2020年山东省泰安市高考数学二模试卷(一)(有答案解析)
山东省泰安市2019-2020学年高考数学模拟试题含解析
山东省泰安市2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数0a >,1a ≠,函数()2,14ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,则实数a 的取值范围是( ) A .12a <≤ B .5a < C .35a << D .25a ≤≤【答案】D 【解析】 【分析】根据题意,对于函数分2段分析:当1,()xx f x a <=,由指数函数的性质分析可得1a >①,当241,()ln x f x x a x x ≥=++,由导数与函数单调性的关系可得24()20af x x x x'=-+≥,在[1,)+∞上恒成立,变形可得2a ≥②,再结合函数的单调性,分析可得14a ≤+③,联立三个式子,分析可得答案. 【详解】解:根据题意,函数()2,14ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,当1,()xx f x a <=,若()f x 为增函数,则1a >①,当241,()ln x f x x a x x≥=++, 若()f x 为增函数,必有24()20af x x x x'=-+≥在[1,)+∞上恒成立, 变形可得:242a x x≥-, 又由1x ≥,可得()242g x x x =-在[1,)+∞上单调递减,则2442212x x -≤-=,若242a x x≥-在[1,)+∞上恒成立,则有2a ≥②,若函数()f x 在R 上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值, 则需有145a ≤+=,③ 联立①②③可得:25a ≤≤. 故选:D. 【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.2.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )A .356B .328C .314D .14【答案】C 【解析】 【分析】分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解. 【详解】由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是233C =;仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是133C =,于是所求的概率2833314P C +==. 故选:C 【点睛】本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.3.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1 B .)31±C .)31±D .5【答案】C 【解析】 【分析】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,计算12PF a =,24PF a =,22a PN c=,12abF N c=,根据勾股定理计算得到答案. 【详解】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,121212QF QF QP PF QF PF a -=+-==,故24PF a =,在1Rt MOF ∆中,1sin a MFO c ∠=,故1cos b MFO c ∠=,故22a PN c=,12ab F N c =, 根据勾股定理:242242162a ab a c c c ⎛⎫=+- ⎪⎝⎭,解得31b a =+. 故选:C .【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力. 4.设m r ,n r 均为非零的平面向量,则“存在负数λ,使得m n λ=r r ”是“0m n ⋅<r r”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据充分条件、必要条件的定义进行分析、判断后可得结论. 【详解】因为m r ,n r 均为非零的平面向量,存在负数λ,使得m n λ=r r, 所以向量m r ,n r共线且方向相反, 所以0m n ⋅<r r,即充分性成立;反之,当向量m r ,n r 的夹角为钝角时,满足0m n ⋅<r r ,但此时m r ,n r不共线且反向,所以必要性不成立.所以“存在负数λ,使得m n λ=r r ”是“0m n ⋅<r r”的充分不必要条件. 故选B . 【点睛】判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p ,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确. 5.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )A .1B .2C 3D .2【答案】B 【解析】 【分析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论. 【详解】正方体的面对角线长为2,又水的体积是正方体体积的一半, 且正方体绕下底面(底面与水平面平行)的某条棱任意旋转, 所以容器里水面的最大高度为面对角线长的一半, 2,故选B. 【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题. 6.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭:, 则()1E ξ= D .am bm >是a b >的充分不必要条件 【答案】D 【解析】 【分析】根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解. 【详解】对于A 选项,若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,根据正态分布曲线的对称性,有()()()241410.780.22P P P ξξξ≤-=≥=-≤=-=,故A 选项正确,不符合题意;对于B 选项,已知直线l ⊥平面α,直线//m 平面β,则当//αβ时一定有l m ⊥,充分性成立,而当l m ⊥时,不一定有//αβ,故必要性不成立,所以“//αβ”是“l m ⊥”的充分不必要条件,故B 选项正确,不符合题意;对于C 选项,若随机变量ξ服从二项分布: 14,4B ξ⎛⎫ ⎪⎝⎭:, 则()114E np ξ==4⨯=,故C 选项正确,不符合题意;对于D 选项,am bm >Q ,仅当0m >时有a b >,当0m <时,a b >不成立,故充分性不成立;若a b >,仅当0m >时有am bm >,当0m <时,am bm >不成立,故必要性不成立. 因而am bm >是a b >的既不充分也不必要条件,故D 选项不正确,符合题意. 故选:D 【点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.7.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =…,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞UD .(3,1)--【答案】D 【解析】 【分析】先求出集合N 的补集U N ð,再求出集合M 与U N ð的交集,即为所求阴影部分表示的集合. 【详解】由U =R ,{|||1}N x x =…,可得{1U N x x =<-ð或1}x >, 又{|31}M x x =-<<所以{31}U M N xx ⋂=-<<-ð. 故选:D. 【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.8.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )A .4πB .16πC .36πD .643π【答案】C 【解析】 【分析】设球的半径为R ,根据组合体的关系,圆柱的表面积为222254S R R R πππ=+⨯=,解得球的半径3R =,再代入球的体积公式求解.【详解】 设球的半径为R ,根据题意圆柱的表面积为222254S R R R πππ=+⨯=, 解得3R =, 所以该球的体积为334433633V R πππ==⨯⨯= . 故选:C 【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.9.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( ) A .8 B .4C .22D.6【答案】A 【解析】 【分析】作出可行域,由2(0,0)z ax by a b =+>>,可得22a z y x b b =-+.当直线22a z y x b b=-+过可行域内的点()1,1B 时,z 最大,可得22a b +=.再由基本不等式可求416a b +的最小值. 【详解】作出可行域,如图所示由2(0,0)z ax by a b =+>>,可得22a zy x b b=-+. 平移直线22a z y x b b =-+,当直线过可行域内的点B 时,2zb最大,即z 最大,最大值为2. 解方程组3200x y x y --=⎧⎨-=⎩,得()1,1,11x B y =⎧∴⎨=⎩. 22(0,0)a b a b ∴+=>>.22224164424424248a b a b a b a b +∴+=+≥⨯===,当且仅当244a b =,即12,1222a a b a b b =⎧=⎧⎪⎨⎨+==⎩⎪⎩时,等号成立.416a b ∴+的最小值为8.故选:A . 【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题. 10.已知关于x 3sin 2x x m π⎛⎫+-=⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .[)1,2C .[)0,1D .[]0,1【答案】C 【解析】 【分析】先利用三角恒等变换将题中的方程化简,构造新的函数2sin()6y x π=+,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合12x x π-≥,解得m 的取值范围. 【详解】由题化简得3sin cos x x m +=,2sin()6m x π=+,作出2sin()6y x π=+的图象,又由12x x π-≥易知01m ≤<. 故选:C. 【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题. 11.若θ是第二象限角且sinθ =1213,则tan()4πθ+= A .177-B .717- C .177D .717【答案】B 【解析】由θ是第二象限角且sinθ =1213知:25cos 1sin 13θθ=--=-,5t n 1a 2θ-=. 所以tan tan 457tan()41tan tan 4517πθθθ+︒+==--︒.12.已知l 为抛物线24x y =的准线,抛物线上的点M 到l 的距离为d ,点P 的坐标为()4,1,则MP d +的最小值是( ) A 17 B .4C .2D .117+【答案】B【解析】 【分析】设抛物线焦点为F ,由题意利用抛物线的定义可得,当,,P M F 共线时,MP d +取得最小值,由此求得答案. 【详解】解:抛物线焦点()0,1F ,准线1y =-, 过M 作MN l ⊥交l 于点N ,连接FM由抛物线定义MN MF d ==,244MP d MP MF PF ∴+=+≥==,当且仅当,,P M F 三点共线时,取“=”号, ∴MP d +的最小值为4. 故选:B. 【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
2020年山东省泰安市高考数学二模试卷(理科)含答案解析
2020年山东省泰安市高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|y=},B={x|x2﹣2x<0},则()A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B3.设,,是非零向量,已知:命题p:∥,∥,则∥;命题q:若•=0,•=0则•=0,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q4.=()A.B.﹣1C.D.15.执行如图所示的程序框图,则输出i的值为()A.4B.5C.6D.556.在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.﹣32B.0C.32D.17.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角8.已知x,y满足条件,若z=mx+y取得最大值的最优解不唯一,则实数m的值为()A.1或﹣B.1或﹣2C.﹣1或﹣2D.﹣2或﹣9.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.二、填空题:本大题共5小题,每小题5分.11.长方形ABCD中,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为.12.已知直线ax+by﹣6=0(a>0,b>0)被圆x2+y2﹣2x﹣4y=0截得的弦长为2,则ab 的最大值为.13.如图是一个几何体的三视图,则该几何体的体积是.14.已知函数f(x)=,若存在x1,x2∈R,当0≤x1<4≤x2≤12时,f(x1)=f(x2),则x1f(x2)的最大值是.15.给出下列命题:①已知ξ服从正态分布N(0,δ2),且P(﹣2≤ξ≤2)=0.4,则P(ξ>2)=0.3;②函数f(x﹣1)是偶函数,且在(0,+∞)上单调递增,则f(2)>f(log2)>f[()2]③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=﹣3,其中正确命题的序号是(把你认为正确的序号都填上).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知a,b,c分别为△ABC三个内角的对边,且cosC+sinC=.(Ⅰ)求∠B的大小;(Ⅱ)若a+c=5,b=7,求的值.17.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标合计男60女110合计(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)0.10 0.05 0.010 0.005 0.001k0 2.706 3.841 6.635 7.879 10.82818.已知正项等差数列{a n}的首项为a1=2,前n项和为S n,若a1+3,2a2+2,a6+8成等比数列.(1)求数列{a n}的通项公式;(2)记P n=+++…+,Q n=+++…+,证明:P n≥Q n.19.如图,三棱柱ABC﹣A1B1C1中,D、M分别为CC1和A1B的中点,A1D⊥CC1,△AA1B 是边长为2的正三角形,A1D=2,BC=1.(1)证明:MD∥平面ABC;(2)证明:BC⊥平面ABB1A1(3)求二面角B﹣AC﹣A1的余弦值.20.已知函数f(x)=x2+mlnx+x(1)求f(x)的单调区间;(2)令g(x)=f(x)﹣x2,试问过点P(1,3)存在多少条直线与曲线y=g(x)相切?并说明理由.21.已知椭圆C:+=1,(a>b>0)的离心率为,F1、F2分别为椭圆的上、下焦点,过点F2作直线l与椭圆C交于不同的两点A、B,若△ABF1周长为4(1)求椭圆C的标准方程(2)P是y轴上一点,以PA、PB为邻边作平行四边形PAQB,若P点的坐标为(0,﹣2),≤≤1,求平行四边形PAQB对角PQ的长度取值范围.2020年山东省泰安市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】化简复数,得出其共轭复数.【解答】解:==,∴复数的共轭复数是+.故选:A.2.已知集合A={x|y=},B={x|x2﹣2x<0},则()A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B【考点】集合的包含关系判断及应用.【分析】求出集合A,B,根据集合包含关系的定义,可得答案.【解答】解:∵集合A={x|y=}=(﹣∞,2],B={x|x2﹣2x<0}=(0,2),故B⊆A,故选:C.3.设,,是非零向量,已知:命题p:∥,∥,则∥;命题q:若•=0,•=0则•=0,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q【考点】命题的真假判断与应用;平面向量数量积的运算.【分析】根据向量共线的性质以及向量数量积的应用,判断pq的真假即可.【解答】解:∵,,是非零向量,∴若∥,∥,则∥;则命题p是真命题,若•=0,•=0,则•=0,不一定成立,比如设=(1,0),=(0,1),=(2,0),满足•=0,•=0,但•=2≠0,则•=0不成立,即命题q是假命题,则p∨q为真命题.,p∧q为假命题.,(¬p)∧(¬q),¬p∨q都为假命题,故选:A.4.=()A.B.﹣1C.D.1【考点】三角函数的化简求值.【分析】由条件利用两角和差的三角公式化简所给的式子,求得结果.【解答】解:==2•=2sin30°=1,故选:D.5.执行如图所示的程序框图,则输出i的值为()A.4B.5C.6D.55【考点】程序框图.【分析】模拟执行程序,可得程序作用是对平方数列求和,当i的值为5时满足条件,退出循环,即可得解.【解答】解:模拟执行程序,可得程序作用是对平方数列求和,容易得到S4=30,S5=55>50,故输出i的值为5.故选:B.6.在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.﹣32B.0C.32D.1【考点】二项式系数的性质.【分析】由二项式系数的性质求出n的值,再令x=1求出展开式中各项系数的和.【解答】解:二项式的展开式中,所有二项式系数的和是32,∴2n=32,解得n=5;令x=1,可得展开式中各项系数的和为(3×12﹣)5=32.故选:C.7.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【考点】直线与平面垂直的性质.【分析】根据SD⊥底面ABCD,底面ABCD为正方形,以及三垂线定理,易证AC⊥SB,根据线面平行的判定定理易证AB∥平面SCD,根据直线与平面所成角的定义,可以找出∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的角,根据三角形全等,证得这两个角相等;异面直线所成的角,利用线线平行即可求得结果.