[教育]有序介孔碳材料的制备与应用进展
介孔碳材料的合成及应用分析研究
介孔碳材料的合成及应用研究李璐(哈尔滨师范大学>=摘要> 综述了介孔碳材料的合成及应用.关键词: 介孔碳。
合成。
应用0 引言介孔碳是近年来发现的一类新型非硅介孔材料, 它是由有序介孔材料为模板制备的结构复制品. 由于其具有大的比表面( 可高达2500m2# g- 1 >和孔容(可达到2. 25 cm3 # g- 1 >,良好的导电性、对绝大多数化学反应的惰性等优越的性能, 且易通过煅烧除去, 与氧化物材料在很多方面具有互补性, 使其在催化、吸附、分离、储氢、电化学等方面得到应用而受到高度重视. 1 介孔碳材料的合成介孔碳的制备通常采用硬模板法, 选择适当的碳源前驱物如葡萄糖、蔗糖乙炔、中间相沥青、呋喃甲醇[ 1]、苯酚/甲醛树脂[ 2]等, 通过浸渍或气相沉积等方法, 将其引入介孔氧化硅的孔道中, 在酸催化下使前驱物热分解碳化, 并沉积在模板介孔材料的孔道内, 用NaOH或HF溶掉SiO2 模板,即可得到介孔碳. 以下介绍几种介孔碳材料的合成方法及性质.1. 1 CMK- 1Ryoo首次用MCM- 48为模板合成了介孔碳材料(CMK- 1>. 由于MCM- 48具有两套不相连通的孔道组成, 这些孔道将变成碳材料的固体部分, 而MCM- 48中氧化硅部分则会变成碳材料的孔道. 因此CMK- 1 并不是MCM- 48 真正的复制品, 而是其反转品. 在脱除MCM- 48 的氧化硅过程中, 其结晶学对称性下降[ 3] , 后续的研究表明与所用的碳前驱物有关, 其中一个具有I41 /a对称性[ 4] .1. 2 CMK- 3使用SBA- 15 合成六方的介孔碳( CMK 3>, 由于二维孔道的SBA- 15孔壁上有微孔, 因图1 孔道不相连的的模板(MCM- 41或1234K 下焙烧的SBA - 15> 制备的无序碳材料( A>。
孔道相连的模板( 1173K温度以下焙烧的SBA - 15> 制备的有序介孔碳材料CMK- 3( B>此也可以用作复制稳定结构介孔碳的硬模板.CMK- 3是碳前驱物完全充满SBA- 15的孔道而形成的具有二维六角排列的碳纳M棒阵列. 如果模板是二维孔道的MCM- 41, 由于其直孔道相互没有连通, 则在除去模板的过程中, 介孔碳的结构会发生坍塌(如图1所示>, 因此得到的碳材料为无序的碳棒(柱>的堆积.如图2为分别以立方相的MCM- 48、SBA-1和六方相的SBA - 15 为模板合成的CMK- 1、CMK- 2和CMK- 3的粉末XRD衍射普图, 可以看出, 由立方相的介孔模板合成的介孔碳有序性不是很理想, 而以六方相结构的SBA- 15可以合成出高度有序的介孔碳结构(CMK- 3>.1. 3 CMK- 5在SBA- 15的孔道内壁沉积上一定厚度的碳, 除去二氧化硅无机墙壁后得到同样具有二维六角排列的碳空心管阵列CMK- 5[ 5] . 为了很好地控制碳膜的厚度, 制备CMK- 5 的方法是使用呋喃甲醇为碳源. 由于呋喃甲醇的聚合需要酸催化剂, 因此, 介孔氧化硅模板剂需要具有酸性, 而纯硅的SBA - 15 的酸性很弱, 在制备多孔碳之前, 需要SBA- 15进行铝化, 以增强其酸性. 铝化后的SBA- 15 吸附呋喃甲醇后, 加热至80 e使与孔壁接触及较近的呋喃甲醇发生聚合, 然后将未聚合的呋喃甲醇除去(抽真空>, 之后在真空下加热至1100 e 使有机物碳化, 冷却后溶解掉原来的孔壁(用氢氟酸或氢氧化钠溶液>, 结果则为六方排列的空心碳管CMK- 5. CMK - 5 依然保留着SBA- 15 的有序性.