂直平分线是它的对称轴.2练习:如图,直线l ⊥AB ,垂足为C ,CA =CB ,点M 在l 上,那么 .你还能得出一个更一般的结论吗?结论: 线段的垂直平分线上的点到这条线段两端点的距离相等A B C例1、线段的垂直平分线外的点,到这条线段两端点的距离相等吗?为什么?思考题:如图1,已知线段AB,你能否利用圆规找一点Q,使点Q到A、B的距离相等,观察点Q是否在直线l上?老师巡视,给予个别辅导最后给出肯定答案:即:到线段两端点距离相等的点,在这条线段的垂直平分线上.3、用尺规作图法作线段的垂直平分线在总结上一题的基础上,老师给出作图过程和作图方法,学生在理解的基础上模仿,掌握用尺规作图作线段的垂直平分线的方法.师生共同总结:如果直线l是线段AB的垂直平分线,那么,若点P在l上,则PA=PB;若QA==QB,则点Q在l上.由此,可得到:线段的垂直平分线是到线段两端距离相等的点的集合二、例题示范:例2、如图10.2.2,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D.BE =6,求△BCE的周长.图10.2.2【课后作业】1. 到一条线段两端距离相等的点有 个.2. 画图,填空:在△ ABC 中,画出AB 、AC 的垂直平分线,它们相交于点O .连结OA 、OB 、OC .(1)∵ 点O 在线段AB 的垂直平分线上,∴ _________=__________(_____________).同理_________=__________,∴ _________=__________,∴ 点O 在线段BC 的垂直平分线上.(2)过点O 作OM ⊥ BC ,则直线OM 是线段BC 的__________,由此可知,三角形两边垂直平分线的交点到三角形__________距离相等.3.如图,△ABC 中,DE 垂直平分AC ,与AC 交于E ,与BC 交于D ,∠C=150,∠BA D=600,则△ABC 是__________三角形.4. 如图,△ABC 中,∠C=900,DE 是AB 的垂直平分线,且∠BAD ,∠CAD=3:1,则∠B =_______.5.如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为__________________.B C DCE ABB6、如图,DE是BC的垂直平分线,如果△ACD的周长为17 cm,△ABC的周长为25 cm,根据这些条件,你可以求出哪条线段的长?7、如右图,在直线MN上求作一点P,使PA=PB8、已知:如图,AB=AC=12 cm,AB的垂直平分线分别交AC、AB于D、E,△ABD的周长等于29 cm,求DC的长.9、已知:在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC =8 cm,△ABE的周长是14 cm,求AB的长.。

