指出下列各数是几位有效数字

合集下载

计算方法一二章答案

计算方法一二章答案
(3) x=ln(4x)= φ2(x): |φ2’(x)|=1/x>1 (发散) (4) 计算:x0=0 x1=0.2500 x4=0.3529 x5=0.3558 x9=0.3574 x8=0.3573 x2=0.3210 x6=0.3568 x10=0.3574
4
x3=0.3466 x7=0.3572 ∴ x ≈ 0.3574

1) 2) 4) 3)
x=1+1/x2 x3=1+x2 x2=x3-1 x2=1/(x-1)
方程求根
解:1) x 1 1 x2
|1’(x)|= | -2 1 x3 |= 2
(x)
1 1.53 | x0=1.5 =0.59 <1(收敛)
2) x 3 1 x 2
| 2’(x)|= | 1 3

(1)单调区间:
令f’(x)=ex-4=0, x=ln4≈1.4,所以有两个单调区间: [- ∞,1.4](递减)和[1.4, ∞](递增)

(2)有根区间:∴ 存在两个有根区间为:[0,1] 和[2,3]
[- ∞,1.4]区间:f(0)=1>0,f(1)=e-4<0,所以有根区间为:[0,1] [1.4,+ ∞]区间:f(2)=e2-8<0,f(3)=e3-12>0,所以有根区间为:[2,3]
方程求根

3:用简单迭代法求方程ex-4x=0的根,并验 证收敛性,精确到4位有效数字。

解:2.在区间[0,1]上构造收敛的公式并计算
x=ln(4x)= φ2(x) (1)两种等价形式: x=ex/4=φ1(x); xk (2) x=ex/4=φ1(x): e |φ1’(x)|=ex/4<1 (收敛), 迭代公式为: xk 1

《分析化学》模拟试题及答案

《分析化学》模拟试题及答案

分析化学试题 2009年(B卷)1、简答题1、指出下列数据中各包含几位有效数字?(4分)A.8060 B.2.9049 C.0.06080 D.8.06×1062、根据有效数字运算规则,下列各式的计算结果应有几位有效数字?(6分)A.625×0.648 B.893.6-873.21C.2.653/0.29 D.716.66+4.8-0.51863、在酸碱滴定中,影响P M突跃的主要因素是什么?(3分)、下列各物质是否可用相同浓度的酸或碱标准溶液直接准确滴定?如果可以,有几个P H突跃?(8分)A.0.2mol·L-1氨水(NH3·H2O) (NH3·H2O K b=1.8×10-5 ) B.0.2mol·L-1盐酸C.0.2mol·L-1草酸H2C2O4(H2C2O4 Ka1=5.9×10-2,Ka2=6.4×10-5)D.0.2mol·L-1H3PO4 (H3PO4 Ka1=7.6×10-3,Ka2=6.3×10-8,Ka3=4.4×10-13)、在EDTA配位滴定中,如果滴定时溶液的PH值变小,则金属离子与EDTA形成的配合物的条件稳定常数将发生怎样的变化?(答变大、变小或没有变化)。

(3分)、下列金属离子的溶液是否可用等浓度的EDTA标准溶液直接准确滴定?为什么?(6分)A. P H=10.0时,0.02 mol·L-1 Mg2+溶液B. P H=2.0 时,0.02 mol·L-1 Al3+溶液(lgK Mg Y=8.69; lgK Al Y=16.3;P H=2.0 lgαY(H)=13.51;P H=10.0 lgαY(H)=0.45)、浓度均为0.02mol·L-1的Ca2+,Mg2+混合溶液,可否不经分离而采用控制酸度的方法直接进行分别滴定?为什么?(3分)(lgK Ca Y=10.69,lgK MgY=8.69)8、测定某一符合朗伯-比尔(Lambert一Beer)定律的有色溶液的吸光度时,用厚度为1.0cm的比色皿,测得其吸光度为0.13。