另一制备类似CMK- 5介孔碳管方法是采用催化化学气相沉积( CCVD>技术[ 6] , 使用含Co的SBA- 15 为模板, 乙烯气体为碳前驱物, 升温至700bC, 1. 5~ 5. 5 h 后, 20% 的HF溶解模板. 如图3 为采用CCVD 法制备的介孔碳沿[ 110 ][ 100] 晶面方向的透射电镜照片, 可见介孔碳CMK- 5具有高度有序的SBA- 15六方相介孔结构. 而且, 通过使用不同温度下合成的SBA- 15硬模板复制介孔碳, 发现低温下( < 60 e >有利于在六方相的SBA- 15孔道间可以形成微孔或介孔/桥0, 随着温度的提高, 微孔/ 桥0消失, 介孔/ 桥0 增加[ 7] .图3 用CCVD法焙烧3.5 h制备的有序介孔碳的TEM 图像a为电子束横向图。
介孔材料制备技术及其应用
介孔材料制备技术及其应用随着现代科学技术的不断进步,各种高级功能材料应用的广泛开发和研究促进了各个领域的发展。
其中,介孔材料作为一种新型磷酸盐材料,其具有孔径分布广、孔体积大、表面积大、结构调控性好、表面活性特别强等显著特点。
介孔材料的这些特性决定了它在多个领域的应用前景。
本文旨在介绍介孔材料制备技术、材料结构及其在催化、吸附等方面的应用。
一、介孔材料的制备技术1. 模板法模板法是制备介孔材料的经典方法。
在该方法中,通过将表面活性剂(或无机分子)作为介孔材料的模板来制作出介孔材料。
这些模板可以穿过孔道进入介孔材料的基质,并在介孔材料中形成无定型的孔洞结构。
在制备过程中,表面活性剂与一种含有硅和有机溶剂的混合物一起经过水解和缩合等反应最终生成介孔材料。
2. 溶胶-凝胶法溶胶-凝胶法顾名思义,是由溶胶团簇到凝胶的一个过程,是无机化合物制备介孔材料的方法之一。
在制备介孔材料中,凝胶通常是由硅酸四酯水解制得,可被进一步热处理来获得介孔材料。
通过控制溶胶-凝胶法获得的碳氢比,可以控制介孔材料的孔径和孔长径之比。
3. 溶剂热法溶剂热法是介孔材料制备的另一种方法。
在这种方法中,先制备出高温的液晶相(Lyotrope phase),然后将材料冷却到室温,从而形成介孔材料。
虽然溶剂热法制备的介孔材料中孔径分布较广,但是与模板法相比,其制备过程要简单、操作较方便。
因此,该方法仍被广泛应用在实际生产中。
二、介孔材料的结构介孔材料具有大的比表面积和高的孔径结构,在不同的材料结构和性质方面都得到了广泛的研究。
在介孔材料中,孔直径分布在2-50纳米之间;孔壁厚度约为数纳米到数十纳米之间。
由于介孔材料中孔道的大小和分布是可以调控的,在制备过程中可以控制介孔材料的结构和性能。
三、介孔材料的应用1. 催化材料介孔材料可以作为催化剂的载体。
在催化过程中,排气中的反应产物通过介孔材料中的孔道进行扩散,从而得到更高的反应效率。
种类繁多的催化剂都可以使用介孔材料作为载体,如铜、钼、铂、钴等。
有序介孔碳材料的制备与应用进展
碳源(液相法) 蔗糖 葡萄糖 木糖 糠醇 酚醛树脂(原位聚合) 苯酚和甲醛 苯酚和甲醛(原位聚合) 可溶性酚醛树脂 可溶性酚醛树脂 酚基酚醛树脂(可溶性) 介孔膨胀淀粉
DICP
模板法合成介孔碳材料的规律
制备研究
1). 当碳的前驱物完全填满了中孔氧化硅的孔道后,再碳化的 形成方式,称之为棒状模型(Rod-type); 2). 当碳的前驱物在中孔氧化硅的孔道内形成镀层后,再碳化 的形成方式,称之为管状模型(Tube-type).
