4.5 函数y=Asin(ωx+φ)的图象及应用

合集下载

函数y=Asin(ωx+φ)图像变换优质课课件

函数y=Asin(ωx+φ)图像变换优质课课件
振动控制
在振动控制领域,函数y=asin(ωx+φ)可以用于设计振动控制器。通过调整控制器的参数, 可以实现振动的有效抑制或放大,提高机械设备的稳定性和可靠性。
振动信号处理
在振动信号处理中,函数y=asin(ωx+φ)可以用于信号的调制和解调。通过对信号进行变换, 可以实现信号的增强、降噪和特征提取,为故障诊断和状态监测提供依据。
控制系统稳定性分析
利用函数y=asin(ωx+φ)可以分析控制系统的稳定性。通过分析系统的极点和零点分布,可以判断系统的稳定性和动态性 能,为控制系统校正和优化提供指导。
控制系统校正与优化
在控制系统设计中,函数y=asin(ωx+φ)可以用于控制系统校正与优化。通过调整控制器的参数,可以提 高系统的性能指标,如响应速度、超调和稳态误差等,使系统更好地适应实际应用需求。
ω<0的周期变换
无界周期
当ω<0时,函数y=asin(ωx+φ)的周 期是无界的,这意味着函数在x轴上的 移动是无限循环的。
波形变化
随着ω的减小,函数的波形会变得更加 平缓或尖锐,这取决于绝对值的大小。
04 振幅变换
A>1的振幅变换
总结词
当振幅系数A大于1时,函数y=asin(ωx+φ)的图像将呈现放大 的效果。
φ=0的相位变换
总结词
当相位φ等于0时,函数图像不发生平移。
详细描述
当相位φ的值等于0时,函数y=asin(ωx+φ)就变成了标准正弦函数y=asin(ωx),图 像没有发生平移。这是因为此时函数的周期性没有改变,所以图像在x轴方向上没有 移动。
03 周期变换
ω>1的周期变换
周期缩短

高中数学:“剖析”函数y=asin(wxφ)的图像及性质

高中数学:“剖析”函数y=asin(wxφ)的图像及性质

高中数学:“剖析”函数y=asin(wxφ)的图像及性质展开全文“老师,为什么我用五点法作图,总是会出错呢?不是这里错,就是那里错!”“老师,我觉得在高中数学函数y=Asin(wx+φ)中,函数图像的变化是最容易错的,很多时候我都把几倍的变换弄成是几分之一的变换,真是头都大了!”“老师,有的题目稍微复杂一点,我就连解析式都求不出来了。

”……在高中数学中,函数y=Asin(wx+φ)的相关知识确实是很难,不仅要考虑的东西非常多,而且很多知识点都非常容易弄错。

在本省重点中学从事高中数学教学13年,教学实践还算是有些丰富,一直以来,这个知识点都是同学们最大的难点,我总是会话最多的时间去讲评、去给同学们做练习。

但是,同学们的吸收效率还是非常不理想,于是,我就自己花时间去总结。

学过这个内容的同学都知道,这个知识点的复杂以及考题的多变,很多时候类似的题目,同学们的答题效果也是非常不理想。

为了帮助同学们更好的学习,让同学们掌握方法才是关键,我自己抽出时间来总结了这个知识点。

我总结出了高中数学中国年y=Asin(wx+φ)的三个考点,并且选择了典型的例子给同学们讲解。

高中数学中,y=Asin(wx+φ)的考题变幻无常,同学们看了我举的例子以后一定要自己在做一些练习,强化一下,相信同学们一定会有所进步的。

一、用“五点法”作函数y=Asin(wx+φ)(A>0,W>0)的图像。

五点,及最高点、最低点以及与坐标轴的三个交点,凭这五点,即可完成一个函数图像的绘制。

这是解答函数题目的一个非常重要的步骤,考得最多。

二、三角函数图象的变换。

在高中数学中,函数图像的变换也是非常常考的点,在这一部分,同学们一定要分清楚w和φ不同倍数时的纵坐标和横坐标的变化。

三、函数y=Asin(wx+φ)的物理意义。

在高中数学的函数中,y=Asin(wx+φ)的物理意义比较简单,主要就是考它的周期和振幅、频率及相位。

以上三个就是高中数学中,函数y=Asin(wx+φ)的考点,同学们一定要把这3点吃透,这样在考试之中也会轻松很多。

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。

2022年新高考数学总复习:函数y=Asin(ωx+φ)的图象及应用

2022年新高考数学总复习:函数y=Asin(ωx+φ)的图象及应用

2022年新高考数学总复习:函数y =Asin(ωx +φ)的图象及应用知识点一用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表如示.x __-φω____-φω+π2ω____π-φω____3π2ω-φω____2π-φω__ωx +φ__0____π2____π____3π2____2π__y =A sin(ωx +φ)0A-A知识点二函数y =A sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下知识点三简谐振动y =A sin(ωx +φ)中的有关物理量y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅周期频率相位初相AT =2πωf =1T =ω2π__ωx +φ__φ归纳拓展1.函数y =A sin(ωx +φ)的单调区间的“长度”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =siny =sin 的图象向右平移π2个单位长度得到的.(√)(2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin (ωx -φ)的图象.(×)(3)函数y =A cos (ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.(√)(4)函数y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .(×)题组二走进教材2.(必修4P 55T2改编)(1)把y =sin x 的图象向右平移π3个单位,得的图象.(2)把y =sin x 的图象上所有点的纵坐标缩短到原来的12倍(横坐标不变)得__y =12sin x __的图象.(3)把y =sin的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变)得__y =的图象.(4)把y =sin 2x 的图象向右平移π6个单位,得的图象.3.(必修4P 70T18改编)函数y =2sin x (C)A .2,1π,π4B .2,12π,π4C .2,1π,-π4D .2,12π,-π4[解析]由题意得A =2,T =2π2=π,∴f =1T =1π,φ=-π4.故选C .4.(必修4P 62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:月份x 1234收购价格y (元/斤)6765选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为__y =[解析]设y =A sin(ωx +φ)+B (A >0,ω>0),由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =+ 6.因为当x =1时,y =6,所以6=6,结合表中数据得π2+φ=2k π,k ∈Z ,可取φ=-π2,所以y = 6.题组三走向高考5.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=(A)A .2B .32C .1D .12[解析]依题意得函数f (x )的最小正周期T =2πω=2π,解得ω=2,选A .6.(2020·新高考Ⅰ改编,10,5分)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=(C)A .B .2C .xD .2[解析]由题图可知,T 2=2π3-π6=π2,∴T =π,由T =2π|ω|可知,2π|ω|=π,∴|ω|=2,不妨取ω=2,则f (x )=sin(2x +φ),∴0,又∵π6是f (x )的下降零点,∴π3+φ=π+2k π,k ∈Z ,∴φ=2π3+2k π,k ∈Z ,不妨取φ=2π3,则f (x )=x sinx+π2=x f (x )=x sin π22C .7.(2020·江苏,10)将函数y =3sinx 的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是__x =-5π24__.[解析]本题考查三角函数图象的平移变换,三角函数图象的对称轴.将函数y =3sin x 的图象向右平移π6个单位长度后得到函数g (x )=3sin 2+π4=3sinx 的图象,则函数g (x )图象的对称轴方程为2x -π12=π2+k π,k ∈Z ,即x =7π24+k π2,k ∈Z ,当k =0时,x =7π24;当k =-1时,x =-5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =-5π24.考点突破·互动探究考点一“五点法”作y =A sin(ωx +φ)的图象——自主练透例1(2021·湖北黄冈元月调考)已知函数f (x )=-3cosx 1-2sin 2x .用“五点作图法”在坐标系中画出函数f (x )在[0,π]上的图象.[解析]f (x )=-3cos x 1-2sin 2x =3sin 2x +cos 2x =x 列表如下:x 0π65π122π311π12πf (x )12-21函数f (x )在[0,π]上的图象如图所示.名师点拨用“五点法”作正、余弦型函数图象的步骤(1)将原函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)(A >0,ω>0)的形式.(2)确定周期.(3)确定一个周期或给定区间内函数图象的最高点和最低点以及零点.(4)列表.(5)描点.(6)连线:用平滑曲线连接各点得函数在一个周期(或给定区间)内的图象.注意用“五点法”作图时,表中五点横坐标构成以-φω为首项,公差为π2ω的等差数列.〔变式训练1〕设函数f (x )=cos(ωx +φ)ω>0,-π2<φ<0的最小正周期为π,且f π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.[解析](1)因为T =2πω=π,所以ω=2,又因为f π4=cos 2×π4+φcos π2+φsin φ=32且-π2<φ<0,所以φ=-π3.(2)由(1)知f (x )=cos 2x -π3列表2x -π3-π3π2π3π25π3x 0π65π122π311π12πf (x )121-112描点,连接.考点二三角函数图象的变换——多维探究角度1给定图象变换,确定函数解析式例2(2020·安徽蚌埠第二次教学质量检查)将函数f (x )=sin x +cos x 的图象上各点的纵坐标不变,横坐标缩小为原来的12,再将函数图象向左平移π3个单位后,得到的函数g (x )的解析式为(B)A .g (x )=2sinxB .g (x )=2sin xC .g (x )=2sinD .g (x )=2sinx[解析]f (x )=sin x +cos x =2sin――――――――→纵坐标不变横坐标缩小为原来的12y =2sin x――――――→向左平移π3个单位g (x )=2sin 2+π4=2sinx +1112π故选B .角度2给定变换前后函数解析式、确定图象间变换例3(2021·福建漳州八校联考改编)若函数f (x )=x g (x )=sin x 的图象,则只需将f (x )的图象(C )A .先横坐标伸长为原来的2倍,再向右平移π6个单位长度B .先向右平移π3个单位长度,再横坐标伸长为原来的2倍C .先向右平移π6个单位长度,再横坐标伸长为原来的2倍D .先横坐标伸长为原来的2倍,再向右平移π6个单位长度[解析]函数f (x )=x 2x x g (x )=sin x的图象,则只需将f (x )的图象,先横坐标伸长为原来的2倍,得到y =移π3个单位长度即可.或者,先将f (x )的图象向右平移π6得到y =sin 2x 的图象,再横坐标伸长为原来的2倍得到y =g (x )图象,故选C .角度3图象变换与性质的综合问题例4已知函数f (x )=x 现将y =f (x )的图象向左平移π12个单位长度;再将所得图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y =g (x )的图象,则g (x )在0,5π24上的值域为(A)A .[-1,2]B .[0,1]C .[0,2]D .[-1,0][解析]把函数f (x )=2sin x 的图象向左平移π12个单位长度,可得y =2sin 2+π6=2sinx 再将所得图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y =g (x )=2sinx 在0,5π24上,4x +π3∈π3,7π6,故当4x +π3=7π6时,g (x )取得最小值-1;当4x +π3=π2时,g (x )取得最大值2.故函数g (x )的值域为[-1,2].故选A .名师点拨图象变换:由函数y=sin x的图象通过变换得到y=A sin(ωx+φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(伸缩即用xω代换原式中的x;平移即用x±|φ|代换原式中的x,规则是“左加、右减”)注意两种途径平移单位的不同,前者是|φ|个单位,后者是|φω|个单位.温馨提醒:(1)解题时首先分清原函数与变换后的函数.(2)不同名函数一般先利用诱导公式cos x=sin(3)伸缩变换比较周期即可,平移变换的确定:①由C1:y=sin(ωx+φ1),变换为C2:y=sin(ωx+φ2),分别求出“五点法”中的第一个零点x1=-φ1ω、x2=-φ2ω.比较-φ1ω、-φ2ω即可;②由C1:y=cos(ωx+φ1)变换为C2:y=sin(ωx+φ2),分别求出“五点法”中第一个“峰点”横坐标x1=-φ1ω、x2=π2-φ2ω.比较-φ1ω、π2-φ2ω即可.〔变式训练2〕(1)(角度1)把函数y=2sin x的图象向右平移π8,再把所得图象上各点的横坐标缩短到原来的12,则所得图象的解析式是(C)A.y=xB.y=xC.y=2sin4x D.y=2sin x(2)(角度2)(2017·全国)已知曲线C1:y=cos x,C2:y=x是(D)A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2(3)(角度3)(2019·天津)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且f (x )的最小正周期为π,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若=2,则(C )A .-2B .-2C .2D .2[解析](1)y =x ――→右移π8个单位x -π8xy =2sin 2x ―――――――――→各点横坐标缩短为原来的12用2x 代换xy =2sin 4x ,故选C .(2)解法一:C 2:y =sin x +π2=x cos∴C 1:y =cos x ――――――――――→各点横坐标缩短到原来的12倍用2x 代换xy =cos 2x ――――――→图象左移π12个单位用x +π12代换x C 2:y =cos 选D .解法二:C 1:y =cos x =――――――――――→各点横坐标缩短到原来的12倍用2x 代换x y =x――――――→向左平移π12个单位用x +π12代换x y =sin 2+π2即C 2:y =x D .解法三:(对点法)y =cos x 的周期T 1=2π,y =sinx T 2=π,故由C 1变换到C 2横坐标缩短到原来的12倍.y =cos 2x 的第一个峰点是(0,1),y =sin x -π12,,对比两峰点可知需再把曲线左移π12个单位,故选D .(3)因为f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且其最小正周期为π,所以φ=0,ω=2,f (x )=A sin 2x ,g (x )=A sin x .又A sin π4=2,所以A =2,故f (x )=2sin 2x =2sin3π4=2,故选C .考点三已知函数图象求解析式——师生共研例5(2017·高考真题·四川卷)函数f (x )=2sin(ωx +φ>0,-π2<φ如图所示,则ω,φ的值分别是(A)A .2,-π3B .2,-π6C .4,-π6D .4,π3[解析]解法一(最值法):由题中图象可知34T =5π12--π3⇒34T =3π4⇒T =π,则ω=2πT=2ππ=2.又图象过点5π12,2则f 5π122⇒2sin 5π6+φ=2⇒sin 5π6+φ1.∵-π2<φ<π2,∴π3<φ+5π6<4π3.∴5π6+φ=π2,∴φ=-π3.故选A .解法二(五点法):由解法一得ω=2,5π12,2是五点中的第二个点.故5π12×2+φ=π2,解得φ=-π3,故选A .方法三(五点法):由方法一得ω=2-π3,0则-π3×2+φ0=π,∴φ0=53π=2π-π3.取φ=-π3即可.名师点拨确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2.(2)求ω,确定函数的周期T ,则ω=2πT.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”(即图象上升时与x 轴的交点)为ωx +φ=2π.〔变式训练3〕(2020·河北涞水波峰中学期中)已知函数f (x )=2sin(ωx +φ>0,φ∈π2,如图所示,其中f (0)=1,|MN |=52,将f (x )的图象向右平移1个单位长度,得到函数g (x )的图象,则g (x )的解析式是(A)A .g (x )=2cos π3xB .g (x )=C .g (x )=D .g (x )=-2cos π3x[解析]设函数f (x )的最小正周期为T .由题图及|MN |=52,得T 4=32,则T =6,ω=π3.又由f (0)=1,φ∈π2,π得sin φ=12,φ=5π6.所以f (x )=则g (x )=2sin π3(x -1)+5π6=2cos π3x .故选A .考点四三角函数图象与性质的综合应用——师生共研例6已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴之间的距离为π2.(1)求f(2)求函数y =f (x )+f x 的值.[解析](1)f (x )=3sin(ωx +φ)-cos(ωx +φ)=232sin (ωx +φ)-12cos (ωx +φ)=+φ因为f (x )为偶函数,所以φ-π6=π2+k π(k ∈Z ),解得φ=2π3+k π(k ∈Z ).又0<φ<π,所以φ=2π3.所以f (x )=2cos ωx .由题意得2πω=2×π2,所以ω=2.所以f (x )=2cos 2x .故2cos π4= 2.(2)y =2cos 2x +2cos 2=2cos 2x +x=2cos 2x -2sin 2x =22sin 2当π4-2x =2k π+π2(k ∈Z ),即x =k π-π8(k ∈Z )时,y 有最大值22.名师点拨三角函数图象与性质的综合问题的求解思路先将y =f (x )化为y =A sin(ωx +φ)+B 的形式,再借助y =A sin(ωx +φ)的图象和性质(如定义域、值域、最值、周期性、对称性、单调性等)解决相关问题.〔变式训练4〕(2020·陕西宝鸡一模)已知函数f (x )=2sin x cos x +23cos 2x -3.(1)求函数f (x )的单调递减区间;(2)将函数f (x )的图象向左平移π6个单位长度,再将所得图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数g (x )的图象,求g (x )-π12,[解析]本题考查三角函数的单调区间、图象变换和在限定区间上的值域.(1)由题意,f (x )=2sin x cos x +23cos 2x -3=sin 2x +3cos 2x =x 令2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),解得k π+π12≤x ≤k π+7π12(k ∈Z ).因此,函数f (x )的单调递减区间是k π+π12,k π+7π12(k ∈Z ).(2)由题意,g (x )=x x又x -π12,4x +2π3∈因此,函数g (x )-π12,(-1,2].名师讲坛·素养提升三角函数中有关参数ω的求解问题一、三角函数的周期T 与ω的关系例7为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值是(B)A .98πB .1972πC .1992πD .100π[解析]由题意,至少出现50次最大值即至少需用4914个周期,=1974·2πω≤1,所以ω≥1972π,故选B .名师点拨这类三角函数试题直接运用T 与ω的关系T =2πω,再结合条件,一般可以轻松处理.二、三角函数的单调性与ω的关系例8若函数f (x )=sin ωx (ω>0)在区间π3,π2上单调递减,则ω的取值范围是(D )A .0,23B .0,32C .23,3D .32,3[解析]令π2+2k π≤ωx ≤3π2+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在π3,π2上+2k πω≤π3,≤3π2ω+2k πω,得6k +32≤ω≤4k +3.又ω>0,所以k ≥0,又6k +32≤4k+3,得0≤k <34,所以k =0.从而32≤ω≤3,故选D .名师点拨根据正弦函数的单调递减区间,确定函数f (x )的单调递减区间,根据函数f (x )=sin ωx (ω>0)在区间π3,π2上单调递减,建立不等式,即可求ω的取值范围.三、三角函数最值与ω的关系例9已知函数f (x )=2sin ωx 在区间-π3,π4上的最小值为-2,求ω的取值范围.[解析]显然ω≠0.若ω>0,当x ∈-π3,π4时,-π3ω≤ωx ≤π4ω,因为函数f (x )=2sin ωx 在区间-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32.若ω<0,当x ∈-π3,π4时,π4ω≤ωx ≤-π3ω,因为函数f (x )=2sin ωx 在区间-π3,π4上的最小值为-2.所以π4ω≤-π2,解得ω≤-2.综上所述,符合条件的实数ω的取值范围是(-∞,-2]∪32,+〔变式训练5〕(1)若函数f (x )=2cos T ,且T ∈(1,3),则正整数ω的最大值为__6__.(2)若函数y =2cos ωx 在区间0,2π3上递减,且有最小值1,则ω的值可以是(B )A .2B .12C .3D .13[解析](1)因为1<T =2πω<3,所以2π3<ω<2π,又因为ω为正整数,所以ω的最大值为6.(2)由y =2cos ωx 在0,2π3上是递减的,且有最小值1,则有2××23π1⇒cos 2π3ω=12.检验各数据,得出B 项符合.故选B .。

