数学人教版八年级上册最短路经问题
人教版八年级数学上册1最短路径问题课件
在△AB′C′中,AB′< AC′+B′C′,
B′
∴AC+BC < AC′+B′C′,
即AC+BC最小.
归纳
B A
l
解决实 际问题
B
抽象为数学问题
A
C
l
轴对称
A C
用旧知解决新知
B
l
A
C
l
B′
B′
解决“两点一线”型最短路径问题的方法:
异侧: 连接两点,与直线的交点即为所求的点;
同侧: 作其中某一点关于直线的对称点,对称点与另
a P1
M .P
N
b
P2
解决“两线一点”型最短路径问题:
要作两次轴对称,从而构造出最短路径. a
P1
作法: 1.作点P关于直线a的对称 点P1; 2.作点P关于直线b的对称
M .P
点P2; 3.连接P1P2,分别交直线 a ,b于点M ,N ;
N
b
4.依次连接PM ,MN ,NP , 即所求最短路径。
A1
P
l1
.
A
Q
. B1
B
l2
再学习(4)造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔造在何处才能使从A到 B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直)
A
B
思维分析
A M
N B
如图假定任选位置造桥MN,连接AM和 BN,从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短呢?
问题解决
如图,平移A到A1,使A
A
A1等于河宽,连接A1B
人教八年级数学上册最短路径问题
如图,点A,B是直线l同侧不重合的两点,在直线l上求作一点C,使得
AC+BC的长度最短.作法:①作点B关于直线l的对称点B′;②连接AB′,与直
线l相交于点C,则点C为所求作的点.在解决这个问题时没有用到的知识或方
法是( )
A.转化思想 B.三角形两边之和大于第三边
∙B A∙
C.两点之间,线段最短
l
∙B
题转化为“两点之间,线段最短”来解决,该
A∙
过程用到了“转化思想”,“两点之间,线段
l
C
最短”,验证是否为最短距离时利用了三角形
两边之和大于第三边.
B′
随堂练习 2
两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫沿着A至B的路径在 地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C 处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程最短,在图中画出该点的 位置.
1、直线异侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l异侧的两个点,在直线l上找一点C使得AC+BC的值最 小,此时点C就是线段AB与直线l的交点.
A∙
C l
∙B
新知探究
知识点2
2、直线同侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l同侧的两个点,在直线l上找一点C使得AC+BC的值 最小,这时先作点B关于直线l的对称点的B′,连接AB′交直线l于点C(也可以作 点A关于直线l的对称点A′,连接A′B交直线l于点C),此时点C就是所求作的点.
C
∵A′C=AC=BD,
在△A′CE和△BDE中, ∠A′CE=∠B′C=BD,
则△A′CE≌△BDE(AAS),CE=DE,A′E=BE.
2024年人教版八年级上册数学第13章第4节课题学习 最短路径问题
使MN ⊥ m, 且AM 交直线n 于点N,过点N作NM ⊥
+MN+NB 最小
m 于点M,连接AM
感悟新知
特别解读 解决连接河两边两地的最短路
径问题时,可以通过平移桥的方法 转化为求直线异侧两点到直线上一 点所连线段的和最小的问题.
知2-讲
感悟新知
知2-练
例4 如图13.4-5,从A 地到B 地要经过一条小河(河的两岸 平行),现要在河上建一座桥(桥垂直于河的两岸),应 如何选择桥的位置才能使
ቤተ መጻሕፍቲ ባይዱ
课堂小结
设计最短路径 设计最短路径
两点在直 线异侧
两点在直 线同侧
利用轴对称转换
解:如图13 .4 -2,作点B 关于l 的对称点B1,连接 AB1交l 于点M,连接BM, 此时AM+BM 最短,则点 M 即为所求的分支点.
感悟新知
知1-练
1-1.如图,在正方形网格中有M,N 两点,在直线l 上求一 点P 使PM+PN 最短,则点P应选在( C ) A.A 点 B.B 点 C.C 点 D.D 点
四边形P M N Q周 长的最
小值为 P′Q′+ PQ 的值
小
线的交点即为点M,N
感悟新知
知1-讲
特别解读 1.直线异侧的两点到直线上一点的距离的和最短的问
题是根据“两点之间,线段最短”来设计的. 2.直线同侧的两点到直线上一点的距离的和最短的问
题依据两点:一是对称轴上任何一点到一组对称 点的距离相等;二是将同侧的两点转化为异侧的 两点,依据异侧两点的方法找点.