【解答】解:∵SD⊥底面ABCD,底面ABCD为正方形,∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故A正确;∵AB∥CD,AB⊄平面SCD,CD⊂平面SCD,∴AB∥平面SCD,故B正确;∵SD⊥底面ABCD,∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的,而△SAO≌△CSO,∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故C正确;∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,而这两个角显然不相等,故D不正确;故选D.8.已知x,y满足条件,若z=mx+y取得最大值的最优解不唯一,则实数m的值为()A.1或﹣B.1或﹣2C.﹣1或﹣2D.﹣2或﹣【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分mBC).由z=mx+y得y=﹣mx+z,即直线的截距最大,z也最大.若m>0,目标函数y=﹣mx+z的斜率k=﹣m>0,要使z=mx+y取得最大值的最优解不唯一,则直线z=mx+y与直线x﹣y+1=0平行,此时m=﹣2,若m<0,目标函数y=﹣mx+z的斜率k=﹣m<0,要使z=y﹣mx取得最大值的最优解不唯一,则直线z=mx+y与直线x+y﹣2=0,平行,此时m=﹣1,综上m=﹣2或m=1,故选:B.9.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【考点】双曲线的标准方程.【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.10.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.二、填空题:本大题共5小题,每小题5分.11.长方形ABCD中,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为.【考点】几何概型.【分析】本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点到O的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.【解答】解:根据几何概型得:取到的点到O的距离大于1的概率:==.故答案为:12.已知直线ax+by﹣6=0(a>0,b>0)被圆x2+y2﹣2x﹣4y=0截得的弦长为2,则ab 的最大值为.【考点】直线与圆相交的性质.【分析】由圆的方程得到圆的半径为,再由弦长为2得到直线过圆心,即得到a与b 满足的关系式,再利用基本不等式即可得到结论.【解答】解:圆x2+y2﹣2x﹣4y=0可化为(x﹣1)2+(y﹣2)2=5,则圆心为(1,2),半径为,又由直线ax+by﹣6=0(a>0,b>0)被圆x2+y2﹣2x﹣4y=0截得的弦长为2,则直线ax+by﹣6=0(a>0,b>0)过圆心,即a+2b﹣6=0,亦即a+2b=6,a>0,b>0,所以6=a+2b≥2,当且仅当a=2b时取等号,所以ab≤,所以ab的最大值为,故答案为:.13.如图是一个几何体的三视图,则该几何体的体积是15.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个组合体:左边是三棱柱、右边是三棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:左边是三棱柱、右边是三棱锥,三棱柱底面是侧视图:等腰直角三角形,两条直角边是3,三棱柱的高是3;三棱锥的底面也是侧视图,高是1,所以几何体的体积是V==15,故答案为:15.14.已知函数f(x)=,若存在x1,x2∈R,当0≤x1<4≤x2≤12时,f(x1)=f(x2),则x1f(x2)的最大值是.【考点】分段函数的应用.【分析】由题意作函数f(x)=的图象,从而可得1≤x1≤3,x1f(x2)=﹣x13+4,记g(x1)=﹣x13+4,则g′(x1)=﹣3+8x1=﹣3x1(3x1﹣8),从而判断函数的单调性及最值,从而求得.【解答】解:由题意作函数f(x)=的图象如下,,结合图象可知,3≤﹣+4x1≤4,解得,1≤x1≤3,故x1f(x2)=x1f(x1)=x1(﹣+4x1)=﹣x13+4,记g(x1)=﹣x13+4,g′(x1)=﹣3+8x1=﹣3x1(3x1﹣8),故g(x1)在[1,]上是增函数,在(,3]上是减函数,故x1f(x2)的最大值是g()=,故答案为:.15.给出下列命题:①已知ξ服从正态分布N(0,δ2),且P(﹣2≤ξ≤2)=0.4,则P(ξ>2)=0.3;②函数f(x﹣1)是偶函数,且在(0,+∞)上单调递增,则f(2)>f(log2)>f[()2]③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=﹣3,其中正确命题的序号是①②(把你认为正确的序号都填上).【考点】命题的真假判断与应用.【分析】①根据随机变量ξ服从标准正态分布N(0,σ2),得到正态曲线关于ξ=0对称,利用P(﹣2<ξ≤2)=0.4,即可求出P(ξ>2).②确定函数f(x)图象关于x=﹣1对称,在(﹣1,+∞)上单调递增,即可得出结论;③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是a+3b=0.【解答】解:①∵随机变量ξ服从正态分布N(0,σ2),∴正态曲线关于ξ=0对称,∵P(﹣2<ξ≤2)=0.4,∴P(ξ>2)=(1﹣0.4)=0.3.正确;②∵函数f(x﹣1)是偶函数,∴f(﹣x﹣1)=f(x﹣1),∴函数f(x)图象关于x=﹣1对称,∵函数f(x﹣1)在(0,+∞)上单调递增,∴函数f(x)在(﹣1,+∞)上单调递增,∵f(log2)=f(﹣3)=f(1),()2<1<2,∴f(2)>f(log2)>f[()2],正确;③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是a+3b=0,故不正确.故答案为:①②.三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤. 16.已知a,b,c分别为△ABC三个内角的对边,且cosC+sinC=.(Ⅰ)求∠B的大小;(Ⅱ)若a+c=5,b=7,求的值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)根据两角和差的正弦公式以及正弦定理进行化简即可求∠B的大小;(Ⅱ)由余弦定理可求|AB||BC|=42,利用平面向量数量积的运算即可得解.【解答】解:(I)在△ABC中,∵cosC+sinC=,∴cosC+sinC=,∴sinBcosC+sinBsinC=sin(B+C),∴sinBcosC+sinBsinC=sinBcosC+cosBsinC,∴由于sinC≠0,可得:sinB=cosB,∴tanB=,∵B∈(0,π),∴B=;(Ⅱ)∵B=,a+c=5,b=7,∴由余弦定理b2=a2+c2﹣2accosB,可得:49=a2+c2﹣ac=(a+c)2﹣3ac=175﹣3ac,解得:ac=42,即|AB||BC|=42,∴=﹣|AB||BC|cosB=﹣42×=﹣21.17.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标合计男60 3090女9020110合计15050200(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)0.10 0.05 0.010 0.005 0.001k0 2.706 3.841 6.635 7.879 10.828【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(1)由题意得“课外体育达标”人数为50,则不达标人数为150,由此列联表,求出K2=,从而得到在犯错误的概率不超过0.01的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为9人,在达标学生中抽取人数为3人,则ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由题意得“课外体育达标”人数为:200×[(0.02+0.005)×10]=50,则不达标人数为150,∴列联表如下:课外体育不达标课外体育达标合计男60 30 90女90 20 110合计150 50 200∴K2==,∴在犯错误的概率不超过0.01的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为:12×=9人,在达标学生中抽取人数为:12×=3人,则ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0 1 2 3PE(ξ)==.18.已知正项等差数列{a n}的首项为a1=2,前n项和为S n,若a1+3,2a2+2,a6+8成等比数列.(1)求数列{a n}的通项公式;(2)记P n=+++…+,Q n=+++…+,证明:P n≥Q n.【考点】数列的求和;等差数列与等比数列的综合.【分析】(1)通过设正项等差数列{a n}的公差为d,并利用首项和公差d表示出a2、a6,通过a1+3,2a2+2,a6+8成等比数列构造方程,进而计算可得结论;(2)通过(1)可知=,利用等比数列的求和公式计算可知P n=1﹣,通过裂项可知=﹣,进而并项相加即得结论.【解答】(1)解:设正项等差数列{a n}的公差为d,则d≥0,依题意,a2=2+d,a6=2+5d,∵a1+3,2a2+2,a6+8成等比数列,∴(6+2d)2=(2+3)(10+5d),整理得:36+24d+4d2=50+25d,即4d2﹣d﹣14=0,解得:d=2或d=﹣(舍),∴数列{a n}的通项公式a n=2n;(2)证明:由(1)可知==,由等比数列的求和公式可知P n=+++…+==1﹣,∵==﹣,∴Q n=+++…+=1﹣+﹣+…+﹣=1﹣,显然,当n≥1时≥,故P n≥Q n.19.如图,三棱柱ABC﹣A1B1C1中,D、M分别为CC1和A1B的中点,A1D⊥CC1,△AA1B 是边长为2的正三角形,A1D=2,BC=1.(1)证明:MD∥平面ABC;(2)证明:BC⊥平面ABB1A1(3)求二面角B﹣AC﹣A1的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)取AB的中点H,连接HM,CH,根据线面平行的判定定理即可证明MD∥平面ABC;(2)根据三角形的边长关系证明三角形是直角三角形,然后结合线面垂直的判定定理即可证明BC⊥平面ABB1A1(3)建立坐标系求出平面的法向量,利用向量法即可求二面角B﹣AC﹣A1的余弦值.【解答】(1)证明:取AB的中点H,连接HM,CH,∵D、M分别为CC1和A1B的中点,∴HM∥BB1,HM=BB1=CD,∴HM∥CD,HM=CD,则四边形CDMH是平行四边形,则CH=DM.∵CH⊂平面ABC,DM⊄平面ABC,∴MD∥平面ABC;(2)证明:取BB1的中点E,∵△AA1B是边长为2的正三角形,A1D=2,BC=1.∴C1D=1,∵A1D⊥CC1,∴A1C1==,则A1B12+A1B12=4+1=5=A1C12,则△A1B1C1是直角三角形,则B1C1⊥A1B1,∵在正三角形BA1B1中,A1E=,∴A1E2+DE2=3+1=4=A1D12,则△A1DE是直角三角形,则DE⊥A1E,即BC⊥A1E,BC⊥A1B1,∵A1E∩A1B1=A1,∴BC⊥平面ABB1A1(3)建立以E为坐标原点,EB,EA1的反向延长线,ED分别为x,y,z轴的空间直角坐标系如图:则E(0,0,0),B(1,0,0),C(1,0,1),A(2,﹣,0),A1(0,﹣,0),则设平面ABC的法向量为=(x,y,z),=(﹣1,,0),=(0,0,1),则,即,令y=1,则x=,z=0,即=(,1,0),平面ACA1的法向量为=(x,y,z),=(﹣1,,1),=(﹣2,0,0),则,得,即,令y=1,则z=﹣,x=0,即=(0,1,﹣),则cos<,>====,即二面角B﹣AC﹣A1的余弦值是.20.已知函数f(x)=x2+mlnx+x(1)求f(x)的单调区间;(2)令g(x)=f(x)﹣x2,试问过点P(1,3)存在多少条直线与曲线y=g(x)相切?并说明理由.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,通过讨论m的范围,解关于导函数的不等式,从而得到函数的单调区间;(2)设切点为(x0,x0+mlnx0),求出切线斜率K,求出切线方程,切线过点P(1,3),推出关系式,构造函数g(x)(x>0),求出导函数,通过讨论①当m<0时,判断g(x)单调性,说明方程g(x)=0无解,切线的条数为0,②当m>0时,类比求解,推出当m>0时,过点P(1,3)存在两条切线,③当m=0时,f(x)=x,说明不存在过点P(1,3)的切线.【解答】解:(1)f(x)=x2+mlnx+x,(x>0),f′(x)=x++1==,①m≥0时,f′(x)>0,函数在(0,+∞)递增,②m<0时,令f′(x)>0,解得:x>,令f′(x)<0,解得:x<,∴f(x)在(0,)递减,在(,+∞)递增;(2)设切点为(x0,x0+mlnx0),则切线斜率k=1+,切线方程为y﹣(x0+alnx0)=(1+)(x﹣x0).因为切线过点P(1,3),则3﹣(x0+alnx0)=(1+)(1﹣x0).即m(lnx0+﹣1)﹣2=0.…①令g(x)=m(lnx+﹣1)﹣2(x>0),则g′(x)=m(﹣)=,①当m<0时,在区间(0,1)上,g′(x)>0,g(x)单调递增;在区间(1,+∞)上,g′(x)<0,g(x)单调递减,所以函数g(x)的最大值为g(1)=﹣2<0.故方程g(x)=0无解,即不存在x0满足①式.因此当m<0时,切线的条数为0.②当m>0时,在区间(0,1)上,g′(x)<0,g(x)单调递减,在区间(1,+∞)上,g′(x)>0,g(x)单调递增,所以函数g(x)的最小值为g(1)=﹣2<0.取x1=e1+>e,则g(x1)=a(1++e﹣1﹣﹣1)﹣2=ae﹣1﹣>0.故g(x)在(1,+∞)上存在唯一零点.取x2=e﹣1﹣<,则g(x2)=m(﹣1﹣+e1+﹣1)﹣2=me1+﹣2m﹣4=m[e1+﹣2(1+)].设t=1+(t>1),u(t)=e t﹣2t,则u′(t)=e t﹣2.当t>1时,u′(t)=e t﹣2>e﹣2>0恒成立.所以u(t)在(1,+∞)单调递增,u(t)>u(1)=e﹣2>0恒成立,所以g(x2)>0.故g(x)在(0,1)上存在唯一零点.因此当m>0时,过点P(1,3)存在两条切线.③当m=0时,f(x)=x,显然不存在过点P(1,3)的切线.综上所述,当m>0时,过点P(1,3)存在两条切线;当m≤0时,不存在过点P(1,3)的切线.21.已知椭圆C:+=1,(a>b>0)的离心率为,F1、F2分别为椭圆的上、下焦点,过点F2作直线l与椭圆C交于不同的两点A、B,若△ABF1周长为4(1)求椭圆C的标准方程(2)P是y轴上一点,以PA、PB为邻边作平行四边形PAQB,若P点的坐标为(0,﹣2),≤≤1,求平行四边形PAQB对角PQ的长度取值范围.【考点】椭圆的简单性质.【分析】(1)由题意可得:,4a=4,a2=b2+c2,解出即可得出.(2)F2(0,﹣1).设A(x1,y1),B(x2,y2).=,1.﹣x1=λx2.由于四边形PAQB是平行四边形,可得==(x1+x2,y1+y2+4).设直线AB的方程为:y=kx﹣1,与椭圆方程联立化为:(k2+2)x2﹣2kx﹣1=0,利用根与系数的关系可得:k2=,可得:k2∈.由于==,令k2=t∈,f(t)=,再利用导数研究函数的单调性即可得出.【解答】解:(1)由题意可得:,4a=4,a2=b2+c2,解得a=,b=c=1.∴椭圆C的标准方程为:=1.(2)F2(0,﹣1).设A(x1,y1),B(x2,y2).=,1.﹣x1=λx2.∵四边形PAQB是平行四边形,==(x1+x2,y1+y2+4).设直线AB的方程为:y=kx﹣1,联立,化为:(k2+2)x2﹣2kx﹣1=0,∴x1+x2=,x1x2=,﹣x1=λx2.可得:k2==.λ=1时,k=0.时,k2∈.综上可得:k2∈.∴y1+y2=kx1﹣1+kx2﹣1=k(x1+x2)﹣2,∴=====,令k2=t∈,f(t)=,f′(t)==<0,∴函数f(t)在t∈上单调递减,∴f(t)∈.∴∈.2020年7月21日第21页(共21页)。
山东省泰安市2019-2020学年高考数学二月模拟试卷含解析