函数y=Asin(ωx+φ)的图象与性质(一)

函数y=Asin(ωx+φ)的图象与性质(一)
数 y=Asin(ωx+φ)图象与性质的影响?函数 y=Asin(ωx+φ)中含有三个不同的参数,
你认为应该按怎样的思路进行研究?
答案
能.可以先研究 φ 对函数 y=sin(x+φ)图象的影响,再依次研究 ω,A 对函数
y=Asin(ωx+φ)图象的影响.
问题 2:函数 y=sin x 的图象与 y=sin(x+φ)的图象有什么关系?
π
π
3
3
(2)将函数 y=sin x 的图象上所有的点向右平移 个单位长度得到函数 y=sin 的图象,再把函数 y=sin y=sin

3
-
π
3
的图象.
π
3
的图象上各点的横坐标扩大到原来的 3 倍,就得到函数
课前预学
方法总结
课堂导学
伸缩变换的解题关键及方法
关键:确定伸缩量.
1
解决方法:已知函数 y=f(x)的图象,作函数 y=f(ωx)(ω>0)的图象, 为伸缩量.
π
6
图象上的一点,则点 G'
1
2
, 与 G″(2x,y)分别
在哪个函数图象上?
答案
G'
1
2
, 是 y=sin 2 +
问题 3:(1)函数 y=sin 2 +
π
6
图象上一点;G″(2x,y)是 y=sin
π
1
2
+
π
6
图象上的一点.
π
,x∈R 的图象,可看作是把 y=sin + ,x∈R 图象上
30
+
π
6
π

高考数学函数y=Asin(ωx+φ)的图像及三角函数的应用

高考数学函数y=Asin(ωx+φ)的图像及三角函数的应用
例3 已知函数f(x)=sin+4cos2x,将函数f(x)的图像先向右平移个单位长度,再向下平移2个单位长度,得到函数g(x)的图像.(2)求函数g(x)在区间上的单调递减区间及取值范围.
课堂考点探究
[思路点拨]根据≤x≤可得≤2x-≤,由此讨论函数g(x)的单调区间和取值范围.
例3 已知函数f(x)=sin+4cos2x,将函数f(x)的图像先向右平移个单位长度,再向下平移2个单位长度,得到函数g(x)的图像.(2)求函数g(x)在区间上的单调递减区间及取值范围.
课堂考点探究
课堂考点探究
变式题 (1)(多选题)函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图像如图4-25-4所示,则下列结论正确的是( )A.函数f(x)的最小正周期为πB.函数f(x)图像的一条对称轴为直线x=C.函数f(x)的单调递减区间为,k∈ZD.当x∈时,函数f(x)的取值范围为
课前基础巩固
[解析]将(0,1)代入函数f(x)的解析式,可得2sin φ=1,即sin φ=.因为|φ|<,所以φ=.
例1 (1)(多选题)为得到函数y=cos的图像,只需将y=cos 2x的图像上所有的点( ) A.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度B.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度C.向右平移个单位长度,再将横坐标伸长到原来的2倍(纵坐标不变)D.向右平移个单位长度,再将横坐标伸长到原来的2倍(纵坐标不变)
图4-25-4
课堂考点探究
(2)[2021·全国甲卷] 已知函数f(x)=2cos(ωx+φ)的部分图像如图4-25-5所示,则满足条件>0的最小正整数x为 .