Seminar 1
9
DICP
2. 模板法
制备研究
有序介孔 碳的合成
图2.2. 模板合成过程示意图
Seminar 1
10
J. Lee, S. Han,T. Hyeon,J. Mater. Chem.,2004,14: 478.
DICP
3. 模板法分类
有机大分子(表面活性 剂等)与碳前驱物之间 有较强的相互作用
Seminar 1
7
DICP
主要内容
研究背景
有 序 介 孔 碳 材 料
Seminar 1
制备研究
应用研究 总结及展望
8
DICP
1. 非模板法
制备研究
这些方法很难得到孔径
多孔碳材料的 传统合成方法
均一可控的多孔碳材料
化学活化法
物理活化法
化学物理 活化法
催化活化法
图 2.1. 多孔碳材料的传统合成方法示意图
料的特征介孔碳材料
Fuertes 等用氯乙烯浸渍模板然后炭化合成了 石墨化程度较高的介孔碳,电导率高达0.3S/cm, 比非石墨化的介孔碳材料的电导率要高两个数量级
A. B. Fuertes,S. Alvarez,Carbon,2004,42: 3409. Y. Xia,R. Mokaya,Adv. Mater.,2004,16: 1553. T.-W. Kim,I.-S. Park,R. Ryoo,Angew. Chem. Int. Ed.,2003,42: 4375.
有序介孔材料的合成及应用
有序介孔材料的合成及应用有序介孔材料的合成方法一般来说,介孔分子筛材料是构成分子筛骨架的无机物种在溶剂相中,在表面活性剂的模板作用下通过超分子自组装而形成的一类有序多孔材料。
最常用的合成方法为水热合成法,其他的如室温合成、微波合成、湿胶焙烧法、相转变法及在非水体系中的合成也有一些报道圈。
选择无机物种的主要理论依据是sol-gel化学,即原料的水解和缩聚速度相当,且经过水热过程等处理后提高其缩聚程度。
根据目标介孔材料的骨架组成,无机物种可以是直接加入的无机盐,也可以是水解后可以产生无机低聚体的有机金属氧化物,如Si(OEt)4、Al(i-OPr)3等。
用于合成介孔分子筛材料的表面活性剂有很多种,但根据亲水基电性质的不同,大致可分为以下四类:①阴离子型,具有带负电的极性基因;②阳离子型,具有带正电的极性基因;③非离子型,极性基团不带电;④两性型,带两个亲水基团,一个正电,一个负电,如三甲基胺乙内醋CAPB(一端是带正电的四元胺基、另一端是带负电的梭基)等。
一表面活性剂的极性头与无机物种之间的界面组装作用力是不同合成体系中形成介孔分子筛的一个共同点。
合成路线的多样化可以通过改变两相界面作用力的类型(如静电作用、氢键作用或配位作用)或调变其大小(如调变胶束表面电荷密度一可以调节两相静电引力大小;调变反应温度可以调节氢键作用力大小)来实现。
不同的无机物种和表面活性剂在不同的组装作用下可形成特定的合成体系,组装成具有不同结构、形貌和孔径大小的介孔分子筛材料。
有序介孔材料的应用化学化工领域有序介孔材料具有较大的比表面积,相对大的孔径以及规整的孔道结构,可以处理较大的分子或基团,是很好的择形催化剂。
特别是在催化有大体积分子参加的反应中,有序介孔材料显示出优于沸石分子筛的催化活性。
因此,有序介孔材料的使用为重油、渣油等催化裂化开辟了新天地。
有序介孔材料直接作为酸碱催化剂使用时,能够改善固体酸催化剂上的结炭,提高产物的扩散速度,转化率可达90%,产物的选择性达100%。
有序介孔碳球阵列的制备及超电容性能
有序介孔碳球阵列的制备及超电容性能
近年来,随着新能源发展的不断推进,超级电容器的研究也受到了广泛的关注。
特别是在高容量领域,受到限制的是材料性能等。
传统的单元电容组件的高容量存在一定的局限性,因此有必要开发新的组件来提高容量。
有序介孔碳球阵列是一种新型的介孔碳结构,其具有优越的电容性能,因此成为研究超电容器性能的重要材料。
本文将就介孔碳球阵列的制备及超电容性能作一概述。
1.序介孔碳球阵列的制备。
介孔碳球阵列是一种具有优越电学性能的碳结构,可以用于高性能超电容器的制备。
它们具有超高的表面积,可以提高电子传输性能,从而提高电容量。