角的轴对称性

角的轴对称性

简单的轴对称图形:角的轴对称性教学目标知识技能1.经历探索角的轴对称性的过程,进一步体验轴对称的特征.2.探索并了解角的轴对称性及相关性质.3.会用尺规作角的平分线.过程与方法1.通过独立思考,小组合作探究,主动展示,经历角的平分线性质的形成与初步应用过程,从而增强应用数学知识的意识与解决实际问题的能力.2.通过观察、折叠等活动,发展空间观念,培养有条理的思考和规范的数学语言.情感态度与价值观1.通过活动体验学数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神.2.培养学生自主学习、主动参与、主动交流合作的意识和能力,在小组合作交流活动中互相激发灵感,取长补短,培养学生团结合作的学习精神.教学重难点【重点】掌握角平分线的性质,会用尺规作已知角的平分线.【难点】角平分线的性质的应用.教学准备【教师准备】课件、基本作图工具.【学生准备】笔记本、基本作图工具、角的纸片等.教学过程一、新课导入:[导语]前面我们学习了基本图形“线段”是轴对称图形,那么,我们之前学过的另一个基本图形“角”是不是轴对称图形?如果是,对称轴是怎样的直线?【活动内容】不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?对折,再打开纸片,看看折痕与这个角有何关系?[处理方式]学生实验:通过折纸的方法作角的平分线;教师与学生一起动手操作,展示学生作品.通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间.通过探究,学习新知:角是轴对称图形,角平分线所在的直线是它的对称轴.[设计意图]体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫.通过探究角的对称性,让学生亲自动手折叠一个角,能够调动学生的学习积极性,提高学生的学习兴趣,为整节课的学习奠定基础.二、知识探索:探究活动1角平分线的性质【活动内容】请同学们按要求继续前面的折纸活动,并与同伴交流.折纸要求:1.在折痕(即∠AOB的角平分线)上任意找一点C;2.过点C折OA边的垂线,得到新的折痕CD,点D是折痕与OA边的交点,即垂足;3.过点C折OB边的垂线,得到新的折痕CE,点E是折痕与OB边的交点,即垂足;4.将∠AOB再次对折.【问题】在上述的操作过程中,折痕CD与CE能重合吗?改变点C的位置,CD与CE还相等吗?你能解释其中的道理吗?小组交流展示成果.已知:如图∠AOC=∠BOC,CD⊥OA,垂足为D,CE⊥OB,垂足为E,CD与CE相等吗?试说明理由.解:因为CD⊥OA,CE⊥OB(已知)所以∠CDO=∠CEO=90°(垂直的定义)在△CDO和△CEO中,∠CDO=∠CEO(已证)因为∠COD=∠COE(已知)OC=OC(公共边)所以△CDO≌△CEO (AAS)故:CD=CE. (全等三角形的对应边相等)(教师板书)结论:角平分线上的点到这个角的两边的距离相等.符号语言:因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.[处理方式]学生动手折叠,教师在多媒体上演示折叠过程.学生分组讨论、交流,并用文字语言阐述得到的性质.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证.【即时训练一】判断下列说法是否正确.如图所示.1.因为OC平分∠BOA,所以CD=CE.()2.因为CD⊥OA,CE⊥OB,所以CD=CE.()3.因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.()【即时训练二】如图所示,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=5 cm.求:点D到AB的距离.教师引导学生学会分析问题,具体就是:已知条件和要求的线段或角,需要在图形中确定下来,没有的就需要添加辅助线,以便选择需要应用的性质解答.生:本题需要作出表示点D到AB的距离线段,然后利用角平分线的性质解答.解:过点D作DE⊥AB,垂足为E,因为AD平分∠BAC,∠C=90°,DE⊥AB,所以DE=DC=5 cm,即点D到AB的距离是5 cm.[设计意图]注重符号语言转化性质的条件和结论,是为了让学生更好地理解和应用解答问题,尤其是对图形的分析,是学生学习的弱项,加强对图形的标注和构造,为今后图形性质的学习打下坚实的基础.注意事项:角平分线性质中的距离,对应的必须是垂线段,不能认为是任意线段.探究活动2尺规作角的平分线对这种可以折叠的角可以用折叠方法得到角平分线,对不能折叠的角怎样得到其角平分线呢?下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:(1)在∠AOB的两边OA和OB上分别截取OD,OE,使OD=OE.(2)分别以D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.(3)作射线OC.则OC是∠AOB的平分线.你能说明这样作的道理吗?想一想:在作图的过程中有哪些相等的线段?学生交流后得到:OD=OE,CD=CE.△COD和△COE全等吗?全等的依据是什么?[处理方式]教师口述作法步骤,学生根据教师的口述完成作图过程.不要求学生写作法,教师可以引导学生分析在作图的过程中哪些线段相等,学生可以通过交流讨论明确这样作的道理.[设计意图]明确几何作图的基本思路和方法.在自己操作的过程中培养学生运用直尺和圆规作已知角的平分线的能力.探究活动3角平分线性质的应用一条公路与一条铁路所成角的平分线上有一点P,要从点P建两条路,一条到公路上,一条到铁路上,怎样修建距离最短?这两条路有什么关系?理由是什么?设公路与铁路交于点O,公路为OA,铁路为OB,过点P分别作PM⊥OA于点M,PN⊥OB于点N,则PM是到公路上的路,PN是到铁路上的路(垂线段最短).因为点P在公路与铁路所成角的平分线上,所以PM=PN.[设计意图]让学生进一步理解角的平分线的性质,并在此基础上学会利用角的平分线的性质解决简单的问题.[知识拓展]“角平分线上的点到这个角的两边的距离相等”这句话逆过来说“到这个角的两边的距离相等的点在这个角的平分线上”是否也正确呢?三、课堂小结:1.角的轴对称性:角是轴对称图形,角平分线所在的直线是它的对称轴.2.角平分线的性质:角平分线上的点到这个角的两边的距离相等.3.尺规作角平分线.四、随堂检测:1.如图所示,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4答案:B2.如图所示,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP答案:D3.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB 于E,且AB=6 cm,则△DEB的周长为()A.4 cmB.6 cmC.10 cmD.不能确定答案:B4.如图所示,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是()A.TQ=PQB.∠MQT=∠MQPC.∠QTN=90°D.∠NQT=∠MQT答案:D五、板书设计:角的轴对称性探究活动1角平分线的性质探究活动2尺规作角的平分线探究活动3角平分线性质的应用六、作业布置:【必做题】教材第127页习题5.5知识技能第1题.【选做题】教材第127页习题5.5数学理解第2,3题.教学反思1、成功之处:通过折纸操作,从而得到启发,在教师的引导下,让学生悟出角平分线的性质和用尺规作角的平分线,培养学生实践操作能力;学生在经历观察、类比、归纳等过程的基础上,再让学生实践用尺规作角的平分线的过程,进一步提升了学生的感性和理性的融合.在本课时中,营造了一个和谐的课堂学习氛围.2、不足之处:过多的关注学生的实践和操作,忽略了实践和操作的可行性,导致延误了很多时间,致使课堂教学未能按计划完成!另外,在整堂课时间的安排与掌控中,没有合理有效的合理安排,使得课堂结尾仓促!。