山东省泰安市2019-2020学年高考数学二月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点()11,A x y ,()22,B x y 是函数()2f x bx =的函数图像上的任意两点,且()y f x =在点1212,22x x x x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线AB 平行,则( ) A .0a =,b 为任意非零实数 B .0b =,a 为任意非零实数 C .a 、b 均为任意实数 D .不存在满足条件的实数a ,b【答案】A 【解析】 【分析】求得()f x 的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得0a =,b 为任意非零实数. 【详解】 依题意()'2fx bx =+,()y f x =在点1212,22x xx x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线AB平行,即有()1221b x x +=()1221ab x x x x =++-=,由于对任意12,x x 上式都成立,可得0a =,b 为非零实数.故选:A 【点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属于中档题. 2.若(12)5i z i -=(i 是虚数单位),则z 的值为( ) A .3 B.5CD 【答案】D 【解析】 【分析】直接利用复数的模的求法的运算法则求解即可. 【详解】() 125i z i -=(i 是虚数单位)可得()125i z i -= 解得5z = 本题正确选项:D 【点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =,所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.4.如图,在正四棱柱1111ABCD A B C D -中,12AB AA =,E F ,分别为AB BC ,的中点,异面直线1AB 与1C F 所成角的余弦值为m ,则( )A .直线1A E 与直线1C F 异面,且23m =B .直线1A E 与直线1C F 共面,且23m =C .直线1A E 与直线1C F 异面,且33m =D .直线1AE 与直线1CF 共面,且33m = 【答案】B 【解析】 【分析】连接EF ,11A C ,1C D ,DF ,由正四棱柱的特征可知11EF AC P ,再由平面的基本性质可知,直线1A E 与直线1C F 共面.,同理易得11AB C D P ,由异面直线所成的角的定义可知,异面直线1AB 与1C F 所成角为1DC F ∠,然后再利用余弦定理求解. 【详解】 如图所示:连接EF ,11A C ,1C D ,DF ,由正方体的特征得11EF AC P , 所以直线1A E 与直线1C F 共面. 由正四棱柱的特征得11AB C D P ,所以异面直线1AB 与1C F 所成角为1DC F ∠.设12AA =AB =122=,则5DF =,13C F =16C D 由余弦定理,得1cos m DC F =∠=2236=⨯⨯. 故选:B 【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.5.已知椭圆2222:19x y C a a+=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A .0,2⎛ ⎝⎭B .,02⎛⎫⎪⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】先求得椭圆焦点坐标,判断出直线12,l l 过椭圆的焦点.然后判断出12l l ⊥,判断出P 点的轨迹方程,根据P 恒在椭圆内列不等式,化简后求得离心率e 的取值范围. 【详解】设()()12,0,,0F c F c -是椭圆的焦点,所以22299,3c a a c =+-==.直线1l 过点()13,0F -,直线2l 过点()23,0F ,由于()110m m ⨯+⨯-=,所以12l l ⊥,所以P 点的轨迹是以12,F F 为直径的圆229x y +=.由于P 点在椭圆内恒成立,所以椭圆的短轴大于3,即2239a >=,所以2918a +>,所以双曲线的离心率22910,92e a ⎛⎫=∈ ⎪+⎝⎭,所以0,2e ⎛⎫ ⎪ ⎪⎝⎭∈. 故选:A 【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.6.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21C .7D .3【答案】B 【解析】 【分析】利用等差数列的性质求出4a 的值,然后利用等差数列求和公式以及等差中项的性质可求出7S 的值. 【详解】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯=. 故选:B. 【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.7.设递增的等比数列{}n a 的前n 项和为n S ,已知4403S =,43231030a a a -+=,则4a =( ) A .9 B .27C .81D .83【答案】A 【解析】 【分析】根据两个已知条件求出数列的公比和首项,即得4a 的值. 【详解】设等比数列{}n a 的公比为q.由43231030a a a -+=,得231030q q -+=,解得3q =或13q =. 因为40S >.且数列{}n a 递增,所以3q =. 又()4141340133a S -==-,解得113a =,故341393a =⨯=. 故选:A 【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.8.已知()f x 为定义在R 上的奇函数,若当0x ≥时,()2xf x x m =++(m 为实数),则关于x 的不等式()212f x -<-<的解集是( ) A .()0,2 B .()2,2-C .()1,1-D .()1,3【答案】A 【解析】 【分析】先根据奇函数求出m 的值,然后结合单调性求解不等式. 【详解】据题意,得()010f m =+=,得1m =-,所以当0x ≥时,()21xf x x =+-.分析知,函数()f x 在R上为增函数.又()12f =,所以()12f -=-.又()212f x -<-<,所以111x -<-<,所以02x <<,故选A. 【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.9.已知函数()[]010x x f x x x ⎧≥⎪=⎨⎪⎩,,<([]x 表示不超过x 的最大整数),若()0f x ax -=有且仅有3个零点,则实数a 的取值范围是( ) A .12,23⎛⎤⎥⎝⎦B .12,23⎡⎫⎪⎢⎣⎭C .23,34⎡⎫⎪⎢⎣⎭D .23,34⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】根据[x]的定义先作出函数f (x )的图象,利用函数与方程的关系转化为f (x )与g (x )=ax 有三个不同的交点,利用数形结合进行求解即可. 【详解】当01x ≤<时,[]0x =, 当12x ≤<时,[]1x =, 当23x ≤<时,[]2x =, 当34x ≤<时,[]3x =,若()0f x ax -=有且仅有3个零点, 则等价为()=f x ax 有且仅有3个根, 即()f x 与()g x ax =有三个不同的交点, 作出函数()f x 和()g x 的图象如图,当a=1时,()g x x =与()f x 有无数多个交点,当直线()g x 经过点21A (,)时,即()221g a ==,12a =时,()f x 与()g x 有两个交点, 当直线()g x 经过点()32B ,时,即()332g a ==23a =,时,()f x 与()g x 有三个交点, 要使()f x 与()g x ax =有三个不同的交点,则直线()g x 处在过12y x =和23y x =之间,即1223a ≤<, 故选:A .【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 10.在空间直角坐标系O xyz -中,四面体OABC 各顶点坐标分别为:22(0,0,0),(0,0,2),3,0,0,0,3,033O A B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.假设蚂蚁窝在O 点,一只蚂蚁从O 点出发,需要在AB ,AC 上分别任意选择一点留下信息,然后再返回O 点.那么完成这个工作所需要走的最短路径长度是( ) A .22 B .1121-C .521+D .23【答案】C 【解析】 【分析】将四面体OABC 沿着OA 劈开,展开后最短路径就是AOO '△的边OO ',在AOO '△中,利用余弦定理即可求解. 【详解】将四面体OABC 沿着OA 劈开,展开后如下图所示:最短路径就是AOO '△的边OO '. 易求得30OAB O AC '∠=∠=︒,由2AO =,OB =AB =AC =,BC ==222cos 2AB AC BC BAC AB AC+-⇒∠=⋅1616833334442+-== 由余弦定理知2222cos OO AO AO AO AO OAO ''''=+-⋅⋅∠ 其中2AO AO '==,()3cos cos 608OAO BAC -'∠=︒+∠=∴25OO OO ''=⇒= 故选:C 【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.11.设全集U =R ,集合{|(1)(3)0}A x x x =--≥,11|24xB x ⎧⎫⎪⎪⎛⎫=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.则集合()U A B I ð等于( ) A .(1,2) B .(2,3] C .(1,3) D .(2,3)【答案】A 【解析】 【分析】先算出集合U A ð,再与集合B 求交集即可. 【详解】因为{|3A x x =≥或1}x ≤.所以{|13}U A x x =<<ð,又因为{}|24{|2}xB x x x =<=<. 所以(){|12}U A B x x ⋂=<<ð. 故选:A. 【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.12.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A.3B .23C.2D .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,可得:2000232263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.二、填空题:本题共4小题,每小题5分,共20分。
【数学】山东省泰安市2020届高三第二轮复习质量检测数学试题答案
槡 , 2a = 0 - 0 + 4 5 槡4 + 1
∴ a =2
由 槡 2e2 - 3 2e + 2 = 0
解得 槡或 槡(舍) 分 e
=
2 2
e= 2
2
槡 ∴ b = 2
椭圆 的方程为 分 ∴
C
x2 4
+
y2 2
= 1.
4
7
高三第二轮复习质量检测数学试题参考答案 第 页(共 页) 公
1
7
分 = 1 - 2n - n × 2n = 2n - 1 - n × 2n 1 -2
9
( )· 分 ∴ Tn = n - 1 2n + 1. 10
方案二:选条件 :②
()设等比数列{ }的公比为 1
an
q.
, ∵ a1 = 1 S3 - S2 = a2 + 2a1
解得 或 ∴ q2 - q - 2 = 0 q =2 q = -1
∵ q >0
∴ q =2
分 ∴ an = 2n - 1 . 2
设等差数列{ }的公差为 bn
cos∠BDC
=
-
5 5
∴ BC2 = CD2 + BD2 - 2 × CD × BD × cos∠BDC
槡 ( 槡) =
9 5
+
1
-
2
×
3 5
5
×
1
×
-
5 5
分 = 4
∴ BC = 2 6
()由()知Leabharlann , 槡, 槡 21AB = 2
AE =
1 4
令 () ( ),则 () , φ x = ex - x - 1 x≥0
φ′ x = ex - 1≥0
山东省泰安市数学2020届高中毕业班文数第二次质量检测试卷
山东省泰安市数学2020届高中毕业班文数第二次质量检测试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题5分,共60分.) (共12题;共60分)1. (5分) (2016高一上·哈尔滨期中) 不等式>0的解集为()A . {x|﹣2<x<﹣1,或x>3}B . {x|﹣3<x<﹣1,或x>2}C . {x|x<﹣3,或﹣1<x<2}D . {x|x<﹣3,或x>2}2. (5分) (2017高二下·深圳月考) 复数(其中为虚数单位)的共轭复数在复平面内对应的点所在象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (5分)若,则是成立的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件4. (5分) (2020高三上·贵阳期末) 如图的折线图是某超市2018年一月份至五月份的营业额与成本数据,根据该折线图,下列说法正确的是()A . 该超市2018年的前五个月中三月份的利润最高B . 该超市2018年的前五个月的利润一直呈增长趋势C . 该超市2018年的前五个月的利润的中位数为0.8万元D . 该超市2018年前五个月的总利润为3.5万元5. (5分) (2017高二上·广东月考) 已知抛物线的焦点为,准线为,是上一点,是直线与的一个交点,若,则()A .B .C .D .6. (5分)在边长为2的菱形ABCD中,∠BAD=60°,E为BC中点,则=()A . -3B . 0C . -1D . 17. (5分) (2019高二上·南宁期中) 已知正四棱柱中,,E为中点,则异面直线BE与所成角的余弦值为()A .B .C .D .8. (5分)已知函数y=sin(ωx﹣π)(ω>0)在x=时取得最大值,则ω的最小值为()A .B .C .D .9. (5分) (2018高二上·长春月考) 如果执行下面的程序框图,那么输出的s=().A . 10B . 22C . 46D . 9410. (5分)若数列满足,,则此数列是()A . 等差数列B . 等比数列C . 既是等差数列又是等比数列D . 既非等差数列又非等比数列11. (5分) (2018高一下·宜昌期末) 当圆锥的侧面积和底面积的比值是 2 时,圆锥侧面展开图的圆心角等于()A .B .C .D .12. (5分)方程的实数解所在的区间是()A .B .C .D .二、填空题(本题共4小题,每小题5分,共20分) (共4题;共20分)13. (5分) (2016高二上·如东期中) 若圆x2+(y﹣2)2=1与椭圆 =1的三个交点构成等边三角形,则该椭圆的离心率的值为________14. (5分) (2017高二下·吉林期末) 已知定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数.若f(1-m)<f(m),则实数m的取值范围是________.15. (5分) (2018高二上·宜昌期末) 某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为________元.16. (5分) (2016高三上·连城期中) 如图,海平面上的甲船位于中心O的南偏西30°,与O相距10海里的C处,现甲船以30海里/小时的速度沿直线CB去营救位于中心O正东方向20海里的B处的乙船,甲船需要________小时到达B处.三、解答题(本大题共6小题,共70分。
山东省2020年高考模拟考试数学试题 Word版含答案
山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。
2020年山东省泰安市高考数学二模试卷(一)(有答案解析)
2020年山东省泰安市高考数学二模试卷(一)一、选择题(本大题共12小题,共60.0分)1.若集合A={x|3-2x<1},B={x|4x-3x2≥0},则A∩B=()A. (1,2]B.C. [0,1)D. (1,+∞)2.已知i为虚数单位,若复数的实部与虚部相等,则a的值为()A. 2B.C.D. -23.函数的最小正周期为()A. 4πB.C. 2πD. π4.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④5.根据如下样本数据x34567y 4.0 2.5-0.50.5-2.0得到的回归方程为.若a=7.9,则x每增加1个单位,y就()A. 增加 1.4个单位B. 减少 1.4个单位C. 增加 1.2个单位D. 减少 1.2个单位6.已知x,y满足约束条件则z=2x+y的取值范围是()A. [2,4]B. [4,6]C. [2,6]D. (-∞,2]7.执行如图所示的程序框图,若输入的S=12,则输出的S=()A. -8B. -18C. 5D. 68.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O的球面上,则球O的表面积是()A. 8πB.C. 12πD. 48π9.设函数f′(x)为函数f(x)=xsinx的导函数,则函数f′(x)的图象大致为()A.B.C.D.10.设双曲线的左、右焦点分别为F1、F2,P是双曲线上一点,点P到坐标原点O的距离等于双曲线焦距的一半,且|PF1|+|PF2|=4a,则双曲线的离心率是()A. B. C. D.11.已知函数f(x)=,g(x)=f(x)-ax+a,若g(x)恰有1个零点,则a的取值范围是()A. [-1,0]∪[1,+∞)B. (-∞,-1]∪[0,1]C. [-1,1]D. (-∞,-1]∪[1,+∞)12.若函数上单调递增,则实数a的取值范围为()A. B. C. a≥1 D. 1<a<3二、填空题(本大题共4小题,共20.0分)13.如图,已知正方体ABCD-A1B1C1D1的棱长为1,点P为棱AA1上任意一点,则四棱锥P-BDD1B1的体积为______14.在△ABC中,内角A,B,C的对边分别为a,b,c,若=,则B=______.15.如图,在中,,是上一点,若,则实数的值为______.16.抛物线C:y2=4x的焦点为F,动点P在抛物线C上,点A(-1,0),当取得最小值时,直线AP的方程为______.三、解答题(本大题共7小题,共82.0分)17.已知公差不为0的等差数列{a n}的前n项和为S n,a2+a5=21,a1,a3,a9依次成等比数列.(1)求数列{a n}的通项公式;(2)求数列的前n项和T n.18.如图,在四棱锥P-ABCD中,∠PDA=90°,∠PDC=120°,AD∥BC,∠BCD=90,△ABD是等边三角形,E是PA的中点,.(1)求证:AD⊥BE;(2)求三棱锥P-ABD的体积.19.某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如表:甲类乙类丙类男性居民3123女性居民633(1)根据表中的统计数据,完成下面列联表,并判断是否有90%的把握认为参加体育锻炼与否与性别有关?男性居民女性居民总计不参加体育锻炼参加体育锻炼总计(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.附:P(K2≥k0)0.100.050.01k0 2.706 3.841 6.63520.已知椭圆的右顶点为A,左焦点为F1,离心率,过点A的直线与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1,若.(1)求椭圆C的标准方程;(2)过圆E:x2+y2=4上任意一点P作圆E的切线l,l与椭圆交于M,N两点,以MN为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.21.已知函数f(x)=(x-m)lnx(m≤0).(1)若函数f(x)存在极小值点,求m的取值范围;(2)当m=0时,证明:f(x)<e x-1.22.在平面直角坐标系xOy中,直线l的方程为,以坐标原点O为极).点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2(sinθ+cosθ(1)求曲线C的普通方程;(2)过点P(1,0)作直线l的垂线交曲线C于M,N两点,求的值.23.已知函数f(x)=|2x-a|(a∈R).(1)当a=4时,解不等式f(x)<8-|x-1|;(2)若不等式f(x)>8+|2x-1|有解,求a的取值范围.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|3-2x<1}={x|x>1},B={x|4x-3x2≥0}={x|0},∴A∩B={x|1<x}.故选:B.2.答案:C解析:解:∵的实部与虚部相等,∴4-a=2a+2,即a=.故选:C.利用复数代数形式的乘除运算化简,再由实部与虚部相等列式求得a值.