数学新高考第4讲 函数y=Asin(ωx+φ)的图象及应用

数学新高考第4讲 函数y=Asin(ωx+φ)的图象及应用

第4讲函数y=A sin(ωx+φ)的图象及应用1.y=A sin(ωx+φ)的有关概念y =A sin(ωx+φ)(A>0,ω>0)振幅周期频率相位初相A T=012πωf=1T=02ω2π03ωx+φ04φ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x 050-φω06π2-φω07π-φω083π2-φω092π-φωωx+φ10011π212π133π2142πy=A sin(ωx+φ)0 A 0-A 03.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤1.对函数y=A sin(ωx+φ)+b(A>0,ω>0,φ≠0,b≠0),其图象的基本变换有:(1)振幅变换(纵向伸缩变换):是由A 的变化引起的,A >1时伸长,A <1时缩短.(2)周期变换(横向伸缩变换):是由ω的变化引起的,ω>1时缩短,ω<1时伸长.(3)相位变换(横向平移变换):是由φ引起的,φ>0时左移,φ<0时右移. (4)上下平移(纵向平移变换):是由b 引起的,b >0时上移,b <0时下移. 可以使用“先伸缩后平移”或“先平移后伸缩”两种方法来进行变换. 2.当相应变换的函数名不同时,先利用诱导公式将函数名化一致,再利用相应的变换得到结论.3.由y =A sin(ωx +φ)+b (A >0,ω>0,φ≠0,b ≠0)的图象得到y =sin x 的图象,可采用逆向思维,将原变换反过来逆推得到.1.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的振幅、频率和初相分别为( )A .2,1π,π4 B .2,12π,π4 C .2,1π,π8 D .2,12π,-π8答案 A解析 由振幅、频率和初相的定义可知,函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的振幅为2,频率为1π,初相为π4.故选A.2.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin2x 的图象上的所有点( )A .向左平移π3个单位长度 B .向右平移π3个单位长度 C .向左平移π6个单位长度 D .向右平移π6个单位长度 答案 D解析 ∵y =sin ⎝ ⎛⎭⎪⎫2x -π3=sin2⎝ ⎛⎭⎪⎫x -π6,∴只需将函数y =sin2x 图象上的所有点向右平移π6个单位长度即可得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象.故选D.3.函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π上的简图是( )答案 A解析 令x =0得y =sin ⎝ ⎛⎭⎪⎫-π3=-32,排除B ,D.由x =-π3时,y =0,x =π6时,y =0,排除C.故选A.4.将f (x )=cos x 图象上所有的点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,则g ⎝ ⎛⎭⎪⎫π2=( )A .-1B .-22 C.22 D .1答案 C解析 由题意得g (x )=cos 12x , 故g ⎝ ⎛⎭⎪⎫π2=cos π4=22. 5.函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3 B .2,-π6 C .4,-π6 D .4,π3答案 A解析 由图可知,34T =5π12+π3=3π4,所以T =π,ω=2πT =2.因为点⎝ ⎛⎭⎪⎫5π12,2在图象上,所以2×5π12+φ=π2+2k π,k ∈Z ,所以φ=-π3+2k π,k ∈Z .又-π2<φ<π2,所以φ=-π3.故选A.6.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.答案 32解析 由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.考向一 “五点法”作y =A sin(ωx +φ)的图象例1 用五点法作出y =2sin ⎝ ⎛⎭⎪⎫2x +π3在⎣⎢⎡⎦⎥⎤-π3,2π3上的图象.解 2·⎝ ⎛⎭⎪⎫-π3+π3=-π3,2·2π3+π3=5π3, 令2x +π3=0,得x =-π6. 令2x +π3=π2,得x =π12.令2x +π3=π,得x =π3. 令2x +π3=3π2,得x =7π12. 列表如下: 2x +π3 -π3 0 π2 π 3π2 5π3 x -π3 -π6 π12 π3 7π12 2π3 y-32-2- 3描点作图.用“五点法”作正、余弦型函数图象的步骤(1)将原函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)(A >0,ω>0)的形式. (2)确定周期.(3)确定一个周期内函数图象的最高点和最低点. (4)选出一个周期内与x 轴的三个交点. (5)列表. (6)描点.1.用“五点法”画出函数y =3sin x 2+cos x2的图象.解 ∵函数y =3sin x 2+cos x 2=2⎝ ⎛⎭⎪⎫32sin x 2+12cos x 2=2⎝ ⎛⎭⎪⎫sin x 2cos π6+cos x 2sin π6=2sin ⎝ ⎛⎭⎪⎫x 2+π6,列表如下: x 2+π6π2π3π22πx -π3 2π3 5π3 8π3 11π3 y2-2描点、连线作图如下:将函数y =3sin x 2+cos x 2,x ∈⎣⎢⎡⎦⎥⎤-π3,11π3的图象不断向左、向右平移(每次移动4π个单位长度),即得函数在R 上的图象.考向二 三角函数的图象变换例2 (多选)(2020·青岛市高三上学期期末)要得到y =cos2x 的图象C 1,只要将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象C 2怎样变化得到( )A .将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象C 2沿x 轴向左平移π12个单位B .将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象C 2沿x 轴向右平移11π12个单位C .先作C 2关于x 轴对称的图象C 3,再将图象C 3沿x 轴向右平移5π12个单位 D .先作C 2关于x 轴对称的图象C 3,再将图象C 3沿x 轴向左平移π12个单位 答案 ABC解析 对于A ,将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象C 2沿x 轴向左平移π12个单位,可得y=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π12+π3=sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 的图象C 1,故A 正确;对于B ,将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象C 2沿x 轴向右平移11π12个单位也可得到y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -11π12+π3=sin ⎝ ⎛⎭⎪⎫2x -3π2=cos2x 的图象C 1,故B 正确;对于C ,先作C 2关于x 轴对称的图象,得到y =-sin ⎝ ⎛⎭⎪⎫2x +π3的图象C 3,再将图象C 3沿x 轴向右平移5π12个单位,得到y=-sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -5π12+π3=-sin ⎝ ⎛⎭⎪⎫2x -π2=cos2x 的图象C 1,故C 正确;对于D ,先作C 2关于x 轴对称的图象,得到y =-sin ⎝ ⎛⎭⎪⎫2x +π3的图象C 3,再将图象C 3沿x 轴向左平移π12个单位,得到y =-sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π12+π3=-sin ⎝ ⎛⎭⎪⎫2x +π2=-cos2x 的图象,故D 不正确.故选ABC.关于y =A sin(ωx +φ)(A >0,ω>0)的图象由y =sin x 的图象的变换,先将y =sin x 的图象向左(向右)平移|φ|个单位,再将所得图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1ω倍(纵坐标不变),然后将所得图象上各点的纵坐标伸长(A >1)或缩短(0<A <1)到原来的A 倍(横坐标不变),也可先进行伸缩变换,再进行平移变换,此时平移不再是|φ|个单位,而是|φ|ω个单位,原则是保证x 的系数为1,同时注意变换的方法不能出错.2.将函数y =cos ⎝ ⎛⎭⎪⎫x -π3的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴方程是( )A .x =π4 B .x =π6 C .x =π D .x =π2答案 D解析 y =cos ⎝ ⎛⎭⎪⎫x -π3――→横坐标伸长到原来的2倍纵坐标不变y =cos ⎝ ⎛⎭⎪⎫12x -π3y =cos ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π6-π3,即y =cos ⎝ ⎛⎭⎪⎫12x -π4.由余弦函数的性质知,其对称轴一定经过图象的最高点或最低点,又当x =π2时,y =cos ⎝ ⎛⎭⎪⎫12×π2-π4=1.故选D.考向三 求函数y =A sin(ωx +φ)的解析式例3 (多选)(2020·新高考卷Ⅰ)下图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A .sin ⎝ ⎛⎭⎪⎫x +π3B .sin ⎝ ⎛⎭⎪⎫π3-2xC .cos ⎝ ⎛⎭⎪⎫2x +π6D .cos ⎝ ⎛⎭⎪⎫5π6-2x答案 BC解析 由函数图象可知T 2=2π3-π6=π2,所以T =π,则|ω|=2πT =2ππ=2,所以ω=±2,当ω=2时,由函数图象过点⎝ ⎛⎭⎪⎫π6,0,⎝ ⎛⎭⎪⎫2π3,0,且f (0)>0,得φ=2π3+2k π,k ∈Z ,所以y =sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫π3-2x ,同理,当ω=-2时,φ=π3-2k π,k ∈Z ,所以y =sin ⎝ ⎛⎭⎪⎫-2x +π3=cos ⎝ ⎛⎭⎪⎫2x +π6.故选BC.确定y =A sin(ωx +φ)+b (A >0,ω>0)的解析式的步骤(1)求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m 2. (2)求ω,确定函数的周期T ,则ω=2πT . (3)求φ的常用方法①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象上的最高点或最低点代入;②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.3.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则f (x )的解析式为( )A .f (x )=23sin ⎝ ⎛⎭⎪⎫πx 8+π4B .f (x )=23sin ⎝ ⎛⎭⎪⎫πx 8+3π4C .f (x )=23sin ⎝ ⎛⎭⎪⎫πx 8-π4D .f (x )=23sin ⎝ ⎛⎭⎪⎫πx 8-3π4答案 D解析 由图象可知,A =23,T =2×[6-(-2)]=16,所以ω=2πT =2π16=π8.所以f (x )=23sin ⎝ ⎛⎭⎪⎫π8x +φ.由函数的对称性得f (2)=-23,即f (2)=23sin ⎝ ⎛⎭⎪⎫π8×2+φ=-23,即sin ⎝ ⎛⎭⎪⎫π4+φ=-1,所以π4+φ=2k π-π2(k ∈Z ),解得φ=2k π-3π4(k ∈Z ).因为|φ|<π,所以φ=-3π4.故函数f (x )的解析式为f (x )=23sin ⎝ ⎛⎭⎪⎫πx 8-3π4.多角度探究突破考向四 函数y =A sin(ωx +φ)的图象与性质 角度1 函数图象与性质的综合应用例4 函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 答案 D解析 由图象可知ω4+φ=π2+2m π,5ω4+φ=3π2+2m π,m ∈Z ,所以ω=π,φ=π4+2m π,m ∈Z ,所以函数f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4+2m π=cos ⎝ ⎛⎭⎪⎫πx +π4的单调递减区间为2k π<πx +π4<2k π+π,k ∈Z ,即2k -14<x <2k +34,k ∈Z .故选D.角度2 图象变换与性质的综合应用例5 (2020·潍坊一模)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)是偶函数,将y =f (x )的图象沿x 轴向左平移π6个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为y =g (x ).已知y =g (x )的图象相邻对称中心之间的距离为2π,则ω=________,若y =g (x )的图象在其某对称轴处对应的函数值为-2,则g (x )在[0,π]上的最大值为________.答案 13解析 把y =A sin(ωx +φ)的图象沿x 轴向左平移π6个单位,所得图象的解析式为y =A sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π6+φ=A sin ⎝ ⎛⎭⎪⎫ωx +ω6π+φ,再把所得图象上所有点的横坐标伸长到原来的2倍,所得图象的解析式为y =A sin ⎝ ⎛⎭⎪⎫ω2x +ω6π+φ=g (x ).由题意可知g (x )的周期为4π,所以2πω2=4π,ω=1.因为y =g (x )的图象在某条对称轴处对应的函数值为-2,A >0,所以A =2,所以f (x )=2sin(x +φ).因为f (x )=2sin(x +φ)是偶函数,0<φ<π,所以φ=π2,所以g (x )=2sin ⎝ ⎛⎭⎪⎫x 2+π6+π2=2cos ⎝ ⎛⎭⎪⎫x 2+π6,当x ∈[0,π]时,x 2+π6∈⎣⎢⎡⎦⎥⎤π6,2π3,则g (x )在[0,π]上的最大值为g (0)= 3.角度,3 三角函数模型的简单应用例6 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,因为0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又因为0≤t <24,因此7π6<π12t +π3<11π6, 即10<t <18.所以若要求实验室温度不高于11 ℃,则在10 h 至18 h 实验室需要降温.(1)解三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f (x )=A sin(ωx +φ)+b 中的待定系数.(2)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.4.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则f (x )的单调递增区间为( )A.⎝ ⎛⎭⎪⎫-π12+k π2,5π12+k π2,k ∈Z B.⎝ ⎛⎭⎪⎫-π12+k π,5π12+k π,k ∈Z C.⎝ ⎛⎭⎪⎫-π6+2k π,5π6+2k π,k ∈Z D.⎝ ⎛⎭⎪⎫-π6+k π,5π6+k π,k ∈Z 答案 B解析 解法一:由图象可知A =2,34T =11π12-π6=3π4,所以T =π,故ω=2.由f ⎝ ⎛⎭⎪⎫11π12=-2,得φ=2k π-π3(k ∈Z ).因为|φ|<π2,所以φ=-π3.所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3.由2x -π3∈⎝ ⎛⎭⎪⎫2k π-π2,2k π+π2(k ∈Z ),得x ∈⎝ ⎛⎭⎪⎫-π12+k π,5π12+k π(k ∈Z ).解法二:34T =11π12-π6=3π4,所以T =π,π6-T 4=π6-π4=-π12,π6+T 4=π6+π4=5π12,所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ).故选B.5.(多选)(2020·威海二模)已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π),将y =f (x )的图象上所有点向左平移π6个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数y =g (x )的图象.若g (x )为偶函数,且最小正周期为π2,则( )A .y =f (x )的图象关于⎝ ⎛⎭⎪⎫-π12,0对称B .f (x )在⎝ ⎛⎭⎪⎫0,5π12上单调递增C .f (x )=g ⎝ ⎛⎭⎪⎫x 2在⎝ ⎛⎭⎪⎫0,5π4上有且仅有3个解D .g (x )在⎝ ⎛⎭⎪⎫π12,5π4上有且仅有3个极大值点答案 AC解析 函数f (x )=sin(ωx +φ)(ω>0,0<φ<π),将y =f (x )的图象上所有点向左平移π6个单位,可得y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ6+φ的图象,然后纵坐标不变,把横坐标缩短为原来的12,得到函数y =g (x )=sin ⎝ ⎛⎭⎪⎫2ωx +ωπ6+φ的图象,∵g (x )的最小正周期为2π2ω=π2,则ω=2,又g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3+φ为偶函数,0<φ<π,∴φ=π6,∴g (x )=sin ⎝ ⎛⎭⎪⎫4x +π2=cos4x ,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.令x =-π12,求得f (x )=0,故A 正确;当x ∈⎝ ⎛⎭⎪⎫0,5π12时,2x +π6∈⎝ ⎛⎭⎪⎫π6,π,f (x )先增后减,故B 错误;f (x )=g ⎝ ⎛⎭⎪⎫x 2,即sin ⎝ ⎛⎭⎪⎫2x +π6=cos2x ,32sin2x +12cos2x =cos2x ,32sin2x -12cos2x =0,化简得sin ⎝ ⎛⎭⎪⎫2x -π6=0,令2x -π6=k π(k∈Z ),解得x =12k π+π12(k ∈Z ).∵x ∈⎝ ⎛⎭⎪⎫0,5π4,∴当k =0时,x =π12;当k =1时,x =7π12;当k =2时,x =13π12.∴f (x )=g ⎝ ⎛⎭⎪⎫x 2在⎝ ⎛⎭⎪⎫0,5π4上有且仅有3个解.C 正确;当x ∈⎝ ⎛⎭⎪⎫π12,5π4时,4x ∈⎝ ⎛⎭⎪⎫π3,5π,g (x )有极大值点x =π2,x =π,故D 错误.故选AC. 6.一物体相对于某一固定位置的位移y (cm)和时间t (s)之间的一组对应值如下表所示,则可近似地描述该物体的位移y (cm)和时间t (s)之间关系的一个三角函数关系式为________.答案 y =-4cos 2t解析 设y =A sin(ωt +φ)(ω>0),则从表中可以得到A =4,T =0.8,所以ω=2πT =2π0.8=5π2,所以y =4sin⎝ ⎛⎭⎪⎫5π2t +φ,又由4sin φ=-4.0,得sin φ=-1,取φ=-π2,故y =4sin ⎝ ⎛⎭⎪⎫5π2t -π2=-4cos 5π2t .一、单项选择题1.如图是周期为2π的三角函数y =f (x )的部分图象,那么f (x )可以写成( )A .sin(1+x )B .sin(-1-x )C .sin(x -1)D .sin(1-x )答案 D解析 设y =sin(x +φ),∵点(1,0)为五点法作图的第三点,∴sin(1+φ)=0⇒1+φ=π,φ=π-1,∴y =sin(x +φ)=sin(1-x ).2.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4 B .π4 C .0 D .-π4 答案 B解析 把函数y =sin(2x +φ)的图象向左平移π8个单位后,得到的图象的解析式是y =sin ⎝ ⎛⎭⎪⎫2x +π4+φ,该函数是偶函数的充要条件是π4+φ=k π+π2,k ∈Z ,根据选项检验可知φ的一个可能取值为π4.3.如图所示,函数y =3tan ⎝ ⎛⎭⎪⎫2x +π6的部分图象与坐标轴分别交于点D ,E ,F ,则△DEF 的面积为( )A.π4 B .π2 C .π D .2π答案 A解析 在y =3tan ⎝ ⎛⎭⎪⎫2x +π6中,令x =0可得D (0,1);令y =0解得x =k π2-π12(k∈Z ),故E ⎝ ⎛⎭⎪⎫-π12,0,F ⎝ ⎛⎭⎪⎫5π12,0.所以△DEF 的面积为12×π2×1=π4.4.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( )A.π4 B .π3 C .π2 D .3π4答案 A解析 由题意得最小正周期T =2⎝ ⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1.∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.5.如图所示,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P (x ,y ).若初始位置为P 0⎝ ⎛⎭⎪⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为( )A .y =sin ⎝ ⎛⎭⎪⎫π30t +π6B .y =sin ⎝ ⎛⎭⎪⎫-π60t -π6 C .y =sin ⎝ ⎛⎭⎪⎫-π30t +π6D .y =sin ⎝ ⎛⎭⎪⎫-π30t -π3答案 C解析 由题意可得,函数的初相位是π6,排除B ,D.又函数周期是60秒且秒针按顺时针方向旋转,即T =2π|ω|=60,所以|ω|=π30,所以ω=-π30,故y =sin ⎝ ⎛⎭⎪⎫-π30t +π6. 6.(2020·全国卷Ⅰ)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π6在[-π,π]的图象大致如下图,则f (x )的最小正周期为( )A.10π9 B .7π6 C .4π3 D .3π2答案 C解析 由图可得,函数图象过点⎝ ⎛⎭⎪⎫-4π9,0,所以cos ⎝ ⎛⎭⎪⎫-4π9·ω+π6=0.又⎝ ⎛⎭⎪⎫-4π9,0是函数f (x )的图象与x 轴负半轴的第一个交点,所以-4π9·ω+π6=-π2,解得ω=32.所以函数f (x )的最小正周期为T =2πω=2π32=4π3.故选C.7.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(0<ω<2)满足条件:f ⎝ ⎛⎭⎪⎫-12=0,为了得到函数y =f (x )的图象,可将函数g (x )=cos ωx 的图象向右平移m (m >0)个单位长度,则m 的最小值为( )A .1B .12 C .π6 D .π2答案 A解析 由题意,得sin ⎝ ⎛⎭⎪⎫-12ω+π6=0,即-12ω+π6=k π(k ∈Z ),则ω=π3-2k π(k∈Z ),结合0<ω<2,得ω=π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫π3x +π6=cos ⎝ ⎛⎭⎪⎫π2-π3x -π6=cos ⎣⎢⎡⎦⎥⎤π3(x -1),所以只需将函数g (x )=cos π3x 的图象向右至少平移1个单位长度,即可得到函数y =f (x )的图象,故选A.8.如图,将绘有函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx +5π6(ω>0)部分图象的纸片沿x 轴折成直二面角,若A ,B 之间的空间距离为10,则f (-1)=( )A .-1B .1C .-32D .32答案 D解析 由题设并结合图形可知AB =(3)2+⎣⎢⎡⎦⎥⎤(3)2+⎝ ⎛⎭⎪⎫T 222=6+T 24= 6+π2ω2=10,得π2ω2=4,则ω=π2,所以函数f (x )=3sin ⎝ ⎛⎭⎪⎫π2x +5π6,所以f (-1)=3sin ⎝ ⎛⎭⎪⎫-π2+5π6=3sin π3=32.二、多项选择题9.已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,所得图象关于y 轴对称,则下列结论中正确的是( )A .φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )图象的一个对称中心 C .f (φ)=-2D .x =-π6是f (x )图象的一条对称轴 答案 ABD解析 由题意得,平移后的函数g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫2x -π3+φ的图象关于y轴对称,则-π3+φ=π2+k π,k ∈Z ,因为0<φ<π,所以φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,由2x +5π6=k π,k ∈Z ,得对称中心的横坐标为-5π12+k π2,k ∈Z ,故⎝ ⎛⎭⎪⎫π12,0是f (x )图象的一个对称中心,故B 正确;f (φ)=2sin ⎝ ⎛⎭⎪⎫5π3+5π6=2sin 5π2=2,故C 不正确;由2x +5π6=π2+k π,k ∈Z ,得x =-π6+k π2,k ∈Z ,所以x =-π6是f (x )图象的一条对称轴,故D 正确.10.(2021·广东汕头高三模拟)已知函数f (x )=sin(3x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π4对称,则( )A .函数f ⎝ ⎛⎭⎪⎫x +π12为奇函数B .函数f (x )在⎣⎢⎡⎦⎥⎤π12,π3上单调递增C .若|f (x 1)-f (x 2)|=2,则|x 1-x 2|的最小值为π3D .函数f (x )的图象向右平移π4个单位长度得到函数y =-cos3x 的图象 答案 AC解析 因为直线x =π4是f (x )=sin(3x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的对称轴,所以3×π4+φ=π2+k π(k ∈Z ),则φ=-π4+k π(k ∈Z ),当k =0时,φ=-π4,则f (x )=sin ⎝ ⎛⎭⎪⎫3x -π4.对于A ,f ⎝ ⎛⎭⎪⎫x +π12=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12-π4=sin3x ,因为sin(-3x )=-sin3x ,所以f⎝ ⎛⎭⎪⎫x +π12为奇函数,故A 正确;对于B ,-π2+2k π<3x -π4<π2+2k π(k ∈Z ),即-π12+2k π3<x <π4+2k π3(k ∈Z ),当k =0时,f (x )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,故B 错误;对于C ,若|f (x 1)-f (x 2)|=2,则|x 1-x 2|最小为半个周期,即2π3×12=π3,故C 正确;对于D ,函数f (x )的图象向右平移π4个单位长度,即sin ⎣⎢⎡⎦⎥⎤3⎝⎛⎭⎪⎫x -π4-π4=sin(3x -π)=-sin3x ,故D 错误.故选AC.11.(2020·江苏南通高三模拟)如图,摩天轮的半径为40 m ,其中心O 点距离地面的高度为50 m ,摩天轮按逆时针方向做匀速转动,且20 min 转一圈,若摩天轮上点P 的起始位置在最高点处,则摩天轮转动过程中( )A .经过10 min 点P 距离地面10 mB .若摩天轮转速减半,则其周期变为原来的12C .第17 min 和第43 min 时P 点距离地面的高度相同D .摩天轮转动一圈,P 点距离地面的高度不低于70 m 的时间为203 min 答案 ACD解析 依题意,A =40,h =50,T =20,则ω=2π20=π10,且f (0)=40sin φ+50=90,所以φ=π2;所以f (t )=40sin ⎝ ⎛⎭⎪⎫π10t +π2+50(t ≥0).对于A ,f (10)=40sin ⎝ ⎛⎭⎪⎫π10×10+π2+50=10,A 正确;对于B ,若摩天轮转速减半,则其周期变为原来的2倍,B 错误;对于C ,f (17)=40sin ⎝ ⎛⎭⎪⎫π10×17+π2+50=-40cos 7π10+50=40cos 3π10+50,f (43)=40sin ⎝ ⎛⎭⎪⎫π10×43+π2+50=40cos 3π10+50,所以f (17)=f (43),C正确;对于D ,令f (t )≥70,得40sin ⎝ ⎛⎭⎪⎫π10t +π2+50≥70,所以cos π10t ≥12,所以-π3+2k π≤π10t ≤π3+2k π,k ∈Z ,解得-103+20k ≤t ≤103+20k ,k ∈Z ,103-⎝ ⎛⎭⎪⎫-103=203,即摩天轮转动一圈,P 点距离地面的高度不低于70 m 的时间为203min ,D 正确.故选ACD.12.(2020·菏泽模拟)已知函数f (x )=A sin(ωx +4φ)⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π8的部分图象如图所示,若将函数f (x )的图象纵坐标不变,横坐标缩短到原来的14,再向右平移π6个单位长度,得到函数g (x )的图象,则下列命题正确的是( )A .函数f (x )的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π6B .函数g (x )的解析式为g (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6C .函数f (x )图象的一条对称轴是直线x =-π3 D .函数g (x )在区间⎣⎢⎡⎦⎥⎤π,4π3上单调递增答案 ABD解析 由图可知,A =2,T 4=π,∴T =4π=2πω,得ω=12,∴f (x )=2sin⎝ ⎛⎭⎪⎫12x +4φ,将(0,1)代入得sin4φ=12,结合0<φ<π8,∴4φ=π6.∴f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π6,故A 正确;将函数f (x )的图象纵坐标不变,横坐标缩短到原来的14,再向右平移π6个单位长度,可得y =2sin ⎝ ⎛⎭⎪⎫2x +π6→y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π6=2sin ⎝ ⎛⎭⎪⎫2x -π6,故B 正确;∵f ⎝ ⎛⎭⎪⎫-π3=2sin ⎣⎢⎡⎦⎥⎤12×⎝⎛⎭⎪⎫-π3+π6=0,不是最值,故不是对称轴,C 错误;由x ∈⎣⎢⎡⎦⎥⎤π,4π3,∴2x -π6∈⎣⎢⎡⎦⎥⎤11π6,15π6,同y =sin x 在区间⎣⎢⎡⎦⎥⎤-π6,π2上的单调性,根据复合函数的单调性可知,函数g (x )在区间⎣⎢⎡⎦⎥⎤π,4π3上单调递增,D 正确.故选ABD.三、填空题13.(2020·北京海淀模拟)去年某地的月平均气温y (℃)与月份x (月)近似地满足函数y =a +b sin ⎝ ⎛⎭⎪⎫π6x +π6(a ,b 为常数).若6月份的月平均气温约为22 ℃,12月份的月平均气温约为4 ℃,则该地8月份的月平均气温约为________℃.答案 31解析 将(6,22),(12,4)代入函数,解得a =13,b =-18,所以y =13-18sin ⎝ ⎛⎭⎪⎫π6x +π6.当x =8时,y =13-18sin ⎝ ⎛⎭⎪⎫π6×8+π6=31.14.(2020·江苏高考)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________.答案 x =-5π24解析 将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移π6个单位长度,所得图象对应解析式为y =3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π4=3sin ⎝ ⎛⎭⎪⎫2x -π12,令2x -π12=π2+k π(k ∈Z ),得x =7π24+k π2(k ∈Z ).当k =-1时,x =-5π24,故与y 轴最近的对称轴方程为x =-5π24.15.已知x ∈(0,π],关于x 的方程2sin ⎝ ⎛⎭⎪⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为________.答案 (3,2)解析 令y 1=2sin ⎝ ⎛⎭⎪⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝ ⎛⎭⎪⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2的图象应有两个不同的交点,所以3<a <2.16.(2020·德州二模)声音是由物体振动产生的声波,其中纯音的数学模型是函数y =A sin ωt ,已知函数f (x )=2cos(2x +φ)(-π≤φ≤π)的图象向右平移π3个单位后,与纯音的数学模型函数y =2sin2x 的图象重合,则φ=________;若函数f (x )在[-a ,a ]上是减函数,则a 的最大值是________.答案 π6 π12解析 将函数y =2sin2x 的图象向左平移π3个单位后可得到函数y =f (x )的图象,则f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫2x +2π3=2sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π6+π2=2cos ⎝ ⎛⎭⎪⎫2x +π6,又f (x )=2cos(2x +φ)(-π≤φ≤π),所以φ=π6.令2k π≤2x +π6≤2k π+π(k ∈Z ),解得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ),由0∈⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ),可得k =0,由于函数y =f (x )在区间[-a ,a ]上单调递减,则[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π12,5π12,所以⎩⎪⎨⎪⎧-a ≥-π12,a ≤5π12,-a <a ,解得0<a ≤π12,则a的最大值为π12.四、解答题17.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数y =f (x )的最大值和最小值.解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT =2.又f (x )的图象关于直线x =π3对称, 所以2×π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6. 综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6, 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6, 故当2x -π6=π2,即x =π3时,f (x )max =3; 当2x -π6=-π6,即x =0时,f (x )min =-32.18.如图,某地一天6~14时的温度变化曲线近似满足y =A sin(ωt +φ)+b (A >0,ω>0,0<φ<π).(1)求解析式;(2)若某行业在当地需要的温度在区间[20-52,20+52]之间为最佳营业时间,那么该行业在6~14时,最佳营业时间为多少小时?解 (1)由题图知A =10,12·2πω=14-6, 所以ω=π8,所以y =10sin ⎝ ⎛⎭⎪⎫πt 8+φ+b .①因为y max =10+b =30,所以b =20. 把t =6,y =10代入①得φ=3π4,所以解析式为y =10sin ⎝ ⎛⎭⎪⎫π8t +3π4+20,t ∈[6,14].(2)由题意,得20-52≤10sin ⎝ ⎛⎭⎪⎫π8t +3π4+20≤20+52,即-22≤sin ⎝ ⎛⎭⎪⎫π8t +3π4≤22,所以k π-π4≤π8t +3π4≤k π+π4,k ∈Z . 即8k -8≤t ≤8k -4,因为t ∈[6,14],所以k =2,所以8≤t ≤12, 所以最佳营业时间为12-8=4小时.19.(2021·山东青岛高三月考)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx +π6(A >0,ω>0)只能同时满足下列三个条件中的两个:①函数f (x )的最大值为2;②函数f (x )的图象可由y =2sin ⎝ ⎛⎭⎪⎫x -π4的图象平移得到;③函数f (x )图象的相邻两条对称轴之间的距离为π2.(1)请写出这两个条件的序号,并求出f (x )的解析式; (2)求方程f (x )+1=0在区间[-π,π]上所有解的和. 解 (1)函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx +π6满足的条件为①③.理由如下:由题意可知条件①②相互矛盾,故③为函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx +π6满足的条件之一.由③可知,函数f (x )的最小正周期T =π,所以ω=2,故②不合题意, 所以函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx +π6满足的条件为①③.由①可知A =2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2)因为f (x )+1=0,所以sin ⎝ ⎛⎭⎪⎫2x +π6=-12,所以2x +π6=-π6+2k π(k ∈Z )或2x +π6=-56π+2k π(k ∈Z ),所以x =-π6+k π(k ∈Z )或x =-π2+k π(k ∈Z ). 又x ∈[-π,π],所以x 的取值为-π6,5π6,-π2,π2. 所以方程f (x )+1=0在区间[-π,π]上所有解的和为2π3.20.某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平移θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6.(2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6, 得g (x )=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,令k π2+π12-θ=5π12,k ∈Z ,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.。

