九年级上反比例函数精选题

合集下载

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( )A.y =2x +1B.y =22xC.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.45﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 26﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =k x(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( ) A.y =10x B.y =5xC.y =20xD.y =20x9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7v -6.10 -2.90 -2.01 -1.51 -1.19 -1.05 -0.86A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3.13.若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____. 14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=k(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)x作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为()A.y =2x +1B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y =2x+1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23kx -是反比例函数,则k 的值是( )A.-1B.2C.±2D. 解答:∵y =k 23kx -是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k , 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a 为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B 两点关于原点对称时,a的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t ),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4x B.y=-4xC.y=2x D.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h. 11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x-是反比例函数,∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________.解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t=16001600(4)(4)t t t t ---=264004t t -,答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务. 18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32.20.反比例函数y =k x(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x,由31y x y x =⎧⎪⎨=⎪⎩得:33x y ⎧=⎪⎨⎪=⎩或33x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (3,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-3,3), 设直线C ′D 的解析式为y =kx +b ,∴331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x ; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。

九年级数学反比例函数训练题(含答案)

九年级数学反比例函数训练题(含答案)

反比例函数训练题一、填空题1.图象经过点(-2,5)的反比例函数的解析式是 .2.已知函数322)2(---=m mx m y 是反比例函数,且图象在第一、三象限内,则=m.3.反比例函数)0(≠=k xk y 的图象叫做 .当k >0时,图象分居第象限,在每个象限内y 随x 的增大而 ;当k <0时,图象分居第 象限,在每个象限内y 随x 的增大而 .4.反比例函数xy 5=,图象在第 象限内,函数值都是随x 的增大而 .5.若变量y 与x 成反比例,且x=2时,y=-3,则y 与x 之间的函数关系式是 ,在每个象限内函数值y 随x 的增大而 .6.已知函数xm y =,当21-=x 时,6=y ,则函数的解析式是 .7.在函数xk y 22--=(k 为常数)的图象上有三个点(-2,y 1),(-1,y 2),(21,y 3),函数值y 1,y 2,y 3的大小为 .8.如图,面积为3的矩形OABC 的一个顶点B 在反比例函数xk y =的图象上,另三点在坐标轴上,则k= .9.反比例函数xk y =与一次函数y=kx+m 的图象有一个交点是(-2,1),则它们的另一个交点的坐标是 .10.已知反比例函数xk y 2=的图象位于第二、四象限,且经过点(k-1,k+2),则k= .二、选择题11.平行四边形的面积不变,那么它的底与高的函数关系是( ) A.正比例函数 B.反比例函数 C.一次函数 D.二次函数 12.下列函数中,反比例函数是( )A.2x y -= B.xy 2-=C.21+-=x y D.212+-=x y13.函数xm y =的图象过(2,-2),那么函数的图象在( )A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限 14.如图,在xy 1=(x >0)的图象上有三点A ,B ,C ,过这三点分别向x 轴引垂线,交x 轴于A 1,B 1,C 1三点,连OA ,OB ,OC ,记△OAA 1,△OBB 1,△OCC 1的面积分别为S 1,S 2,S 3,则有( ) A.S 1=S 2=S 3 B.S 1<S 2<S 3 C.S 3<S 1<S 2 D.S 1>S 2>S 3 15.已知y 与x 成反比例,且41=x 时,y=-1,那么y 与x 之间的函数关系式是( ) A.x y 2-= B.xy 21-= C.xy 41--D.x y 4-=16.反比例函数xk y =(k >0)在第一象限的图象上有一点P ,PQ ⊥x 轴,垂足为Q ,连PO ,设Rt △POQ 的面积为S ,则S 的值与k 之间的关系是( )A.4k S =B.2k S =C.k S =D.S >k17.已知a ·b <0,点P (a ,b )在反比例函数xa y =的图象上,则直线b ax y +=不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 18.函数xk y =与)0(1≠-=k kx y 在同一坐标系中的图象大致是( )19.若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数xy 1-=的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A.y 1<y 2<y 3B.y 2<y 3<y 1C.y 3<y 2<y 1D.y 1<y 3<y 220.若P (2,2)和Q (m ,-m 2)是反比例函数xk y =图象上的两点,则一次函数y=kx+m的图象经过( )A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限 三、解答题21.甲、乙两地相距100千米,一辆汽车从甲地开往乙地,求汽车到达乙地所用的时间 y (时)与汽车的平均速度x (千米/时)之间的函数关系式,并写出自变量的取值范围,画出图象的草图.22.如图,Rt △AOB 的顶点A (a ,b )是一次函数y=x+m-1的图象与反比例函数xm y =的图象在第一象限内的交点,△AOB 的面积为3.求:(1)一次函数和反比例函数的解析式; (2)点A 的坐标.23.已知变量y 与x 成反比例,即)0(≠=k xk y 并且当x=3时,y=7,求:(1)k 的值;(2)当312=x 时y 的值;(3)当y=3时x 的值.24.在反比例函数xk y 的图象上有一点P ,它的横坐标m 与纵坐标n 是方程t 2-4t-2=0的两个根.(1)求k 的值;(2)求点P 与原点O 的距离.25.已知y=y 1-y 2,y 1与x 成反比例,y 2与x 2成正比例,且当x=-1时,y=-5,当x=1时, y=1,求y 与x 之间的函数关系式.26.一定质量的二氧化碳,当它的体积V=5m 3时,它的密度ρ=1.98kg/m 3. (1)求ρ与V 的函数关系;(2)求当V=9m 3时二氧化碳的密度ρ.27.如图,一个圆台形物体的上底面积是下底面积的32,如果放在桌上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?28.设函数552)2(+--=m mm y ,当m 取何值时,它是反比例函数?它的图象位于哪些象限内?(1)在每一个象限内,当x 的值增大时,对应的y 值是随着增大,还是随着减小? (2)画出函数图象. (3)利用图象求当-3≤x ≤21-时,函数值y 的变化范围.29.已知反比例函数xy 12=的图象和一次函数y=kx-7的图象都经过点P (m ,2).求:(1)这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A ,B 在这个一次函数的图象上,顶点C ,D 在这个反 比例函数的图象上,两底AD ,BC 与y 轴平行,且A 和B 的横坐标分别为a 和a+2,求a 的值.30.如图,直线AB 过点A (m,0),B(0,n)(m >0,n >0).反比例函数xm y =的图象与AB交于C ,D 两点.P 为双曲线xm y =上任一点,过P 作PQ ⊥x 轴于QPR ⊥y 轴于R.请分别按(1)(2)(3)各自的要求解答问题.(1)若m+n=10,n 为值时ΔAOB 面积最大?最大值是多少? (2)若S △AOC =S △COD =S △DOB ,求n 的值.(3)在(2)的条件下,过O ,D ,C 三点作抛物线,当抛物线的对称轴为x=1时,矩 形PROQ 的面积是多少?参 考 答 案一、填空题 1.xy 10-=. 2. 2. 3.双曲线;一、三;减小;二、四;增大. 4.一、三;减小.5.xy 6-=; 6.x36-=. 7.y 3<y 1<y 2. 8.3. 9.⎪⎭⎫⎝⎛-4,21. 10.-1. 二、选择题11.B 12.B 13.D 14.A 15.B 16.B 17.C 18.C 19.B 20.C 三、解答题 21.解:xy 100=(x >0)22.解:(1)由⎪⎪⎩⎪⎪⎨⎧==,321,ab am b 得m=6.∴ xy x y 6;5=+=.(2)由xx 65=+,解得x 1=1,x 2=-6(舍).∴A(1,6).23.解:(1)把x=3,y=7代入xk y =中,3k y =,x1 2 34xy 100=10050313325∴ k=21. (2)把212=x 代入xy 21=中,则∴ 93721==y .(3)把y=3代入xy 21=中,则x213=,∴ x=7. 24.解:(1)∵P (m ,n )在xk y =上,∴ mk n =,∴ mn=k. 又∵m ,n 是t 2-4t-2=0的两根, 则mn=-2.∴k=-2. (2)mn n m nm OP 2)(222-+=+=32)2(2)4(2=-⨯-+=.25.解:∵y 1与x 成反比例, ∴设)0(11≠=k xk y .∵y 2与x 2成正比例, ∴设y 2=k 2x 2.∵ y=y 1-y 2, ∴ 221x k xk y -=.把⎩⎨⎧==⎩⎨⎧-=-=.1,1;51y x y x 分别代入得⎩⎨⎧-=--=-,1,52121k k k k 解得 k 1=3;k 2=2. ∴y 与x 的函数解析式为223x xy -=.26.解:将V=5时,ρ=1.98代入Vm =ρ得m=1.98×5=9.9.∴ρ与V 的函数关系式为ρV9.9=.当V=9时,ρ1.199.9==(kg/m 3). 当V=9时,ρ1.199.9==(kg/m 3).27.解:设下底面积是S 0,则由上底面积是32S 0.由SF p =,且S=S 0时p=200,F=pS=200S 0.∵是同一物体,∴F=200S 0是定值. ∴当032S S =时,0032200S S SF p ===300(Pa ).∴当圆台翻过来时,对桌面的压强是300Pa. 28.解:依题意,得⎩⎨⎧≠--=+-.02,1552m m m 解得m=3.当m=3时,原函数是反比例函数,即xy 1=,它的图象在第一、三象限内.(1)由m-2=3-2>-知,在每个象限内,当x 的值增大时,对应的y 值随着减小. (2)列表:x21- 31-31211 xy 1=-2-3 3 21(3)由图象知,当-3≤x ≤21-时,函数值y 由31-减小到-2,即-2≤y ≤31-.29.解:(1)∵点P (m,2)在函数xy 12=的图象上,∴ m=6.∵一次函数y=kx-7的图象经过点P (6,2),得6k-7=2, ∴ 23=k .∴所求的一次函数解析式是723-=x y .(2)∵点A ,B 的横坐标分别是a 和a+2, ∴可得:⎪⎭⎫⎝⎛-723.a a A , ⎪⎭⎫⎝⎛-+423,2a a B , C ⎪⎭⎫⎝⎛++212,2a a , D ⎪⎭⎫ ⎝⎛-a a 12,. ∵AB=DC ,∴22+32=22+212212⎪⎭⎫ ⎝⎛-+a a .即312212⨯=-+a a . ①由312212=-+aa ,化简得0822=++a a 方程无实数根. ②由312212-=-+aa 化简得0822=-+x a .∴a=-4;a=2.经检验:a=-4,a=2均为所求的值.30.解:(1)由,10,21=+=∆n m mn S AOB 得 225)5(21521)10(2122+--=+-=-=∆n n n n n S AOB .当n=5时,S △AOB 的最大值为225.(2)∵AB 过(m ,0),(0,n )两点,求得AB 的方程为n x mn y +-=.当S △AOC =S △COD =S △DOB 时,有AC=DC=DB ,过C ,D 作x 轴的垂线,可知D ,C 的横坐标分 别为m m 32,3. 将3m x =代入xmy =,得y=3.将y=3,3m x =代入直线方程n x mn y +-=得33=+-n n .∴29=n .(3)当29=n 时,可求得)3,3(),23,32(m D m C .设过O ,C ,D bx ax y +=2,可得 ⎪⎪⎩⎪⎪⎨⎧=+=+.3391,32329422b m a m mb a m 解得⎪⎪⎩⎪⎪⎨⎧=-=.463,4812m b m a∴对称轴为m ab x 1872=-=.∴1187=m ,∴718=m .∵P (x ,y )在xm y =上,∴S 四边形PROQ =xy=m=718.。