感悟新知
知1-练
例1 [情境题 生活应用]某供电部门准备在输电主干线l 上连 接一个分支线路,分支点为M,同时向新落成的A,B 两个居民小区送电.
八年级数学上册 最短路径问题 人教版
核心素养 利用轴对称和平移解决最短路径问题,让学生体会图形
的变化在解决最值问题中的作用,感悟转化思想. 例11 如图13-4-20,在由边长为1个单位长度的小正方
形组成的网格中,请分别在AB,AC上找到点E,F,使四边 形PEFQ的周长最小.
图13-4-20
解:如图13-4-21,分别作点P关于AB,点Q关于AC的对称 点P′,Q′,连接P′Q′,交AB于点E,交AC于点F,则E,F即 为所求.
图13-4-8
思路导图:
作点P关于BC的对称点
利用轴对称,求线段和最小
解:如图13-4-9,作点P关于BC的对称点P′,连接P′Q, 交BC于点M,M是所求的点.
图13-4-9
题型二 求线段和的最小值 例6 如图13-4-10,△ABC为等边三角形,高AH=10 cm, P为AH 上一动点,D为AB的中点,求PD+PB的最小值.
A.转化思想 B.三角形的两边之和大于第三边 C.两点之间,线段最短 D.三角形的一个外角大于与它不相邻的任 意一个内角
解析:∵点B和点B′关于直线l对称,且点C在l上, ∴CB=CB′.又∵AB′交l于点C,且两条直线相交只有 一个交点,∴CB′+CA的长度最短,即CA+CB的值 最小.此最短路径问题运用了“两点之间,线段最 短”,体现了转化思想,验证时运用了三角形的两 边之和大于第三边.故选D.
考点一 线段和最小问题 例9 (贵州黔南中考)如图13-4-17,直线l外不重合的两点A, B,在直线l上求作一点C,使得AC+BC的长度最短.作法为: ①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点 C,则点C为所求作的点.在解决这个问题时没有运用到的 知识或方法是( D )
人教版初中数学八年级上册《最短路径问题》
如图,点A、B分别是直线l异侧的两个点, 如何在 l 上找到一个点,使得这个点到点A、点B 的距离的和最短?
B A C
l
两点之间,线段最短.
B
问题1 相传,古希腊亚历山大城里有一位久负盛名 的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题: 如图,牧马人从A地出发,到一条笔直的河边 l 饮马, 然后到B地.牧马人到河边的什么地方饮马,可使所走 的路径最短?
• 2.师友交流达成统一意见 • 3.师友展示解决问题的方法、策略
• 4.学友给学师回讲进行整理、消化。
问题A 归纳
B A
抽象为数学问题 B A
l
解决实 际问题
C
联想旧知
l
B
A C
A
用旧知解决新知 C
l
B′
l B
问题B
(造桥选址问题)如图,A和B两地在同一条 河的两岸,现要在河上造一座桥MN.桥造在何 处可使从A到B的路径AMNB最短?(假定河的两 岸是平行的直线,桥要与河垂直.) 思考: 你能把这个问题转化
温馨提示:1.自主思考 2.师友交流达成统一意见 3.师友展示 4.不同方法展示 5.学友给学师回讲进一步整理、消化
证明:如图. 在直线 l 上任取另一点C′ , 连接AC′ 、BC′ 、B′ C′ . A ∵直线 l 是点B、B′的对称轴, C′ 点C、C′在对称轴上, ∴BC=B′C,BC′=B′C′. ∴AC+BC=AC+B′C=AB′. 在△AB′C′中,AB′< AC′+B′C′, ∴AC+BC < AC′+B′C′, 即AC+BC最小.