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:D解析:解:函数=sin2x+?=sin(2x+)+的最小正周期为=π,故选:D.利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.本题主要考查三角恒等变换,正弦函数的周期性,属于基础题.4.答案:C解析:解:甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选:C.根据中位数,平均数,方差的概念计算比较可得.本题考查了茎叶图,属基础题.5.答案:B解析:解:设变量x,y的平均值为:,,∴==5,=0.9,∴样本中心点(5,0.9),∴0.9=5×b+7.9∴b=-1.4,∴x每增加1个单位,y就减少 1.4.故选:B.首先,根据所给数据,计算样本中心点(5,0.9),然后,将改点代人回归方程,得到b=-1.4,从而得到答案.本题重点考查了回归直线方程的特征、回归直线方程中回归系数的意义等知识,属于中档题.6.答案:C解析:解:由x,y满足约束条件作出可行域如图,解得A(2,2),B(0,2),化目标函数z=2x+y为y=-2x+z,由图可知,当直线y=-2x+z过B时,直线在y轴上的截距最小,z有最小值为2;当直线y=-2x+z过A时,直线在y轴上的截距最大,z有最大值为6.∴z的取值范围是[2,6].故选:C.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.答案:A解析:解:模拟程序的运行,可得S=12,n=1执行循环体,S=10,n=2不满足条件S+n≤0,执行循环体,S=6,n=3不满足条件S+n≤0,执行循环体,S=0,n=4不满足条件S+n≤0,执行循环体,S=-8,n=5满足条件S+n≤0,退出循环,输出S的值为-8.故选:A.关键框图的流程依次计算程序运行的结果,直到满足条件跳出循环,确定输出S的值本题考查了循环结构的程序框图,关键框图的流程依次计算程序运行的结果是解答此类问题的常用方法,属于基础题.8.答案:C解析:解:由三视图还原原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2.把该三棱锥补形为正方体,则正方体对角线长为.∴该三棱柱外接球的半径为:.则球O的表面积是:4=12π.故选:C.由三视图还原原几何体,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2,然后利用分割补形法求解.本题考查空间几何体的三视图,考查多面体外接球表面积与体积的求法,是中档题.9.答案:B解析:【分析】求出函数f(x)的导数f′(x),结合函数的奇偶性,定义域,单调性的性质进行判断.本题主要考查函数导数的性质,以及函数图象的判断,求函数的导数,利用函数奇偶性的性质是解决本题的关键.【解答】解:f'(x)=sinx+xcosx,所以f'(x)为奇函数,故C错误,又f'(π)=-π,只有B符合,故选:B.10.答案:D解析:解:点P到坐标原点O的距离等于双曲线焦距的一半,可得PF1⊥PF2,可设P为双曲线右支上一点,可得|PF1|-|PF2|=2a,又|PF1|+|PF2|=4a,解得|PF1|=3a,|PF2|=a,可得|PF1|2+|PF2|2=|F1F2|2,即为9a2+a2=4c2,可得e==.故选:D.由题意可得PF1⊥PF2,可设P为双曲线右支上一点,可得|PF1|-|PF2|=2a,结合条件和勾股定理、以及离心率公式,计算可得所求值.本题考查双曲线的定义和性质,主要是离心率的求法,考查直角三角形的判断和勾股定理的运用,以及方程思想和化简能力,属于中档题.11.答案:A解析:【分析】本题主要考查函数与方程的应用,利用参数分离法,结合数形结合是解决本题的关键.综合性较强,属于较难题.根据条件先判断x=1是函数g(x)的一个零点,等价于当x≠1时,函数f(x)=a(x-1),没有其他根,利用参数分离法,利用数形结合进行求解即可.【解答】解:由g(x)=f(x)-ax+a=0得f(x)=a(x-1),∵f(1)=1-3+2=0,∴g(1)=f(1)-a+a=0,即x=1是g(x)的一个零点,若g(x)恰有1个零点,则当x≠1时,函数f(x)=a(x-1),没有其他根,即a=,没有根,当x<1时,设h(x)====x-2,此时函数h(x)为增函数,则h(1)→-1,即此时h(x)<-1,当x>1时,h(x)==,h′(x)=<0,此时h(x)为减函数,此时h(x)>0,且h(1)→1,即0<h(x)<1,作出函数h(x)的图象如图:则要使a=,没有根,则a≥1或-1≤a≤0,即实数a的取值范围是[-1,0]∪[1,+∞),故选:A.12.答案:A解析:解:函数f(x)=(cosx+sin x)(cosx-sin x-4a)+(4a-3)x=(cos2x-sin2x)-2a(cosx+sinx)+(4a-3)x,=cos2x-2a(cosx+sinx)+(4a-3)x,∴f′(x)=-sin2x-2a(-sin x+cosx)+(4a-3),设t=sin x-cosx=sin(x-),则x∈[0,]时,x-∈[-,],∴t∈[-1,1],且sin2x=1-t2,∴f′(x)化为g(t)=-(1-t2)+2at+(4a-3)=t2+2at+4a-4;由题意知g(t)=t2+2at+4a-4≥0恒成立,其中t∈[-1,1];当-a≤-1,即a≥1时,g(t)在[-1,1]上单调递增,∴g(t)的最小值为g(-1)=1-2a+4a-4≥0,解得a≥;当-1<-a<1,即-1<a<1时,g(t)在[-1,1]内先减后增,∴g(t)的最小值为g(-a)=a2-2a2+4a-4≥0,解得a=2,不合题意;当-a≥1,即a≤-1时,g(t)在[-1,1]上单调递减,∴g(t)的最小值为g(1)=1+2a+4a-4≥0,解得a≥,不合题意;综上所述,实数a的取值范围的a≥.故选:A.化简函数f(x)并求导数,利用导数判断函数单调递增时,导数大于或等于0,再求得a的取值范围.本题考查利用导数研究函数的单调性应用问题,也考查了转化法与分类讨论思想,是难题.13.答案:解析:【分析】四棱锥P-AA1C1C的体积等于三棱柱的体积减去两个三棱锥的体积.本题考查了正方体的结构特征,棱锥的体积计算,属于基本知识的考查.【解答】解:=V正方体=,==故答案为:.14.答案:解析:【分析】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.由正弦定理化简已知等式可得a2+c2-b2=ac,利用余弦定理可求cosB=,结合范围B∈(0,π),可得B的值.【解答】解:在△ABC中,由=,及正弦定理得:,整理可得:a2+c2-b2=ac,所以,cosB===,所以,由B∈(0,π),可得:B=.故答案为:.15.答案:解析:【分析】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.结合已知及向量的基本定理可得,结合已知,可求m,t.【解答】解:由题意及图,,又,∴,∴,又,∴,解得,.故答案为:.16.答案:x+y+1=0或x-y+1=0解析:解:设P点的坐标为(4t2,4t),∵F(1,0),A(-1,0)∴|PF|2=(4t2-1)2+16t2=16t4+8t2+1|PA|2=(4t2+1)2+16t2=16t4+24t2+1∴()2==1-=1-≥1-=1-=,当且仅当16t2=,即t=±时取等号,此时点P坐标为(1,2)或(1,-2),此时直线AP的方程为y=±(x+1),即x+y+1=0或x-y+1=0,故答案为:x+y+1=0或x-y+1=0,设P点的坐标为(4t2,4t),根据点与点的距离公式,可得()2==1-,再根据基本不等式求出t的值,即可求出直线AP的方程本题考察了抛物线的定义,转化为基本不等式求解,属于中档题.17.答案:解:(1)公差d不为0的等差数列{a n}的前n项和为S n,a2+a5=21,可得2a1+5d=21,a1,a3,a9依次成等比数列,可得a32=a1a9,即(a1+2d)2=a1(a1+8d),解得a1=d=3,则a n=3n;(2)S n=n(n+1),=?=(-),可得前n项和T n=(1-+-+…+-)=(1-)=.解析:(1)设公差为d,运用等差数列的通项公式和等比数列中项性质,解方程可得首项和公差,即可得到所求通项公式;(2)运用等差数列的求和公式,可得=?=(-),再由数列的裂项相消求和,化简可得所求和.本题考查等差数列的通项公式和求和公式,等比数列中项性质,以及数列的裂项相消求和,考查方程思想和运算能力,属于基础题.18.答案:(1)证明:取AD中点F,连接BF,EF,∵E,F分别为AP,AD的中点,AD⊥PD,∴AD⊥EF,又△ABC是正三角形,∴AD⊥BF,∵BF∩EF=F,∴AD⊥平面BEF,又BE?平面BEF,∴AD⊥BE;(2)解:∵AD∥BC,∠BCD=90°,∴AD⊥CD,又AD⊥PD,PD∩CD=D,∴AD⊥平面PCD,又AD?平面ABCD,∴平面ABCD⊥平面PCD,过点P作PH⊥CD,交CD的延长线于点H,则PH⊥平面ABCD,在直角三角形PDH中,∠PDH=60°,PD=2,∴PH=,∴.解析:(1)取AD中点F,连接BF,EF,结合已知证得AD⊥EF,又△ABC是正三角形,得AD⊥BF,由线面垂直的判定可得AD⊥平面BEF,进一步得到AD⊥BE;(2)由AD∥BC,∠BCD=90°,得AD⊥CD,再由AD⊥PD,得AD⊥平面PCD,可得平面ABCD⊥平面PCD,过点P作PH⊥CD,交CD的延长线于点H,则PH⊥平面ABCD,求解直角三角形PDH得PH=,再由棱锥体积公式求三棱锥P-ABD的体积.本题考查空间中直线与直线、直线与平面间位置关系的判定及其应用,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.19.答案:解:(1)根据表中的统计数据,填写列联表如下;男性居民女性居民总计不参加体育锻炼369参加体育锻炼15621总计181230计算K2==3.81>2.706,所以有90%的把握认为参加体育锻炼与否与性别有关;(2)记三名乙类女性居民为A、B、C,三名丙类居民为d、e、f,从抽出的6名女性居民中随机抽取2人,基本事件为AB、AC、Ad、Ae、Af、BC、Bd、Be、Bf、Cd、Ce、Cf、de、df、ef共15个;抽出的两人中乙类、丙类各1人的基本事件为Ad、Ae、Af、Bd、Be、Bf、Cd、Ce、Cf共9种,所以所抽取的2人中乙类,丙类各有1人的概率为P==.解析:本题考查了列联表与独立性检验的应用问题,也考查了古典概型的概率计算问题,是基础题.(1)根据表中数据填写列联表,计算观测值,对照临界值得出结论;(2)用列举法计算基本事件数,求出对应的概率值;20.答案:解:(1)∵e==,∴a=c,b=c,设B(-c,y0)代入椭圆方程,可得|y0|=b,∴S△=|y0|?|F1A|=b2(1+),∴b2(1+)=3+,∴b2=6,a2=12,∴椭圆C的标准方程为+=1.(2):当切线l的斜率不存在时,以MN为直径的圆的圆心分别为(2,0),(-2,0),MN=4时,以MN为直径的圆的标准方程为(x+2)2+y2=4,(x-2)2+y2=4,易得两圆相切且切点为坐标原点,∴以MN为直径的圆过坐标原点,当切线l的斜率存在时,设M(x1,y1),N(x2,y2).设切线的方程为:y=kx+m,则d==2,即m2=4(1+k2).由,消y整理可得:(1+2k2)x2+4kmx+2m2-12=0,∴x1+x2=-,x1x2=.y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.∴?=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=-+m2===0.∴OM⊥ON.∴以MN为直径的圆过定点原点O(0,0).综上所述MN为直径的圆恒过坐标原点.解析:(1)由三角形面积可得b2(1+)=3+,根据离心率可得b=c,结合隐含条件求出a,b,c的最值,则椭圆方程可求;(2)当切线的斜率不存在时,直接解出验证;当切线的斜率存在时,设M(x1,y1),N(x2,y2).设切线的方程为:y=kx+m,由圆心到直线的距离可得m2=2(1+k2).把切线方程代入椭圆方程可得:(1+2k2)x2+4kmx+2m2-12=0,利用根与系数的关系即可证明?=0,结论得证.本题考查了椭圆的标准方程及其性质、直线与圆相切及其直线与椭圆相交问题、一元二次方程的根与系数的关系、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.21.答案:解:(1)函数的定义域为(0,+∞),f′(x)=+ln x=1-+ln x,①当m=0时,f′(x)=0得x=,当x∈(0,)时,f'(x)<0,当x∈(,+∞)时,f'(x)>0,∴x=是函数f(x)的极小值点,满足题意②当m<0吋,令g(x)=f′(x),g'(x)=+=,令g′(x)=0,解得x=-m,当x∈(0,-m)时,g′(x)<0当x∈(-m,+∞)时,g'(x)>0∴g(x)min=g(-m)=2+ln(-m),若g(-m)≥0,即m≤-e-2时,f'(x)=g(x)≥0恒成立,∴f(x)在(0,+∞)上单调递增,无极值点,不满足题意.若g(-m)=2+ln(-m)<0,即-e-2<m<0时,g(1-m)=1-+ln(1-m)>0∴g(-m)?g(1-m)<0,又g(x)在(-m,+∞)上单调递增,∴g(x)在(-m,+∞)上恰有一个零点x1,当x∈(-m,x1)时,f'(x)=g(x)<0,当e∈(x1,+∞)时,f'(x)=g(x)>0,∴x1是f(x)的极小值点,满足题意,综上,-e-2<m≤0(2)当m=0时,f(x)=xlnx,,①当x∈(0,1],e x-1>0,xlnx≤0∴f(x)<e x-1,②当x∈(1,+∞)时.,令h(x)=e x-xlnx-1,h'(x)=e x-lnx-1,令φ(x)=h′(x),则φ′(x)=e x-,(x)>φ′(1)=e-1>0,(x)在(1,+∞)上是増函数,∴φ'∵φ'∴φ(x)在(1,+∞)上单调递增,h′(x)=φ(x)>φ(1)=e-1>0,∴h(x)在(1,+∞)上单调递增,∴h(x)>h(1)=e-1>0,∴x>1时,xlnx<e x-1成立,综上f(x)<e x-1.解析:(1)求函数的导数,结合函数极值和导数之间的关系进行讨论求解即可.(2)求函数的导数,讨论x的取值范围,结合函数单调性和最值之间的关系进行证明即可.本题主要考查导数的综合应用,结合函数的极值,单调性和导数之间的关系,转化为导数问题,以及构造函数研究函数的单调性是解决本题的关键.综合性较强,运算量较大,有一定的难度.22.答案:解(1)由题意知ρ2=2ρsinθ+2ρcosθ,所以曲线C的普通方程为:x2+y2-2x-2y=0.(2)∵直线l的斜率为,∴直线MN的斜率为:-,∴直线MN的参数方程为:(t为参数),代入曲线C的直角坐标方程得t2-t-1=0,设M,N对应的参数为t1,t2,则t1+t2=1,t1t2=-1,∴+==|t1-t2|===.,所以曲线C的普通方程为:x2+y2-2x-2y=0;解析:(1)由题意知ρ2=2ρsinθ+2ρcosθ(2)先求出直线MN的参数方程,再根据参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(1)a=4时,不等式f(x)<8-|x-1?|2x-4|+|x-1|<8?或或,解得-1<x<,综上,不等式的解集为(-1,).(2)原不等式有解,即不等式|2x-a|-|2x-1|>8有解,令g(x)=|2x-a|-|2x-1|,x-a-2x+1|=|a-1|,∵|2x-a|-|2x-1|≤|2∴g(x)max=|a-1|,∴|a-1|>8,解得a>9或a<-7.∴a的取值范围是a>9或a<-7.解析:(1)a=4时,分3段去绝对值解不等式组再相并;(2)原不等式有解,即不等式|2x-a|-|2x-1|>8有解,再构造函数利用绝对值不等式的性质求出最大值代入可解得.本题考查了绝对值不等式的解法,属中档题.。
2020年山东省泰安市高考数学二模试卷
2020年山东省泰安市高考数学二模试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合{|(1)(2)0}A x x x =+-<,{|0}B x lnx =>,则(A B =I ) A .{|12}x x << B .{|11}x x -<< C .{|12}x x -<< D .{|21}x x -<<2.(5分)已知12iz i-=+,则(z = ) A .1355i -B .1355i +C .1355i --D .1355i -+3.(5分)已知直线l 过点(3,0)P ,圆22:40C x y x +-=,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .l 与C 的位置关系不确定4.(5分)已知2012(1)n n n px b b x b x b x -=+++⋯+,若13b =-,24b =,则(p = ) A .1B .12C .13D .145.(5分)中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A .15B .14 C .13D .126.(5分)命题:[2p x ∃∈-,1],20x x m +-„成立的充要条件是( ) A .0m …B .14m -…C .124m -剟D .2m …7.(5分)等腰直角三角形ABC 中,2ACB π∠=,2AC BC ==,点P 是斜边AB 上一点,且2BP PA =,那么(CP CA CP CB +=u u u r u u u r u u u r u u u rgg ) A .4- B .2- C .2 D .48.(5分)已知函数2()(1)2x x af x x e e ax =--+只有一个极值点,则实数a 的取值范围是()A .0a „或12a …B .0a „或13a …C .0a „D .0a …或13a -„ 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献;某杂交水稻种植研究所调查某地水稻的株高,得出株高(单位:)cm 服从正态分布,其密度曲线函数为2(100)200(),(,)102x f x ex π--=∈-∞+∞,则下列说法正确的是( )A .该地水稻的平均株高为100cmB .该地水稻株高的方差为10C .随机测量一株水稻,其株高在120cm 以上的概率比株高在70cm 以下的概率大D .随机测量一株水稻,其株高在(80,90)和在(100,110)(单位:)cm 的概率一样大10.(5分)如图,正方体1111ABCD A B C D -的棱长为2,线段11B D 上有两个动点M ,N ,且1MN =,则下列结论正确的是( )A .AC BM ⊥B .//MN 平面ABCDC .三棱锥A BMN -的体积为定值D .AMN ∆的面积与BMN ∆的面积相等11.