计算方法与实习 第四版 (孙志忠 著) 东南大学出版社 课后答案

计算方法与实习 第四版 (孙志忠 著) 东南大学出版社 课后答案

2
ww
w.
kh
da
w.
co
∗ − y | → ∞, 计算过程不稳定。 注 :此题中,|yn n
m
× 10−3 .
w.
n = 1, 2, · · ·
co m
e2 e2 r r = . 1 + er 1 − er
w.
课后答案网
aw . kh d
∗ − y | = 510 e ≤ n = 10时,|yn n 0
√ 计算到y100 , 若取 783 ≈ 27.982 (5位有效数字),试问计算到y100 将有多大误差? √ 答 :设x∗ = 783, x = 27.982, x∗ = x + e.
−2 ∗ = y∗ yn n−1 − 10 (x + e), yn = yn−1 − 10−2 x,
1 √ 783, 100
概率与数理统计 第二, C语言程序设计教程 第 西方经济学(微观部分) C语言程序设计教程 第 复变函数全解及导学[西 三版 (浙江大学 三版 (谭浩强 张 (高鸿业 著) 中 二版 (谭浩强 张 安交大 第四版]
社区服务
社区热点
进入社区
/
2009-10-15
ww
er − er = er −
e2 e e 1 r = . = e − = e − r r x∗ e+x 1 + er 1 + e1 r ·········
7. 设y0 = 28, 按递推公式
案 答
yn = yn−1 −
网 课 后
1 2
6. 机器数–略。
w. kh da
∗ −y |=e≤ n = 100时,|yn n
课后答案网

数值分析典型例题

数值分析典型例题

1数值分析典型例题例1 对下列各数写出具有5位有效数字的近似值。

236.478, 0.00234711,9.000024, 9.000034310⨯.解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310⨯。

注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9是1位有效数字。

例2 指出下列各数具有几位有效数字。

2.0004, -0.00200, -9000, 9310⨯,2310-⨯。

解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程*s 的近似值s=800m ,所需时间*s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。

解:因为t s v /=,所以)()(1)()()(2t e tss e t t e t v s e s v v e -=∂∂+∂∂≈ 从而05.00469.0358005.0351|)(||||)(|1|)(|22≤≈+⨯≤+≤t e t s s e t v e同样v v e v e r )()(≈)()()()(t e s e t e vtt v s e v s s v r r r -=∂∂+∂∂=所以00205.03505.08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r因此绝对误差限和相对误差限分别为0.05和0.00205。

例4试建立积分20,,1,05=+=n dx x x I nn 的递推关系,并研究它的误差传递。

解:151--=n n I nI ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。

但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可知近似值之间的递推关系为151--=n n I nI ……………………………………………….…..(2) (1)-(2)可得01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。

实验结果保留几位有效数字?

实验结果保留几位有效数字?
连续修约。
4
※ 按多保留一位的修约 法:15.5(-)
2
如15.4546 一次修约结 果为:15。
5
因为.5(-),即修约后到 5(-) ,但不足5(<5),所 以不进,最终结果为15。
3
※ 连续修约: 15.455 — 15.46-
15.5-16
6
数值的修约方法
08
数值的修约方法有两种,即修约值比较结果的修约
根据技术标准的指标要求,在原 始记录中,通常检验计算的结果 应比标准规定的位数要多保留一 位,但被多保留的一位数值,应 该体现出修约的情况,或一步修 约到位,但不能存在连续修约的 现象。
检验结果修 约后,应体 现出修约的 情况。
如:标准值 ××<0.5
检测结果为:0.456, 第1步修约:0.46(-) (四舍六入),报出值:0.5(-) 判定: 合格。
实验结果保留几位有效数字?
演讲人
2021-01-09
01
有效数字的定义
01
我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部 分数字叫做存疑数字。把测量结果中能够反映被测量大小的带有一位存 疑数字的全部数字叫有效数字。有效数字指,保留末一位不准确数字, 其余数字均为准确数字。有效数字的最后一位数值是可疑值。
有效数字的保留
由于有效数字最末一位是可疑值, 而不是准确值。因此,计算过程 中,计算的结果应比标准极限或 技术指标规定的位数要求多保留 一位,最后的报出值应与标准对 定的位数相一致。
如:在标准的极限数值(或技术指 标)的表示中,×× ≧95 表明结果 要求保留到整数位。因此,计算 结果一定要保留到小数点后一位, 最后再修约到整数位,如计算结 果为94.6报出结果为95(-);因为 94.6结果的0.6为可疑值,要想保 留到整数位结果为准确值,计算 结果必须要多保留一位。