A 大桥 B
新知1
八年级数学上册13.4课题学习最短路径问题说课稿(新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题说课稿(新版)新人教版一. 教材分析八年级数学上册13.4课题学习“最短路径问题”是新人教版教材中的一项重要内容。
这一节内容是在学生掌握了平面直角坐标系、一次函数、几何图形的性质等知识的基础上进行学习的。
本节课的主要内容是最短路径问题的研究,通过实例引导学生了解最短路径问题的背景和意义,学会利用图论知识解决实际问题。
教材中给出了两个实例:光纤敷设和城市道路规划,让学生通过解决这两个实例来理解和掌握最短路径问题的求解方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、一次函数等知识有了一定的了解。
但是,对于图论知识以及如何利用图论解决实际问题还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握图论知识,并能够将其应用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生了解最短路径问题的背景和意义,掌握利用图论知识解决最短路径问题的方法。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,让学生体验到数学在实际生活中的应用价值。
四. 说教学重难点1.教学重点:最短路径问题的求解方法。
2.教学难点:如何将实际问题转化为图论问题,并利用图论知识解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题来学习和掌握最短路径问题的求解方法。
2.教学手段:利用多媒体课件辅助教学,通过展示实例和动画效果,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示光纤敷设和城市道路规划的实例,引导学生了解最短路径问题的背景和意义。
2.新课导入:介绍图论中最短路径的概念和相关的数学知识。
3.实例分析:分析光纤敷设和城市道路规划两个实例,引导学生将其转化为图论问题。
4.方法讲解:讲解如何利用图论知识解决最短路径问题,包括迪杰斯特拉算法和贝尔曼-福特算法等。
2023-2024学年人教版八年级数学上学期:课题学习 最短路径问题(附答案解析)
第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。
人教版八年级数学上册1最短路径问题课件
分析:
可以把河岸看成两条平行线a
和b,N为直线b上一个动点,
A
MN垂直于直线b,交直线a于点
M,这样问题可以转化为:
当点N在直线的什么位置时, AM+MN+NB最小?
由于河宽固定,因此AM+NB 最小时,AM+MN+NB最小。这 样问题进一步转化为:
当点N在直线b的什么位置时, AM+NB最小?
问题2 归纳
抽象为数学问题
解决实 际问题
A
A'
M
a
b
N
B
用旧知解决新知
A
Ma Nb
B
联想旧知
A
C
l
B
新知2
利用平移确定最短路径选址
解决连接河两岸的两个点的最短路径问题时,可以 通过平移河岸的方法使河的宽度变为零,转化为求直线 异侧的两点到直线上一点所连线段的和最小的问题.
在解决最短路径问题时,我们通常利用轴对称、平 移等变换把不在一条直线上的两条线段转化到一条直线 上,从而作出最短路径的方法来解决问题.
运用轴对称及两点之间线段最短的性质,将所求线 段之和转化为一条线段的长,是解决距离之和最小问题 的基本思路,不论题目如何变化,运用时要抓住直线同 旁有两点,这两点到直线上某点的距离和最小这个核 心,所有作法都相同.
问题2
(造桥选址问题)如图,A和B两地在同一条 河的两岸,现要在河上造一座桥MN.桥造在何 处可使从A到B的路径AMNB最短?(假定河的两 岸是平行的直线,桥要与河垂直.)
你能证明吗?
证明:
另任意造桥M′N′, 连接AM′、BN′、A′N′. 由平移性质可知, AM=A′N,AM′=A′N′, AA′=MN=M′ N′.
13.4课题学习++最短路径问题-讲练课件-2023-2024学年+人教版+八年级数学上册
(1)涂黑部分的面积是原正方形面积的一半;
(2)涂黑部分成轴对称图形.如图2是一种涂法,请在图4-6中分别设计
出另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一
种涂法,如图2与图3)
解:如图所示.(答案不唯一,合理即可)
数学活动
活动3 等腰三角形中相等的线段
例3 综合探究探索等腰三角形中相等的线段.
3.如图,点A,点B为直线MN外两点,且在MN异侧,点A,B到直
线MN的距离不相等,试求一点P,同时满足下面两个条件:
①点P在MN上;②PA+PB最小.
解:如图所示,点P即为所求.