2020届高三理数一轮讲义:4.5-函数y=Asin(ωx+φ)的图象及应用(含答案)

2020届高三理数一轮讲义:4.5-函数y=Asin(ωx+φ)的图象及应用(含答案)

14.已知函数 f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的部分图象如图所示.
(1)求函数 f(x)的解析式; (2)将函数 y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再 把所得的函数图象向左平移π6个单位长度,得到函数 y=g(x)的图象,求函数 g(x) 在区间0,π8上的最小值.
________.(结果用区间表示)
(2)已知函数 f(x)=2sin ωx 在区间-3π,π4上的最小值为-2,则 ω 的取值范围是
________.
基础巩固题组
一、选择题
(建议用时:40 分钟)
1. (2016·全国Ⅱ卷)函数 y=Asin(ωx+φ)的部分图象如图所示,则( )
A.y=2sin2x-π6 B.y=2sin2x-π3 C.y=2sinx+π6
3sin
ωx 2 cos
ωx 2

2cos2
ω2x-1(ω>0)的最小正周期为
π,当
x∈0,2π时,方程 f(x)=m 恰有两个不同的实数解 x1,x2,则 f(x1+x2)=(
)
A.2
B.1
C.-1
D.-2
13.(2019·广东省际名校联考)将函数 f(x)=1-2 3·cos2x-(sin x-cos x)2 的图象向 左平移π3个单位,得到函数 y=g(x)的图象,若 x∈-2π,π2,则函数 g(x)的单调递 增区间是________.
图象的对称轴方程是________.
考点三 y=Asin(ωx+φ)图象与性质的应用 角度 1 三角函数模型的应用 【例 3-1】 如图,某大风车的半径为 2 米,每 12 秒旋转一周,它的最低点 O 离 地面 1 米,点 O 在地面上的射影为 A.风车圆周上一点 M 从最低点 O 开始,逆时 针方向旋转 40 秒后到达 P 点,则点 P 到地面的距离是________米.

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。

2020届高考数学一轮复习学霸提分秘籍专题4.5 函数y=Asin(ωx+ψ)的图像与性质(解析版)

2020届高考数学一轮复习学霸提分秘籍专题4.5 函数y=Asin(ωx+ψ)的图像与性质(解析版)