计算方法-刘师少版课后习题答案

计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有31105.06592001.0-*⨯≤=- x x .即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位.又近似值x =3.1416,它的绝对误差是0.0000074…,有5-1*10⨯50≤00000740=-.. x x即m =1,n =5,x =3.1416有5位有效数字.而近似值x =3.1415,它的绝对误差是0.0000926…,有4-1*10⨯50≤00009260=-.. x x即m =1,n =4,x =3.1415有4位有效数字.这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00解 (1)∵ 2.0004=0.20004×101, m=1绝对误差限:4105.0000049.020004.0-*⨯≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字1x =2,相对误差限000025.010221102151)1(1=⨯⨯=⨯⨯=---n r x ε(2)∵ -0.00200= -0.2×10-2, m =-25105.00000049.0)00200.0(-*⨯≤≤--=-x x xm -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字1x =2,相对误差限3110221-⨯⨯=r ε=0.0025(3) ∵ 9000=0.9000×104, m =4,0105.049.09000⨯<≤-=-*x x xm -n =0, m =4则n =4,故x =9000有4位有效数字4110921-⨯⨯=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4,2105.00049.000.9000-*⨯<≤-=-x x xm -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6110921-⨯⨯=rε=0.000 00056由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的.1.3 ln2=0.69314718…,精确到310-的近似值是多少?解 精确到310-=0.001,即绝对误差限是ε=0.0005,故至少要保留小数点后三位才可以.ln2≈0.6932.1 用二分法求方程013=--x x在[1, 2]的近似根,要求误差不超过31021-⨯至少要二分多少?解:给定误差限ε=0.5×10-3,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k只要取n =10.2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k只要取n =14.2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式:(1)211xx +=,迭代公式2111kk x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。

思考题4有效数字

思考题4有效数字
2.0Km ± 100m
L=(2.0±0.1)Km
(2)m=(72.3200±0.4)Kg
m=(72.3±0.4)Kg (3)v=1.23±0.015m/s v=(1.23±0.02)m/s
改正下列错误写法: (4)h= 27.3×104±20000Km h=(27±2) ×104Km (5)E=(1.93×1011±6.79×109)N/m2
E=(1.93±0.07) ×1011N/m2
(6)A= 60°± 30″ A=(1.0467±0.0001)rad
= 60°0ˊ0″ ± 30″=60.000° ±0.008°
找出下列正确的数据记录:
(1)用分度值为0.05㎜的游标卡尺测物体长度: 32.50㎜;32.48㎜;43.25㎜;32.5㎜;32.500㎜。
电流:80mA; 80.0mA; 80.00mA; 电压:80V; 80.0V; 80.00V


m 求 X y , 其中 n
m 1.00 0.02cm ; n 10.00 0.03cm ;
y 5.00 0.01cm, 其结果表达式为( D )
A. B. C. D. X X X X 0.50 0.02cm; 0.50 0.03cm; 0.50 0.04cm; 0.50 0.01cm。
2 0.1 × 10 100 0.1 _________,
100 0.1 1 。 式子的前一项 _____ 17.3021 7.3021
指出下列各数的有效数字的位数: 2 位, (1) 0.050cm是______
4 位, (2) 4.321 10 mm是______
3
无穷 位, (3) 周长 L 2R 中的2是_____

有效数字

有效数字

100 .00 ± 0.10cm 中的 100.00的有效数字是 4 位; 的有效数字是____ 的有效数字是
100 . 0 ± 0 . 1 cm 中的有效数字 4 位 是____位。
用最大误差0.01mA,最大刻度是 最大刻度是10mA的 用最大误差 最大刻度是 的 电流表测一电流,读数是 电流表测一电流 读数是6.00mA ,算出读 读数是 算出读 数的相对误差是0.2%, 那么此表是 D ) 那么此表是( 数的相对误差是 A. 1级表 级表; 级表 C. 0.2 级表 级表; B. 0.5级表 级表; 级表 D. 0.1级表。 级表。 级表
改正下列错误写法: 改正下列错误写法: (4)h= 27.3×104±20000Km 27.3× h=(27± h=(27±2) ×104Km (5)E=(1.93×1011±6.79×109)N/m2 E=(1.93× 6.79× )N/ E=(1.93± E=(1.93±0.7) ×1011N/m2 (6)A= 60°± 30″ 60°± A=(1.046667± A=(1.046667±0.000004)rad =60º0 =60º0 ″± 30″
(3)用分度值为0.01㎜的螺旋测微计测物体长度: (3)用分度值为0.01㎜的螺旋测微计测物体长度: 用分度值为0.01 0.50㎜ 0.5㎜ 0.500㎜ 0.324㎜ 0.50㎜;0.5㎜;0.500㎜;0.324㎜。
找出下列正确的数据记录: 找出下列正确的数据记录:
(4)用量程为 用量程为100 mA,刻有 小格的0.1级表测量 用量程为 ,刻有100小格的 级表测量 小格的 电流,指针指在80小格上 用量程为100V,刻 小格上; 电流,指针指在 小格上;用量程为 , 小格的1.0级表测量电压 有50小格的 级表测量电压,指针指在 小格 小格的 级表测量电压,指针指在40小格 数据如下: 上,数据如下: 电流: 电流:80mA; 80.0mA; 80.00mA;