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试题(有答案解析)

一、选择题1.函数5y x =的图象位于() . A .第三象限B .第一、三象限C .第二、四象限D .第二象限【答案】B【分析】根据直角坐标系、反比例函数的性质分析,即可得到答案.【详解】 ∵5y x=∴5xy =,即x 和y 符号相同 ∴5y x=的图象位于第一、三象限 故选:B .【点睛】 本题考查了反比例函数、直角坐标系的知识;解题的关键是熟练掌握反比例函数、直角坐标系的性质,从而完成求解.2.如图,在平面直角坐标系中,直线y x =与反比例函数1(0)y x x=>的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若3OA BC =,则k 的值为( )A .2B .32C .3D .83【答案】D【分析】解析式联立,解方程求得A 的横坐标,根据定义求得C 的横坐标,把横坐标代入反比例函数的解析式求得C 的坐标,代入y x k =+即可求得k 的值.【详解】 解:直线y x =与反比例函数1(0)y x x=>的图象交于点A , ∴解1x x=求得1x =±(经检验,符合题意) , A ∴的横坐标为1,A ∴的坐标为(1,1),如图,过C 点、A 点作y 轴垂线,垂足为G ,H ,OA//BC ,∠CGB=∠AHO=90°∴CBG AOH ∠=∠,∴OHA BGC ∽,3OA BC =,∴3OA AH BC GC ==, ∴1=3GC, 解得GC =13, C ∴的横坐标为13, 把13x =代入1y x =得,3y =, 1(,3)3C ∴, 将直线y x =沿y 轴向上平移k 个单位长度,得到直线y x k =+,∴把C 的坐标代入得133k =+,求得83k =, 故选择:D .【点睛】 本题考查了反比例函数与一次函数的综合问题,涉及函数的交点、一次函数平移、待定系数法求函数解析式,三角形相似的判定与性质等知识,求得交点坐标是解题的关键.3.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)k y k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y == 【答案】B【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可.【详解】∵k <0,∴反比例函(0)k y k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0,∴312y y y <<,故选B .【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.4.若反比例函数1y k x +=(k 是常数)的图象在第一、三象限,则k 的取值范围是( ) A .0k <B .0k >C .1k <-D .1k >- 【答案】D【分析】先根据反比例函数的性质得出k+1>0,再解不等式即可得出结果.【详解】解:∵反比例函数1y k x+=(k 为常数)的图象在第一、三象限, ∴k+1>0,解得k>-1.故选:D .【点睛】本题考查了反比例函数的图象和性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.5.如图,直线()30y kx k =-≠与坐标轴分别交于点,B C ,与若双曲线()20y x x=-<交于点(),1A m ,则AB 为( )A .5B 13C .213D 26【答案】A【分析】 由A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x(x <0)的交点可求得A 点坐标与一次函数的解析式,可求得B 点坐标,用两点间距离公式可求得AB 的长.【详解】 解:A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x (x <0)的交点,可得A 满足双曲线的解析式, 可得:21m=-, 解得:2m =-,即A 点坐标为(-2,1),A 点在直线上,可得A 点满足y=kx ﹣3(k≠0),可得:123k =--,解得:k=-2,∴一次函数的解析式为:y=-2x ﹣3,B 为直线与y 轴的交点,可得B 点坐标(0,-3),由A 点坐标(-2,1),可得AB 22(20)[1(3)]--+--=5故选:A..【点睛】本题考查一次函数与反比例函数的综合,注意求出A 、B 两点坐标后用距离公式求解.6.某口罩生产企业于2020年1月份开始了技术改造,其月利润y (万元)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是( )A .4月份的利润为45万元B .改造完成后每月利润比前一个月增加30万元C .改造完成前后共有5个月的利润低于135万元D .9月份该企业利润达到205万元【答案】D【分析】先根据图象求出反比例函数的解析式,将横坐标为4代入求得利润即可判断A ,根据图象求出一次函数的解析式,即可判断B ,将135代入两个函数求对应的x 的值即可;将x=9代入求利润即可;【详解】A 、由图象得反比例函数经过点(1,180),∴ 反比例函数的解析式为:180y x= , 将x=4代入得:y=45,故该选项不符合题意;B 、将(4,45),(5,75)代入一次函数解析式,45=4755k b k b +⎧⎨=+⎩, 解得3075k b =⎧⎨=-⎩, 求得一次函数解析式为:3075y x =- ,故该选项不符合题意;C 、将y=135代入180y x=和3075y x =-中, 180135x = 解得:x=43; 135=3075x - 解得:x=7,故该选项不符合题意;D 、将x=9代入3075y x =-,求得y=270-75=195≠205,故该选项符合题意; 故选:D .【点睛】本题考查了反比例函数与一次函数的图象的性质,以及函数的解析式的求法;正确理解图是解题的关键;7.若点1(,1)A x -,2(,2)B x ,3(,3)C x 都在反比例函数6y x =的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .231x x x <<D .312x x x << 【答案】B【分析】根据反比例函数的增减性解答.【详解】 ∵6y x=,k=6>0, ∴该反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, ∵点1(,1)A x -,2(,2)B x ,3(,3)C x ,∴点A 在第三象限内,且x 1最小,∵2<3,∴x 2>x 3,∴132x x x <<,故选:B .【点睛】此题考查反比例函数的增减性,掌握反比例函数增减性及判断方法是解题的关键.8.若双曲线5m y x -=在每一个象限内,y 随x 的增大而减小,则m 的取值范围是( ) A .5m <B .5m ≥C .5m >D .5m ≠ 【答案】C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线5m y x -=在每一个象限内,y 随x 的增大而减小, ∴50m ->,解得5m >,故选:C .【点睛】 本题考查了反比例函数的性质,掌握反比例函数k y x=,当k >0,双曲线的两支分别位于第一、三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、四象限,在每一象限内y 随x 的增大而增大.9.如图,Rt △AOB 中,∠AOB =90°,且点A 在反比例函数8y x =的图象上,点B 在反比例函数18y x=-的图象上,则tan B 的值是( )A .12B .13C .23D .49【答案】C【分析】过A 、B 作AC y ⊥轴,BD y ⊥轴,根据条件得到:ACO ODB ∽,根据反比例函数比例系数k 的几何意义得出:4:9S ACO S ODB =,利用相似三角形面积比等于相似比的平方即可求解.【详解】过A 、B 作AC y ⊥轴,BD y ⊥轴,∵∠AOB =90°,∴90AOC BOD ∠+∠=︒,∵90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠,∵90BDO ACO ∠=∠=︒,∴ACO ODB ∽,∵A 在反比例函数8y x =的图象上,点B 在反比例函数18y x =-的图象上, ∴:4:9S ACO S ODB =,∴2tan 3OA ABO OB ==∠, 故选:C .【点睛】本题考查的是相似三角形的判定和性质,反比例函数、比例函数k 的几何意义,反比例函数图像上点的坐标特征,利用相似三角形的性质得到两边之比是解答本题的关键.10.已知反比例函数6y x=-,下列说法中正确的是( ) A .该函数的图象分布在第一、三象限 B .点()2,3在该函数图象上C .y 随x 的增大而增大D .该图象关于原点成中心对称 【答案】D【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x 的增大而增大,再逐个判断即可.【详解】解:A .∵反比例函数6y x=-中-6<0, ∴该函数的图象在第二、四象限,故本选项不符合题意;B .把(2,3)代入6y x=-得:左边=3,右边=-3,左边≠右边, 所以点(2,3)不在该函数的图象上,故本选项不符合题意; C .∵反比例函数6y x=-中-6<0, ∴函数的图象在每个象限内,y 随x 的增大而增大,故本选项不符合题意;D .反比例函数6y x =-的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D .【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.11.已知反比例函数6y x =-,下列结论中不正确的是( ) A .图象必经过点()3,2-B .图象位于第二、四象限C .若2x <-,则0<3y <D .在每一个象限内,y 随x 值的增大而减小【答案】D【分析】利用反比例函数图象上点的坐标特征对A 进行判断;根据反比例函数的性质对B 、C 、D 进行判断.【详解】解:A 、当x=-3时,y =−6x =2,所以点(-3,2)在函数y =−6x的图象上,所以A 选项的结论正确,不符合题意; B 、反比例函数y =−6x分布在第二、四象限,所以B 选项的结论正确,不符合题意; C 、若x <-2,则0<y <3,所以C 选项的结论正确,不符合题意; D 、在每一个象限内,y 随着x 的增大而增大,所以D 选项的结论不正确,符合题意. 故选:D .