4.如图,铁路l的同侧有A,B两个工厂,要在路边建一个货物站C,
使A,B两厂到货物站C的距离之和最小,那么点C应该在l的哪里呢?画出
数学(RJ)版八年级上册
第十三章 轴对称
课题学习
最短路径问题
新课学习
单动点问题—— 两点在直线异侧
例1 如图,在直线l上找一点P,使得PA+PB的和最小.
解:如图,连接AB,AB与l的交点即为所求点P.
1.如图,高速公路l的两侧有M,N两个城镇,要在高速公路上建一个出
口P,使M,N两城镇到出口P的距离之和最短,请你找出点P的位置.
你找的点C.
解:如图所示,点C即为所求.
5.(2022·珠海市期末)在如图所示的平面直角坐标系中,点A的坐标
为(4,2),点B的坐标为(1,-3),在y轴上有一点P使PA+PB的值最小,
则点P的坐标为(
D
)
A.(2,0)
B.(-2,0)
C.(0,2)
D.(0,-2)
第5题图
6.如图,直线l1与l2交于点O,P为其平面内一定点,OP=3,M,N
人教版初中数学八年级上册第十三章 课题学习 最短路径问题
l
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
探究新知
13.4 课题学习 最短路径问题/
作法:
B
(1)作点B 关于直线l 的对称点B′; A
C
(2)连接AB′,与直线l 相交于点C.
l
则点C 即为所求.
B′
探究新知
13.4 课题学习 最短路径问题/
问题3:你能用所学的知识证明AC +BC最短吗?
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥. C
DF
理由:由作图法可知,AF//DD′,AF=DD′, 则四边形AFD′D为平行四边形,
C′ D ′
于是AD=FD′, 同理,BE=GE′,
E E′
由两点之间线段最短可知,GF最小.
BG
课堂检测
13.4 课题学习 最短路径问题/
拓广探索题
巩固练习
13.4 课题学习 最短路径问题/
如图,已知牧马营地在P处,每天牧马人要赶着马群先到河 边饮水,再带到草地吃草,然后回到营地,请你替牧马人 设计出最短的放牧路线.
解:如图AP+AB即为最 短的放牧路线.
探究新知
13.4 课题学习 最短路径问题/
知识点 2 利用平移知识解决造桥选址问题 如图,A和B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
解:连接AB,与直线l相交于一点C.
A
C
根据“两点之间,线段最
l
短”,可知这个交点即为所求.
B
探究新知
13.4 课题学习 最短路径问题/
人教版初中数学八年级上册13.4最短路径问题(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与最短路径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示最短路径的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“最短路径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《最短路径问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过如何找到两点间最短距离的情况?”(如从家到学校的最短路线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索最短路径的奥秘。
(3)在复杂图形中寻找最短路径时,可以引导学生从简单图形出发,逐步增加难度,让学生掌握解题方法;
(4)结合实际应用,可以设计一些案例,如旅行商问题、工程选址问题等,指导学生如何将所学知识运用到实际中。
在教学过程中,教师应针对这些难点和重点,运用生动形象的语言、具体实例和操作演示,帮助学生理解、掌握和运用相关知识。同时,注意关注学生的反馈,适时调整教学方法和进度,确保学生透彻理解本节课的核心内容。
(3)在实际图形中寻找最短路径,如三角形、四边形等;
(4)将现实生活中的问题转化为数学模型,利用数学知识求解。
举例:讲解最短路径概念时,可以通过实际生活中的例子(如地图上两点间的最短距离)进行说明,使学生理解并掌握这个核心概念。
2.教学难点
(1)如何将实际问题抽象为数学模型,找到最短路径;
人教版八年级数学上册1课题学习最短路径问题课件
A
l
C
B/
任务1:测量点C到A 、 B的距离,求和, 填入学案的空格上。
任务2:小组合作,由组 长安排分工(一人找点,一 人测量,一人计数,其余 监督)任意在直线L上取 点C ′(不与点C重合)探究 测量,填入空格。
A C
B
L
B/
证明:
在L上任取另一点C ‘,连接AC ' 、BC'、B'C'.