八年级数学上册第一章轴对称图形1.4线段、角的轴对称性1

八年级数学上册第一章轴对称图形1.4线段、角的轴对称性1
性质: 直 线 l是 A A '的 垂直平分线
A O A 'O 1 2 900
第五页,共十四页。
动手 试试 (dòng shǒu)
• 1、画线段AB; • 2、取中点O; • 3、过点O作AB的垂线(chuíxiàn)L; • 4、在L上任取一点P; • 5、连接PA,PB; • 6、度量PA,PB; • 你发现了什么?
练习(liànxí)
如图,在ABC中,AB=AC=5,BC=4, AB的垂直平分线DE分别交AB、AC 于点E,D.求BCD的周长。
解: D E是 AB的 垂 直 平 分 线
BD AD C BCD B C B D C D BC AD CD BC AC 45 9第十一页,共十四页。
• 线段是轴对称图形吗?
第三页,共十四页。
结论(jiélùn)
• 线段(xiànduàn)是________图形,____________ 是它的对称轴;
第四页,共十四页。
线段 垂直平分线的性质 (xiànduàn)
由定义得到的性质:
线段(xiànduàn)的垂直平分线垂直于这条线段(xiànduàn),并且平分这条线段(xià
5533
16
第九页,共十四页。
例题 2 (lìtí)
• 如图,已知ΔABC。分别作出 AB,AC的垂直平分线m,n,交于点 O。
• (1)测量(cèliáng)一下,OA=OB=OC吗
?为什么?
• (2)如果三角形的形状变化了, 上述结论是否仍然成立?由此,你 可以得出什么结论?
第十页,共十四页。
第十四页,共十四页。
AO BO
A O P B O P 900
( 理 由 : ____________)

数学八1.4《线段、角的轴对称性》练习及答案

数学八1.4《线段、角的轴对称性》练习及答案

数学八(上)《线段、角的轴对称性》练习1.在一张薄纸上任意化一个三角形ABC,用折纸的方法分别折出边AB和AC的垂直平分线了l1和l2,l2的交点为0.点O在边BC的垂直平分线上吗为什么(第1题答案)答案:点O在边BC的垂直平分线上,因为点O在AB、AC的垂直平分线上,所以OA=OB,OA=OC,理由是:线段垂直平分线上的点到线段两端的距离相等。