【方法】计算方法例题分析

【方法】计算方法例题分析
设H2(x)=f(a)+f[a,b](x-a)+k(x-a)(x-b)。于是
所以
注 由于二次多项式由H2(a),f(b),f′(a)三个条件所唯一确定,所以本题由各种方法所求得的解,实质上是相同的。
例题分析二
例6 已知函数y=f(x)的观察数据为
试构造f(x)的拉格朗日多项式Pn(x),并计算f(-1)。
解:法一与(1)中三个插值条件相应,依次建立三个插值基函数,是二次多项式且满足标准的基函数插值条件
利用待定系数法容易求得
则所求的二次插值多项式为
法二 可先根据给定条件H2(x)=f(a),H2(b)=f(b)作出牛顿插值(或拉格朗日插值)多项式,然后再加带有待定系数的一项,所加项自然应保证在a,b处取值为零,故而可取k(x-a)·(x-b),再由条件确定待定系数k。
解:根据拉格朗日插值公式,利用给定的数据表,可构造出f(x)的二次插值多项式
插值余项为

由此得积分近似值
积分值的误差为
其中
例5给定f(x)在节点a,b上的函数值与导数值f(a),f(b),f′(a)。试求一个二次多值式H2(x),使之满足插值条件
H2(x)=f(a),H2(x)=f(b),
(1)
分析构造插值多项式的基本方法是基函数法,即对每一个插值条件建立一个与之相应的插值基函数。基函数的形式要与所求的插值函数相一致。然后用给定的插值数据与基函数作线性组合,就可得到所求的插值函数。
│x-x*│=0.0000926…≤0.5×101-4
即m=1,n=4,x=3.1415有4位有效数字。
这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;
例2指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:

数值分析 - 第2章 误差

数值分析 - 第2章  误差
解 f ′( x) = 3 x 2 − 2 = −0.548
ef ( x) ≤ f ′( x ) ε ( x ) = 0.548 × 0.25 ×10 −3 = 0.137 × 10 −3 例7 设 x= π=3.1415926…,求 x 的近似值 x*及有效数字
解 若取 x 的近似值 x=3.14=0.314×101, 即 m=1,它的绝对误差是-0.001 592 6…,有
10 − l +1 ≤ 20 × 10 −4 10 − l ≤ 2 × 10 −4 l =4
例 5 近似值 2.15 的相对误差限不大于多少,才能够保证它至少的三位有效数字
解: a1 = 2
m =1
l =3Biblioteka εr =1 2 ( 2 +1)
−2 × 10 −3+1 = 1 6 × 10
例6 设 x=0.2200 的绝对误差限 ε ( x ) = 0.25 ×10 −3 求函数 f ( x ) = x 3 − 2 x + 1 的绝对误差限
x − x ∗ = 0.001 592 6 ≤ 0.5 × 101−3
即 l=3,故近似值 x*=3.14 有 3 位有效数字.或 x*=3.14 的绝对误差限 0.005,它是 x 的小数后第 2 位的半个单位, 故近似值 x*=3.14 准确到小数点后第 2 位,有 3 位有效数字.
若取近似值 x=3.1416,绝对误差是 0.0000073…,有
x − x ∗ = 0.0000073 ≤ 0.5 × 101−5
即 m=1,l=5,故近似值 x*=3.1416 有 5 位有效数字.或 x*=3.1416 的绝对误差限 0.00005,它是 x 的小数后第 4 位的 半个单位,故近似值 x=3.1416 准确到小数点后第 4 位,亦即有 5 位有效数字. 若取近似值 x=3.1415,绝对误差是 0.0000926…,有 x − x = 0.0000926

数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案

第一章 绪论3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(2.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

[解]53232323*42*4*2*2*41***4*2*1088654.01021)430.56(461.561021)430.56(461.561021)430.56(031.01021430.561)()()(1)()/(-----=⨯≈⨯⨯=⨯⨯=⨯⨯+⨯⨯=+=⎪⎪⎭⎫⎝⎛∂∂=∑x x x x x x x f x x e n k k kεεε。

(完整版)数值分析第五版答案(全)

(完整版)数值分析第五版答案(全)

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=%1故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=-10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。