通过这节课的学习说说你的收获:
作业 课本P93复习题第15题。
从A点到B点的最短路径为A M+MN+NP+MN+NP+
N
P
Q
B2
B1
B
PQ+QB转化为
AB2+B2B1+B1B.
问题延伸二 A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线, 桥要与河岸垂直)
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1
N1
B
由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
此时从A到B点路径最短.
M N
P Q
G
H B1 B
延伸小结
同样,当A、B两点之间有4、5、
6,...n条河时,我们仍可以利用
平移转化桥长来解决问题.
八年级数学人教版上册13.4最短路径问题优秀教学案例
一、案例背景
八年级数学人教版上册13.4节主要讲述最短路径问题,这是学生对图论初步了解后的进一步深化。在学习了图的定义、表示和遍历等基础知识后,最短路径问题既是对前面知识的综合运用,又是向更为复杂图论问题的过渡。
本节课内容对于学生来说具有一定的难度,需要他们能够理解并掌握最短路径的算法,并能够运用到具体的问题中。同时,这也是对学生逻辑思维能力和问题解决能力的考查。
四、教学内容与过程
(一)导入新课
1.利用PPT展示生活中的最短路径问题,如旅行中最短路线的选择、网络数据传输的最短路径等,引导学生关注最短路径问题在现实生活中的应用。
2.向学生提出问题:“如何找到两点之间的最短路径?”让学生思考并发表自己的观点,为导入新课做好铺垫。
3.教师总结:今天我们将学习图论中的一个重要问题——最短路径问题,希望通过本节课的学习,大家能够掌握最短路径的求解方法,并能够运用到实际问题中。
4.在解决问题的过程中,引导学生总结规律,提高学生的归纳总结能力。
(三)小组合作
1.组织学生进行小组讨论,培养学生的团队协作能力和沟通能力。
2.分配具有挑战性的任务,让学生在合作中共同解决问题,提高解决问题的效率。
3.鼓励学生互相评价、互相学习,培养学生的自主学习和反思能力。
4.教师在小组合作过程中进行巡视指导,关注学生的学习情况,及时给予帮助和引导。
在教学过程中,我通过设计丰富多样的教学活动,引导学生主动探究、合作交流,从而提高他们对最短路径问题的理解和运用能力。同时,注重培养学生的数学素养,让他们在学习过程中感受到数学的趣味性和实用性。
二、教学目标
(一)知识与技能
1.理解最短路径问题的概念,掌握基本的最短路径算法。
初中数学人教版八年级上册《13.4最短路径问题课时2》课件
A∙
M
a
A′ N
b
∙B
证明:在直线b上另外任意取一点N′,过点N′作N′M′⊥a,
垂足为M′,连接AM′,A′N′,N′B. ∵在△A′N′B中,A′B<A′N′+BN′, ∴A′N+NB<A′N′+BN′. 即A′N+NB+MN<A′N′+BN′+M′N′.
A∙
M
A′
∴AM+NB+MN<AM′+BN′+M′N′.
如图,在直线l1和直线l2上分别找到点M,N,使得四边形PQMN的周长最小.
解析:通过轴对称把周长最小问题转化为两点 间距离最短问题,四边形PMNQ的周长的最小 值为PM+MN+NQ+QP=P1Q1+PQ,根据的是两 点之间,线段最短.
Q1
l2
N ∙Q ∙P
l1 M
P1
某中学八(2)班举行文艺晚会,如图所示,OA,OB分别表示桌面,其中 OA桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子 再拿糖果,然后回到C处,请你帮他设计一条行走路线,使其所走的路程最 短.
A
∙C
O
B
解析:(1)如图所示,作点C关于OA的对称点C1; (2)作点C关于OB的对称点C2; (3)连接C1C2,分别交OA,OB于点D,E,连接 CD,CE. 所以先到点D处拿橘子,再到点E处拿糖果,最后 O 回到点C处,依照这样的路线所走的路程最短.
C1 A
D
∙C
E
B
C2
如图,为了做好交通安全工作,某交警执勤小队从点A处动身,先到公路l1上设 卡检查,再到公路l2上设卡检查,最后到点B处实行任务,他们应如何走才能使 总路程最短?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题学习最短路径问题教学设计
教学目标
能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.