(5分)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为20x y -=,双曲线的左焦点在直线50x y ++=上,A 、B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,PA ,PB 的斜率分别为1k ,2k ,则12k k +的取值可能为( ) A .34B .1C .43D .212.(5分)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(,)B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是( )A .函数()()22g x f x =-在[3-,9]上有两个零点B .函数()y f x =是偶函数C .函数()y f x =在[8-,6]-上单调递增D .对任意的x R ∈,都有1(4)()f x f x +=-三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)函数cos 43sin 4y x x =+的单调递增区间为 .14.(5分)北京大兴国际机场为4F 级国际机场、大型国际枢纽机场、国家发展新动力源,于2019年9月25日正式通航.目前建有“三纵一横”4条跑道,分别叫西一跑道、西二跑道、东一跑道、北一跑道,如图所示;若有2架飞往不同目的地的飞机要从以上不同跑道同时起飞,且西一跑道、西二跑道至少有一道被选取,则共有 种不同的安排方法.(用数字作答).15.(5分)已知抛物线2:2(0)C x py p =>的准线方程为1y =-,直线:3440l x y -+=与抛物线C 和圆2220x y y +-=从左至右的交点依次为A 、B 、E 、F ,则抛物线C 的方程为 ,||||EF AB = . 16.(5分)已知A 、B 是球O 球面上的两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在①5462a b b =+,②35144()a a b b +=+,③24235b S a b =三个条件中任选一个,补充在下面的问题中,并解答.设{}n a 是公比大于0的等比数列,其前n 项和为n S ,{}n b 是等差数列.已知11a =,32212S S a a -=+,435a b b =+,________.(1)求{}n a 和{}n b 的通项公式;(2)设112233n n n T a b a b a b a b =+++⋯+,求n T .18.(12分)如图,在ABC ∆中,:5:3AD DC =,1BD =,5sin 5A =,0BA BD =u uu r u u u r g . (1)求BC 的长度;(2)若E 为AC 上靠近A 的四等分点,求sin DBE ∠.19.(12分)如图所示,在直三棱柱111ABC A B C -中,AB AC ⊥,侧面11ABB A 是正方形,3AB =,36AC =.(1)证明:平面11AB C ⊥平面11A BC ;(2)若16AM AC =u u u u r u u u r,求二面角11M BC A --的大小.20.(12分)某人玩掷正方体骰子走跳棋的游戏,已知骰子每面朝上的概率都是16,棋盘上标有第0站,第1站,第2站,⋯⋯,第100站.一枚棋子开始在第0站,选手每掷一次骰子,棋子向前跳动一次,若掷出朝上的点数为1或2,棋子向前跳两站;若掷出其余点数,则棋子向前跳一站,直到跳到第99站或第100站时,游戏结束;设游戏过程中棋子出现在。
山东省泰安市2019-2020学年高考数学二模考试卷含解析
山东省泰安市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为() A .14B .13C .12D .23【答案】B 【解析】 【分析】作出图形,设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,推导出11//B P C G ,由线面平行的性质定理可得出1//C G DF ,可得出点F 为11C D 的中点,同理可得出点E 为11A D 的中点,结合中位线的性质可求得11MD MB 的值. 【详解】 如下图所示:设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,Q 四边形ABCD 为正方形,P 、G 分别为AB 、CD 的中点,则//BP CG 且BP CG =,∴四边形BCGP 为平行四边形,//PG BC ∴且PG BC =,11//B C BC Q 且11B C BC =,11//PG B C ∴且11PG B C =,则四边形11B C GP 为平行四边形, 11//B P C G ∴,1//B P Q 平面α,则存在直线a ⊂平面α,使得1//B P a ,若1C G ⊂平面α,则G ∈平面α,又D ∈平面α,则CD ⊂平面α, 此时,平面α为平面11CDD C ,直线1A Q 不可能与平面α平行, 所以,1C G ⊄平面α,1//C G a ∴,1//C G ∴平面α,1C G ⊂Q 平面11CDD C ,平面11CDD C I 平面DF α=,1//DF C G ∴,1//C F DG Q ,所以,四边形1C GDF 为平行四边形,可得1111122C EDG CD C D ===,F ∴为11C D 的中点,同理可证E 为11A D 的中点,11B D EF M =Q I ,11111124MD D N B D ∴==,因此,1113MD MB =. 故选:B. 【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面α与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.2.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件【答案】D 【解析】 【分析】由题意列出约束条件和目标函数,数形结合即可解决. 【详解】设购买甲、乙两种商品的件数应分别x ,y 利润为z 元,由题意*4750,,,x y x y N +≤⎧⎨∈⎩1.8z x y =+, 画出可行域如图所示,显然当5599y x z =-+经过(2,6)A 时,z 最大. 故选:D. 【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断x ,y 是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题. 3.已知函数()2ln e x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为( ) A .3(0,)4B. C.3)4D. 【答案】C 【解析】 【分析】求导,先求出()f x在(x ∈单增,在)x ∈+∞单减,且max 1()2f x f ==知设()f x t =,则方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程 2108t mt -+=在1(0,)2上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,2432ln (12ln )()e x xe xe x xf x x x '⋅--==, 令()0f x '=,解得1ln 2x =,x =x ∈时,()0f x '>,当)x ∈+∞,()0f x '<,且12f ==, 故方程2108t mt -+=在1(0,)2上有两个不同的实数根,故121212011()()022010t t t t t t ∆>⎧⎪⎪-->⎪⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩解得3,)24m ∈. 故选:C. 【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数()g x (()g x '易求,()=0g x '可解),转化为确定()g x 的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出()g x 的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.4.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( ) AB1 C.3- D1【答案】B 【解析】 【分析】根据题意可得易知2p c =,且222222222444p a b p b p a a b ⎧-=⎪⎨⎪+=⎩,解方程可得2222a p b p ⎧=⎪⎪⎨⎪=⎪⎩,再利用222c e a =即可求解. 【详解】易知2p c =,且2222222222222444a p p a b p b p a a b b p ⎧⎧=⎪⎪-=⎪⎪⇒⎨⎨⎪⎪+==⎪⎪⎩⎩故有2223c e a==-1e ==故选:B 【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题5.欧拉公式为cos sin ix e x i x =+,(i 虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,3i e π表示的复数位于复平面中的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】 计算313cossin 3322πππ=+=+i ei i ,得到答案. 【详解】根据题意cos sin ixe x i x =+,故313cossin 332πππ=+=+i e i i ,表示的复数在第一象限. 故选:A . 【点睛】本题考查了复数的计算, 意在考查学生的计算能力和理解能力. 6.一个几何体的三视图如图所示,则该几何体的体积为( )A .103B .3C .83D .73【答案】A 【解析】 【分析】根据题意,可得几何体,利用体积计算即可. 【详解】由题意,该几何体如图所示:该几何体的体积11110222222323V =⨯⨯⨯-⨯⨯⨯=. 故选:A. 【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.7.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫-⎪⎝⎭()()sin sin c b C B =+-,则ABC V 面积的最大值是( ) A .155B .15C 15D .155【答案】A 【解析】 【分析】根据正弦定理可得()()12a b a c b c b ⎛⎫-=+- ⎪⎝⎭,求出cos C ,根据平方关系求出sin C .由2CD CA CB =+u u u r u u u r u u u r 两端平方,求ab 的最大值,根据三角形面积公式in 12s S ab C =,求出ABC V 面积的最大值. 【详解】ABC V 中,()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭,由正弦定理可得()()12a b a c b c b ⎛⎫-=+- ⎪⎝⎭,整理得22212c a b ab =+-, 由余弦定理2222cos c a b ab C =+-,得()115cos ,0,,sin 44C C C π=∈=Q . Q D 是AB 的中点,且1CD =,()()222,2CD CA CB CDCA CB ∴=+∴=+u u u r u u u r u u u r u u u ru u u r u u u r ,即22242CD CA CB CA CB =++u u u r u u u r u u u r u u u r u u u r g ,即222211542cos 2222b a ba C a b ab ab ab ab =++=++≥+=,85ab ∴≤,当且仅当a b =时,等号成立.ABC ∴V 的面积118sin 225S ab C =≤⨯所以ABC V 故选:A . 【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题. 8.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=【答案】D 【解析】 【分析】由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可.【详解】解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D. 【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题. 9.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④ B .①②C .①③D .②④【答案】B 【解析】 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.10.已知函数ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩,若m n <,且 ()()f m f n =,则n m -的取值范围为( )A .[32ln 2,2)-B .[32ln 2,2]-C .[1,2)e -D .[1,2]e -【答案】A 【解析】分析:作出函数()f x 的图象,利用消元法转化为关于n 的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数()f x 的图象,如图所示,若m n <,且()()f m f n =, 则当ln(1)1x +=时,得1x e +=,即1x e =-, 则满足01,20n e m <<--<≤,则1ln(1)12n m +=+,即ln(1)2m n =+-,则22ln(1)n m n n -=+-+, 设()22ln(1),01h n n n n e =+-+<≤-,则()21111n h n n n -=+=++', 当()0h n '>,解得11n e <≤-,当()0h n '<,解得01n <<,当1n =时,函数()h n 取得最小值()1122ln(11)32ln 2h =+-+=-, 当0n =时,()022ln12h =-=;当1n e =-时,()1122ln(11)12h e e e e -=-+--+=-<,所以32ln 2()2h n -<<,即n m -的取值范围是[32ln 2,2)-,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.11.设全集U =R ,集合{}2A x x =<,{}230B x x x =-<,则()U A B =I ð( ) A .()0,3 B .[)2,3C .()0,2D .()0,∞+【答案】B 【解析】 【分析】可解出集合B ,然后进行补集、交集的运算即可. 【详解】{}()2300,3B x x x =-<=Q ,{}2A x x =<,则[)2,U A =+∞ð,因此,()[)2,3U A B =I ð.故选:B. 【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题. 12.函数3()cos ln ||f x x x x x =+在[,0)(0,]ππ-U 的图象大致为( )A .B .C .D .【答案】B 【解析】 【分析】先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案. 【详解】()f x 是奇函数,排除C ,D ;()2()ln 0f ππππ=-<,排除A.故选:B. 【点睛】本题考查函数图象的判断,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。
山东省泰安市2019-2020学年高考第二次模拟数学试题含解析
山东省泰安市2019-2020学年高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是( )A .16,e e ⎛⎫ ⎪⎝⎭B .741,e e ⎡⎫⎪⎢⎣⎭C .74160,,e e e ⎡⎫⎛⎤⎪⎢ ⎥⎝⎦⎣⎭UD .746,e e ⎡⎫⎪⎢⎣⎭【答案】D【解析】【分析】 先求出()f x 的值域,再利用导数讨论函数()g x 在区间()0,e 上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为()g x ax lnx =-,故()1ax g x x='-, 当0a ≤时,()0g x '<,故()g x 在区间()0,e 上单调递减; 当1a e≥时,()0g x '>,故()g x 在区间()0,e 上单调递增; 当10,a e ⎛⎫∈ ⎪⎝⎭时,令()0g x '=,解得1x a=, 故()g x 在区间10,a ⎛⎫ ⎪⎝⎭单调递减,在区间1,e a ⎛⎫ ⎪⎝⎭上单调递增. 又()11,1a g lna g e a e ⎛⎫=+=- ⎪⎝⎭,且当x 趋近于零时,()g x 趋近于正无穷; 对函数()f x ,当()0,x e ∈时,()11,54f x ⎡⎫∈⎪⎢⎣⎭; 根据题意,对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==成立, 只需()111,54g g e a ⎛⎫<≥ ⎪⎝⎭, 即可得111,154a lna e+<-≥, 解得746,a e e ⎡⎫∈⎪⎢⎣⎭. 故选:D.本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.2.已知数列{}n a 中,12a =,111n n a a -=-(2n ≥),则2018a 等于( ) A .12 B .12- C .1- D .2 【答案】A【解析】【分析】分别代值计算可得,观察可得数列{}n a 是以3为周期的周期数列,问题得以解决.【详解】解:∵12a =,111n n a a -=-(2n ≥), 211122a ∴=-=, 3121a =-=-,41(1)2a =--=,511122a =-=, …, ∴数列{}n a 是以3为周期的周期数列,201836722=⨯+Q ,2018212a a ∴==, 故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.3.在101()2x x -的展开式中,4x 的系数为( ) A .-120B .120C .-15D .15【答案】C【解析】写出101()2x x -展开式的通项公式1021101()2r r r r T C x -+=-,令1024r -=,即3r =,则可求系数. 【详解】101()2x x -的展开式的通项公式为101021101011()()22r r r r r r r T C x C x x --+=-=-,令1024r -=,即3r =时,系数为33101()152C -=-.故选C 【点睛】本题考查二项式展开的通项公式,属基础题.4.