第四篇三角函数与解三角形专题4.05函数y=Asin(ωx+φ)的图象与性质【考试要求】1.结合具体实例,了解y=A sin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响;2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.【知识梳理】1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示.2.函数y=Asin(ωx+φ)的有关概念3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f (x )=A sin(ωx +φ)+k 中的待定系数.(3)把实际问题翻译为函数f (x )的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.【微点提醒】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2(k ∈Z )确定;对称中心由ωx +φ=k π(k ∈Z )确定其横坐标.3.音叉发出的纯音振动可以用三角函数表达为y =A sin ωx ,其中x 表示时间,y 表示纯音振动时音叉的位移,|ω|2π表示纯音振动的频率(对应音高),A 表示纯音振动的振幅(对应音强).4.交变电流可以用三角函数表达为y =A sin(ωx +φ),其中x 表示时间,y 表示电流,A 表示最大电流,|ω|2π表示频率,φ表示初相位.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎫2x +π4.( ) (2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( ) (3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( ) (4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.【教材衍化】2.(必修4P56T3改编)y =2sin ⎝⎛⎭⎫12x -π3的振幅、频率和初相分别为( ) A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π3【答案】 C【解析】 由题意知A =2,f =1T =ω2π=14π,初相为-π3.3.(必修4P62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________. 【答案】 y =6-cos π2x【解析】 设y =A sin(ωx +φ)+B (A >0,ω>0),由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝⎛⎭⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1,则φ=-π2+2k π(k ∈Z ),可取φ=-π2.所以y =sin ⎝⎛⎭⎫π2x -π2+6=6-cos π2x . 【真题体验】4.(2019·北京通州区模拟)函数y =2cos ⎝⎛⎭⎫2x +π6的部分图象是( )【答案】 A【解析】 由y =2cos ⎝⎛⎭⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图象过点⎝⎛⎭⎫π6,0,故排除B ;又因为函数图象过点⎝⎛⎭⎫-π12,2,故排除C. 5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A.y =2sin ⎝⎛⎭⎫2x +π4 B.y =2sin ⎝⎛⎭⎫2x +π3 C.y =2sin ⎝⎛⎭⎫2x -π4D.y =2sin ⎝⎛⎭⎫2x -π3 【答案】 D【解析】 函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3,故选D. 6.(2018·济南模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________. 【答案】π2+4【解析】 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4.【考点聚焦】考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值. 【答案】见解析【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z ). 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ(k ∈Z ).由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z ),解得θ=k π2-π3(k ∈Z ). 由θ>0可知,当k =1时,θ取得最小值π6.【规律方法】 作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·青岛调研)若把函数y =sin ⎝⎛⎭⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( ) A.2B.32C.23D.12【答案】 (1)D (2)A【解析】 (1)易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,因此D 项正确. (2)y =sin ⎝⎛⎭⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z .∴2是ω的一个可能值. 考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、衡阳八中联考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,已知A ⎝⎛⎭⎫5π12,1,B ⎝⎛⎭⎫11π12,-1,则f (x )图象的对称中心为( )A.⎝⎛⎭⎫k π2+5π6,0(k ∈Z ) B.⎝⎛⎭⎫k π+5π6,0(k ∈Z ) C.⎝⎛⎭⎫k π2+π6,0(k ∈Z )D.⎝⎛⎭⎫k π+π6,0(k ∈Z ) 【答案】 (1)f (x )=2sin ⎝⎛⎭⎫2x +π3 (2)C 【解析】 (1)由题图可知A =2, 法一T 4=7π12-π3=π4, 所以T =π,故ω=2, 因此f (x )=2sin(2x +φ),又⎝⎛⎭⎫π3,0对应五点法作图中的第三个点,因此2×π3+φ=π+2k π(k ∈Z ),所以φ=π3+2k π(k ∈Z ).又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝⎛⎭⎫2x +π3. 法二 以⎝⎛⎭⎫π3,0为第二个“零点”,⎝⎛⎭⎫7π12,-2为最小值点, 列方程组⎩⎨⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3, 故f (x )=2sin ⎝⎛⎭⎫2x +π3.(2)T =2⎝⎛⎭⎫11π12-5π12=π=2πω,∴ω=2, 因此f (x )=sin(2x +φ).由五点作图法知A ⎝⎛⎭⎫5π12,1是第二点,得2×5π12+φ=π2, 2×5π12+φ=π2+2k π(k ∈Z ),所以φ=-π3+2k π(k ∈Z ),又|φ|<π2,所以φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )图象的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ).【规律方法】 1.已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,利用周期性求ω,难点是“φ”的确定. 2.y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.【训练2】 (1)(2019·衡水中学一模)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝⎛⎭⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6B.5π6C.π12D.5π12(2)(2019·山东省重点中学质检)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,|φ|<π2,ω>0的图象的一部分如图所示,则f (x )图象的对称轴方程是________.【答案】 (1)C (2)x =k π2+π6(k ∈Z )【解析】 (1)由题图知,T =2⎝⎛⎭⎫11π12-5π12=π, ∴ω=2πT =2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ),则由图象知,f ⎝⎛⎭⎫512π+φ=-2cos ⎝⎛⎭⎫56π+2φ=2. ∴5π6+2φ=2k π+π(k ∈Z ),则φ=π12+k π(k ∈Z ). 又0<φ<π2,所以φ=π12.(2)由图象知A =2,又1=2sin(ω×0+φ),即sin φ=12,又|φ|<π2,∴φ=π6.又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 令2x +π6=π2+k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )=2sin ⎝⎛⎭⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z ). 考点三 y =A sin(ωx +φ)图象与性质的应用 角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.【答案】 4【解析】 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ),又周期T =12,所以θ=π6t ,则f (t )=3+2sin ⎝⎛⎭⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝⎛⎭⎫π6×40=4. 角度2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 【答案】见解析【解析】(1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎫2ωx -π3. 由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),整理得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.【规律方法】1.三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. 2.方程根的个数可转化为两个函数图象的交点个数.3.研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 【答案】 20.5【解析】 因为当x =6时,y =a +A =28; 当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎡⎦⎤π6(x -6), 所以当x =10时,f (10)=23+5cos ⎝⎛⎭⎫π6×4 =23-5×12=20.5.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R ),求:①函数f (x )的最小正周期;②函数f (x )的单调区间;③函数f (x )图象的对称轴和对称中心. 【答案】见解析【解析】①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝⎛⎭⎫2x -π3, 所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). 由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),所以函数f (x )的递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). ③由2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z ).由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ). 【反思与感悟】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式解决由函数y =A sin(ωx +φ)的图象确定A ,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点. 【易错防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看作一个整体.若ω<0,要先根据诱导公式进行转化.3.求函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值,可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域. 【核心素养提升】【逻辑推理与数学运算】——三角函数中有关ω的求解数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( ) A.98π B.1972π C.1992π D.100π【答案】 B【解析】 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.【评析】 解决此类问题的关键在于结合条件弄清周期T =2πω与所给区间的关系,从而建立不等关系.类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,则ω的取值范围是( )A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3 【答案】 D【解析】 令π2+2k π≤ωx ≤32π+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎡⎦⎤π3,π2上单调递减,所以⎩⎨⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3.又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0.故32≤ω≤3. 【评析】 根据正弦函数的单调递减区间,确定函数f (x )的单调递减区间,根据函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,建立不等式,即可求ω的取值范围. 类型3 三角函数对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝⎛⎭⎫ω>23,若函数f (x )图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 【答案】 (1)⎣⎡⎦⎤34,78 (2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32 【解析】 (1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z ),解得x =3π4ω+k πω(k ∈Z ).当k =0时,3π4ω≤π,即34≤ω,当k =1时,3π4ω+πω≥2π,即ω≤78.综上,34≤ω≤78.(2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎡⎦⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32. 若ω<0,当x ∈⎣⎡⎦⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2. 综上所述,符合条件的实数ω≤-2或ω≥32.【评析】 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝⎛⎭⎫2x -π6B.y =2sin ⎝⎛⎭⎫2x -π3C.y =2sin ⎝⎛⎭⎫x +π6D.y =2sin ⎝⎛⎭⎫x +π3 【答案】 A【解析】 由题图可知,A =2,T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π, 所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎫2x -π6. 2.(2019·杭州期中)将函数y =sin ⎝⎛⎭⎫x +φ2·cos ⎝⎛⎭⎫x +φ2的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值不可能是( ) A.-3π4B.-π4C.π4D.5π4【答案】 B【解析】 将y =sin ⎝⎛⎭⎫x +φ2cos ⎝⎛⎭⎫x +φ2=12sin(2x +φ)的图象向左平移π8个单位后得到的图象对应的函数为y =12sin ⎝⎛⎭⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z ),∴φ=k π+π4(k ∈Z ),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4. 3.(2019·咸阳模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5 D.6 【答案】 D【解析】 由P 是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形. 由P (32,-332),得|MN |=2×3323×2=6.∴该函数的最小正周期T =6.4.(2018·天津卷)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎡⎦⎤-π4,π4上单调递增 B.在区间⎣⎡⎦⎤-π4,0上单调递减 C.在区间⎣⎡⎦⎤π4,π2上单调递增 D.在区间⎣⎡⎦⎤π2,π上单调递减【解析】 y =sin ⎝⎛⎭⎫2x +π5=sin 2⎝⎛⎭⎫x +π10,将其图象向右平移π10个单位长度,得到函数y =sin 2x 的图象.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .令k =0,可知函数y=sin 2x 在区间⎣⎡⎦⎤-π4,π4上单调递增. 5.(2019·张家界模拟)将函数f (x )=3sin 2x -cos 2x 的图象向左平移t (t >0)个单位后,得到函数g (x )的图象,若g (x )=g ⎝⎛⎭⎫π12-x ,则实数t 的最小值为( ) A.5π24 B.7π24C.5π12D.7π12【答案】 B【解析】 由题意得,f (x )=2sin ⎝⎛⎭⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎫2x +2t -π6, 从而2sin ⎝⎛⎭⎫2x +2t -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0, 所以当2t -π6=-2t +π+2k π(k ∈Z )时,即t =7π24+k π2(k ∈Z ),实数t min =724π.二、填空题6.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________. 【答案】 y =sin ⎝⎛⎭⎫12x -π10―————————―→横坐标伸长到原来的2倍y =sin ⎝⎛⎭⎫12x -π10. 7.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝⎛⎭⎫π4=________.【解析】 由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 则f ⎝⎛⎭⎫π4=2sin ⎝⎛⎭⎫π2+π6=2cos π6= 3. 8.已知f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=____________________________________. 【答案】143【解析】 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z ). ∴ω=8k +143(k ∈Z ),因为f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值, 所以π3-π4≤πω,即ω≤12,令k =0,得ω=143.三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 【答案】见解析【解析】(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8 =10-3cos2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝⎛⎭⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1. 当t =2时,sin ⎝⎛⎭⎫π12t +π3=1; 当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.10.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π. (1)求f ⎝⎛⎭⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.【答案】见解析【解析】(1)因为f (x )的图象上相邻最高点的距离为π, 所以f (x )的最小正周期T =π,从而ω=2πT =2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎫2x -π6, 则f ⎝⎛⎭⎫π4=3sin ⎝⎛⎭⎫2×π4-π6=3sin π3=32. (2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎫x -π12的图象, 所以g (x )=f ⎝⎛⎭⎫x -π12=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6=3sin ⎝⎛⎭⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). 【能力提升题组】(建议用时:20分钟)11.(2019·天津和平区调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎡⎦⎤-π4,π6上的最小值为( ) A.-2 B.-1C.- 2D.- 3【答案】 B【解析】 ∵x =π12是f (x )=2sin ⎝⎛⎭⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z ),即φ=k π+π6(k ∈Z ).∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴g (x )=-2sin ⎝⎛⎭⎫2x -π6在⎣⎡⎦⎤-π4,π6上的最小值为g ⎝⎛⎭⎫π6=-1. 12.函数f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3,且已知对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为( ) A.50π B.1100πC.1100D.440【答案】 C【解析】 f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3 =220⎣⎡⎦⎤sin 100πx -⎝⎛⎭⎫sin 100πx ·cos 2π3+cos 100πx sin 2π3 =220⎝⎛⎭⎫sin 100πx +12sin 100πx -32cos 100πx=2203⎝⎛⎭⎫32sin 100πx -12cos 100πx=2203×sin ⎝⎛⎭⎫100πx -π6, 则由对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立得当x =x 2时,f (x )取得最大值,当x =x 1时,f (x )取得最小值,所以|x 2-x 1|的最小值为12T =12×2π100π=1100(T 为f (x )的最小正周期),故选C.13.(2019·广东省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图象向左平移π3个单位,得到函数y =g (x )的图象,若x ∈⎣⎡⎦⎤-π2,π2,则函数g (x )的单调递增区间是________. 【答案】 ⎣⎡⎦⎤-5π12,π12 【解析】 ∵f (x )=1-23cos 2 x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝⎛⎭⎫2x -π3-3, ∴g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π3-3=2sin ⎝⎛⎭⎫2x +π3-3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ), 得-5π12+k π≤x ≤π12+k π(k ∈Z ), ∵x ∈⎣⎡⎦⎤-π2,π2, ∴函数g (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是⎣⎡⎦⎤-5π12,π12. 14.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎡⎦⎤0,π8上的最小值.【答案】见解析【解析】(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝⎛⎭⎫π6,0,由0=sin ⎝⎛⎭⎫2×π6+φ可得π3+φ=2k π(k ∈Z ),则φ=2k π-π3(k ∈Z ),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x -π3. (2)根据条件得g (x )=sin ⎝⎛⎭⎫4x +π3, 当x ∈⎣⎡⎦⎤0,π8时,4x +π3∈⎣⎡⎦⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12. 【新高考创新预测】15.(多填题)已知函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1(ω>0)的最小正周期为π,当x ∈⎣⎡⎦⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则x 1+x 2=________,f (x 1+x 2)=________.【答案】 π31 【解析】 函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6. 由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. ∵x ∈⎣⎡⎦⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2. 画出f (x )的图象(图略),结合图象知x 1+x 2=π3, 则f (x 1+x 2)=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+π6=2sin 5π6=1.。