教学重点
利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.
教学难点
探索发现“最短路径”的方案,确定最短路径的作图及说理
教学过程
一、创设情景,明确目标
如图所示,从A地到B地有三条路可供选择,走哪条路最近?你的理由是什么?
前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,
二、合作探究,达成目标
探究点一探索最短路径问题
如图,要在燃气管道L上修建一个泵站,分别
向A、B两镇供气,泵站修在管道的什么地方,可使
所用的输气管线最短?
活动二:相传,古希腊亚历山大里亚城里有一
位久负盛名的学者,名叫海伦.有一天,一位将军
专程拜访海伦,求教一个百思不得其解的问题:
从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到
河边什么地方饮马可使他所走的路线全程最短?
分析:
问题(1),
点A, B分别是直线L不同侧的两个点,如何在L上找到一个点,使得这个点到点A、点B 的距离的和最短?利用“两点之间线段最短” 连接A,B交L为所求的点。
问题(2),
如果点A,B同一侧时,利用轴对称性以直线l对称轴找A或B的
对称点,就可以把问(2)转化为问题(1)的情况,从而使新问题得
到解决.
作法:(1)作点B 关于直线l 的对称点B′;
(2)连接AB′,与直线l 交于点C.则点C 即为所求.
2013年济南)已知:抛物线的对称轴为x=-1与X 轴交于A ,B 两点,与Y 轴交于点C 其中A (-3,0),C (0,-2)
(2)已知在对称轴上存在一点P ,使得 的周长最小.请求出点P 的坐标.
问题三,
如图13.4-5,牧马营地在点P
饮水,最后回到营地.请你设计一条放牧路线,使其所走的总路程最短.
分析:
要使其所走的总路程最短,可联想到“两点之间,线段最短”,因此需将三条线段转化到一条线段上,为此作点P 关于直线a 的对称点P 1,作点P 关于直线b 的对称点P 2,连接P 1P 2,分别交直线a ,b 于点A ,B ,连接P A ,PB ,即得放牧所走的最短路线.
解:
作点P 关于直线a 的对称点P 1,关于直线b 的对称点P 2,连接P 1P 2,分别交直线a ,b 于点A ,B ,连接PA ,PB .由轴对称的性质知,PA =P 1A ,PB =P 2B ,所以先到点A 处吃草,再到点B 处饮水,最后回到营地,按这样的路线放牧所走的总路程最短.
△
C
为庆祝教师节,阳光中学八年级(2)班举行了一次文艺晚会,桌子摆成两条线如图中的桌子OA 上摆满了苹果,桌子OB 上摆满了橘子,坐在C 处的小华想先拿苹果再拿橘子,然后回到座位C 处.请你帮助小华设计一条行走路线,使小华所走路程最短.
分析:
1)小华、苹果、橘子三个位置不在同一条直线上,三点连接起来构成一个三角形,求所走的路程最短实际是求这个三角周长的最小值。
(2)利用轴对称的性质将三点搬到同一条直线上,在运用“两点之间线段最短”定理。
四,课堂小结:
(一)问题1,2是两个定点找一个动点:
(1)如果在直线异侧,则直接连接两点与直线的交点;
(2)如果在直线同侧,则找一点对称点再将对称点与另 一点连接与直线的交点。
(二)问题3是一定点找两动点,方法是分别找两动点的对 称点再分别连接两对称点跟直线的交点。
(三)问题1,2,3都是直接或间接的运用“两点之间线段最短”定理。
五,课后作业:
如图,在矩形OABC
中,已知A 、B 两点的
坐标分别为 A (4,0)C(0,2),D 为
OA 的中点.设P 点是
﹤AOC 平分线 上的一个动点(不与点
O 重合). (1)试证明:无论点P
运动到何处,PC 总与
PD 相等;
(2)当点P 运动到与
点B 的距离最小时,试确定过O ,P,D 三点的抛物线的解析式;
(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,⊿PD E 的周长最小?求出此时点P 的坐标和⊿PD E 的周长;
(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使 <CPN=900 ?若存在,请直接
写出点P 的坐标.。