已知函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像与一条平行于x 轴的直线有两个交点,其横坐标分别为12,x x ,则12x x +=( )A .34πB .23πC .3πD .6π 【答案】A【解析】【分析】画出函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像,函数对称轴方程为82k x ππ=-+,由图可得1x 与2x 关于38x π=对称,即得解. 【详解】函数332sin 2044y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图像如图,对称轴方程为32()42x k k Z πππ+=+∈, ()82k x k Z ππ∴=-+∈,又330,48x x ππ<<∴=Q , 由图可得1x 与2x 关于38x π=对称, 1233284x x ππ∴+=⨯= 故选:A【点睛】 本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题. 5.35(1)(2)x y --的展开式中,满足2m n +=的m n x y 的系数之和为( )A .640B .416C .406D .236-【答案】B【解析】【分析】 2m n +=,有02m n =⎧⎨=⎩,11m n =⎧⎨=⎩,20m n =⎧⎨=⎩三种情形,用33(1)(1)x x -=-+中m x 的系数乘以55(2)(2)y y -=-+中n y 的系数,然后相加可得.【详解】当2m n +=时,35(1)(2)x y --的展开式中m n x y 的系数为 358()55353535(1)(2)(1)22m m m n n n n n m n n m n n m n m n C x C y C C x y C C x y ---+---⋅-=⋅⋅-⋅=⋅⋅.当0m =,2n =时,系数为3211080⨯⨯=;当1m =,1n =时,系数为4235240⨯⨯=;当2m =,0n =时,系数为523196⨯⨯=;故满足2m n +=的m n x y 的系数之和为8024096416++=.故选:B .【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键.6.i 是虚数单位,21i z i =-则||z =( )A .1B .2CD .【答案】C【解析】【分析】由复数除法的运算法则求出z ,再由模长公式,即可求解.由22(1)1,||1i i z i z i+==-+=-故选:C.【点睛】本题考查复数的除法和模,属于基础题.7.已知实数0,1a b >>满足5a b +=,则211a b +-的最小值为( )A .34+B .C .36+D 【答案】A【解析】【分析】 所求211a b +-的分母特征,利用5a b +=变形构造(1)4a b +-=,再等价变形121()[(1)]41a b a b ++--,利用基本不等式求最值.【详解】解:因为0,1a b >>满足5a b +=, 则()21211()1114a b a b a b +=++-⨯⎡⎤⎣⎦-- ()21113(3414b a a b -⎡⎤=++≥+⎢⎥-⎣⎦, 当且仅当()211b a a b -=-时取等号, 故选:A .【点睛】本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.8.“”αβ≠是”cos cos αβ≠的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】分别判断充分性和必要性得到答案.【详解】cos cos αβαβ=⇒=所以cos cos αβαβ≠⇒≠ (逆否命题)必要性成立当cos cos αβαβ=-⇒=,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.9.设m 、n 是两条不同的直线,α、β是两个不同的平面,则m β⊥的一个充分条件是()A .αβ⊥且m α⊂B .//m n 且n β⊥C .αβ⊥且//m αD .m n ⊥且//n β【答案】B【解析】由//m n 且n β⊥可得m β⊥,故选B.10.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .400【答案】B【解析】【分析】设{}n a 公差为d ,由已知可得3a ,进而求出{}n a 的通项公式,即可求解.【详解】设{}n a 公差为d ,27a =,415a =,2433211,42a a a d a a +∴===-=,1010(339)41,2102n a n S ⨯+∴=-∴==.故选:B.【点睛】本题考查等差数列的基本量计算以及前n 项和,属于基础题.11.已知命题300:2,80p x x ∃>->,那么p ⌝为( )A .3002,80x x ∃>-≤ B .32,80x x ∀>-≤C .3002,80x x ∃≤-≤ D .32,80x x ∀≤-≤【解析】【分析】利用特称命题的否定分析解答得解.【详解】已知命题0:2p x ∃>,3080x ->,那么p ⌝是32,80x x ∀>-≤. 故选:B .【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.12.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12 【答案】C【解析】【分析】【详解】 分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -, 由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.二、填空题:本题共4小题,每小题5分,共20分。
山东省泰安市2019-2020学年高考第二次质量检测数学试题含解析
山东省泰安市2019-2020学年高考第二次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( )A .12E E ξξ<,12D D ξξ<B .12E E ξξ=,12D D ξξ>C .12E E ξξ=,12D D ξξ< D .12E E ξξ>,12D D ξξ>【答案】B 【解析】 【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系. 【详解】1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=, 故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=.()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯,故223E ξ=,2221242013399D ξ=⨯+⨯-=,故12E E ξξ=,12D D ξξ>.故选B. 【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.2.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( ) A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈ ⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z【分析】由值域为[5,3]-确定,a b 的值,得()5cos4g x x =--,利用对称中心列方程求解即可 【详解】因为()[,2]f x b a b ∈+,又依题意知()f x 的值域为[5,3]-,所以23a b += 得4a =,5b =-, 所以()5cos4g x x =--,令4()2x k k ππ=+∈Z ,得()48k x k ππ=+∈Z ,则()g x 的图象的对称中心为,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z . 故选:B 【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为03.已知函数2()(2)g x f x x =+为奇函数,且(2)3f =,则(2)f -=( ) A .2 B .5 C .1 D .3【答案】B 【解析】 【分析】由函数2()(2)g x f x x =+为奇函数,则有(1)(1)0(2)1(2)10g g f f -+=⇒-+++=,代入已知即可求得.【详解】(1)(1)0(2)1(2)10(2)5g g f f f -+=⇒-+++=⇒-=-.故选:B . 【点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.4.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=【答案】D根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a=,25b =,即得结果. 【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x ya b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=() 2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D . 【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.5.在棱长均相等的正三棱柱111ABC A B C =中,D 为1BB 的中点,F 在1AC 上,且1DF AC ⊥,则下述结论:①1AC BC ⊥;②1AF FC =;③平面1DAC ⊥平面11ACC A :④异面直线1AC 与CD 所成角为60︒其中正确命题的个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断F 是1AC 的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线1AC 与CD 所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结1AB ,则1122AB AC ==1190AC B ∴∠≠︒即1AC 与11B C 不垂直,又对于②,连结AD ,1DC ,在1ADC ∆中,15AD DC ==,而1DF AC ⊥,F ∴是1AC 的中点,所以1AF FC =,∴②正确;对于③由②可知,在1ADC ∆中,3DF =,连结CF ,易知2CF =,而在Rt CBD ∆中,5CD =,222DF CF CD ∴+=,即DF CF ⊥,又1DF AC ⊥,DF ⊥∴面11ACC A ,∴平面1DAC ⊥平面11ACC A ,∴③正确; 以1A 为坐标原点,平面111A B C 上过1A 点垂直于11A C 的直线为x 轴,11A C 所在的直线为y 轴,1A A 所在的直线为z 轴,建立如图所示的直角坐标系;()10,0,0A , ()13,1,0B ,()10,2,0C , ()0,0,2A , ()0,2,2C , ()3,1,1D;()10,2,2AC =-u u u u r, ()3,1,1CD =--u u u r ;异面直线1AC 与CD 所成角为θ,11cos 0||||AC CD AC CD θ==u u u u r u u u r g u u u ur u u u r ,故90θ=︒.④不正确. 故选:B .【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.6.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-【答案】A 【解析】 【分析】【详解】画出不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y =-+,化为直线3y x z =+,当直线3y x z =+过点A 时, 此时直线3y x z =+在y 轴上的截距最大,目标函数取得最大值,又由2100x y y -+=⎧⎨=⎩,解得(1,0)A -,所以目标函数的最大值为3(1)03z =-⨯-+=,故选A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.7.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率e = A .13B .33C .12D .22【答案】B 【解析】 【分析】 【详解】设2||BF t =,则12||BF a t =-,||AB a t =+,因为||AF a =,所以||||AB AF >.若||||AF BF =,则2a a t =-,所以a t =,所以11||||||2A A a BF B F =+=,不符合题意,所以1||||BF AB =,则2a t a t -=+, 所以2a t =,所以1||||3BF AB t ==,1||2AF t =,设12BAF θ∠=,则sin e θ=,在1ABF V 中,易得1cos23θ=,所以2112sin 3θ-=,解得sin 3θ=(负值舍去),所以椭圆Г的离心率e =B . 8.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40 B .60C .80D .100【答案】D 【解析】 【分析】由正态分布的性质,根据题意,得到(110)(60)P X P X ≥=≤,求出概率,再由题中数据,即可求出结果. 【详解】由题意,成绩X 近似服从正态分布()285,N σ,则正态分布曲线的对称轴为85x =,根据正态分布曲线的对称性,求得(110)(60)0.50.30.2P X P X ≥=≤=-=, 所以该市某校有500人中,估计该校数学成绩不低于110分的人数为5000.2100⨯=人, 故选:D . 【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易. 9.下列命题中,真命题的个数为( ) ①命题“若1122a b <++,则a b >”的否命题; ②命题“若21x y +>,则0x >或0y >”;③命题“若2m =,则直线0x my -=与直线2410x y -+=平行”的逆命题. A .0 B .1C .2D .3【分析】否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确. 【详解】①的逆命题为“若a b >,则1122a b <++”, 令1a =-,3b =-可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若0x ≤且0y ≤,则21x y +≤”,该命题为真命题,故②为真命题; ③的逆命题为“若直线0x my -=与直线2410x y -+=平行,则2m =”,该命题为真命题. 故选:C. 【点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若p ,则q ”的形式之后,判断这个命题真假的方法:①若由“p ”经过逻辑推理,得出“q ”,则可判定“若p ,则q ”是真命题;②判定“若p ,则q ”是假命题,只需举一反例即可.10.若复数z 满足()112i z i -=-+,则||Z =( )A .2B .32C .2D .12【答案】C 【解析】 【分析】把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解. 【详解】解:由()112i z i -=-+,得()()()()121123111122i i i z i i i i -++-+===-+--+,∴2z z ===. 故选C . 【点睛】11.ABC ∆中,BC =D 为BC 的中点,4BAD π∠=,1AD =,则AC =( )A.B.C.6D .2【答案】D 【解析】 【分析】在ABD ∆中,由正弦定理得sin 10B =;进而得cos cos 45ADC B π⎛⎫∠=+= ⎪⎝⎭,在ADC ∆中,由余弦定理可得AC . 【详解】在ABD ∆中,由正弦定理得sin sin 4AD BD B π=,得sin B =,又BD AD >,所以B为锐角,所以cos B =cos cos 4ADC B π⎛⎫∴∠=+= ⎪⎝⎭在ADC ∆中,由余弦定理可得2222cos 4AC AD DC AD DC ADC =+-⋅∠=,2AC ∴=.故选:D 【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.12.已知非零向量,a b r r 满足a b λ=r r ,若,a b rr 夹角的余弦值为1930,且()()23a b a b -⊥+r r r r ,则实数λ的值为( ) A .49-B .23C .32或49-D .32【答案】D 【解析】 【分析】根据向量垂直则数量积为零,结合a b λ=r r以及夹角的余弦值,即可求得参数值.【详解】依题意,得()()230a b a b -⋅+=r r r r ,即223520a a b b -⋅-=rr r r .将a b λ=r r 代入可得,21819120λλ--=,解得32λ=(49λ=-舍去).【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高考数学【山东卷】全真模拟卷2解析版