由此得到OB=OC,所以点O在BC的垂直平分线上。

理由是:到线段两端距离相等的点,在线段的垂直平分线上。

2.利用网络线画图:(1)在图①中,画线段PQ的垂直平分线;(2)在图②中,找一点O,使OA=OB=OC。

答案:2. (1)(2)○1(第2题答案)○2借助网络和全等三角形的知识,图○1中关键是找出M和点N ;图○2中要找的点O在垂直平分BC的网络线上。

3.任意画一个钝角三角形ABC(∠A>90°)(1)用直尺和圆规分别作两边AB和AC的垂直平分线l1和l2(2)l1、l2的交点O到点B、C的距离是否相等答案:(1)(第3题答案)(2)OB=OC.4.(1)在一张薄纸上画△ABC及其两个外角(如图),用折纸的方法分别折出∠BAD和∠ABE的平分线,设两条折痕的交点为O;(2)用直尺和圆规∠C的平分线CF,如果你折纸和作图都十分准确,点O 应该在射线CF上,这是为什么(第4题) (第4题答案)答案:(1)略(2)因为点O分别在∠BAD和∠ABE的平分线上,所以点O到AD 的距离等于点O到AB的距离。

点O到BE 的距离等于点O到AB的距离,于是可得点O到AD、BE的距离相等、所以点O 在∠C的平分线上。

5.利用网格想作图:(1)在BC上找一点P,使点P到AB和AC的距离相等;(2) 在射线AP上找一点Q,使QB = QC .(第5题)答案:图略。

(1)只有任意找一个A为顶点的格点正方形,过点A的对角线或其延长线与BC的交点就是点P;(2) 在以A为一个顶点、边长为5的正方形中,与点A 相对的顶点就是Q。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D B C
GO
X
如图:PC⊥OA于C,PD⊥OB 于D,且PC=PD,你能肯定OP是 ∠AOB的角平分线吗?
A C P O D B
A C P O D B
∵ PC⊥OA于C,PD⊥OB 于D PC=PD ∴ OP是∠AOB的角平分线 ∴ ∠ AOP=∠ BOP
D O E P
A
C B
1. 角平分线上的点到角的两边距 2.到角的两边距离相等的点,在这 角的平分线是到角的两 离相等 个角的平分线上. 边距离相等的点的集合
P
B
O A
点P也在AOB的 角平分线上吗?
例4:已知∠C=90°, ∠1= ∠2, 若BC=8cm,BD=5cm,求点D到A B的距离.
C D B 1 2 A E
书写规范解题过程!
例5:如图,AD是∠BAC的平分线, DE⊥AB于点E,DF⊥AC于点F, 且BD=DC,试说明BE=CF
E D C F B A
书写规范解题过程!
如图,在三角形ABC中,D是BC的中 点,DE⊥BC,交∠BAC的平分线A E于点E,EF⊥AB,垂足为F,EG ⊥AC,交AC延长线于点G, 试说明BF=CG F B D E A C G
如图:D是∠ABC与∠ACB的平 分线的交点,有人说D点也在∠A的平 分线上你同意吗? A
例1:角是轴对称图形,它的对 称轴是 角平分线所在直线! 注意:不能填角平分线
因为对称轴指的是直线
例2:如图求作一点P,使PC=PD
并且使点P到 AOB 的两边距离
相等.
B


D
O
C A
简述步骤!
例3:任意画∠O,在∠O的两边上分别 截取OA,OB,使OA = OB,过点A画 OA的垂线,过点A画OA的垂线,过点 B画OB的垂线,设2条垂线相交于点P,点 O在∠APB的角平分线上吗?为什么?
角是轴对称图形,它的对称轴 是角平分线所在直线!
文字语言
角平分线上的点到角的 两边距离相等.
D
图形语言AP NhomakorabeaO EC B
AOC BOC , 点P在OC上,
符号语言
PD OA于D,PE OB于E PD PE
P
A
O Q
B
如图:
∵PA=PB,PQ与AB交于点O
∴PQ是AB的垂直平分线
相关文档
最新文档