【点睛】本题考查了反比例函数的性质:反比例函数y=-k x(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.12.函数k y x=与y kx k =-(k 为常数且0k ≠)在同一直角坐标系中的图象可能是( ) A . B .C .D .【答案】C【分析】分k >0和k <0两种情况,分别判断反比例函数()0k y k x=≠ 的图象所在象限及一次函数y kx k =-的图象经过的象限.再对照四个选项即可得出结论.【详解】当k >0时, -k <0,∴反比例函数k y x =的图象在第一、三象限,一次函数y kx k =-的图象经过第一、三、四象限;当k <0时, -k >0,∴反比例函数k y x=的图象在第二、四象限,一次函数y kx k =-的图象经过第二、三、四象限.故选:C .【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.二、填空题13.如图,菱形OABC 的顶点O 在原点,A 点坐标为(4,0),反比例函数y=k x(k≠0)的图像经过AC 、BO 的交点D ,且与AB 边交于点E ,连接OE 交AD 于点F ,若F 恰为AD 中点,则k=______________;14.如图,点A 在反比例函数k y x=(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC :CD =2:1,S △AD C =53.则k 的值为________.15.如图,点A B 、分别在反比例函数()110k y k x =>和()220k y k x=<的图象上,连接AB 交y 轴于点P ,且点A 与点B 关于P 成中心对称.若AOB ∆的面积为S ,则12k k -=_____.16.如图,反比例函数(0)ky x x=>的图象经过ABC 的顶点A ,点C 在x 轴上,//AB x轴.若点B 的坐标为(1,3),2ABCS=,则k 的值为______.17.双曲线2y x=-经过点A(-1,1y ),B(2,2y ),则1y ________2y (填“>”,“<”或“=”). 18.已知点A 的坐标为()0,2,点B 的坐标为()0,2-,点P 在函数1y x=-的图象上,如果PAB △的面积是6,则点P 的坐标是__________.19.如图,在平面直角坐标系中,直线y =ax +b 交坐标轴于A 、B 点,点C(-4, 2 )在线段AB 上,以BC 为一边向直线AB 斜下方作正方形BCDE .且正方形边长为5,若双曲线y =kx经过点E ,则k 的值为_______.20.如图,边长为1的正方形拼成的矩形如图摆放在直角坐标系里,A ,B ,C ,D 是格点.反比例函数y =kx(x >0,k >0)的图象经过格点A 并交CB 于点E .若四边形AECD 的面积为6.4,则k 的值为_____.三、解答题21.某地建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式;(2)当运输公司平均每天的工作量是15万米3时,完成任务所需的时间是多少? 22.如图,已知点()3,1A -,()2,2B -,反比例函数()0k y x x=<的图象记为L . (1)若L 经过点A . ①求L 的解析式;②L 是否经过点B ?若经过,说明理由;若不经过,请判断点B 在L 的上方,还是下方.(2)若L 与线段AB 有公共点,直接写出k 的取值范围.23.如图,在平面直角坐标系中,点A ,B 是一次函数和反比例函数图象的两个交点,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,画出一个平行四边形,使点A ,B 都是该平行四边形的顶点;(2)在图②中,画出一个菱形,使点A 在该菱形一边所在的直线上. 24.如图,直线y =﹣12x +7与反比例函数y =m x(m ≠0)的图象交于A ,B 两点,与y 轴交于点C ,且点A 的横坐标为2. (1)求反比例函数的表达式;(2)求出点B 坐标,并结合图象直接写出不等式m x<﹣12x +7的解集;(3)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.25.如图,已知(,2)A n -,(1,6)B 是一次函数y kx b =+的图象和反比例函数ky x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求AOB 的面积; (3)若kkx b x+<,直接写出x 的范围. 26.如图,在直角坐标系中,Rt ABC 的直角边AC 在x 轴上,∠ACB =90°,AC =1,点B(3,2),反比例函数y =kx(k >0)的图象经过BC 边的中点D . (1)求这个反比例函数的表达式;(2)若ABC 与EFG 成中心对称,且EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上,①求OF 的长;②连接AF ,BE ,证明:四边形ABEF 是正方形.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】利用菱形的性质可知D为OB的中点设可分别表示F和B点从而可表示出直线OE和直线AB的解析式联立可求得a的值即可表示D点坐标在Rt△OAD中利用勾股定理即可求得k 【详解】解:∵四边形OABC 为解析:12825【分析】利用菱形的性质可知D 为OB 的中点,设(,)k D a a,可分别表示F 和B 点,从而可表示出直线OE 和直线AB 的解析式,联立可求得a 的值,即可表示D 点坐标,在Rt △OAD 中利用勾股定理即可求得k . 【详解】解:∵四边形OABC 为菱形, ∴AC ⊥OB ,2OB OD =,设(,)k D a a,则2(2,)k B a a, ∵A (4,0),F 为AD 中点,∴4(,)22a kF a+, ∴直线OE 的解析式为:242(4)k a a ky x x a a +==+,直线AB 的解析式为:2(4)(4)24(2)k aky x x a a a =-=---,联立得(4)(4)(2)k y x a a k y x a a ⎧=⎪+⎪⎨⎪=-⎪-⎩,解得2(4)323x a k y a ⎧=+⎪⎪⎨⎪=⎪⎩,∴22((4),)33k E a a+, ∴223(4)3k ka a =+,解得165a =,∴165(,)516k D , 在Rt △OAD 中,根据勾股定理222OD AD OA +=,即2222165165()()(4)()16516516k k ++-+=,解得12825k =±, ∵题中反比例函数图象在第一象限,∴12825k =, 故答案为:12825.【点睛】本题考查反比例函数综合,菱形的性质.本题较难,在解题过程中需掌握中点坐标公式和两点之间距离公式.14.8【分析】作AE⊥OD于ECF⊥OD于F由BC:CD=2:1S△ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S=x y k=.过反比例函数过一点,作垂线,三角形的面积为12k.所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数从而有k的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便.15.【分析】作AC⊥y轴于CBD⊥y轴于D如图先证明△ACP≌△BDP得到S△ACP=S△BDP利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=×|k1|+|k2|=S然后利用k1>0解析:2S【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=12×|k1|+12|k2|= S,然后利用k1>0,k2<0可得到k1-k2的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称,∴AP=BP,在△ACP和△BDP中,ACP BDPAPC BPDAP BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BDP(AAS),∴S△ACP=S△BDP,∴S △AOB =S △APO +S △BPO =S △AOC +S △BOD =12×|k 1|+12|k 2|=S , ∵k 1>0,k 2<0, ∴k 1-k 2=2S . 故答案为:2S . 【点睛】本题考查了比例系数k 的几何意义:在反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是1k 2,且保持不变.也考查了反比例函数的性质.16.7【分析】根据题意可求出A 点坐标为再结合三角形的面积公式即可求出k 的值【详解】由题意可知A 点纵坐标为3∵A 点在反比例函数的图象上∴A 点横坐标为即A ∴AB=∴解得:故答案为:7【点睛】本题考查了反比例解析:7 【分析】根据题意可求出A 点坐标为(3)3k ,,再结合三角形的面积公式即可求出k 的值. 【详解】由题意可知A 点纵坐标为3, ∵A 点在反比例函数的图象上, ∴A 点横坐标为3k,即A (3)3k ,. ∴AB=13k-, ∴1(1)3223ABCk S=⨯-⨯=, 解得:7k =.故答案为:7. 【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,熟练运用反比例函数的性质解决问题是本题的关键.17.【分析】把点AB 的坐标代入函数解析式求出比较大小即可【详解】解:把点AB 的坐标代入函数解析式得∴>故答案为:>【点睛】本题考查了根据函数解析式比较函数值的大小本题也可以画出函数图象描点借助图象比较函 解析:>【分析】把点A 、B 的坐标代入函数解析式求出1y ,2y ,比较大小即可. 【详解】解:把点A 、B 的坐标代入函数解析式2y x=-得 122y =x 1=2=---,222y ==1x 1=---,∴1y >2y . 故答案为:> 【点睛】本题考查了根据函数解析式比较函数值的大小,本题也可以画出函数图象,描点,借助图象比较函数值的大小.18.(-3)或(-3)【分析】根据题意可得AB 的长根据△PAB 的面积是6可求得点P 的纵坐标代入反比例函数解析式可得点P 的横坐标从而得点P 的坐标【详解】∵A 的坐标为点B 的坐标为∴AB =4设点P 坐标为(ab解析:(-13,3)或(13,-3). 【分析】根据题意可得AB 的长,根据△PAB 的面积是6可求得点P 的纵坐标,代入反比例函数解析式可得点P 的横坐标,从而得点P 的坐标. 