函数y=Asin(ωx+φ)的图象及应用考点与提醒归纳

函数y=Asin(ωx+φ)的图象及应用考点与提醒归纳

函数y=A sin(ωx+φ)的图象及应用考点与提醒归纳一、基础知识1.函数y=A sin(ωx+φ)的有关概念2.用五点法画y=A sin(ωx+φ)(A>0,ω>0)一个周期内的简图用五点法画y=A sin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个关键点,如下表所示:3.由函数y=sin x的图象通过变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的两种方法(1)两种变换的区别①先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;②先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位长度.(2)变换的注意点无论哪种变换,每一个变换总是针对自变量x 而言的,即图象变换要看“自变量x ”发生多大变化,而不是看角“ωx +φ”的变化.考点一 求函数y =A sin(ωx +φ)的解析式[典例] (1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4 B .f (x )=2sin ⎝⎛⎭⎫12x +3π4 C .f (x )=2sin ⎝⎛⎭⎫14x +3π4 D .f (x )=2sin ⎝⎛⎭⎫2x +π4 (2)(2019·皖南八校联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数f (x )=________________.[解析] (1)由题图可知A =2,T =2×⎣⎡⎦⎤3π2-⎝⎛⎭⎫-π2=4π,故2πω=4π,解得ω=12. 所以f (x )=2sin ⎝⎛⎭⎫12x +φ.把点⎝⎛⎭⎫-π2,2代入可得2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2, 即sin ⎝⎛⎭⎫φ-π4=1,所以φ-π4=2k π+π2(k ∈Z), 解得φ=2k π+3π4(k ∈Z).又0<φ<π,所以φ=3π4.所以f (x )=2sin ⎝⎛⎭⎫12x +3π4. (2)依题意得22+⎝⎛⎭⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝⎛⎭⎫π2x +φ,由于该函数图象过点⎝⎛⎭⎫2,-12,因此sin(π+φ)=-12,即sin φ=12,而-π2≤φ≤π2,故φ=π6,所以f (x )=sin ⎝⎛⎭⎫π2x +π6.[答案] (1)B (2)sin ⎝⎛⎭⎫π2x +π6[解题技法]确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法有以下2种[题组训练]1.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )A .-62B .-32C .-22D .-1解析:选D 由图象可得A =2,最小正周期T =4×⎝⎛⎭⎫7π12-π3=π,则ω=2πT =2.由f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫7π6+φ=-2,|φ|<π2,得φ=π3,则f (x )=2sin ⎝⎛⎭⎫2x +π3,所以f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫11π12+π3=2sin5π4=-1. 2.(2018·咸阳三模)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则f (x )的解析式为( )A .f (x )=23sin ⎝⎛⎭⎫πx 8+π4B .f (x )=23sin ⎝⎛⎭⎫πx 8+3π4C .f (x )=23sin ⎝⎛⎭⎫πx 8-π4D .f (x )=23sin ⎝⎛⎭⎫πx 8-3π4解析:选D 由图象可得,A =23,T =2×[6-(-2)]=16, 所以ω=2πT =2π16=π8.所以f (x )=23sin ⎝⎛⎭⎫π8x +φ. 由函数的对称性得f (2)=-23, 即f (2)=23sin ⎝⎛⎭⎫π8×2+φ=-23, 即sin ⎝⎛⎭⎫π4+φ=-1, 所以π4+φ=2k π-π2(k ∈Z),解得φ=2k π-3π4(k ∈Z).因为|φ|<π,所以k =0,φ=-3π4.故函数的解析式为f (x )=23sin ⎝⎛⎭⎫πx 8-3π4.考点二 函数y =A sin(ωx +φ)的图象与变换[典例] (2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2[解析] 易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2. [答案] D[解题技法] 三角函数图象变换中的3个注意点(1)变换前后,函数的名称要一致,若不一致,应先利用诱导公式转化为同名函数; (2)要弄清变换的方向,即变换的是哪个函数的图象,得到的是哪个函数的图象,切不可弄错方向;(3)要弄准变换量的大小,特别是平移变换中,函数y =A sin x 到y =A sin(x +φ)的变换 量是|φ|个单位,而函数y =A sin ωx 到y =A sin(ωx +φ)时,变换量是⎪⎪⎪⎪φω个单位.[题组训练]1.将函数y =sin ⎝⎛⎭⎫x +π6的图象上所有的点向左平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象对应的函数解析式为( )A .y =sin ⎝⎛⎭⎫2x +5π12 B .y =sin ⎝⎛⎭⎫x 2+5π12C .y =sin ⎝⎛⎭⎫x 2-π12 D .y =sin ⎝⎛⎭⎫x 2+5π24解析:选B 将函数y =sin ⎝⎛⎭⎫x +π6的图象上所有的点向左平移π4个单位长度,得到函数y =sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π4+π6=sin ⎝⎛⎭⎫x +5π12的图象,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),可得函数y =sin ⎝⎛⎭⎫12x +5π12的图象,因此变换后所得图象对应的函数解析式为y =sin ⎝⎛⎭⎫x 2+5π12.2.(2019·潍坊统一考试)函数y =3sin 2x -cos 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度后,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的值为( )A.π12 B.π6C.π4D.π3解析:选B 由题意知y =3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6,其图象向右平移φ个单位长度后,得到函数g (x )=2sin ⎝⎛⎭⎫2x -2φ-π6的图象,因为g (x )为偶函数,所以2φ+π6=π2+k π,k ∈Z ,所以φ=π6+k π2,k ∈Z ,又因为φ∈⎝⎛⎭⎫0,π2,所以φ=π6.考点三 三角函数模型及其应用[典例] 据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin(ωx +φ)+B ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价9千元,9月份价格最低为5千元,则7月份的出厂价格为________元.[解析] 作出函数f (x )的简图如图所示,三角函数模型为:f (x )=A sin(ωx +φ)+B ,由题意知:A =2 000,B =7 000,T =2×(9-3)=12, ∴ω=2πT =π6.将(3,9 000)看成函数图象的第二个特殊点, 则有π6×3+φ=π2,∴φ=0,故f (x )=2 000sin π6x +7 000(1≤x ≤12,x ∈N *).∴f (7)=2 000×sin 7π6+7 000=6 000.故7月份的出厂价格为6 000元. [答案] 6 000[解题技法]三角函数模型在实际应用中的2种类型及解题策略(1)已知函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则;(2)把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.[题组训练]1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10解析:选C 设水深的最大值为M ,由题意并结合函数图象可得⎩⎪⎨⎪⎧3+k =M ,k -3=2,解得M=8.2.某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.解析:由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18,即⎩⎪⎨⎪⎧a =23,A =5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),令x =10,得y =20.5.答案:20.5[课时跟踪检测]A 级1.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 令x =0,得y =sin ⎝⎛⎭⎫-π3=-32,排除B 、D.由f ⎝⎛⎭⎫-π3=0,f ⎝⎛⎭⎫π6=0,排除C ,故选A.2.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π2,则f ⎝⎛⎭⎫π6的值是( )A .-3 B.33C .1D.3解析:选D 由题意可知该函数的周期为π2,∴πω=π2,ω=2,f (x )=tan 2x . ∴f ⎝⎛⎭⎫π6=tan π3= 3. 3.(2018·天津高考)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A .在区间⎣⎡⎦⎤3π4,5π4上单调递增 B .在区间⎣⎡⎦⎤3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦⎤3π2,2π上单调递减解析:选A 将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度后的解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π10+π5=sin 2x ,则函数y =sin 2x 的一个单调递增区间为⎣⎡⎦⎤3π4,5π4,一个单调递减区间为⎣⎡⎦⎤5π4,7π4.由此可判断选项A 正确.4.(2019·贵阳检测)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则φ的值为( )A .-π3B.π3C .-π6D.π6解析:选B 由题意,得T 2=π3-⎝⎛⎭⎫-π6=π2,所以T =π,由T =2πω,得ω=2,由图可知A =1,所以f (x )=sin(2x +φ).又因为f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=0,-π2<φ<π2,所以φ=π3. 5.(2019·武汉调研)函数f (x )=A cos(ωx +φ)(ω>0)的部分图象如图所示,给出以下结论: ①f (x )的最小正周期为2;②f (x )图象的一条对称轴为直线x =-12;③f (x )在⎝⎛⎭⎫2k -14,2k +34,k ∈Z 上是减函数; ④f (x )的最大值为A . 则正确结论的个数为( ) A .1 B .2 C .3D .4解析:选B 由题图可知,函数f (x )的最小正周期T =2×⎝⎛⎭⎫54-14=2,故①正确;因为函数f (x )的图象过点⎝⎛⎭⎫14,0和⎝⎛⎭⎫54,0,所以函数f (x )图象的对称轴为直线x =12⎝⎛⎭⎫14+54+kT 2=34+k (k ∈Z),故直线x =-12不是函数f (x )图象的对称轴,故②不正确;由图可知,当14-T4+kT ≤x ≤14+T 4+kT (k ∈Z),即2k -14≤x ≤2k +34(k ∈Z)时,f (x )是减函数,故③正确;若A >0,则最大值是A ,若A <0,则最大值是-A ,故④不正确.综上知正确结论的个数为2.6.(2018·山西大同质量检测)将函数f (x )=tan ⎝⎛⎭⎫ωx +π3(0<ω<10)的图象向右平移π6个单位长度后与函数f (x )的图象重合,则ω=( )A .9B .6C .4D .8解析:选B 函数f (x )=tan ⎝⎛⎭⎫ωx +π3的图象向右平移π6个单位长度后所得图象对应的函数解析式为y =tan ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π6+π3=tan ⎝⎛⎭⎫ωx -ωπ6+π3,∵平移后的图象与函数f (x )的图象重合,∴-ωπ6+π3=π3+k π,k ∈Z ,解得ω=-6k ,k ∈Z.又∵0<ω<10,∴ω=6. 7.已知函数f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2 的图象经过点(0,1),则该函数的振幅为____________,最小正周期T 为__________,频率为___________,初相φ为___________.解析:振幅A =2,最小正周期T =2ππ3=6,频率f =16.因为图象过点(0,1),所以2sin φ=1,所以sin φ=12,又因为|φ|<π2,所以φ=π6.答案:2 6 16 π68.函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (x )=________.解析:由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2,∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z),∴φ=π6+2k π(k ∈Z),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 答案:2sin ⎝⎛⎭⎫2x +π6 9.已知函数f (x )=sin ⎝⎛⎭⎫π3-ωx (ω>0)向左平移半个周期得g (x )的图象,若g (x )在[0,π]上的值域为⎣⎡⎦⎤-32,1,则ω的取值范围是________.解析:由题意,得g (x )=sin ⎣⎡⎦⎤π3-ω⎝⎛⎭⎫x +πω =sin ⎣⎡⎦⎤-π-⎝⎛⎭⎫ωx -π3=sin ⎝⎛⎭⎫ωx -π3, 由x ∈[0,π],得ωx -π3∈⎣⎡⎦⎤-π3,ωπ-π3. 因为g (x )在[0,π]上的值域为⎣⎡⎦⎤-32,1, 所以π2≤ωπ-π3≤4π3,解得56≤ω≤53.故ω的取值范围是⎣⎡⎦⎤56,53. 答案:⎣⎡⎦⎤56,5310.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:选用一个三角函数模型来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________.解析:设y =A sin(ωx +φ)+B (A >0,ω>0), 由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝⎛⎭⎫π2x +φ+6. 因为当x =1时,y =6,所以sin ⎝⎛⎭⎫π2+φ=0, 故π2+φ=2k π,k ∈Z ,可取φ=-π2, 所以y =sin ⎝⎛⎭⎫π2x -π2+6=-cos π2x +6. 答案:y =-cos π2x +611.设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 解:(1)因为T =2πω=π,所以ω=2,又因为f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=cos ⎝⎛⎭⎫π2+φ=-sin φ=32且-π2<φ<0,所以φ=-π3. (2)由(1)知f (x )=cos ⎝⎛⎭⎫2x -π3. 列表:12.(2019·湖北八校联考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在它的某一个周期内的单调递减区间是⎣⎡⎦⎤5π12,11π12.将y =f (x )的图象先向左平移π4个单位长度,再将图象上所有点的横坐标变为原来的12(纵坐标不变),所得到的图象对应的函数记为g (x ).(1)求g (x )的解析式;(2)求g (x )在区间⎣⎡⎦⎤0,π4上的最大值和最小值. 解:(1)∵T 2=11π12-5π12=π2,∴T =π,ω=2πT =2,又∵sin ⎝⎛⎭⎫2×5π12+φ=1,|φ|<π2, ∴φ=-π3,f (x )=sin ⎝⎛⎭⎫2x -π3, 将函数f (x )的图象向左平移π4个单位长度得y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4-π3=sin ⎝⎛⎭⎫2x +π6, 再将y =sin ⎝⎛⎭⎫2x +π6的图象上所有点的横坐标变为原来的12 (纵坐标不变)得g (x )=sin ⎝⎛⎭⎫4x +π6. ∴g (x )=sin ⎝⎛⎭⎫4x +π6. (2)∵x ∈⎣⎡⎦⎤0,π4,∴4x +π6∈⎣⎡⎦⎤π6,7π6,当4x +π6=π2时,x =π12,∴g (x )在⎣⎡⎦⎤0,π12上为增函数,在⎣⎡⎦⎤π12,π4上为减函数, 所以g (x )max =g ⎝⎛⎭⎫π12=1,又因为g (0)=12,g ⎝⎛⎭⎫π4=-12,所以g (x )min =-12, 故函数g (x )在区间⎣⎡⎦⎤0,π4上的最大值和最小值分别为1和-12. B 级1.(2019·惠州调研)函数f (x )=A sin(2x +θ)⎝⎛⎭⎫A >0,|θ|≤π2的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:选B 由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32,又∵|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增.所以选项B 正确.2.(2019·福州四校联考)函数f (x )=sin ωx (ω>0)的图象向右平移π12个单位长度得到函数y=g (x )的图象,并且函数g (x )在区间⎣⎡⎦⎤π6,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则实数ω的值为( )A.74 B.32C .2D.54解析:选C 因为将函数f (x )=sin ωx (ω>0)的图象向右平移π12个单位长度得到函数y =g (x )的图象,所以g (x )=sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π12,又因为函数g (x )在区间⎣⎡⎦⎤π6,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,所以g ⎝⎛⎭⎫π3=sin ωπ4=1且2πω≥π3,所以{ ω=8k +2(k ∈Z ),0<ω≤6,所以ω=2.3.(2018·南昌模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示.(1)求函数f (x )的解析式,并写出其图象的对称中心; (2)若方程f (x )+2cos ⎝⎛⎭⎫4x +π3=a 有实数解,求a 的取值范围. 解:(1)由图可得A =2,T 2=2π3-π6=π2,所以T =π,所以ω=2.当x =π6时,f (x )=2,可得2sin ⎝⎛⎭⎫2×π6+φ=2, 因为|φ|<π2,所以φ=π6.所以函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6. 令2x +π6=k π(k ∈Z),得x =k π2-π12(k ∈Z),所以函数f (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0(k ∈Z). (2)设g (x )=f (x )+2cos ⎝⎛⎭⎫4x +π3, 则g (x )=2sin ⎝⎛⎭⎫2x +π6+2cos ⎝⎛⎭⎫4x +π3 =2sin ⎝⎛⎭⎫2x +π6+2⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫2x +π6, 令t =sin ⎝⎛⎭⎫2x +π6,t ∈[-1,1], 记h (t )=-4t 2+2t +2=-4⎝⎛⎭⎫t -142+94, 因为t ∈[-1,1], 所以h (t )∈⎣⎡⎦⎤-4,94, 即g (x )∈⎣⎡⎦⎤-4,94,故a ∈⎣⎡⎦⎤-4,94.故a 的取值范围为⎣⎡⎦⎤-4,94.。

函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 精讲附配套练习

函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 精讲附配套练习

第四节函数y=A sin(ωx+φ)的图象及三角函数模型的简单应用[考纲传真] 1.了解函数y=A sin(ωx+φ)的物理意义;能画出函数的图象,了解参数A,ω,φ对函数图象变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.1.y=A sin (ωx+φ)的有关概念2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示3.由y=sin x的图象变换得到y=A sin(ωx+φ)(其中A>0,ω>0)的图象先平移后伸缩先伸缩后平移⇓⇓1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的单位长度一致.( )(2)将y =3sin 2x 的图象左移π4个单位后所得图象的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( )(3)函数f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( )(4)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )[答案] (1)× (2)× (3)× (4)√2.(2016·四川高考)为了得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,只需把函数y =sin x的图象上所有的点( )A .向左平行移动π3个单位长度 B .向右平行移动π3个单位长度 C .向上平行移动π3个单位长度 D .向下平行移动π3个单位长度A [把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度就得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象.]3.若函数y =sin(ωx +φ)(ω>0)的部分图象如图3-4-1,则ω=( )图3-4-1A .5 B.4 C.3D.2B [由图象可知,T 2=x 0+π4-x 0=π4, 所以T =π2=2πω,所以ω=4.]4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4 B.π4 C.0D.-π4B [把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝ ⎛⎭⎪⎫2x +φ+π4为偶函数,则φ的一个可能取值是π4.] 5.(教材改编)电流I (单位:A)随时间t (单位:s)变化的函数关系式是I =5sin ⎝ ⎛⎭⎪⎫100πt +π3,t ∈[0,+∞),则电流I 变化的初相、周期分别是________.π3,150 [由初相和周期的定义,得电流I 变化的初相是π3,周期T =2π100π=150.]已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x -π4,x ∈R .(1)画出函数f (x )在一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象? [解] (1)列表取值:(2)先把y =sin x 的图象向右平移π4个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.12分[规律方法] 1.变换法作图象的关键是看x 轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用ωx +φ=ω⎝ ⎛⎭⎪⎫x +φω确定平移单位.2.用“五点法”作图,关键是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,描点得出图象.如果在限定的区间内作图象,还应注意端点的确定.[变式训练1] (1)(2016·全国卷Ⅰ)将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4 B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3 C .y =2sin ⎝ ⎛⎭⎪⎫2x -π4D.y =2sin ⎝ ⎛⎭⎪⎫2x -π3(2)(2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.(1)D (2)2π3 [(1)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位长度,所得图象对应的函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D. (2)因为y =sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,所以把y =2sin ⎝ ⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝ ⎛⎭⎪⎫x -π3的图象.]图3-4-2如图3-4-2所示,则( ) A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝ ⎛⎭⎪⎫2x -π3C .y =2sin ⎝ ⎛⎭⎪⎫x +π6D .y =2sin ⎝ ⎛⎭⎪⎫x +π3(2)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2(1)A (2)D [(1)由图象知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝ ⎛⎭⎪⎫2x -π6.故选A.(2)由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.][规律方法] 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2; (2)求ω:确定函数的周期T ,则可得ω=2πT ; (3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[变式训练2] (2017·石家庄一模)函数f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象如图3-4-3所示,则f ⎝ ⎛⎭⎪⎫11π24的值为( )图3-4-3A .-62 B.-32 C.-22D.-1D [由图象可得A =2,最小正周期T =4⎝ ⎛⎭⎪⎫7π12-π3=π,则ω=2πT =2.又f ⎝ ⎛⎭⎪⎫7π12=2sin ⎝ ⎛⎭⎪⎫7π6+φ=-2,解得φ=-5π3+2k π(k ∈Z ),即k =1,φ=π3,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,f ⎝ ⎛⎭⎪⎫11π24=2sin ⎝ ⎛⎭⎪⎫11π12+π3=2sin 5π4=-1,故选D.](2016·天津高考)已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪π2-x ·cos ⎝ ⎭⎪⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.[解](1)f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z.2分f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π.6分(2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .8分设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.12分[规律方法] 讨论函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.[变式训练3] 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.【导学号:01772119】(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值.[解] (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx=32cos 2ωx -12sin 2ωx =-sin ⎝ ⎛⎭⎪⎫2ωx -π3.3分因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4,因此ω=1.5分(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.6分当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,则-1≤f (x )≤32.10分故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.12分数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? [解] (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,2分又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.4分当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.6分 (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3, 故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.9分又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 故在10时至18时实验室需要降温.12分[规律方法] 1.三角函数模型在实际中的应用体现在两个方面:一是用已知的模型去分析解决实际问题,二是把实际问题抽象转化成数学问题,建立三角函数模型解决问题,其关键是合理建模.2.建模的方法是认真审题,把问题提供的“条件”逐条地“翻译”成“数学语言”,这个过程就是数学建模的过程.[变式训练4] (2015·陕西高考)如图3-4-4,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )图3-4-4A .5 B.6 C.8D.10C [根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.][思想与方法]1.由图象确定函数解析式由图象确定y =A sin(ωx +φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点.2.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离).[易错与防范]1.要弄清楚是平移哪个函数的图象,得到哪个函数的图象.2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.3.由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因是相位变换和周期变换都是针对x 而言的.4.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域.课时分层训练(七) 二次函数与幂函数A 组 基础达标 (建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )【导学号:01772040】A.12 B.1 C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3 B.13 C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2 B.m =1或m =2 C .m =2D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B.1 C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0, 所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1, 由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分 ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知a =-13或-1. 12分B 组 能力提升 (建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0 B.恒小于0 C .等于0D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分第三节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号且不为零); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)⎝⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( )(3)x >0,y >0是x y +yx ≥2的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值为2a .( ) [答案] (1)× (2)× (3)× (4)×2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.]3.(2016·安徽合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b 的最小值为( )A .7 B.8 C .9D.10C [∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号,故选C.]4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) 【导学号:01772209】A .1+ 2 B.1+ 3 C .3D.4C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.]5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2.25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m , 则y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,y max =25.](1)(2015·湖南高考)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2 C .2 2D.4(2)(2017·郑州二次质量预测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A .10 B.9 C .8D.7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为__________.(1)B (2)-4 [(1)∵2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m的最大值等于9,故选B.(2)∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n=-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn =-4,当且仅当m =n =-12时,1m +1n 取得最大值-4.]已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. [证明] (1)1a +1b +1ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a ≥2+2=4,3分∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).5分(2)法一:∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a ,同理1+1b =2+a b ,∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,10分 ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).12分 法二:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab , 由(1)知,1a +1b +1ab ≥8,10分故⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ≥9.12分 [规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.【导学号:01772210】[证明] 由于a ,b 均为正实数,所以1a 2+1b 2≥21a 2·1b 2=2ab ,3分 当且仅当1a 2=1b 2,即a =b 时等号成立,又因为2ab +ab ≥22ab ·ab =22,当且仅当2ab =ab 时等号成立,所以1a 2+1b 2+ab ≥2ab +ab ≥22,8分当且仅当⎩⎪⎨⎪⎧ 1a 2=1b 2,2ab =ab ,即a =b =42时取等号.12分制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.[解] (1)设所用时间为t =130x (h), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].2分 所以这次行车总费用y 关于x 的表达式是y =130×18x+2×130360x ,x ∈[]50,100. (或y =2 340x +1318x ,x ∈[]50,100).5分(2)y =130×18x +2×130360x ≥26 10, 当且仅当130×18x=2×130360x , 即x =1810,等号成立.8分故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3]某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解](1)由题意得,y=100+0.5x+(2+4+6+ (2x)x,即y=x+100x+1.5(x∈N*).5分(2)由基本不等式得:y=x+100x+1.5≥2x·100x+1.5=21.5,8分当且仅当x=100x,即x=10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)a2+b22≥⎝⎛⎭⎪⎫a+b22≥ab(a,b∈R,当且仅当a=b时取等号).(2)a2+b22≥a+b2≥ab≥21a+1b(a>0,b>0,当且仅当a=b时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a =b 时等号成立”的含义是“a =b ”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(七) 二次函数与幂函数A 组 基础达标(建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( ) 【导学号:01772040】A.12B.1C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B.13C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m 4,由函数f (x )的增减区间可知m 4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B.m =1或m =2 C .m =2 D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则c a <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( )A .-1B.1C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得.∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧ -a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________. 【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25, 得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1,由a 2-2a +1≤4,解得-1≤a ≤3,又a ≥2,所以2≤a ≤3.]三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2),∴2=2(m 2+m )-1,即2=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2.4分又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎨⎧ 2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分 10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.[解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴x =-32∈[-2,3],2分∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分 (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知a =-13或-1. 12分B 组 能力提升(建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0B.恒小于0C .等于0 D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意,∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数.又∵a ,b ∈R ,且a +b >0,∴a >-b ,又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0,又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2, 故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]。