实用计算方法习题1解答

实用计算方法习题1解答

习题11.1 举例说明用计算机解决实际问题的过程。

解:实际问题: 某公司计划生产Ⅰ,Ⅱ两种家电产品。

已知生产一件产品需占用设备A ,B 的时数及需要的调试时间、每天可用于生产这两种家电的设备的时数及调试时间和出售一件产品的获利情况(如表1-1所示)。

问该公司每天生产两种家电各多少件时获利最大?表1-1 生产信息表求解过程:第一步:建立数学模型设制造Ⅰ,Ⅱ产品数量为x 1,x 2.则利润z=2x 1+x 2问题:在现有设备、调试时数的限制下,如何确定产量1x ,2x .可使利润最大? 可用数学语言表述如下: 目标函数:z max =21x +2x 约束条件⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤)4(0,)3(5)2(2426)1(1552121212x x x x x x x 以上数学描述即问题的数学模型称为线性规划。

第二步:构造解线性规划的算法选择求解线性规划的单纯形法如本教材7.3.4单纯形法的实现算法。

第三步:编写程序(即用计算机语言描述算法)选择C 语言作为编程语言,编写程序如本教材7.4单纯形法例程。

第四步:编辑、调试、编译和运行程序,获得计算结果 选择VC6.0环境下建立和运行程序,操作过程如本教材附录。

第五步:分析计算结果对计算结果的正确性进行分析。

1.2 指出下列各数具有几位有效数字:2.0004 -0.00200 9000.00解: 因为x 1=2.0004=0.20004×101,绝对误差限0.000 05=0.5×101―5,即m =1,l =5,故x 1=2.0004有5位有效数字。

相对误差限x 2=-0.00200, 有3位有效数字。

设备A 的限制 设备B 的限制 调试能力限制 非负约束x 3=9000.00,有6位有效数字。

1.3 一个算法步骤如下:第一步:令S 的值为0,i 的值为5;第二步:如果i ≤8则执行第三步,否则执行第六步; 第三步:计算S+i 的值,并将结果代替S 的值; 第四步:用i+2的值代替i ; 第五步:转去执行第二步; 第六步:输出S 。

数值分析习题答案

数值分析习题答案

第一章 绪论3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:**1 1.1021x =,**20.031x =, **3385.6x =, **456.430x =,**57 1.0.x =´解:*1 1.1021x =是五位有效数字;是五位有效数字;*20.031x =是二位有效数字;是二位有效数字; *3385.6x =是四位有效数字;是四位有效数字;*456.430x =是五位有效数字;是五位有效数字; *57 1.0.x =´是二位有效数字。

是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。

题所给的数。

解:解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x e e e e e -----=´=´=´=´=´ ***124***1244333(1)()()()()1111010102221.0510x x x x x x e e e e ----++=++=´+´+´=´***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x e e e e ---=++=´´´+´´´+´´´»**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x e e e ---+»´´+´´=´= 6.设028Y =,按递推公式11783100n n Y Y -=- (n=1,2,n=1,2,……)计算到100Y 。