【详解】∵A 的坐标为()0,2,点B 的坐标为()0,2-, ∴AB =4.设点P 坐标为(a ,b),则点P 到x 轴的距离是|b|,又△PAB 的面积是6, ∴12×4|b|=6. ∴|b|=3. ∴b =±3. 当b =3时,a =-13; 当b =-3时,a =13. ∴点P 的坐标为(-13,3)或(13,-3). 故答案为:(-13,3)或(13,-3). 【点睛】本题考查反比例函数与坐标轴围成的几何图形面积问题,数形结合、分类讨论思想是解题常用方法.19.3【分析】作CF ⊥y 轴于FEG ⊥y 轴于G 根据勾股定理求得BF 证得△BCF ≌△EBG (AAS )从而求得E 的坐标然后代入y=即可求得k 的值【详解】解:作CF ⊥y 轴于FEG ⊥y 轴于G 如图∵C(-42)∴C解析:3 【分析】作CF ⊥y 轴于F ,EG ⊥y 轴于G ,根据勾股定理求得BF ,证得△BCF ≌△EBG (AAS ),从而求得E 的坐标,然后代入y=kx,即可求得k 的值. 【详解】解:作CF ⊥y 轴于F ,EG ⊥y 轴于G ,如图.∵C(-4, 2 ) ∴CF=4,OF=2.∵正方形BCDE 的边长为5, ∴BC=BE=5,∴2222543BC CF -=-= ∵∠BFC=90°, ∴∠BCF+∠CBF=90°, ∵∠CBE=90° ∴∠EBG+∠CBF=90°, ∴∠BCF=∠EBG , 在△BCF 与△EBG 中90BCF EBG BFC EGB BC EB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△BCF ≌△EBG (AAS ), ∴BF=EG=3,CF=BG=4, ∴FG=BG-BF=4-3=1 ∴OG=OF-FG=2-1=1 ∴E (3,1) ∴双曲线y=kx经过点E ,∴k=3×1=3.故答案为:3.【点睛】本题考查一次函数与反比例函数的交点,正方形的性质,勾股定理,全等三角形的判定与性质,待定系数法求反比例函数的解析式,解题关键是求得E的坐标.20.6【分析】根据四边形的面积求得CE=54设A(m3)则E(m+441)根据反比例函数系数k的代数意义得出k=3m=m+44解得即可【详解】解:由图象可知AD=1CD=2∵四边形AECD的面积为64∴解析:6【分析】根据四边形的面积求得CE=5.4,设A(m,3),则E(m+4.4,1),根据反比例函数系数k的代数意义得出k=3m=m+4.4,解得即可.【详解】解:由图象可知AD=1,CD=2,∵四边形AECD的面积为6.4,∴12(AD+CE)•CD=6.4,即12⨯(1+CE)×2=6.4,∴CE=5.4,设A(m,3),则E(m+4.4,1),∵反比例函数y=kx(x>0,k>0)的图象经过格点A并交CB于点E.∴k=3m=m+4.4,解得m=2.2,∴k=3m=6.6,故答案为6.6.【点睛】本题考查了反比例函数系数k的代数意义,梯形的面积,表示点A、E点的坐标是解题的关键.三、解答题21.(1)360yx=;(2)24天【分析】(1)根据题意直接写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式;(2)根据题意把x=15代入求出答案;【详解】解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式为:360xy =, 故360y x=; (2)当运输公司平均每天的工作量是15万米3时, 完成任务所需的时间是:360=2415y =(天), 答:完成任务所需的时间是24天.【点睛】本题考查了反比例函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的相关知识解答.22.(1)①3y x =-(0x <);②点B 在图象L 上方,理由见解析;(2)43k -≤≤-. 【分析】(1)①将点A 坐标代入图象L 解析式中,解得,即可得出结论;②将x=-2代入图象L 解析式中,求出y ,再与2比较大小,即可得出结论;(2)求出图象L 过点A ,B 时的k 的值,再求出图象L 与线段AB 相切时的k 的值,即可得出结论.【详解】解:(1)①∵L 过点A (-3,1),∴313k =-⨯=-,∴图象L 的解析式为3y x =-(0x <); ②点B 在图象L 上方,理由:由(1)知,图象L 的解析式为3y x=-, 当2x =-时,33222y =-=<-, ∴点B 在图象L 上方;(2)当图象L 过点A 时, 由(1)知,3k =-,当图象L 过点B 时,将点B (-2,2)代入图象L 解析式k y x=中,得224k =-⨯=-, 当线段AB 与图象L 只有一个交点时,设直线AB 的解析式为y mx n =+,将点A (-3,1),B (-2,2)代入y mx n =+中, 3122m n m n -+=⎧⎨-+=⎩,∴14m n =⎧⎨=⎩, ∴直线AB 的解析式为4y x =+,联立图象L 的解析式和直线AB 的解析式得,4k y x y x ⎧=⎪⎨⎪=+⎩,化为关于x 的一元二次方程为240x x k +-=,∴1640k =+=,∴4k =-, 即满足条件的k 的范围为:43k -≤≤-.【点睛】本题是反比例函数综合题,主要考查了待定系数法,找出图象L 与线段AB 有公共点的分界点是解本题的关键.23.(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质对角线互相平分即可得出;(2)根据菱形的性质对角线垂直平分即可得出.【详解】解:(1)连接BO 并延长交反比例函数的第二象限的线于点1B ;连接AO 并延长交反比例函数的第二象限的线于点1A ;根据反比例函数图象性质,两条曲线关于原点中心对称,故1OB OB =,1OA OA =, 因为两条直线互相平分,故四边形11ABA B 为平行四边形;(2)如图,四边形CDEF 为菱形;【点睛】本题考查了反比例函数的图象性质及平行四边形的判定及性质、菱形的判定及性质,熟练掌握性质是解题的关键.24.(1)12yx=;(2)x<0或2<x<12;(3)E(0,6)或(0,8)【分析】(1)由直线y=﹣12x+7求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组即可求得B的坐标,然后根据图象即可求得不等式mx<﹣12x+7的解集;(3)设E(0,n),求得点C的坐标,然后根据三角形面积公式得到S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得即可.【详解】解:(1)把x=2代入y=﹣12x+7得,y=6,∴A(2,6),∵反比例函数y=mx(m≠0)的图象经过A点,∴m=2×6=12,∴反比例函数的表达式为12yx =;(2)由12172yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,得26xy=⎧⎨=⎩或121xy=⎧⎨=⎩,∴B(12,1),由图象可知,不等式mx<﹣12x+7的解集是:x<0或2<x<12;(3)设E(0,n),∵直线y=﹣12x+7与y轴交于点C,∴C(0,7),∴CE=|7﹣n|,∴S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得,n=6或n=8,∴E (0,6)或(0,8).【点睛】本题主要考查反比例函数与一次函数的综合,掌握反比例函数图像上的点的坐标特征以及待定系数法,是解题的关键.25.(1)6y x =,24y x =+;(2)8;(3)3x <-或01x << 【分析】(1)根据B 的坐标求出反比例函数的解析式,求出A 点的坐标,再把A 、B 的坐标代入y =kx +b ,求出一次函数的解析式即可;(2)先求出点C 的坐标,再根据三角形的面积公式求出即可;(3)根据A 、B 的坐标和图象得出即可.【详解】解:(1)(1,6)B 在反比例函数上,166m xy ∴==⨯=,6y x∴=. 点A 在反比例函数上,26n ∴-=,解得3n =-,即(3,2)A --.设直线:AB y kx b =+,代入点(3,2)A --,(1,6)B ,326k b k b -+=-⎧⎨+=⎩ 解得:24k b =⎧⎨=⎩∴24y x =+(2)在直线24y x =+中,令0x =,得4y =,即(0,4)C .()114(31)822AOB OCA OCB A B S S S OC x x ∴=+=+=⨯⨯+=△△△ (3)(1,6)B ,(3,2)A --∴当k kx b x+<时,x 的取值范围是3x <-或01x <<. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数与反比例函数的图象和性质等知识点,能求出B 、C 的坐标是解此题的关键.26.(1)见解析;(2)①1;②见解析.【分析】(1)先求出点D 坐标,再代入反比例函数解析式中,即可得出结论;(2)①先判断出△ABC ≌△EFG ,得出GF=BC=2,GE=AC=1,进而得出E (1,3),即可得出结论;②先判断出△AOF ≌△FGE (SAS ),得出∠GFE=∠FAO ,进而得出∠AFE=90°,同理得出∠BAF=90°,进而判断出EF ∥AB ,即可得出结论.【详解】解:(1)∵点B (3,2),BC 边的中点D ,∴点D (3,1),∵反比例函数y =kx (k >0)的图象经过点D (3,1), ∴k=3×1=3,∴反比例函数表达式为y =3x; (2)①∵点B (3,2),∴BC=2,∵△ABC 与△EFG 成中心对称,∴△ABC ≌△EFG (中心对称的性质),∴GF=BC=2,GE=AC=1,∵点E 在反比例函数的图象上,∴E (1,3),即OG=3,∴OF=OG-GF=1;②如图,连接AF 、BE ,∵AC=1,OC=3,∴OA=GF=2,在△AOF 和△FGE 中AO FG AOF FGE OF GE =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△FGE (SAS ),∴∠GFE=∠FAO ,∵∠FAO+∠OFA=90°,∴∠GFE+∠OFA=90°,∴∠AFE=90°,∵∠EFG=∠FAO=∠ABC ,∵∠BAC+∠ABC=90°,∴∠BAC+∠FAO=90°,∴∠BAF=90°,∴∠AFE+∠BAF=180°,∴EF∥AB,∵EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点睛】本题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,正方形的判定,全等三角形的判定和性质,判断出△AOF≌△FGE是解题的关键.。