高考一轮复习:函数y=Asin(ωx+φ)的图像及应用

高考一轮复习:函数y=Asin(ωx+φ)的图像及应用

又 T=6,故选 A.
答案 A
高考总复习·数学(理科)
2.若函数 y=sin(ωx+φ)(ω>0)的部分图象如图所示,则ω=(
A.5 B.4
C.3 D.2
).
高考总复习·数学(理科)
解析
答案




由函数图象可知=(x0+)-x0=,所以 T=,所以ω=4.
B
高考总复习·数学(理科)

正确“列表、描点、连线”;(3)按照图象变换规律进行即可.
解析



(1)y=2sin(2x+)的振幅 A=2,周期 T= =π,初相φ=.




(2)令 X=2x+ ,则 y=2sin(2x+ )=2sin X.
高考总复习·数学(理科)
列表如下:
x

-
X
0
y=sin X
0






高考总复习·数学(理科)




(1)已知函数 f(x)=sin(ωx+φ)(ω>0,- ≤φ≤ )的图象
上的相邻的最高点和最低点的距离为 2
析式 f(x)=
.

,且过点(2,-),则函数解
高考总复习·数学(理科)
(2)函数

f(x)=2sin(ωx+φ)(ω>0, <


φ<)的部分图象如图所示,则ω和φ的值分
坐标不变),即可得到

y=2sin(2x+ )的图象.

高考总复习·数学(理科)
(1)(2016 全国Ⅲ卷)函数 y=sin x- cos x 的图象可由函

高考数学总复习 第四章 4.5函数y=Asin(ωx+φ)的图像

高考数学总复习 第四章 4.5函数y=Asin(ωx+φ)的图像

5π 6
(3)说明函数X f(x)的图0像可由2 y=π 2 2π
s得in到yx.=的y2=s图insi像2nxX经+过3π 怎样00 的变12换而00
-1 -2
0 0
思维升华
题型分类·深度剖析
题型一
函数y=Asin(ωx+φ)的图像变换
【例 1】 设函数 f(x)=sin ωx+
思维启迪 解析 思维升华
【例 1】 设函数 f(x)=sin ωx+
思维启迪 解析
(23)c令os Xω=x(ω2x>+0)π3的,周则期y为=2πs.in2x+π3=2sin X. (1)求它的振幅、初相; 列表,并描点画出图像:
(个2)周用期五的点闭法x 区作间出上它的-在图π6长像度;1ππ2为一π3
7π 12 3π
思维升华
(13)c五os点ωx法(ω作>简0)的图周:期用为“五π. 点法”作 y=Asin(ωx+φ)的简图,主
((要求12))求用是出它五通相的过应点振变的法幅量作x,、代出通初换它过相,在列;设长表z度,=计为ω算x一+得φ出,五由点z 坐取标0,,描π2,点π后,得32π出,图2π像来. 个周期的闭区间上的图像;
((32))说图明像函变数换:f由(x)函的数图y像=可si由n x y的=图像通过变换得到 y=Asin(ωx+φ) 的图像,有两种主要途径:“先平移后伸缩”与“先伸缩后平 s移in ”x .的图像经过怎样的变换而 得到.
题型分类·深度剖析
跟踪训练 1 已知函数 f(x)=3sin12x-π4,x∈R. (1)画出函数 f(x)在长度为一个周期的闭区间上的简图;
【例 1】 设函数 f(x)=sin ωx+
思维启迪 解析
思维升华

【步步高】高考数学总复习 第四章 4.5函数y=asin(ωx+φ)的图像及应用强化训练 理 北师大版

【步步高】高考数学总复习 第四章 4.5函数y=asin(ωx+φ)的图像及应用强化训练 理 北师大版

§4.5 函数y =A sin(ωx +φ)的图像及应用1. y =A sin(ωx +φ)的有关概念2. 如下表所示.3. 函数1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)作函数y =sin(x -π6)在一个周期内的图像时,确定的五点是(0,0),(π2,1),(π,0),(3π2,-1),(2π,0)这五个点.( × )(2)将y =3sin 2x 的图像向左平移π4个单位后所得图像的解析式是y =3sin(2x +π4).( × )(3)y =sin(x -π4)的图像是由y =sin(x +π4)的图像向右移π2个单位得到的.( √ ) (4)y =sin(-2x )的递减区间是(-3π4-k π,-π4-k π),k ∈Z .( × )(5)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0.( √ )(6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图像的两个相邻对称中心之间的距离为T 2.( √ )2. 把函数y =sin(x +π6)图像上各点的横坐标缩短到原来的12(纵坐标不变),再将图像向右平移π3个单位,那么所得图像的一条对称轴方程为( )A .x =-π2B .x =-π4C .x =π8D .x =π4答案 A解析 将y =sin(x +π6)图像上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图像向右平移π3个单位,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),x =-π2是其图像的一条对称轴方程.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图像如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝⎛⎭⎫-π3,T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,又φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π3,选A. 4. 设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3 (n ∈N +),∴n ·2πω=π3(n ∈N +),∴ω=6n (n ∈N +),∴当n =1时,ω取得最小值6.5. 已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ (|φ|<π2)的图像经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为__________. 答案 6,π6解析 由题意知1=2sin φ,得sin φ=12,又|φ|<π2,得φ=π6;而此函数的最小正周期为T =2π÷⎝⎛⎭⎫π3=6.题型一 函数y =A sin(ωx +φ)的图像及变换例1 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π.(1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图像;(3)说明函数f (x )的图像可由y =sin x 的图像经过怎样的变换而得到.思维启迪 将f (x )化为一个角的一个三角函数,由周期是π求ω,用五点法作图要找关键点.解 (1)f (x )=sin ωx +3cos ωx=2(12sin ωx +32cos ωx )=2sin(ωx +π3),又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin(2x +π3).∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表,并描点画出图像:(3)方法一 把y =sin x 的图像上所有的点向左平移π3个单位,得到y =sin ⎝⎛⎭⎫x +π3的图像,再把y =sin ⎝⎛⎭⎫x +π3的图像上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图像,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图像. 方法二 将y =sin x 的图像上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y=sin 2x 的图像;再将y =sin 2x 的图像向左平移π6个单位,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图像;再将y =sin ⎝⎛⎭⎫2x +π3的图像上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图像. 思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图像.(2)图像变换:由函数y =sin x 的图像通过变换得到y =A sin(ωx +φ)的图像,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图像作怎样的变换可得到f (x )的图像? 解 (1)列表取值:描出五个关键点并用光滑曲线连接,得到一个周期的简图.(2)先把y =sin x 的图像向右平移π4个单位,然后把所有的点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图像. 题型二 求函数y =A sin(ωx +φ)的解析式例2 (1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则( )A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图像的一部分如图所示,则该函数的解析式为____________.思维启迪 (1)根据周期确定ω,据f (0)=3和|φ|<π2确定φ;(2)由点(0,1)在图像上和|φ|<π2确定φ,再根据“五点作图法”求ω.答案 (1)D (2)f (x )=2sin ⎝⎛⎭⎫2x +π6 解析 (1)∵f (x )(ω>0,|φ|<π2)的最小正周期为π,∴T =2πω=π,ω=2.∵f (0)=2sin φ=3,即sin φ=32(|φ|<π2),∴φ=π3. (2)观察图像可知:A =2且点(0,1)在图像上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图像递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 思维升华 根据y =A sin(ωx +φ)+k 的图像求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图像的最高点和最低点,即A =最高点-最低点2;②k 的确定:根据图像的最高点和最低点,即k =最高点+最低点2;③ω的确定:结合图像,先求出周期T ,然后由T =2πω(ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.如图为y =A sin(ωx +φ)的图像的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图像向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程. 解 (1)由图像知A =3,以M ⎝⎛⎭⎫π3,0为第一个零点,N ⎝⎛⎭⎫5π6,0为第二个零点. 列方程组⎩⎨⎧ω·π3+φ=0,ω·5π6+φ=π,解之得⎩⎪⎨⎪⎧ω=2,φ=-2π3.∴所求解析式为y =3sin ⎝⎛⎭⎫2x -2π3. (2)f (x )=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-2π3 =3sin ⎝⎛⎫2x -π3, 令2x -π3=π2+k π(k ∈Z ),则x =512π+k π2 (k ∈Z ),∴f (x )的对称轴方程为x =512π+k π2 (k ∈Z ).题型三 函数y =A sin(ωx +φ)的应用例3 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图像的一部分如下图所示.(1)求函数f (x )的解析式;(2)当x ∈[-6,-23]时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.思维启迪 (1)由图像知A ,T →图像过(-1,0)求φ→解析式解 (1)由图像知A =2,T =8, ∵T =2πω=8,∴ω=π4.又图像经过点(-1,0),∴2sin(-π4+φ)=0.∵|φ|<π2,∴φ=π4.∴f (x )=2sin(π4x +π4).(2)y =f (x )+f (x +2)=2sin(π4x +π4)+2sin(π4x +π2+π4)=22sin(π4x +π2)=22cos π4x .∵x ∈[-6,-23],∴-3π2≤π4x ≤-π6,∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;当π4x =-π,即x =-4时,y =f (x )+f (x +2)取得最小值-2 2.思维升华 利用函数的图像确定解析式后,求出y =f (x )+f (x +2),然后化成一个角的一个三角函数形式,利用整体思想(将ωx +φ视为一个整体)求函数最值.(1)已知函数y =2sin(ωx +θ)为偶函数(0<θ<π),其图像与直线y =2的某两个交点的横坐标为x 1、x 2,若|x 2-x 1|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4(2)如图,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和 时间t s 的函数关系式为s =6sin(2πt +π6),那么单摆来回摆动一次所需的时间为( )A .2π sB .π sC .0.5 sD .1 s答案 (1)A (2)D解析 (1)∵y =2sin(ωx +θ)为偶函数,∴θ=π2.∵图像与直线y =2的两个交点的横坐标为x 1、x 2 且|x 2-x 1|min =π,∴2πω=π,ω=2. (2)T =2π2π=1,∴选D.三角函数图像与性质的综合问题典例:(12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图像向右平移π6个单位,得到函数g (x )的图像,求函数g (x )在区间[0,π]上的最大值和最小值.思维启迪 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x[3分] =2sin(x +π3)[5分] 于是T =2π1=2π.[6分] (2)由已知得g (x )=f (x -π6)=2sin(x +π6)[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6]∴sin(x +π6)∈[-12,1],[10分] ∴g (x )=2sin(x +π6)∈[-1,2][11分]故函数g (x )在区间[0,π]上的最大值为2, 最小值为-1.[12分]解决三角函数图像与性质的综合问题的一般步骤: 第一步:将f (x )化为a sin x +b cos x 的形式. 第二步:构造f (x )=a 2+b 2(sin x ·aa 2+b 2+ cos x ·ba 2+b 2). 第三步:和角公式逆用f (x )=a 2+b 2sin(x +φ)(其中 φ为辅助角).第四步:利用f (x )=a 2+b 2sin(x +φ)研究三角函数 的性质.第五步:反思回顾,查看关键点、易错点和答题规范.温馨提醒 (1)在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ),或a sin α+b cos α=a 2+b 2cos(α-φ)(其中tan φ=ab ),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)求g (x )的最值一定要重视定义域,可以结合三角函数图像进行求解.方法与技巧1. 五点法作图及图像变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图像变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2. 由图像确定函数解析式由函数y =A sin(ωx +φ)的图像确定A 、ω、φ的题型,常常以“五点法”中的第一个零点⎝⎛⎭⎫-φω,0作为突破口,要从图像的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3. 对称问题函数y =A sin(ωx +φ)的图像与x 轴的每一个交点均为其对称中心,经过该图像上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图像的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离). 失误与防范1. 由函数y =sin x 的图像经过变换得到y =A sin(ωx +φ)的图像,如先伸缩,则平移时要把x前面的系数提出来.2. 复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.A 组 专项基础训练 (时间:40分钟)一、选择题1. 为得到函数y =cos(2x +π3)的图像,只需将函数y =sin 2x 的图像( )A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度答案 A解析 y =cos(2x +π3)=sin[π2+(2x +π3)]=sin(2x +5π6).故要得到y =sin(2x +5π6)=sin 2(x +5π12)的图像,只需将函数y =sin 2x 的图像向左平移5π12个单位长度.2. 已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图像如图所示,则函数f (x )的一个单调递增区间是( )A .[-7π12,5π12]B .[-7π12,-π12]C .[-π12,7π12]D .[-π12,5π12] 答案 D解析 由函数的图像可得14T =23π-512π, ∴T =π,则ω=2.又图像过点(512π,2), ∴2sin(2×512π+φ)=2, ∴φ=-π3+2k π,k ∈Z , 取k =0,即得f (x )=2sin(2x -π3), 其单调递增区间为[k π-π12,k π+5π12],k ∈Z ,取k =0,即得选项D. 3. 将函数y =sin(x +φ)的图像F 向左平移π6个单位长度后得到图像F ′,若F ′的一个对称中心为⎝⎛⎭⎫π4,0,则φ的一个可能取值是( ) A.π12B.π6C.5π6D.7π12 答案 D解析 图像F ′对应的函数y =sin ⎝⎛⎭⎫x +π6+φ, 则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z , 当k =1时,φ=7π12,故选D. 4. 设ω>0,函数y =sin(ωx +π3)+2的图像向右平移4π3个单位后与原图像重合,则ω的最小值是( ) A.23B.43C.32 D .3答案 C解析 由函数向右平移4π3个单位后与原图像重合, 得4π3是此函数周期的整数倍.又ω>0, ∴2πω·k =4π3,∴ω=32k (k ∈Z ),∴ωmin =32.5. 已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是 ( ) A .(-∞,-92]∪[6,+∞) B .(-∞,-92]∪[32,+∞) C .(-∞,-2]∪[6,+∞)D .(-∞,-32]∪[32,+∞) 答案 D解析 当ω>0时,-π3ω≤ωx ≤π4ω, 由题意知-π3ω≤-π2,即ω≥32; 当ω<0时,π4ω≤ωx ≤-π3ω, 由题意知-π3ω≥π2,即ω≤-32. 综上可知,ω的取值范围是(-∞,-32]∪[32,+∞). 二、填空题6. 已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=__________.答案 143解析 依题意,得x =π6+π32=π4时,y 有最小值, ∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2(k ∈Z ). ∴ω=8k +143(k ∈Z ), 因为f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,所以π3-π4<πω,即ω<12,令k =0,得ω=143. 7. 设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的 值为________.答案 34解析 取K ,L 中点N ,则MN =12,因此A =12. 由T =2得ω=π.∵函数为偶函数,∴φ=π2,∴f (x )=12cos πx , f (16)=12cos π6=34. 8. 某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃.答案 20.5解析 由题意得⎩⎪⎨⎪⎧ a +A =28,a -A =18, ∴⎩⎪⎨⎪⎧a =23,A =5, ∴y =23+5cos ⎣⎡⎦⎤π6(x -6),x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 三、解答题9. (2013·天津)已知函数f (x )=-2sin ⎝⎛⎭⎫2x +π4+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解 (1)f (x )=-2sin 2x ·cos π4-2cos 2x ·sin π4+3sin 2x -cos 2x =2sin 2x -2cos 2x =22sin ⎝⎛⎭⎫2x -π4. 所以,f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎡⎦⎤0,3π8上是增函数,在区间⎣⎡⎦⎤3π8,π2上是减函数.又f (0)=-2,f ⎝⎛⎭⎫3π8=22,f ⎝⎛⎭⎫π2=2,故函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为22,最小值为-2. 10.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的周期为π2. (1)求ω的值和函数f (x )的单调递增区间;(2)设△ABC 的三边a 、b 、c 满足b 2=ac ,且边b 所对的角为x ,求此时函数f (x )的值域.解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1)=sin(2ωx -π6)-12,由f (x )的周期T =2π2ω=π2,得ω=2,∴f (x )=sin(4x -π6)-12,由2k π-π2≤4x -π6≤2k π+π2(k ∈Z ), 得-π12+k π2≤x ≤π6+k π2(k ∈Z ),即f (x )的单调递增区间是[-π12+k π2,π6+k π2](k ∈Z ).(2)由题意,得cos x =a 2+c 2-b 22ac ≥2ac -ac 2ac =12,又∵0<x <π,∴0<x ≤π3,∴-π6<4x -π6≤7π6,∴-12<sin(4x -π6)≤1,∴-1<sin(4x -π6)-12≤12,∴f (x )的值域为(-1,12].B 组 专项能力提升(时间:30分钟)1. 电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图像如右图所示,则当t =1100秒时,电流强度是() A .-5安 B .5安C .53安D .10安答案 A解析 由图像知A =10,T2=4300-1300=1100,∴ω=2πT =100π.∴I =10sin(100πt +φ).⎝⎛⎭⎫1300,10为五点中的第二个点,∴100π×1300+φ=π2.∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6,当t =1100秒时,I =-5安. 2. (2012·上海)若S n =sin π7+sin 2π7+…+sin n π7(n ∈N +),则在S 1,S 2,…,S 100中,正数的个数是( ) A .16B .72C .86D .100 答案 C解析 分析S n 的正负规律,从而求解.易知S 1>0,S 2>0,S 3>0,S 4>0,S 5>0,S 6>0,S 7>0.S 8=sin π7+sin 2π7+…+sin 7π7+sin 8π7=sin 2π7+sin 3π7+…+sin 7π7>0, S 9=sin 3π7+sin 4π7+…+sin 7π7>0, S 10=sin 4π7+…+sin 7π7>0, S 11=sin 5π7+sin 6π7+sin 7π7>0, S 12=sin 6π7+sin 7π7>0, S 13=sin 7π7=0, S 14=sin7π7+sin 14π7=0, ∴S 1,S 2,…,S 100中,S 13=0,S 14=0,S 27=0,S 28=0,S 41=0,S 42=0,S 55=0,S 56=0,S 69=0,S 70=0,S 83=0,S 84=0,S 97=0,S 98=0,共14个.∴在S 1,S 2,…,S 100中,正数的个数是100-14=86(个).3. 已知函数f (x )=sin(ωx +φ) (ω>0,-π2≤φ≤π2)的图像上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f (x )=________________. 答案 sin ⎝⎛⎭⎫πx 2+π6解析 据已知两个相邻最高及最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f (x )=sin ⎝⎛⎭⎫πx 2+φ,又函数图像过点⎝⎛⎭⎫2,-12,故f (2)=sin(π+φ)=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6, 故f (x )=sin ⎝⎛⎭⎫πx 2+π6.4. 已知函数f (x )=sin(2x +π6)+sin(2x -π6)-cos 2x +a (a ∈R ,a 为常数). (1)求函数f (x )的最小正周期和单调增区间;(2)若函数f (x )的图像向左平移m (m >0)个单位后,得到函数g (x )的图像关于y 轴对称,求实数m 的最小值.解 (1)f (x )=sin(2x +π6)+sin(2x -π6)-cos 2x +a =3sin 2x -cos 2x +a =2sin(2x -π6)+a . ∴f (x )的最小正周期为2π2=π, 当2k π-π2≤2x -π6≤2k π+π2(k ∈Z ), 即k π-π6≤x ≤k π+π3(k ∈Z )时,函数f (x )单调递增, 故所求函数f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ). (2)函数f (x )的图像向左平移m (m >0)个单位后得g (x )=2sin[2(x +m )-π6]+a 要使g (x )的图像关于y 轴对称,只需2m -π6=k π+π2(k ∈Z ). 即m =k π2+π3(k ∈Z ),所以m 的最小值为π3.5. (2012·湖南)已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部分图 像如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝⎛⎭⎫x -π12-f ⎝⎛⎭⎫x +π12的单调递增区间. 解 (1)由题设图像知,周期T =2⎝⎛⎭⎫11π12-5π12=π,所以ω=2πT=2.因为点⎝⎛⎭⎫5π12,0在函数图像上, 所以A sin ⎝⎛⎭⎫2×5π12+φ=0,即sin ⎝⎛⎭⎫5π6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3.从而5π6+φ=π,即φ=π6. 又点(0,1)在函数图像上,所以A sin π6=1, 解得A =2.故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+π6-2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π6 =2sin 2x -2sin ⎝⎛⎭⎫2x +π3 =2sin 2x -2⎝⎛⎭⎫12sin 2x +32cos 2x =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 所以函数g (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z .。