2020年2月普通高考【山东卷】全真模拟卷(2)数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:高中全部内容。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数21iz i=-,则z 在复平面对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意得()()()2122211112i i i i z i i i i +-====-+--+,所以复数z 对应的点的坐标为()1,1-,位于第二象限.故选B .2.已知集合21|4A x y x ⎧⎫==⎨⎬-⎩⎭,{|23,}B x x x =-≤<∈Z ,则A B I 中元素的个数为 A .2 B .3C .4D .5【答案】B【解析】因为21|{|2}4A x y x x x ⎧⎫===≠±⎨⎬-⎩⎭,{|23,}{2,1,0,1,2}B x x x =-≤<∈=--Z , 所以{1,0,1}A B ⋂=-,所以A B I 中元素的个数为3.故选B .3.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为 A .%25.6 B .%5.7C .%25.10D .%25.31【答案】A【解析】水费开支占总开支的百分比为%25.6%20100450250250=⨯++.故选A4.函数22()11xf x x=-+在区间[4,4]-附近的图象大致形状是 A . B .C .D .【答案】B【解析】22()11xf x x=-+过点()10,,可排除选项A ,D .又()20f <,排除C .故选B 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为A .3y x =±B .y =C .2y x =±D .y =【答案】C【解析】设1(,0)F c -,2(,0)F c ,由12||FO OM =,1OMF ∆与2PF F ∆相似,所以1122||P F F P OM F O ==,即122PF PF =,又因为122PF PF a -=,所以14PF a =,22PF a =,所以2224164c a a =+,即225c a =,224b a =,所以双曲线C 的渐近线方程为2y x =±.故选C .6.在正四棱锥P ABCD -中,已知异面直线PB 与AD 所成的角为060,给出下面三个命题:1p :若2AB =,则此四棱锥的侧面积为4+;2p :若,E F 分别为,PC AD 的中点,则//EF 平面PAB ;3p :若,,,,P A B C D 都在球O 的表面上,则球O 的表面积是四边形ABCD 面积的2π倍.在下列命题中,为真命题的是 A .23p p ∧ B .12()p p ∨⌝C .13p p ∧D .23()p p ∧⌝【答案】A【解析】因为异面直线PB 与AD 所成的角为60︒,AD 平行于BC ,故角PBC=60︒,正四棱锥-ABCD P 中,PB=PC ,故三角形PBC 是等边三角形;当AB=2,此四棱锥的侧面积为1p 是假命题;取BC 的中点G ,,E F 分别为,PC AD 的中点故得//,//AB FG PB EG ,故平面EFG//平面PAB ,从而得到EF//平面PAB,故2p是真命题;设AB=a,AC和BD的交点为O,则PO垂直于地面ABCD,PA=a,AO=2a2,PO=2a2O为球心,球的半径为2a2,表面积为22πa,又正方形的面积为2a,故3p为真.故23p p∧为真;()12p p∨⌝13p p∧()23p p∧⌝均为假.故选A.7.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD=,3BD=,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为A.964B.449C.225D.27【答案】B【解析】18060120ADB∠=︒-︒=︒Q,在ABDV中,可得2222cosAB AD BD AD BD ADB=+-⋅∠,即为222153253492AB⎛⎫=+-⨯⨯⨯-=⎪⎝⎭,解得7AB=,2DE AD BD=-=Q,224()749DEFABCSS∴==VV.故选B.8.已知抛物线2:4C y x=的焦点为,F P是抛物线C的准线上一点,且P的纵坐标为正数,Q是直线PF 与抛物线C的一个交点,若2PQ QF=u u u r u u u r,则直线PF的方程为A .330x y --=B .10x y +-=C .10x y --=D .330x y +-=【答案】D【解析】作QM y ⊥轴于M ,则根据抛物线的定义有QM QF =.又2PQ QF =u u u r u u u r,故2PQ QM =,故1cos 2MQ PQM PQ ∠==.故3PQM π∠=,故直线PF 的倾斜角为23π. 故直线PF 的斜率为3-.直线PF 的方程为()31y x =--,化简得330x y +-=.故选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。
山东省泰安市2019-2020学年第二次高考模拟考试数学试卷含解析
山东省泰安市2019-2020学年第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{}n a 为等差数列,且16112a a a π++=,则()39sin a a +=的值为( )A B . C .12D .12-【答案】B 【解析】 【分析】由等差数列的性质和已知可得623a π=,即可得到9343a a π+=,代入由诱导公式计算可得.【详解】解:由等差数列的性质可得1611632a a a a π++==,解得623a π=, 963324a a a π+==∴,()394sin sin s si in 333n a a ππππ∴⎛⎫=+=-= =⎪⎝+⎭ 故选:B . 【点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题. 2.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 【答案】D 【解析】 【分析】 先求得()'fx ,再根据三角函数图像变换的知识,选出正确选项.【详解】 依题意()'553cos 33cos 33sin 33626fx x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦3sin 363x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,所以由()sin(3)3f x x π=+向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍得到()'f x 的图像.故选:D 【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题. 3.设复数z 满足|3|2z -=,z 在复平面内对应的点为(,)M a b ,则M 不可能为( )A .B .(3,2)C .(5,0)D .(4,1)【答案】D 【解析】 【分析】依题意,设z a bi =+,由|3|2z -=,得22(3)4a b -+=,再一一验证.【详解】 设z a bi =+, 因为|3|2z -=, 所以22(3)4a b -+=, 经验证(4,1)M 不满足, 故选:D. 【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题. 4.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( )A .12B .1-C .±1D .12±【答案】C 【解析】 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题. 5.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位 【答案】D 【解析】试题分析:因为,所以为得到的图象,只需要将的图象向右平移个单位;故选D . 考点:三角函数的图像变换.6.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N 除以正整数m 所得的余数是n ”记为“(mod )N n m ≡”,例如71(mod 2)≡.执行该程序框图,则输出的n 等于( )A .16B .17C .18D .19【答案】B 【解析】 【分析】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,代入四个选项进行验证即可. 【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数. 若输出16n = ,则()161mod3≡不符合题意,排除; 若输出17n =,则()()172mod3,172mod5≡≡,符合题意. 故选:B. 【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.7.已知非零向量,a b r r 满足0a b ⋅=r r ,||3a =r ,且a r 与a b +r r 的夹角为4π,则||b =r ( )A .6B .32C .22D .3【答案】D 【解析】 【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可. 【详解】解:非零向量a r ,b r 满足0a b =r r g ,可知两个向量垂直,||3a =r ,且a r 与a b+r r 的夹角为4π,说明以向量a r ,b r 为邻边,a b +r r 为对角线的平行四边形是正方形,所以则||3b =r. 故选:D . 【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.8.若双曲线E :22221x y a b-=(0,0a b >>)的一个焦点为(3,0)F ,过F 点的直线l 与双曲线E 交于A 、B 两点,且AB 的中点为()3,6P --,则E 的方程为( )A .22154x y -=B .22145x y -=C .22163x y -=D .22136x y -=【答案】D 【解析】 【分析】求出直线l 的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得,a b 的方程组,求得,a b 的值,即可得到答案. 【详解】由题意,直线l 的斜率为06133PF k k +===+, 可得直线l 的方程为3y x =-,把直线l 的方程代入双曲线22221x y a b-=,可得2222222()690b a x a x a a b -+--=,设1122(,),(,)A x y B x y ,则212226a x x a b+=-, 由AB 的中点为()3,6P --,可得22266a a b=--,解答222b a =,又由2229a b c +==,即2229a a +=,解得a b ==所以双曲线的标准方程为22136x y -=.故选:D. 【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.9.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( ) A .3π B .23π C .2π D .π【答案】B 【解析】 【分析】首先根据函数()f x 的图象分别向左与向右平移m,n 个单位长度后,所得的两个图像重合,那么m n k T +=⋅,利用()f x 的最小正周期为π,从而求得结果. 【详解】()f x 的最小正周期为π,那么3n k ππ+=(k ∈Z ),于是3n k ππ=-,于是当1k =时,n 最小值为23π, 故选B. 【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.10.△ABC 中,AB =3,BC =AC =4,则△ABC 的面积是( )A .B .2C .3D .32【答案】A 【解析】 【分析】由余弦定理求出角A ,再由三角形面积公式计算即可. 【详解】由余弦定理得:2221cos 22AB AC BC A AB AC +-==⋅⋅,又()0,A π∈,所以得3A π=,故△ABC 的面积1sin 2S AB AC A =⋅⋅⋅=故选:A 【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.11.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元 【答案】D 【解析】由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A 项正确; 结余最高为7月份,为802060-=,故B 项正确;1至2月份的收入的变化率为4至5月份的收入的变化率相同,故C 项正确;前6个月的平均收入为1(406030305060)456+++++=万元,故D 项错误. 综上,故选D .12.已知实数x ,y 满足10260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则22z x y =+的最大值等于( )A .2B .2C .4D .8【答案】D 【解析】 【分析】画出可行域,计算出原点到可行域上的点的最大距离,由此求得z 的最大值. 【详解】画出可行域如下图所示,其中()51,,2,22A C ⎛⎫ ⎪⎝⎭,由于2252912OA ⎛⎫=+= ⎪⎝⎭22OC =,所以OC OA >,所以原点到可行域上的点的最大距离为22. 所以z 的最大值为()2228=.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高考数学全真模拟卷2解析山东卷
2020年2月普通高考【山东卷】全真模拟卷(2)数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:高中全部内容。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数21iz i=-,则z 在复平面对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意得()()()2122211112i i i i z i i i i +-====-+--+,所以复数z 对应的点的坐标为()1,1-,位于第二象限.故选B . 2.已知集合21|4A x y x ⎧⎫==⎨⎬-⎩⎭,{|23,}B x x x =-≤<∈Z ,则A B I 中元素的个数为 A .2 B .3C .4D .5【答案】B【解析】因为21|{|2}4A x y x x x ⎧⎫===≠±⎨⎬-⎩⎭,{|23,}{2,1,0,1,2}B x x x =-≤<∈=--Z , 所以{1,0,1}A B ⋂=-,所以A B I 中元素的个数为3.故选B .3.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为 A .%25.6 B .%5.7C .%25.10D .%25.31【答案】A【解析】水费开支占总开支的百分比为%25.6%20100450250250=⨯++.故选A4.函数22()11xf x x=-+在区间[4,4]-附近的图象大致形状是 A .B .C .D .【答案】B【解析】22()11xf x x=-+过点()10,,可排除选项A ,D .又()20f <,排除C .故选B 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为 A .3y x =± B .3y x =C .2y x =±D .2y x =【答案】C【解析】设1(,0)F c -,2(,0)F c ,由12||FO OM =,1OMF ∆与2PF F ∆相似,所以1122||P F F P OM F O ==,即122PF PF =,又因为122PF PF a -=,所以14PF a =,22PF a =,所以2224164c a a =+,即225c a =,224b a =,所以双曲线C 的渐近线方程为2y x =±.故选C .6.在正四棱锥P ABCD -中,已知异面直线PB 与AD 所成的角为060,给出下面三个命题:1p :若2AB =,则此四棱锥的侧面积为443+;2p :若,E F 分别为,PC AD 的中点,则//EF 平面PAB ;3p :若,,,,P A B C D 都在球O 的表面上,则球O 的表面积是四边形ABCD 面积的2π倍.在下列命题中,为真命题的是 A .23p p ∧ B .12()p p ∨⌝C .13p p ∧D .23()p p ∧⌝【答案】A【解析】因为异面直线PB 与AD 所成的角为60︒,AD 平行于BC ,故角PBC=60︒,正四棱锥-ABCD P 中,PB=PC ,故三角形PBC 是等边三角形;当AB=2,此四棱锥的侧面积为43,故1p 是假命题;取BC 的中点G ,,E F 分别为,PC AD 的中点故得//,//AB FG PB EG ,故平面EFG//平面PAB ,从而得到EF//平面PAB ,故2p 是真命题;设AB=a , AC 和BD 的交点为O ,则PO 垂直于地面ABCD ,PA =a,AO =2a,PO =2aO 为球心,球的半径为2a2,表面积为22πa ,又正方形的面积为2a ,故3p 为真. 故23p p ∧为真; ()12p p ∨⌝ 13p p ∧ ()23p p ∧⌝均为假.故选A .7.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为A .964B .449C .225D .27【答案】B【解析】18060120ADB∠=︒-︒=︒Q,在ABDV中,可得2222cosAB AD BD AD BD ADB=+-⋅∠,即为222153253492AB⎛⎫=+-⨯⨯⨯-=⎪⎝⎭,解得7AB=,2DE AD BD=-=Q,224()749DEFABCSS∴==VV.故选B.8.已知抛物线2:4C y x=的焦点为,F P是抛物线C的准线上一点,且P的纵坐标为正数,Q是直线PF与抛物线C的一个交点,若2PQ QF=u u u r u u u r,则直线PF的方程为A.330x y--=B.10x y+-=C.10x y--=D.330x y+-=【答案】D【解析】作QM y⊥轴于M,则根据抛物线的定义有QM QF=.又2PQ QF=u u u r u u u r,故2PQ QM=,故1cos2MQPQMPQ∠==.故3PQMπ∠=,故直线PF的倾斜角为23π.故直线PF的斜率为3-.直线PF的方程为()31y x=--,化简得330x y+-=.故选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省泰安市高考数学二模试卷(一)一、选择题(本大题共12小题,共60.0分)1.若集合A={x|3-2x<1},B={x|4x-3x2≥0},则A∩B=()A. (1,2]B.C. [0,1)D. (1,+∞)2.已知i为虚数单位,若复数的实部与虚部相等,则a的值为()A. 2B.C.D. -23.函数的最小正周期为()A. 4πB.C. 2πD. π4.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④5.x34567y 4.0 2.5-0.50.5-2.0得到的回归方程为.若a=7.9,则x每增加1个单位,y就()A. 增加1.4个单位B. 减少1.4个单位C. 增加1.2个单位D. 减少1.2个单位6.已知x,y满足约束条件则z=2x+y的取值范围是()A. [2,4]B. [4,6]C. [2,6]D. (-∞,2]7.执行如图所示的程序框图,若输入的S=12,则输出的S=()A. -8B. -18C. 5D. 68.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O的球面上,则球O的表面积是()A. 8πB.C. 12πD. 48π9.设函数f′(x)为函数f(x)=x sinx的导函数,则函数f′(x)的图象大致为()A.B.C.D.10.设双曲线的左、右焦点分别为F1、F2,P是双曲线上一点,点P到坐标原点O的距离等于双曲线焦距的一半,且|PF1|+|PF2|=4a,则双曲线的离心率是()A. B. C. D.11.已知函数f(x)=,g(x)=f(x)-ax+a,若g(x)恰有1个零点,则a的取值范围是()A. [-1,0]∪[1,+∞)B. (-∞,-1]∪[0,1]C. [-1,1]D. (-∞,-1]∪[1,+∞)12.