九年级数学上册反比例函数练习题

九年级数学上册反比例函数练习题

九年级数学上册反比例函数练习题在九年级的数学的关于反比例函数的课程即将结束,同学们要准备哪些练习题巩固知识点呢?下面是为大家带来的关于九年级数学上册反比例函数的练习题,希望会给大家带来帮助。

九年级数学上册反比例函数练习题一1.下列函数中,不是反比例函数的是()A.y=-3xB.y=-32xC.y=1x-1D.3xy=22.已知点P(-1,4)在反比例函数y=kx(k&ne;0)的图象上,则k的值是()A.-14B.14C.4D.-43.反比例函数y=15x中的k值为()A.1B.5C.15D.04.近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数解析式为()A.y=400xB.y=14xC.y=100xD.y=1400x5.若一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是()A.正比例函数关系B.反比例函数关系C.一次函数关系D.不能确定6.反比例函数y=kx的图象与一次函数y=2x+1的图象都经过点(1,k),则反比例函数的解析式是____________.7.若y=1x2n-5是反比例函数,则n=________.8.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数解析式是__________(不考虑x的取值范围).9.已知直线y=-2x经过点P(-2,a),反比例函数y=kx(k&ne;0)经过点P关于y轴的对称点P&prime;.(1)求a的值;(2)直接写出点P&prime;的坐标;(3)求反比例函数的解析式.10.已知函数y=(m+1)xm2-2是反比例函数,求m的值.11.分别写出下列函数的关系式,指出是哪种函数,并确定其自变量的取值范围.(1)在时速为60 km的运动中,路程s(单位:km)关于运动时间t(单位:h)的函数关系式;(2)某校要在校园中辟出一块面积为84 m2的长方形土地做花圃,这个花圃的长y(单位:m)关于宽x(单位:m)的函数关系式.九年级数学上册反比例函数练习题二 1.反比例函数y=-1x(x&gt;0)的图象如图26&shy;1&shy;7,随着x值的增大,y 值()A.增大B.减小C.不变D.先增大后减小2.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是()A.(-3,2)B.(3,2)C.(2,3)D.(6,1)3.反比例函数y=k2+1x的图象大致是()4.正方形ABOC的边长为2,反比例函数y=kx的图象经过点A,则k 的值是()A.2B.-2C.4D.-45.已知反比例函数y=1x,下列结论中不正确的是()A.图象经过点(-1,-1)B.图象在第一、三象限C.当x&gt;1时,0&lt;y&lt;1D.当x&lt;0时,y随着x的增大而增大6.已知反比例函数y=bx(b为常数),当x&gt;0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限.()A.一B.二C.三D.四7.若反比例函数y=kx(k&lt;0)的函数图象过点P(2,m),Q(1,n),则m与n的大小关系是:m____n (填“&gt;”“=”或“&lt;”).8.已知一次函数y=x-b与反比例函数y=2x的图象,有一个交点的纵坐标是2,则b的值为________.9.已知y是x的反比例函数,下表给出了x与y的一些值:x -2 -1 121y 232 -1(1)求这个反比例函数的解析式;(2)根据函数解析式完成上表.10.(2012年广东)如图26&shy;1&shy;9,直线y=2x-6与反比例函数y=kx(x&gt;0)的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.11.当a&ne;0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是()12.如图26&shy;1&shy;10,直线x=t(t&gt;0)与反比例函数y=2x,y=-1x的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为()A.3B.32tC.32D.不能确定13.正比例函数y=12x的图象与反比例函数y=kx(k&ne;0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.九年级数学上册反比例函数练习题一答案1.C 2.D 3.C 4.C5.B6.y=3x 解析:把点(1,k)代入函数y=2x+1得:k=3,所以反比例函数的解析式为:y=3x.7.3 解析:由2n-5=1,得n=3.8.y=90x 解析:由题意,得1213x+x&bull;y=60,整理可得y=90x.9.解:(1)将P(-2,a)代入y=2x,得a=-2&times;(-2)=4.(2)∵a=4,&there4;点P的坐标为(-2,4).&there4;点P&prime;的坐标为(2,4).(3)将P&prime;(2,4)代入y=kx得4=k2,解得k=8,&there4;反比例函数的解析式为y=8x.10.解:由题意,得m2-2=-1,解得m=&plusmn;1.又当m=-1时,m+1=0,所以m&ne;-1.所以m的值为1.11.解:(1)s=60t,s是t的正比例函数,自变量t&ge;0.(2)y=84x,y是x的反比例函数,自变量x&gt;0.九年级数学上册反比例函数练习题二答案1.A 2.A3.D 解析:k2+1&gt;0,函数图象在第一、三象限.4.D5.D6.B 解析:当x&gt;0时,y随x的增大而增大,则b&lt;0,所以一次函数不经过第二象限.7.&gt; 解析:k&lt;0,在第四象限y随x的增大而增大.8.-1 解析:将y=2代入y=2x,得x=1.再将点(1,2)代入y=x-b,得2=1-b,b=-1.9.解:(1)设y=kx(k&ne;0),把x=-1,y=2代入y=kx中,得2=k-1,&there4;k=-2.&there4;反比例函数的解析式为y=-2x.(2)如下表:x -3 -2 -1 121 2y 231 2 -4 -2 -110.解:(1)把A(4,2)代入y=kx,2=k4,得k=8,对于y=2x-6,令y=0,即0=2x-6,得x=3,&there4;点B(3,0).(2)存在.作AD&perp;x轴,垂足为D,则点D(4,0),BD=1.在点D右侧取点C,使CD=BD=1,则此时AC=AB,&there4;点C(5,0).11.C12.C 解析:因为直线x=t(t&gt;0)与反比例函数y=2x,y=-1x 的图象分别交于Bt,2t,Ct,-1t,所以BC=3t,所以S△ABC=12&bull;t&bull;3t=32.13.解:(1)设点A的坐标为(a,b),则b=ka,&there4;ab=k.∵12ab=1,&there4;12k=1.&there4;k=2.&there4;反比例函数的解析式为y=2x.(2)由y=2x,y=12x得x=2,y=1.&there4;A为(2,1).设点A关于x轴的对称点为C,则点C的坐标为(2,-1).令直线BC的解析式为y=mx+n.∵B为(1,2),&there4;2=m+n,-1=2m+n.&there4;m=-3,n=5.&there4;BC的解析式为y=-3x+5.当y=0时,x=53.&there4;P点为53,0.。