正弦型函数y=Asin(ωx+φ)的图象和应用

正弦型函数y=Asin(ωx+φ)的图象和应用

正弦型函数y =A sin(ωx +φ)的图象及应用考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32. (1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】 已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】 已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式;(2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.【训练3】 (2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝⎛⎭⎫π3,5.(1)求函数的解析式;(2)求函数f (x )的递增区间.考向四--怎样求解三角函数的最值问题.【试一试】 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎡⎦⎤0,π2上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.课后练习1.(人教A 版教材习题改编)y =2sin ⎝⎛⎭⎫2x -π4 的振幅、频率和初相分别为( ). A .2,1π,-π4B .2,12π,-π4C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)⎝⎛⎭⎫|φ|<π2的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ).A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ). A .-sin x B .sin x C .-cos x D .cos x4.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .3。

函数y=Asin(ωx+φ)的图像与性质

函数y=Asin(ωx+φ)的图像与性质

例 3、已知函数 y=Asin(ωx+φ),x∈R(其中 A>0,ω>0)的图 像 在 y 轴 右侧的 第一个最 高点 (函数取 最大值的 点 )为 M(2,2 2),与 x 轴在原点右侧的第一个交点为 N(6,0),求这个 π π 函数的解析式. y= 2 2sin( 8x+4 ), x∈R.
2π π 根据题意,可知 A=2 2, T=16.于是 ω= = , T 8 π π 将点 M(2,2 2)代入 y=2 2sin( x+φ),得 2 2=2 2sin( · 2+φ), 8 8 π π π π ∴sin( +φ)=1.所以 +φ= ,即 φ= . 4 4 2 4
5 3 k , k (k Z ) 探究展示 8 8 4 1.设函数f ( x) sin(x ) (- 0), y f ( x)图象的一条
对称轴是直线x

3 8 / y 2 cos( 2 x ) 2 4 (3)证明直线5 x 2 y c 0与函数y f ( x)的图象不相切。
1 各点的横坐标变为原来的 倍 ⇓ ω
得到 y= sin ωx+φ的图象 步骤 3
各点的纵坐标变为原来的A倍 ⇓
步骤 4
各点的纵坐标变为原来的A倍
得到 y= Asin ωx+ φ的图象
得到 y= Asin ωx+ φ的图象
以上两种方法的区别:方法一先平移再伸缩;方法二先伸缩再平 移.特别注意方法二中的平移量.
例 4、如图为一个缆车示意图,该缆车半径为 4.8 米,圆上最低点 与地面的距离为 0.8 米,且每 60 秒转动一圈,图中 OA 与地面垂 直,以 OA 为始边,逆时针转动 θ 角到 OB,设 B 点与地面间的距 离为 h. (1)求 h 与 θ 间的函数关系式; (2)设从 OA 开始转动,经过 t 秒到达 OB,求 h 与 t 之间的函数关系式,并求该缆车首次到 达最高点时所用的时间.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.y =A sin(ωx +φ)的有关概念2.如下表所示:3.函数y =sin x【知识拓展】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( ) (2)将函数y =sin ωx 的图象向右平移φ(φ>0)个单位长度,得到函数y =sin(ωx -φ)的图象.( ) (3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( ) (4)函数y =A sin(ωx +φ)的最小正周期为T =2πω.( )(5)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x .( )(6)若函数y =A cos(ωx +φ)的最小正周期为T ,则函数图象的两个相邻对称中心之间的距离为T2.( )1.(教材改编)y =2sin(12x -π3)的振幅,频率和初相分别为( )A .2,4π,π3B .2,14π,π3C .2,14π,-π3D .2,4π,-π32.(2015·山东)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.(2017·青岛质检)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A .y =sin(2x -π10)B .y =sin(2x -π5)C .y =sin(12x -π10)D .y =sin(12x -π20)4.(2016·临沂模拟)已知函数f (x )=A cos(ωx +θ)的图象如图所示,f (π2)=-23,则f (-π6)=________.5.若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.题型一 函数y =A sin(ωx +φ)的图象及变换例1 (2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2) 将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值. 引申探究在本例(2)中,将f (x )图象上所有点向左平移π6个单位长度,得到g (x )的图象,求g (x )的解析式,并写出g (x )图象的对称中心.思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos2xB .y =-sin2xC .y =sin(2x -π4)D .y =sin(2x +π4)题型二 由图象确定y =A sin(ωx +φ)的解析式例2 已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.思维升华 求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法如下:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(2016·太原模拟)已知函数f (x )=sin(ωx +φ) (ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }题型三 三角函数图象性质的应用 命题点1 三角函数模型的应用例3 (2015·陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10命题点2 函数零点(方程根)问题例4 已知关于x 的方程2sin 2x -3sin2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________. 引申探究例4中,若将“有两个不同的实数根”改成“有实根”,则m 的取值范围是__________. 命题点3 图象与性质的综合应用例5 已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.已知函数f (x )=cos(3x +π3),其中x ∈[π6,m ],若f (x )的值域是[-1,-32],则m的取值范围是__________.4.三角函数图象与性质的综合问题典例 (12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2].[11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分]解决三角函数图象与性质的综合问题的一般步骤:第一步:(化简)将f(x)化为a sin x+b cos x的形式;第二步:(用辅助角公式)构造f(x)=a2+b2·(sin x·aa2+b2+cos x·ba2+b2);第三步:(求性质)利用f(x)=a2+b2sin(x+φ)研究三角函数的性质;第四步:(反思)反思回顾,查看关键点、易错点和答题规范.提醒:完成作业第四章§4.4答案精析基础知识 自主学习 知识梳理1.2πω ω2πωx +φ φ 2.0-φ π2-φ π-φ 3π2-φ2π-φ 0 π2 π 3π2 2π 3.|φ| |φω|思考辨析(1)√ (2)× (3)× (4)× (5)× (6)√ 考点自测1.C 2.B 3.C 4.-23 5.3π8题型分类 深度剖析例1 解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.引申探究解 由(1)知f (x )=5sin(2x -π6),因此g (x )=5sin[2(x +π6)-π6]=5sin(2x +π6).因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为(k π2-π12,0),k ∈Z .跟踪训练1 A例2 解 (1)观察图象可知A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6,又∵1112π是函数的一个零点且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin(2x +π6).(2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z ),解得x =k π2+π6(k ∈Z ),∴f (x )=2sin(2x +π6)的对称轴方程为x =k π2+π6(k ∈Z ).跟踪训练2 B 例3 C 例4 (-2,-1)解析 方程2sin 2x -3sin2x +m -1=0可转化为 m =1-2sin 2x +3sin2x =cos2x +3sin2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根.∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究 [-2,1)例5 解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z ,由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤5π6,∴当2x -π6=π2,即x =π3时,f (x )最大值=3; 当2x -π6=-π6, 即x =0时,f (x )最小值=-32. 跟踪训练3 [2π9,5π18] 解析 画出函数的图象.由x ∈[π6,m ], 可知5π6≤3x +π3≤3m +π3, 因为f (π6)=cos 5π6=-32且f (2π9)=cosπ=-1,要使f (x )的值域是[-1,-32],只要2π9≤m ≤5π18,即m ∈[2π9,5π18].。

相关文档
最新文档