传统的制备方法一般包括溶胶-凝胶法,热液末法,化学气相沉积法等。
例如,溶胶-凝胶法是一种常用的制备方法,其基本原理是在碳糊中添加水溶性溶剂,使溶解,然后将其均匀涂抹在模具上,放置一段时间后固化,再用硫酸处理,即可得到有序介孔碳球阵列。
2.级电容器性能。
介孔碳球阵列作为电容器的介质,其电容器性能是非常重要的,电容器性能的有效性取决于电容器的结构及其介质的性能。
介孔碳球阵列是一种碳结构,具有更大的表面积、更好的电子传输性能、更高的超电容性能,从而提高超级电容器性能。
例如,研究表明,碳球阵列在相同尺寸下具有更优异的容量,容量比普通碳纤维电容器更高。
3.论
介孔碳球阵列是一种具有优越的电容性能的碳结构,它经过科学的设计制备而成,具有超高的表面积,可以提高电子传输性能,从而提高电容量,大大提高超级电容器性能。
因此,有序介孔碳球阵列在超电容器领域具有重要的意义,开发利用介孔碳球阵列制备超级电容器,将对电容器领域发展起着重要作用。
有序介孔炭的制备、改性及其应用研究进展
杨 丽等 : 有 序介 孔 炭的 制备 、 改 性及其 应 用研究 进震
・ 5 9・
材料 , 尤其是作为有机反应的贵金属催化剂载体 , 其 中包括加氢反应 、 脱氢反应 、 氧化反应 、 加氢脱硫反 应、 加 氢脱 氮 、 加氢 脱 氧 以及 电催 化 反应 等 。介 孔炭
孔道。
构, 与其他炭材料相 比有更 高的储锂量。wu等 研究了 F e O @C MK一 3作 为锂 电 池 负 极 材 料 的 电
化 学性 能 , 其 中高度 分 散 的 F e O 纳 米 粒 子 和 介 孔 炭 的二 维 有 序 孔 道 结 构 对 其 高 储 锂 量 起 到 关 键
炭 材料 尤其 是石 墨材 料作 为锂离 子 电池 的负极 材 料 的研 究 已有 很 多 年 。介 孔 炭 骨 架 具 有 石 墨 结
体进行对 比, 在介孔炭载体 上的活性组分尺寸较小
而 且分 散度 更 高 , 活 性 炭微 孔 较 多在 负 载 金 属 后 容 易 堵塞 孔 道 , 而介 孔 炭 不仅 对 大 分 子反 应 没 有 限制 而 且 负 载 的 催 化 剂 活 性 物 种 不 会 堵 塞 其 开 放 的
作 为 双 电层 电容器 的 电极 , 介孔 炭 为 电荷 聚集 提供 了较 高 的 比表 面积 , 其 相 互 连 通 的孔 道结 构 十
表现了很高的催 化活性、 选择性和稳定性。其 中介 孔 炭表 面 的羧基 和 羟基 在反 应 过程 中起 到 了关键 性 作用。
对 于 金 属 负 载型 催 化 剂 , 金 属 纳 米 粒子 的尺 寸 大 小 与分 散情 况与 催 化 活 性 密 切 相 关 , 通 过 改 性 碳 载 体增 加 表面 官能 团 , 从 而增 加 金 属纳 米 粒 子 的分 散 度 。Y a n等 _ 2 将 硝 酸处 理 后 的介 孔 炭 负载 Wa k e 型催化 剂 用于催 化 氧化 羰 基 化 反 应 , 并 与活 性 炭 载
有序介孔材料的合成及应用
物等方法对介孔分子筛进行改性,以制备性能优异的催化剂
反相合成有序介孔碳
碳源如蔗糖、 糠醇等
H2SO4
NaOH/HF
SBA-15、
碳源 /SBA-15
C /SBA-15
MCM-48等
CMK-3 、CMK-1
R.Ryoo, S.H.Joo and S.Jun, J.Phys.Chem.B, 1999(103):7743-7746 M.Kruk, M.Jaroniec, T.Kim and R.Ryoo, Chem.Mater. 2003(15): 2815-2823
有序介孔材料在多相催化、吸附与分离、环境保护、 功能材料等领域极具应用潜力
有序介孔材料合成的历史 [1-9]
1992年Mobil公司的科学家首次报道合成了MCM( Mobil Composition of Matter)-41介孔分子筛,揭开了分子筛科学的新纪元
1994年,Huo等在酸性条件下合成出APMs介孔材料,结束MCM 系列只能在碱性条件下进行的历史,拓展了人们对模板法合成介 孔 材料的认识