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)(满分 120 分)一、选择题(每题3分,共30分) 1.下列函数中,是反比例函数的是( )A. y = -2xB. y =-12xC. y =11x- D. y =21x 2.已知点 P (-1,4)在反比例函数y = kx(k =0)的图象上,则K 值是( ) A. -14B.14 C. 4 D. -4 3.下列各点中,在函数y = -6x图象上的是( )A. (-2,-4)B.(2,3)C.(-1,6)D.(-12,3)4.反比例函数y =5m x-的图象在第二、四象限内,那么m 的取值范围是( ) A. m <0B. m >0C.m >5D. m <55. 函数4y=-x,当x >0时的图象为下图中的( )6.已知点(1,y 1),B (2,y 2),C (-3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2 ,y 3;的大小关系是( ) A. y 3<y 1 <y 2; B. y 1<y 2<y 3; C. y 2,y 1,y 3; D. y 3<y 2<y 1;7.关于反比例函数y = 4x的图象,下列说法正确的是( ) A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称8.三角形的面积为4 c m²,底边上的高y(c m)与底边x(c m)之间的函数关系图象大致应为()9. 函数y= ax与y=αx-a(a≠0)在同一坐标系中的大致图象是()10.如图,函数y1=x-1和函数y2=-2x的图象相交于点M(2,m),N(-1,n),若y1<y2,则x的取值范围是()A.x<-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>2二、填空题(每题4分,共28分)11.反比例函数y=- 1x的图象在第__________象限,在每个象限内,y随x的增大而________ .12. 反比例函数y= kx过A(-1,4)和B(2,m)两点,则m= ___________________.13.对于函数y= 3x,当x>0时y__________0,这部分图象在第_____________象限.14.完成某项任务可获得500 元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式_________________________________.15.若点P(1,m),P,(2,n)在反比例函数y=kx(k<0)的图象上,则m_____n(填">""<"或"=").16.如图,已知点A在反比例函数图象上,A M⊥x轴于点M,且⊥AO M的面积为1,则反比例函数的解析式为______________________.17.如图,一次函数y= kx+b与反比例函数y=mx的图象交于A(2,1),B(-1,n)两点.连接OA,OB,则三角形OAB 的面积为____________.三、解答题(一)(每题6分,共18 分)18.某打印店要完成一批电脑打字任务,如果每天完成100 页,需8天完成任务.(1)每天完成的页数y与所需天数x之间是什么函数关系?(2)要求4天完成,每天应完成几页?19.已知反比例函数y =kx(k为常数,k≠0)的图象经过A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6)是否在这个函数的图象上,并说明理由.20.如图,反比例函数y =kx(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若⊥AOB 的面积为6,求直线AB的解析式.四、解答题(二)(每题8 分,共24 分)21.码头工人以每天30 吨的速度往一艘轮船上装载货物,装载完毕恰好用了8 天时间.(1)轮船到达目的地后开始卸货,卸货速度ν(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?22.如图,已知A (-4,2),B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.23.如图,已知在平面直角坐标系x O y 中,0是坐标原点,点A (2,5)在反比例函数y =kx的图象上,过点A 的直线y =x +b 交x 轴于点 B. (1)求k 和b 的值; (2)求⊥OAB 的面积;(3)当-3≤x ≤-1时,反比例函数值的范围为_________________.五、解答题(三)(每题10 分,共 20 分) 24.一次函数y =k 1x +b 与反比例函数y =2k x(x <0)的图象相交于A ,B 两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4. (1)试确定反比例函数的解析式;(2)求⊥AOB 的面积; (3)直接写出不等式后k 1x +b>2k x的解.25.对教室进行"薰药消毒".已知药物在燃烧释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围; (2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?参考答案一、1.B 2.D 3.C 4.D 5.B 6.D 7.D 8.B 9.A 10. A 二、11.二、四 增大 12. -2 13. > 一 14.500y x= 15. <16. y =-2x 17. 32三、18.解:(1)800y x=,反比例函数 (2)当x =4,800y x== 200(页) 19.解:(1) 6y x= (2)不在,理由如下: 当x = -1,61y =-= -6≠6 ⊥点B(-1,6)不在y =6x 的图象上。

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx 的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧ab(b >0),-ab(b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx 的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x .(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C. (3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t ,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x 图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x 的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx 的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x 图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx (x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧m x (x >0),-m x (x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx (x >0)的图象上,S矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx (x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2), ∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx (x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx 过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx 过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3). 则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x,得b =4;将C(4,b +1)代入y =4x,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx (x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx (x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2). ∵M ,N 在反比例函数y =kx (k >0)的图象上,∴x 1y 1=k ,x 2y 2=k.∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx (x >0)的图象上.若AB =1,则k的值为(A)A .1 B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx (k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x (x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x (k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值为3.。

(必考题)初中数学九年级数学上册第六单元《反比例函数》检测(有答案解析)

(必考题)初中数学九年级数学上册第六单元《反比例函数》检测(有答案解析)