数值分析第三版课本习题及答案

数值分析第三版课本习题及答案

数值分析第三版课本习题及答案第⼀章绪论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====?4. 利⽤公式求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .(五位有效数字),试问计算100Y 将有多⼤误差?7. 求⽅程25610x x -+=的两个根,使它⾄少具有四位有效数字.8. 当N 充分⼤时,怎样求211Ndx x +∞+?9. 正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝210. 设212S gt =假定g 是准确的,⽽对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,⽽相对误差却减⼩. 11. 序列{}n y 满⾜递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多⼤?这个计算过程稳定吗?12.计算61)f =,1.4≈,利⽤下列等式计算,哪⼀个得到的结果最好?13.()ln(f x x =,求f (30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式ln(ln(x x =-计算,求对数时误差有多⼤?14. 试⽤消元法解⽅程组{101012121010;2.x x x x +=+=假定只⽤三位数计算,问结果是否可靠?15. 已知三⾓形⾯积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c 证明⾯积的误差s ?满⾜.s a b cs a b c ≤++第⼆章插值法1. 根据定义的范德蒙⾏列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==LLL L L L L L L证明()n V x 是n 次多项式,它的根是01,,n x x -L ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--L L .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的⼆次插值多项式.3. 给出f (x )=ln x 的数值表⽤线性插值及⼆次插值计算ln 的近似值.x 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);nkkj jj x l x x k n =≡=∑Lii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑L7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若⽤⼆次插值求x e 的近似值,要使截断误差不超过610-,问使⽤函数表的步长h 应取多少?9. 若2n n y =,求4n y ?及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ?=+-,证明()f x 的k 阶差分()(0)kf x k m ?≤≤是m k -次多项式,并且()0(m lf x l +?=为正整数).11. 证明1()k k k k k k f g f g g f +?=?+?.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==?=--?∑∑13. 证明12n j n j y y y -=?=?-?∑14. 若1011()n nn n f x a a x a x a x --=++++L 有n 个不同实根12,,,n x x x L ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =L L ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+L L L .16. 74()31f x x x x =+++,求0172,2,,2f L 及0182,2,,2f L . 17. 证明两点三次埃尔⽶特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔⽶特插值的误差限.18. 求⼀个次数不⾼于4次的多项式()P x ,使它满⾜(0)(1)P P k =-+并由此求出分段三次埃尔⽶特插值的误差限.19. 试求出⼀个最⾼次数不⾼于4次的函数多项式()P x ,以便使它能够满⾜以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造⼀个台阶形的零次分段插值函数()n x ?并证明当n →∞时,()n x ?在[],a b 上⼀致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()hI x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔⽶特插值,并估计误差.24. 给定数据表如下:(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-";ii) 若()()(0,1,,)i i f x S x i n ==L ,式中i x 为插值节点,且01n a x x x b =<<<=L ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'?.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可⽤式的表达式).第三章函数逼近与计算1. (a)利⽤区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳⼀致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳⼀致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极⼩,⼜问这个解是否唯⼀?6. 求()sin f x x =在[]0,/2π上的最佳⼀次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳⼀次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最⼩?r 是否唯⼀? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*的正交多项式.12. 在[]1,1-上利⽤插值极⼩化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极⼩化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ?=-----,试将()x ?降低到3次多项式并估计误差. 15. 在[ ]1,1-上利⽤幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dxπ+-?为最⼩.并与1题及6题的⼀次逼近多项式误差作⽐较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们是否构成内积?19. ⽤许⽡兹不等式估计6101x dx x +?的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20. 选择a ,使下列积分取得最⼩值:112221110010121,,,span x span x x 1?=?=,分别在1?、2?上求出⼀个元素,使得其为[]20,1x C ∈的最佳平⽅逼近,并⽐较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ?=上的最佳平⽅逼近.23.sin (1)arccos ()n n x u x +=是第⼆类切⽐雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25. 把()arccos f x x =在[]1,1-上展成切⽐雪夫级数.26. ⽤最⼩⼆乘法求⼀个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均⽅误差.28. 在某化学反应⾥,根据实验所得分解物的浓度与时间关系如下:⽤最⼩⼆乘拟合求.29. 编出⽤正交多项式做最⼩⼆乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出⼀张记录{}{}4,3,2,1,0,1,2,3k x =,试⽤改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =L第四章数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++?;(2)21012()()(0)()hh fx dx A f h A f A f h --≈-++?;(3)[]1121()(1)2()3()/3()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'?.2. 分别⽤梯形公式和⾟普森公式计算下列积分: (1)120,84xdx n x =+?; (2)1210(1),10x e dx n x --=?;(3)1,4n =?; (4),6n =.3. 直接验证柯特斯公式具有5次代数精度.4. ⽤⾟普森公式求积分1xedx-?并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-?; (2)2()()()()()2baf f x dx b a f b b a 'η=---?;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-?.6. 证明梯形公式和⾟普森公式当n →∞时收敛到积分7. ⽤复化梯形公式求积分()baf x dx,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍⼊误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是⼀个椭圆,椭圆周长的计算公式是S a =θ,这⾥a 是椭圆的半长轴,c 是地球中⼼与轨道中⼼(椭圆中⼼)的距离,记h 为近地点距离,H 为远地点距离,6371R =公⾥为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第⼀颗⼈造卫星近地点距离439h =公⾥,远地点距离2384H =公⾥,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-L试依据sin(/)(3,6,12)n n n π=的值,⽤外推算法求π的近似值.11. ⽤下列⽅法计算积分31dyy ?并⽐较结果.(1) 龙贝格⽅法;(2) 三点及五点⾼斯公式;(3) 将积分区间分为四等分,⽤复化两点⾼斯公式.12. ⽤三点公式和五点公式分别求21()(1)f x x =第五章常微分⽅程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉⽅法和改进的尤拉⽅法的近似解的表达式,并与准确解bx ax y +=221相⽐较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档