提高介孔材料的热稳定性与水热稳定性,解决酸强度低,掺杂 其他金属离子后结构不稳定性、掺杂量较低等问题
加强介孔材料在催化、有机高分子分离、环保、纳米反应器、 电子器件、传感器等方面的应用研究
参考文献
[1] Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359: 710-712. [2] Beck J S, Vartuli J C, Roth W J, et al. J. Am. Chem. Soc., 1992, 114: 10834-10843 [3] Huo Q, Margolese D I, Ciesla U, et al. Nature,1994, 368: 317-321 [4] Zhao D Y, Feng J L, Huo Q, et al. Science, 1998, 279: 548-552 [5] Yang P D, Zhao D Y, Margolese D I, et al. Nature, 1998, 396: 152-155 [6] Bagshaw S A, Prouzet E, Pinnavaia T J. Science, 1995, 269: 1242-1244 [7] S. A. Bagshaw. T J. Angew. Chem. Int. Ed.,1996,35(10)1102-1105 [8] Wei Y, Jin D L, Ding T Z, et al. Adv. Mater., 1998,10(4): 313-316. [9] Wei Y, Xu J, Dong H, et al. Chem. Mater., 1999, 11(8): 2023-2029
介孔碳材料的研究进展
基本内容
介孔材料在空气净化方面具有广泛应用,主要应用于去除室内空气中的有害 物质,如甲醛、苯等。由于介孔材料具有大的比表面积和强的吸附能力,能够有 效地吸附和分解这些有害物质。此外,介孔材料还被应用于药物载体和药物释放 领域,能够实现药物的控释和靶向输送,提高药物的疗效和降低副作用。
基本内容
在废水处理领域,介孔材料同样展现出广阔的应用前景。由于其具有大的比 表面积和强的吸附能力,能够有效地吸附和分离废水中的有害物质,从而达到净 化废水的目的。此外,介孔材料在建筑材料领域也有一定的应用,如用作保温材 料、隔音材料等。
参考内容二
基本内容
基本内容
介孔材料是一种具有均匀孔道结构的材料,孔径介于微孔和纳米之间。由于 其独特的孔道结构和优异的性能,介孔材料在多个领域具有广泛的应用前景,引 起了科研人员的极大。本次演示将介绍介孔材料的研究背景、现状、方法及成果, 并探讨未来的发展趋势。
基本内容
介孔材料的研究背景和意义介孔材料具有高度有序的孔道结构,孔径可在一 定范围内调节。这种材料在催化、吸附、分离及生物医学等领域具有广泛的应用 价值。例如,在催化领域,介孔材料可作为催化剂或催化剂载体,提高反应效率; 在吸附领域,介孔材料具有高比表面积和多孔性,可用于气体分离和液体吸附; 在生物医学领域,介孔材料可用于药物传递和生物成像等。因此,开展介孔材料 的研究具有重要的理论和实践意义。
介孔氮化碳材料的合成主要涉及模板法、硬模板法、软模板法和无模板法等 几种方法。其中,模板法是最常用的一种方法,它通过使用硬模板(如二氧化硅、 氧化铝等)或软模板(如表面活性剂、胶束等)来控制氮化碳的孔径和形貌。
二、介孔氮化碳材料的合成
例如,通过将碳前驱体(如苯酚)在模板中热解,然后在高温下与氨气或氮 气反应,可以合成出具有有序介孔结构的氮化碳材料。此外,通过使用软模板 (如十二烷基硫酸钠),也可以合成出具有大孔径的氮化碳材料。
介孔碳的研究进展及应用
2018年第37卷第1期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·149·化 工 进展介孔碳的研究进展及应用李鹏刚,王靖轩,郭飞飞,何昱轩,唐光贝,罗永明,朱文杰(昆明理工大学环境科学与工程学院,云南 昆明 650500)摘要:介孔碳是一类新型的具有巨大比表面积和孔体积的介孔材料,可以通过不同的方法合成并对其孔结构和形貌进行调节。