一、选择题1.如图,在平面直角坐标系中,正方形OABC 的顶点О在原点,A ,C 分别在x 轴和y 轴的正半轴上,反比例函数()0ky k x=>图象交AB 边于点D ,交BC 边于点E ,连接EO 并延长,交()0ky k x=>的图象于点F ,连接DE ,DO ,DF ,若:1:2CE BE =,8DOF S =△,则k 的值等于( )A .3B .4.6C .6D .8【答案】C 【分析】 由反比例函数()0ky k x=>图象的中心对称性质,则OE=OF ,由四边形OABC 为正方形,可得OA=OC ,∠OCA=∠OAB=90°由点E ,D 在反比例函数图像上,可证CE=AD ,可证△OCE ≌△OAD (SAS )可得OE=OD=OF ,由中线性质S △ODE =S △ODF =8,由:1:2CE BE =,可知CE 13BC =,BE=23BC 设正方形的边长为m ,利用正方形面积构造方程,求出2=18m 进而求 211=633k m m m ⋅==即可. 【详解】解:由反比例函数()0ky k x=>图象的中心对称性质, 则OE=OF ,∵四边形OABC 为正方形,∴OA=OC ,∠OCA=∠OAB=90°, 由点E ,D 在反比例函数图像上,∴CE=AD==k k OA OC, 在△OCE 和△OAD 中,OC OA OCE OAD CE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△OCE ≌△OAD (SAS ), ∴OE=OD=OF , ∴S △ODE =S △ODF =8, ∵:1:2CE BE =,∴CE=()11+33CEBE BC =,BE=23BC ,设正方形的边长为m ,S 正方形OABC =2S △OCE +S △BED +S △OED ,即m 2=2×21112·82323m m m ⎛⎫⨯++⨯ ⎪⎝⎭,∴2=18m ,∵点E 在反比例函数图像上E (1,3m m ),∴211633k xy m m m ==⋅==. 故选择:C .【点睛】本题考查反比例函数性质,正方形性质,三角形中线性质,掌握反比例函数性质,正方形性质,三角形中线性质,掌握关键是抓住正方形面积构造方程.2.已知点1232,1,(),(),)1(y y y -,都在反比例函数1y x=-的图象上,则123、、y y y 的大小关系正确的是( ) A .132y y y >> B .231y y y >>C .312y y y >>D .213y y y >>【答案】D 【分析】根据反比例函数的性质,图象在二、四象限,在双曲线的同一支上,y 随x 的增大而增大,则y 2>0,而y 1<y 3<0,则可比较三者的大小.【详解】 解:∵k =-1<0, ∴图象在二、四象限, ∵2>1>0 ∴y 3<y 1<0, ∵-1<0, ∴y 2>0, ∴213y y y >>, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.3.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)ky k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y ==【答案】B 【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可. 【详解】 ∵k <0, ∴反比例函(0)ky k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0, ∴312y y y <<, 故选B . 【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.4.如图,正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于B 点,连接BC ,则△ABC 的面积等于( )A .4B .8C .12D .16【答案】B 【分析】 设A 点坐标为(8,a a -),则C 点坐标为(8,a a-),利用坐标求面积即可. 【详解】解:∵正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点, ∴A ,C 两点关于原点对称,设A 点坐标为(8,a a -),则C 点坐标为(8,a a-), S △ABC =18()82a a a -⨯--⨯=, 故选:B . 【点睛】本题考查了反比例函数k 的几何意义和对称性,解题关键是通过设坐标求三角形面积.5.若函数ky x=的图象经过点A (-1,2),则k 的值为( ) A .1 B .-1C .2D .-2【答案】D 【分析】把已知点的坐标代入计算即可. 【详解】 ∵函数ky x=的图象经过点A (-1,2), ∴21k =-, ∴k= -2; 故选D . 【点睛】本题考查了反比例函数与点的关系,根据图像过点,点的坐标满足函数的解析式求解是解题的关键.6.经过原点的直线l 与反比例函数ky x=的图象交于点(3,)A a -,(,2)B b -,则k 的值为( ) A .-2 B .-3C .-5D .-6【答案】D 【分析】设正比例函数解析式为y mx =,联立方程组,然后根据两图像的交点坐标代入求解. 【详解】解:由题意,设经过原点的直线l 的解析式为y mx =将(3,)A a -代入y mxk y x =⎧⎪⎨=⎪⎩中,可得33a m k a =-⎧⎨=-⎩,即9k m = 将(,2)B b -代入y mxk y x =⎧⎪⎨=⎪⎩中,可得22bm k b -=⎧⎨=-⎩,即4k m = ∴4=9m m,解得:23m =±(经检验均是原方程的解)又∵经过原点的直线l 与反比例函数ky x=的图象交于点(3,)A a -,(,2)B b - ∴直线l 经过第二四象限,即0m <,0k <∴23m =-,9=6k m =- 故选:D . 【点睛】本题考查反比例函数和一次函数的综合,掌握函数图像的性质,利用数形结合思想解题是关键.7.关于反比例函数2y x=-,下列说法中错误的是( ) A .当0x <时,y 随x 的增大而增大 B .图象位于第二、四象限 C .点(2,1)-在函数图象上 D .当1x <-时,2y >【答案】D 【分析】根据反比例函数的图像性质判断即可; 【详解】∵2k =-<0,∴当0x <时,y 随x 的增大而增大,故A 不符合题意; ∵2k =-,∴图象位于第二、四象限,故B 不符合题意; 当2x =时,212y =-=-,故C 不符合题意;当1x<-时,y<2,故D错误,符合题意;故答案选D.【点睛】本题主要考查了反比例函数的图像性质,准确分析判断是解题的关键.8.下列图形中,阴影部分面积最大的是()A.B.C.D.【答案】C【分析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:【详解】A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3.B、根据反比例函数系数k的几何意义,阴影部分面积和为: |xy|=3 .C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,根据反比例函数系数k的几何意义,S△OAM=S△OBM= 12|xy|=32,从而阴影部分面积和为梯形MABN的面积:12(1+3)×2=4 .D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:12×1×6=3 .综上所述,阴影部分面积最大的是C.故选:C.【点睛】此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.9.对于反比例函数5y x=-,下列说法正确的是( ) A .点(1,5)在它的图象上 B .它的图象在第一、三象限 C .当0x <时,y 随x 的增大而增大 D .当0x >时,y 随x 的增大而减小【答案】C 【分析】利用反比例函数的性质分别 判断后即可确定正确的选项. 【详解】A 、把(1,5)代入得:左边≠右边,故A 选项错误,不符合题意;B 、k =−5<0,图象在第二、四象限,故B 选项错误,不符合题意;C 、当x <0时,y 随着x 的增大而增大,故C 选项正确,符合题意;D 、当x >0时,y 随着x 的增大而增大,故D 选项错误,不符合题意; 故选:C . 【点睛】本题考查了反比例函数图象的性质:①、当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.10.如图,反比例函数(0)ky x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB ,BC 交于点D ,E ,若四边形ODBE 的面积为6,则OAD △的面积为( )A .1B .2C .3D .4【答案】A 【分析】根据k 的几何意,用k 表示出COE 与OAD △的面积,据反比例函数过点M 用k 表示出矩形OABC 的面积,最后由四边形ODBE 的面积为6列关于k 的方程,可以求得k 的值,从而可以求得OAD △的面积,本题得以解决. 【详解】解:设OA a =,OC b =,点M 矩形OABC 对角线的交点,∴点,22a b M ⎛⎫⎪⎝⎭,反比例函数(0)ky x x=>的图象经过点M22b k a =,得4=ab k ,又四边形ODBE 的面积为6,COE 的面积与OAD △的面积都是2k , 6422k kab k ∴++==, 解得,2k =,OAD ∴的面积是1, 故选:A . 【点睛】本题考查反比例函数系数k 的几何意义,属于中档题.其关键是运用k 的几何意义表示出相关图形面积.11.下列函数中,是反比例函数的是( ) A .y =2x+1 B .y =0.75xC .x :y =8D .xy =﹣1【答案】D 【分析】根据反比例函数的定义即可得. 【详解】A 、函数21y x =+是一次函数,此项不符题意;B 、函数0.75y x =是正比例函数,此项不符题意;C 、函数:8x y =可变形为8xy =,是正比例函数,此项不符题意; D 、函数1xy =-可变形为1y x=-,是反比例函数,此项符合题意; 故选:D . 【点睛】本题考查了反比例函数,熟记定义是解题关键.12.在反比例函数2y x=-图象上有三个点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则下列结论正确的是( )A .321y y y <<B .132y y y <<C .231y y y <<D .312y y y <<【答案】C 【分析】根据反比例函数图象上点的坐标特征解答即可. 【详解】解:∵A (x 1,y 1)在反比例函数2y x=-图象上,x 1<0, ∴y 1>0,对于反比例函数2y x=-,在第四象限,y 随x 的增大而增大, ∵0<x 2<x 3, ∴y 2<y 3<0, ∴y 2<y 3<y 1 故选:C . 【点睛】本题考查的是反比例函数图象上点的坐标特征,掌握反比例函数的性质、反比例函数的增减性是解题的关键.二、填空题13.如图,在反比例函数14y x=和2ky x =的图象上取,A B 两点,若//AB x 轴,AOB ∆的面积为5,则k =________.14.如图,点A 在反比例函数ky x=(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC :CD =2:1,S △AD C =53.则k 的值为________.15.如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数kyx=的图象在第一象限内交于点C,CD x⊥轴,CE y⊥轴.垂足分别为点D,E.当矩形ODCE的面积是OAB的面积2倍时,k的值为______________.16.如图,ABCD的顶点A在反比例函数2yx=-的图象上,顶点B在x轴的正半轴上,顶点C和D在反比例函数8yx=的图象上,且对角线//AC x轴,则ABCD的面积等于______.17.如图是函数1(0)y xx=>和函数2(0)y xx=-<的图象,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8,则点B的坐标为________.18.如图,反比例函数(0)ky k x=<的图象经过Rt ABO 斜边OA 的中点(5,)D m -,且与直线AB 相交于点C ,已知AOC △的面积为15,则k 的值为______.19.如图,已知等边11OA B ,顶点1A 在双曲线()30y x =>上,点1B 的坐标为(2,0).过1B 作121//B A OA ,交双曲线于点2A ,过2A 作2211//A B A B 交x 轴于2B ,得到第二个等边122B A B .过2B 作2312//B A B A 交双曲线于点3A ,过3A 作3322//A B A B 交x 轴于点3B 得到第三个等边233B A B ;以此类推,…,则点2B 的坐标为______,n B 的坐标为______.20.如图,在平面直角坐标系xOy 中,点A 在函数y =2x(x >0)的图象上,AC ⊥x 轴于点C ,连接OA ,则△OAC 面积为_____.三、解答题21.如图,在平面直角坐标系中,一次函数y kx b =+与反比例函数6y x=-的图象交于(1,)A m -,(),3B n -两点,一次函数y kx b =+的图象与y 轴交于点C .(1)求一次函数的解析式;(2)根据函数的图象,直接写出不等式6kx b x+≥-的解集; (3)点P 是x 轴上一点,且BOP ∆的面积等于BOA ∆面积,求点P 的坐标. 22.已知一次函数()0y kx n k =+≠与反比例函数my (m 0)x=≠的图象交于点(,2)A a ,()1,3B .