若函数上单调递增,则实数a的取值范围为()A. B. C. a≥1 D. 1<a<3二、填空题(本大题共4小题,共20.0分)13.如图,已知正方体ABCD-A1B1C1D1的棱长为1,点P为棱AA1上任意一点,则四棱锥P-BDD1B1的体积为______14.在△ABC中,内角A,B,C的对边分别为a,b,c,若=,则B=______.15.如图,在中,,是上一点,若,则实数的值为______.16.抛物线C:y2=4x的焦点为F,动点P在抛物线C上,点A(-1,0),当取得最小值时,直线AP的方程为______.三、解答题(本大题共7小题,共82.0分)17.已知公差不为0的等差数列{a n}的前n项和为S n,a2+a5=21,a1,a3,a9依次成等比数列.(1)求数列{a n}的通项公式;(2)求数列的前n项和T n.18.如图,在四棱锥P-ABCD中,∠PDA=90°,∠PDC=120°,AD∥BC,∠BCD=90,△ABD是等边三角形,E是PA的中点,.(1)求证:AD⊥BE;(2)求三棱锥P-ABD的体积.19.某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如表:甲类乙类丙类男性居民3123女性居民633(1)根据表中的统计数据,完成下面列联表,并判断是否有90%的把握认为参加体育锻炼与否与性别有关?男性居民女性居民总计不参加体育锻炼参加体育锻炼总计(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.附:P(K2≥k0)0.100.050.01k0 2.706 3.841 6.63520.已知椭圆的右顶点为A,左焦点为F1,离心率,过点A的直线与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1,若.(1)求椭圆C的标准方程;(2)过圆E:x2+y2=4上任意一点P作圆E的切线l,l与椭圆交于M,N两点,以MN为直径的圆是否过定点,如过定点,求出该定点;若不过定点,请说明理由.21.已知函数f(x)=(x-m)ln x(m≤0).(1)若函数f(x)存在极小值点,求m的取值范围;(2)当m=0时,证明:f(x)<e x-1.22.在平面直角坐标系xOy中,直线l的方程为,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2(sinθ+cosθ).(1)求曲线C的普通方程;(2)过点P(1,0)作直线l的垂线交曲线C于M,N两点,求的值.23.已知函数f(x)=|2x-a|(a∈R).(1)当a=4时,解不等式f(x)<8-|x-1|;(2)若不等式f(x)>8+|2x-1|有解,求a的取值范围.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|3-2x<1}={x|x>1},B={x|4x-3x2≥0}={x|0},∴A∩B={x|1<x}.故选:B.2.答案:C解析:解:∵的实部与虚部相等,∴4-a=2a+2,即a=.故选:C.利用复数代数形式的乘除运算化简,再由实部与虚部相等列式求得a值.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:D解析:解:函数=sin2x+•=sin(2x+)+的最小正周期为=π,故选:D.利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.本题主要考查三角恒等变换,正弦函数的周期性,属于基础题.4.答案:C解析:解:甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选:C.根据中位数,平均数,方差的概念计算比较可得.本题考查了茎叶图,属基础题.5.答案:B解析:解:设变量x,y的平均值为:,,∴==5,=0.9,∴样本中心点(5,0.9),∴0.9=5×b+7.9∴b=-1.4,∴x每增加1个单位,y就减少1.4.故选:B.首先,根据所给数据,计算样本中心点(5,0.9),然后,将改点代人回归方程,得到b=-1.4,从而得到答案.本题重点考查了回归直线方程的特征、回归直线方程中回归系数的意义等知识,属于中档题.6.答案:C解析:解:由x,y满足约束条件作出可行域如图,解得A(2,2),B(0,2),化目标函数z=2x+y为y=-2x+z,由图可知,当直线y=-2x+z过B时,直线在y轴上的截距最小,z有最小值为2;当直线y=-2x+z过A时,直线在y轴上的截距最大,z有最大值为6.∴z的取值范围是[2,6].故选:C.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.答案:A解析:解:模拟程序的运行,可得S=12,n=1执行循环体,S=10,n=2不满足条件S+n≤0,执行循环体,S=6,n=3不满足条件S+n≤0,执行循环体,S=0,n=4不满足条件S+n≤0,执行循环体,S=-8,n=5满足条件S+n≤0,退出循环,输出S的值为-8.故选:A.关键框图的流程依次计算程序运行的结果,直到满足条件跳出循环,确定输出S的值本题考查了循环结构的程序框图,关键框图的流程依次计算程序运行的结果是解答此类问题的常用方法,属于基础题.8.答案:C解析:解:由三视图还原原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2.把该三棱锥补形为正方体,则正方体对角线长为.∴该三棱柱外接球的半径为:.则球O的表面积是:4=12π.故选:C.由三视图还原原几何体,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2,然后利用分割补形法求解.本题考查空间几何体的三视图,考查多面体外接球表面积与体积的求法,是中档题.9.答案:B解析:【分析】求出函数f(x)的导数f′(x),结合函数的奇偶性,定义域,单调性的性质进行判断.本题主要考查函数导数的性质,以及函数图象的判断,求函数的导数,利用函数奇偶性的性质是解决本题的关键.【解答】解:f'(x)=sin x+x cosx,所以f'(x)为奇函数,故C错误,又f'(π)=-π,只有B符合,故选:B.10.答案:D解析:解:点P到坐标原点O的距离等于双曲线焦距的一半,可得PF1⊥PF2,可设P为双曲线右支上一点,可得|PF1|-|PF2|=2a,又|PF1|+|PF2|=4a,解得|PF1|=3a,|PF2|=a,可得|PF1|2+|PF2|2=|F1F2|2,即为9a2+a2=4c2,可得e==.故选:D.由题意可得PF1⊥PF2,可设P为双曲线右支上一点,可得|PF1|-|PF2|=2a,结合条件和勾股定理、以及离心率公式,计算可得所求值.本题考查双曲线的定义和性质,主要是离心率的求法,考查直角三角形的判断和勾股定理的运用,以及方程思想和化简能力,属于中档题.11.答案:A解析:【分析】本题主要考查函数与方程的应用,利用参数分离法,结合数形结合是解决本题的关键.综合性较强,属于较难题.根据条件先判断x=1是函数g(x)的一个零点,等价于当x≠1时,函数f(x)=a(x-1),没有其他根,利用参数分离法,利用数形结合进行求解即可.【解答】解:由g(x)=f(x)-ax+a=0得f(x)=a(x-1),∵f(1)=1-3+2=0,∴g(1)=f(1)-a+a=0,即x=1是g(x)的一个零点,若g(x)恰有1个零点,则当x≠1时,函数f(x)=a(x-1),没有其他根,即a=,没有根,当x<1时,设h(x)====x-2,此时函数h(x)为增函数,则h(1)→-1,即此时h(x)<-1,当x>1时,h(x)==,h′(x)=<0,此时h(x)为减函数,此时h(x)>0,且h(1)→1,即0<h(x)<1,作出函数h(x)的图象如图:则要使a=,没有根,则a≥1或-1≤a≤0,即实数a的取值范围是[-1,0]∪[1,+∞),故选:A.12.答案:A解析:解:函数f(x)=(cos x+sin x)(cos x-sin x-4a)+(4a-3)x=(cos2x-sin2x)-2a(cos x+sin x)+(4a-3)x,=cos2x-2a(cos x+sin x)+(4a-3)x,∴f′(x)=-sin2x-2a(-sin x+cos x)+(4a-3),设t=sin x-cos x=sin(x-),则x∈[0,]时,x-∈[-,],∴t∈[-1,1],且sin2x=1-t2,∴f′(x)化为g(t)=-(1-t2)+2at+(4a-3)=t2+2at+4a-4;由题意知g(t)=t2+2at+4a-4≥0恒成立,其中t∈[-1,1];当-a≤-1,即a≥1时,g(t)在[-1,1]上单调递增,∴g(t)的最小值为g(-1)=1-2a+4a-4≥0,解得a≥;当-1<-a<1,即-1<a<1时,g(t)在[-1,1]内先减后增,∴g(t)的最小值为g(-a)=a2-2a2+4a-4≥0,解得a=2,不合题意;当-a≥1,即a≤-1时,g(t)在[-1,1]上单调递减,∴g(t)的最小值为g(1)=1+2a+4a-4≥0,解得a≥,不合题意;综上所述,实数a的取值范围的a≥.故选:A.化简函数f(x)并求导数,利用导数判断函数单调递增时,导数大于或等于0,再求得a的取值范围.本题考查利用导数研究函数的单调性应用问题,也考查了转化法与分类讨论思想,是难题.13.答案:解析:【分析】四棱锥P-AA1C1C的体积等于三棱柱的体积减去两个三棱锥的体积.本题考查了正方体的结构特征,棱锥的体积计算,属于基本知识的考查.【解答】解:=V正方体=,==故答案为:.14.答案:解析:【分析】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.由正弦定理化简已知等式可得a2+c2-b2=ac,利用余弦定理可求cos B=,结合范围B∈(0,π),可得B的值.【解答】解:在△ABC中,由=,及正弦定理得:,整理可得:a2+c2-b2=ac,所以,cos B===,所以,由B∈(0,π),可得:B=.故答案为:.15.答案:解析:【分析】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.结合已知及向量的基本定理可得,结合已知,可求m,t.【解答】解:由题意及图,,又,∴,∴,又,∴,解得,.故答案为:.16.答案:x+y+1=0或x-y+1=0解析:解:设P点的坐标为(4t2,4t),∵F(1,0),A(-1,0)∴|PF|2=(4t2-1)2+16t2=16t4+8t2+1|PA|2=(4t2+1)2+16t2=16t4+24t2+1∴()2==1-=1-≥1-=1-=,当且仅当16t2=,即t=±时取等号,此时点P坐标为(1,2)或(1,-2),此时直线AP的方程为y=±(x+1),即x+y+1=0或x-y+1=0,故答案为:x+y+1=0或x-y+1=0,设P点的坐标为(4t2,4t),根据点与点的距离公式,可得()2==1-,再根据基本不等式求出t的值,即可求出直线AP的方程本题考察了抛物线的定义,转化为基本不等式求解,属于中档题.17.答案:解:(1)公差d不为0的等差数列{a n}的前n项和为S n,a2+a5=21,可得2a1+5d=21,a1,a3,a9依次成等比数列,可得a32=a1a9,即(a1+2d)2=a1(a1+8d),解得a1=d=3,则a n=3n;(2)S n=n(n+1),=•=(-),可得前n项和T n=(1-+-+…+-)=(1-)=.解析:(1)设公差为d,运用等差数列的通项公式和等比数列中项性质,解方程可得首项和公差,即可得到所求通项公式;(2)运用等差数列的求和公式,可得=•=(-),再由数列的裂项相消求和,化简可得所求和.本题考查等差数列的通项公式和求和公式,等比数列中项性质,以及数列的裂项相消求和,考查方程思想和运算能力,属于基础题.18.答案:(1)证明:取AD中点F,连接BF,EF,∵E,F分别为AP,AD的中点,AD⊥PD,∴AD⊥EF,又△ABC是正三角形,∴AD⊥BF,∵BF∩EF=F,∴AD⊥平面BEF,又BE⊂平面BEF,∴AD⊥BE;(2)解:∵AD∥BC,∠BCD=90°,∴AD⊥CD,又AD⊥PD,PD∩CD=D,∴AD⊥平面PCD,又AD⊂平面ABCD,∴平面ABCD⊥平面PCD,过点P作PH⊥CD,交CD的延长线于点H,则PH⊥平面ABCD,在直角三角形PDH中,∠PDH=60°,PD=2,∴PH=,∴.解析:(1)取AD中点F,连接BF,EF,结合已知证得AD⊥EF,又△ABC是正三角形,得AD⊥BF,由线面垂直的判定可得AD⊥平面BEF,进一步得到AD⊥BE;(2)由AD∥BC,∠BCD=90°,得AD⊥CD,再由AD⊥PD,得AD⊥平面PCD,可得平面ABCD⊥平面PCD,过点P作PH⊥CD,交CD的延长线于点H,则PH⊥平面ABCD,求解直角三角形PDH得PH=,再由棱锥体积公式求三棱锥P-ABD的体积.本题考查空间中直线与直线、直线与平面间位置关系的判定及其应用,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.19.男性居民女性居民总计不参加体育锻炼369参加体育锻炼15621总计181230计算K2==3.81>2.706,所以有90%的把握认为参加体育锻炼与否与性别有关;(2)记三名乙类女性居民为A、B、C,三名丙类居民为d、e、f,从抽出的6名女性居民中随机抽取2人,基本事件为AB、AC、Ad、Ae、Af、BC、Bd、Be、Bf、Cd、Ce、Cf、de、df、ef共15个;抽出的两人中乙类、丙类各1人的基本事件为Ad、Ae、Af、Bd、Be、Bf、Cd、Ce、Cf共9种,所以所抽取的2人中乙类,丙类各有1人的概率为P==.解析:本题考查了列联表与独立性检验的应用问题,也考查了古典概型的概率计算问题,是基础题.(1)根据表中数据填写列联表,计算观测值,对照临界值得出结论;(2)用列举法计算基本事件数,求出对应的概率值;20.答案:解:(1)∵e==,∴a=c,b=c,设B(-c,y0)代入椭圆方程,可得|y0|=b,∴S△=|y0|•|F1A|=b2(1+),∴b2(1+)=3+,∴b2=6,a2=12,∴椭圆C的标准方程为+=1.(2):当切线l的斜率不存在时,以MN为直径的圆的圆心分别为(2,0),(-2,0),MN=4时,以MN为直径的圆的标准方程为(x+2)2+y2=4,(x-2)2+y2=4,易得两圆相切且切点为坐标原点,∴以MN为直径的圆过坐标原点,当切线l的斜率存在时,设M(x1,y1),N(x2,y2).设切线的方程为:y=kx+m,则d==2,即m2=4(1+k2).由,消y整理可得:(1+2k2)x2+4kmx+2m2-12=0,∴x1+x2=-,x1x2=.y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.∴•=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=-+m2===0.∴OM⊥ON.∴以MN为直径的圆过定点原点O(0,0).综上所述MN为直径的圆恒过坐标原点.解析:(1)由三角形面积可得b2(1+)=3+,根据离心率可得b=c,结合隐含条件求出a,b,c的最值,则椭圆方程可求;(2)当切线的斜率不存在时,直接解出验证;当切线的斜率存在时,设M(x1,y1),N(x2,y2).设切线的方程为:y=kx+m,由圆心到直线的距离可得m2=2(1+k2).把切线方程代入椭圆方程可得:(1+2k2)x2+4kmx+2m2-12=0,利用根与系数的关系即可证明•=0,结论得证.本题考查了椭圆的标准方程及其性质、直线与圆相切及其直线与椭圆相交问题、一元二次方程的根与系数的关系、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.21.答案:解:(1)函数的定义域为(0,+∞),f′(x)=+ln x=1-+ln x,①当m=0时,f′(x)=0得x=,当x∈(0,)时,f'(x)<0,当x∈(,+∞)时,f'(x)>0,∴x=是函数f(x)的极小值点,满足题意②当m<0吋,令g(x)=f′(x),g'(x)=+=,令g′(x)=0,解得x=-m,当x∈(0,-m)时,g′(x)<0当x∈(-m,+∞)时,g'(x)>0∴g(x)min=g(-m)=2+ln(-m),若g(-m)≥0,即m≤-e-2时,f'(x)=g(x)≥0恒成立,∴f(x)在(0,+∞)上单调递增,无极值点,不满足题意.若g(-m)=2+ln(-m)<0,即-e-2<m<0时,g(1-m)=1-+ln(1-m)>0∴g(-m)•g(1-m)<0,又g(x)在(-m,+∞)上单调递增,∴g(x)在(-m,+∞)上恰有一个零点x1,当x∈(-m,x1)时,f'(x)=g(x)<0,当e∈(x1,+∞)时,f'(x)=g(x)>0,∴x1是f(x)的极小值点,满足题意,综上,-e-2<m≤0(2)当m=0时,f(x)=x lnx,①当x∈(0,1],e x-1>0,x lnx≤0,∴f(x)<e x-1,②当x∈(1,+∞)时.,令h(x)=e x-x lnx-1,h'(x)=e x-ln x-1,令φ(x)=h′(x),则φ′(x)=e x-,∵φ'(x)在(1,+∞)上是増函数,∴φ'(x)>φ′(1)=e-1>0,∴φ(x)在(1,+∞)上单调递增,h′(x)=φ(x)>φ(1)=e-1>0,∴h(x)在(1,+∞)上单调递增,∴h(x)>h(1)=e-1>0,∴x>1时,x lnx<e x-1成立,综上f(x)<e x-1.解析:(1)求函数的导数,结合函数极值和导数之间的关系进行讨论求解即可.(2)求函数的导数,讨论x的取值范围,结合函数单调性和最值之间的关系进行证明即可.本题主要考查导数的综合应用,结合函数的极值,单调性和导数之间的关系,转化为导数问题,以及构造函数研究函数的单调性是解决本题的关键.综合性较强,运算量较大,有一定的难度.22.答案:解(1)由题意知ρ2=2ρsinθ+2ρcosθ,所以曲线C的普通方程为:x2+y2-2x-2y=0.(2)∵直线l的斜率为,∴直线MN的斜率为:-,∴直线MN的参数方程为:(t为参数),代入曲线C的直角坐标方程得t2-t-1=0,设M,N对应的参数为t1,t2,则t1+t2=1,t1t2=-1,∴+==|t1-t2|===.解析:(1)由题意知ρ2=2ρsinθ+2ρcosθ,所以曲线C的普通方程为:x2+y2-2x-2y=0;(2)先求出直线MN的参数方程,再根据参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(1)a=4时,不等式f(x)<8-|x-1⇔|2x-4|+|x-1|<8⇔或或,解得-1<x<,综上,不等式的解集为(-1,).(2)原不等式有解,即不等式|2x-a|-|2x-1|>8有解,令g(x)=|2x-a|-|2x-1|,∵|2x-a|-|2x-1|≤|2x-a-2x+1|=|a-1|,∴g(x)max=|a-1|,∴|a-1|>8,解得a>9或a<-7.∴a的取值范围是a>9或a<-7.解析:(1)a=4时,分3段去绝对值解不等式组再相并;(2)原不等式有解,即不等式|2x-a|-|2x-1|>8有解,再构造函数利用绝对值不等式的性质求出最大值代入可解得.本题考查了绝对值不等式的解法,属中档题.。