本文主要综述了介孔碳及介孔碳基复合材料的合成方法,对比阐述了不同方法制备的介孔碳材料所具备的孔道结构和形貌。
介绍了将不同非金属和金属元素及其氧化物掺杂在介孔碳中合成复合材料,发现制备的复合材料具有更优的性能且掺杂元素不同复合材料的形貌和孔道结构不同。
此外,简要说明了介孔碳及碳基复合材料在环境、催化、储能、电化学和生物医学等方面的应用,指出其在各个领域的应用仍存在不足。
调整介孔碳的孔结构和表面性能、采用更简便易控制的合成方法将成为制备介孔碳及碳基材料的主要研究方向。
关键词:介孔碳;掺杂;复合材料;合成中图分类号:X522 文献标志码:A 文章编号:1000–6613(2018)01–0149–10 DOI :10.16085/j.issn.1000-6613.2017-0721Recent progress in the synthesis and applications of mesoporouscarbon materialsLI Penggang ,WANG Jingxuan ,GUO Feifei ,HE Yuxuan ,TANG Guangbei ,LUO Yongming ,ZHU Wenjie(Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming650500,Yunnan ,China )Abstract :Mesoporous carbon with specific surface area and various pore volume is a new type mesoporous material. Usually ,the pore structures and morphology of mesoporous carbons can be adjusted by using several methods. This study mainly summarizes the synthetic method of mesoporous carbons and mesoporous carbon-based composites ,and compares the pore structure and morphology of mesoporous carbon materials prepared by different methods. Doping diverse non-metal or metal and its oxide in mesoporous carbon to prepare composite materials are also introduced. It has been found that the prepared mesoporous carbon composite material have better performance ,and the composite materials containing different doping elements possess different morphologies and textures. Moreover ,this article briefly introduces their applications in environment ,biomedicine ,energy storage ,electrochemistry ,and catalysis as well as their deficiencies in application. Finally ,we believe that adjusting pore structure and surface properties of mesoporous carbons and developing simple synthetic method will be the future research directions.Key words :mesoporous carbon ;doping ;composites ;synthesis多孔碳材料指具有不同孔道结构的材料,按其孔径大小可分为:微孔碳材料(d <2nm )、介孔碳材料(2nm <d <50nm )和大孔碳材料(d >50nm )[1]。
有序介孔碳(3篇)
第1篇一、引言随着科学技术的不断发展,能源、环境、催化等领域对材料性能的要求越来越高。
介孔碳材料作为一种具有高比表面积、可调孔径和优异导电性能的新型碳材料,近年来在上述领域得到了广泛的应用。
有序介孔碳材料(Ordered Mesoporous Carbon,OMC)作为介孔碳材料的一个重要分支,因其独特的结构、优异的性能和可调控的孔径,成为材料科学和工程领域的研究热点。
二、有序介孔碳材料的结构特点1. 介孔结构有序介孔碳材料具有高度有序的介孔结构,孔径一般在2-50纳米之间,孔径分布均匀,孔道相互连通。
这种结构使得OMC具有较大的比表面积,有利于吸附和存储气体分子。
2. 碳骨架OMC的碳骨架由碳原子构成,碳原子以sp2杂化形式连接,形成六元环和五元环结构。
碳骨架的有序排列和碳原子之间的共轭作用,使得OMC具有优异的导电性能。
3. 表面官能团OMC的表面官能团包括羟基、羧基、氨基等,这些官能团的存在有利于提高OMC的吸附性能、催化性能和生物相容性。
三、有序介孔碳材料的性能特点1. 高比表面积OMC具有较大的比表面积,可达1000-3000平方米/克。
这使得OMC在吸附、催化、储能等领域具有广泛的应用前景。
2. 可调孔径OMC的孔径可以通过模板剂和制备方法进行调控,从而满足不同应用领域对孔径的需求。
3. 优异的导电性能OMC的碳骨架具有高度有序的石墨化结构,使得OMC具有优异的导电性能,可用于超级电容器、锂离子电池等储能器件。
4. 高热稳定性OMC在高温下具有良好的热稳定性,可用于高温催化、高温吸附等领域。
5. 高生物相容性OMC的表面官能团有利于提高其生物相容性,可用于生物传感器、药物载体等领域。
四、有序介孔碳材料的应用1. 吸附材料OMC的高比表面积和可调孔径使其在吸附气体、液体和有机污染物等领域具有广泛应用。
2. 催化材料OMC的优异导电性能和可调孔径使其在催化反应中具有较高活性,可用于加氢、氧化、还原等催化反应。
有序介孔碳材料的合成与应用研究进展
目前 介 孔 碳 材 料 合 成 方 法 可 分 为 催 化 活 化
法、 有 机溶 胶一 凝胶 法 、 模板 浇铸 法和 软模 板法 。
1 . 1 催 化 活 化 法
殊 孔隙 结 构 的 材料 作 为 模 板 , 导 人 目标 材 料 或前 驱体并 使其在该模 板材料 的孔 隙 中发 生反 应 , 利用
作 者 简介 : 李 军( 1 9 6 8 一 ) , 硕 士, 高级 工 程 师 , 主 要 从 事 石 油
化 工 新 工 艺及 催 化 过 程 研 究 。E — ma i l : l i j u n 3 . t j s h @s i n o p e c . c o n。 r
碳原子 , 从 而 将微 孑 L 扩 大 为介 孔 , 同时, 气 化 产 物 向外 表 面的扩 散也 会增 大最 终材 料 的孔性 。通 常 情况 下 活化反 应 主 要 发生 在 金 属 粒 子 的周 围 , 可
பைடு நூலகம்
模板材 料 的限域 作用 , 达到对制 备过程 中的物理 和
化学反 应进行 调 控 的 目的 。模 板浇 铸 法合 成 有 序
商业 化 困难 。
1 . 3 模 板 浇 铸 法 该法 又称 硬模 板 法 , 是 通 过 选 用 一 种 具 有 特
引起 了 国际物 理学 、 化学 及材 料学 界 的高度 关注 , 并 得 到迅 猛发 展 , 成 为跨 学科 的研 究热 点之 一 。
1 有 序 介孔碳 材 料的合 成 方法
第 3 2卷 第 3期
2 0 1 5年 5月
精
细
石
油
化
工
7 3
S PECI ALI TY PETR0CHEM I CALS