(1)求这两个函效的表达式; (2)直接写出关于x 的不等式mkx n x+≤的解; (3)若点1(2,)P h y -在一次函数y kx n =+的图象上,若点()22,Q h y -在反比例函数m y x=的图象上,12h <,请比较1y 与2y 的大小.23.如图,一次函数2y x b =-的图象与反比例函数ky x=的图象交于点A 、B 两点,与x 轴、y 轴分别交于C 、D 两点,且点A 的坐标为()3,2.(1)求一次函数和反比例函数的表达式. (2)求AOB 的面积.(3)点P 为反比例函数图像上的一个动点,PM x ⊥轴于M ,是否存在以P 、M 、O 为顶点的三角形与COD △相似,若存在,直接写出P 点的坐标,若不存在,请说明理由.24.如图,反比例函数()0ky k x=≠的图象与正比例函数2y x =的图象相交于()1,,A a B 两点.(1)求反比例函数的解析式; (2)求不等式2kx x>的解集.25.如图,一次函数1y x =+与反比例函数ky x=的图像相交于点()2,3A 和点B . (1)求反比例函数的解析式; (2)过点B 作BC x ⊥轴于C ,求ABCS;(3)是否在y 轴上存在一点D ,使得BD CD +的值最小,并求出D 坐标.26.如图,已知点A 在反比例函数()0ky k x=<的图象上,点B 在直线4y x =-的图象上,点B 的纵坐标为1-,AB x ⊥轴,且92OAB S ∆=()1求k 的值; ()2点P 在y 轴上,AOP 是等腰三角形,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】根据S△OBC-S△OAC=5求解即可【详解】解:∵轴∴S△OBC=kS△OAC=×4=2∵的面积为∴S△OBC-S△OAC=5∴k-2=5∴k=14故答案为:14【点睛】本题考查了反比例函解析:14【分析】根据S△OBC-S△OAC=5求解即可.【详解】解:∵//AB x轴,∴S△OBC=12k,S△OAC=12×4=2,∵AOB的面积为5,∴S△OBC-S△OAC=5,∴12k-2=5,∴k=14,故答案为:14.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数kyx(k为常数,k≠0)图象上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数k,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于12k.14.8【分析】作AE⊥OD于ECF⊥OD于F由BC:CD=2:1S△ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x y k.过反比例函数过一点,作垂线,三角形的面积为12k.所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数从而有k的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便.15.1【分析】根据题意由反比例函数的几何意义得:再求解AB的坐标及建立方程求解即可【详解】解:如图矩形在上把代入:∴B(0k)把代入:∴A(-k0)由题意得:2×解得:k=1k=0(舍去)故答案为:1【解析:1【分析】根据题意由反比例函数k 的几何意义得:ODCE S k =矩形再求解A ,B 的坐标及212ABOS k =建立方程求解即可. 【详解】 解:如图矩形ODCE ,C 在kyx=上, S k ∴=矩形ODCE把0x =代入:y x k =+y k ∴=∴B(0,k)把0y =代入:y x k =+x k ∴=- ∴A(-k ,0)212ABOSk ∴=由题意得:2×212k k = 解得:k=1,k=0(舍去)1k ∴=故答案为:1 【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.16.10【分析】作轴于轴于于设AC 交y 轴于点P 可得四边形AMNC 四边形AMOP 四边形OPNC 都是矩形根据平行四边形的性质得则再根据反比例函数系数k 的几何意义解答即可【详解】解:作轴于轴于于设AC 交y 轴于解析:10 【分析】作AM x ⊥轴于M ,CN x ⊥轴于N ,BE AC ⊥于E ,设AC 交y 轴于点P ,可得四边形AMNC ,四边形AMOP ,四边形OPNC 都是矩形,根据平行四边形的性质得CAD ACB △≌△,则AMNC 1222ABCDACB SS AC BE S ==⨯⋅=△矩形,再根据反比例函数系数k 的几何意义解答即可.【详解】解:作AM x ⊥轴于M ,CN x ⊥轴于N ,BE AC ⊥于E ,设AC 交y 轴于点P ,∵//AC x 轴,∴AC AM ⊥,AC CN ⊥,BE x ⊥轴,AC OP ⊥, ∴四边形AMNC ,四边形AMOP ,四边形OPNC 都是矩形, ∵ABCD ,∴CAD ACB △≌△, ∴AMNC 1222ABCDACB SS AC BE S ==⨯⋅=△矩形,∵顶A 在反比例函数2y x =-的图象上,顶点C 和D 在反比例函数8y x=的图象上,AMNC AMOP OPNC S S S =+矩形矩形矩形,∴AMNC 2810S =+=矩形. 故答案为:10. 【点睛】本题考查平行四边形的性质,据反比例函数系数k 的几何意义,作辅助线把平行四边形的面积转化为两个矩形的面积的和是解题的关键.17.或【分析】设点A 的坐标为则点B 的坐标为表示出AB 与AC 的长根据矩形的周长列出方程即可求解【详解】设点A 的坐标为则点B 的坐标为∵四边形的周长为8∴∴解得∴当时;B 点坐标为;当时;B 点坐标为故答案为:或解析:()2,1-或2,33⎛⎫- ⎪⎝⎭【分析】设点A 的坐标为1,x x ⎛⎫ ⎪⎝⎭,则点B 的坐标为12,x x ⎛⎫- ⎪⎝⎭,表示出AB 与AC 的长,根据矩形的周长列出方程即可求解. 【详解】 设点A 的坐标为1,x x ⎛⎫ ⎪⎝⎭,则点B 的坐标为12,x x ⎛⎫- ⎪⎝⎭,∵四边形ACDB 的周长为8, ∴228AB AC +=, ∴12(2)28x x x++⋅=, 解得12131x x ⎧=⎪⎨⎪=⎩,∴1231y y =⎧⎨=⎩, 当13x =时,1,3AB AC ==;B 点坐标为2,33⎛⎫- ⎪⎝⎭; 当1x =时,3,1AB AC ==;B 点坐标为()2,1-. 故答案为:()2,1-或2,33⎛⎫- ⎪⎝⎭.【点睛】本题考查的是反比例函数的综合题:点在反比例函数图像上,点的横纵坐标满足解析式;利用矩形的性质建立方程求解是解答本题的关键.18.【分析】先表示出点的坐标利用三角形的面积公式求出的长即可表示出的坐标然后再根据反比例函数图像上点的坐标特征即可求得的值【详解】斜边OA 的中点∴∴的面积为15∴解得∴∴用待定系数法将点代入得解得故答案 解析:10-【分析】先表示出点A 的坐标,利用三角形的面积公式求出AC 的长,即可表示出C 的坐标,然后再根据反比例函数图像上点的坐标特征即可求得k 的值. 【详解】Rt ABO 斜边OA 的中点()5,D m -,∴()10,2A m -, ∴10OB =,AOC 的面积为15,∴1152AC OB =, 解得,3AC =, ∴23BC m =-,∴()10,23C m --,用待定系数法将点()10,23C m --,(5,)D m -代入,得,23105k m k m ⎧-=⎪⎪-⎨⎪=⎪-⎩, 解得2,10m k ==-, 故答案为:10-. 【点睛】本题主要考查了反比例函数系数k 的几何意义、反比例函数图像上点的坐标特征、三角形面积等知识,解题的关键是表示出C 的坐标.19.(20)(20)【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2B3B4的坐标得出规律进而求出点Bn 的坐标【详解】解:如图作A2C ⊥x 轴于点C 设B1C=a 则A2C=aOC=O解析:(,0), (,0). 【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B n 的坐标. 【详解】解:如图,作A 2C ⊥x 轴于点C ,设B 1C=a ,则A 2, OC=OB 1+B 1C=2+a ,A 2(2+a). ∵点A 2在双曲线)0y x =>上, ∴(2+a )解得,或-1(舍去), ∴OB 2=OB 1+2B 1∴点B 2的坐标为(0);作A 3D ⊥x 轴于点D ,设B 2D=b ,则A 3b , OD=OB 2+B 2+b ,A 2(). ∵点A 3在双曲线y=x(x >0)上, ∴(+b )解得∴OB 3=OB 2+2B 2, ∴点B 3的坐标为(0);同理可得点B 4的坐标为(24,0)即(4,0); 以此类推…,∴点B n 的坐标为(2n ,0), 故答案为(22,0),(2n ,0).【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B 2、B 3、B 4的坐标进而得出点B n 的规律是解题的关键.20.1【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =×2=1再相加即可【详解】解:∵函数y =(x >0)的图象经过点AAC ⊥x 轴于点C ∴S △OAC =×2=1故答案为1【点睛】本题考查了反比例函解析:1 【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =12×2=1,再相加即可. 【详解】 解:∵函数y =2x(x >0)的图象经过点A ,AC ⊥x 轴于点C , ∴S △OAC =12×2=1, 故答案为1. 【点睛】本题考查了反比例函数比例系数k 的几何意义,掌握过反比例函数图象上的点向x 轴或y 轴作垂线,这一点和垂足、原点组成的三角形的面积的计算方法是解本题的关键.三、解答题21.(1)33y x =-+;(2)1x ≤-或02x <≤;(3)(3,0)P 或(3,0)- 【分析】(1)利用待定系数法求出A ,B 的坐标即可解决问题;(2)观察图象写出一次函数的图象在反比例函数的图象上方的自变量的取值范围即可解决问题;(3)根据S △AOB =S △AOC +S △BOC ,求出△OAB 的面积,设P (m ,0),构建方程即可解决问题.【详解】解:(1)把(1,)A m -,(),3B n -代入反比例函数6y x=-, 得m=6,n=2, 即A(-1,6),B(2,-3)(1,6)A -,(2,3)B -在直线y kx b =+上. 623k b k b -+=⎧∴⎨+=-⎩解得33k b =-⎧⎨=⎩∴一次函数的解析式为33y x =-+.(2)不等式6kx b x+≥-的解集为:1x ≤-或02x <≤. (3)连接OA ,OB ,由题意()0,3C ,1193132222AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=设(,0)P m , 由题意19||322m ⋅⋅=, 解得3m =±,(3,0)P ∴或(3,0)-【点睛】本题考查了反比例函数的性质,三角形的面积,一次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)3yx=,25y x=-+;(2)01x<或32x;(3)21y y>【分析】(1)先把B点坐标代入my(m0)x=≠求出m得到反比例函数解析式,再通过反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)大致画出两函数图象,利用函数图象,写出反比例函数在一次函数上方(含交点)所对应的自变量的范围得到不等式mkx nx+的解集;(3)利用12h<得到322h->,然后利用函数图象得到1y与2y的大小.【详解】解:(1)把()1,3B代入my(m0)x=≠得133m=⨯=,∴反比例函数解析式为3yx=,把(,2)A a代入3yx=得23a=,解得32a=,则3(2A,2),把3(2A,2),()1,3B代入y kx b=+得3223k bk b⎧+=⎪⎨⎪+=⎩,解得25kb=-⎧⎨=⎩,∴一次函数解析式为25y x=-+;(2)由图可知:不等式mkx nx+的解集为01x<或32x;(3)12h<,322h∴->,21y y∴>.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式. 23.(1)24y x =-,6y x=;(2)8AOB S =△;(3)存在,P点的坐标为或(-或(或(-. 【分析】(1)把()3,2A 分别代入直线2y x b =-和反比例函数ky x=进行求解即可; (2)连接OA 、OB ,由246y x y x =-⎧⎪⎨=⎪⎩解得:1132x y =⎧⎨=⎩,2216x y =-⎧⎨=-⎩,进而可得()1,6B --,然后由一次函数可得2OC =,最后根据割补法可求解△AOB 的面积; (3)当以P 、M 、O 为顶点的三角形与COD △相似时,始终有90PMO COD ∠=∠=︒,由(2)可得OC=2,OD=4,设点6,P a a ⎛⎫⎪⎝⎭,则6,PM OM a a ==,12OC OD =,则可分①当OPM OCD ∠=∠时,②当OPM ODC ∠=∠时,然后根据相似三角形的性质进行求解即可.【详解】解:(1)把()3,2A 代入2y x b =-得:62b -=, 解得:4b =,∴一次函数的表达式为24y x =-, 把()3,2A 代入k y x=得:23k =,解得:6k =,∴反比例函数的表达式为6y x=; (2)连接OA 、OB ,如图所示:由246yxyx=-⎧⎪⎨=⎪⎩解得:1132xy=⎧⎨=⎩,2216xy=-⎧⎨=-⎩,∴()3,2A,()1,6B--,在24y x=-上,当0y=时,240x-=,解得:2x=∴()2,0C∴2OC=∴1222OACS OC=⨯=△,1662OBCS OC=⨯=△,∴8AOB OAC OBCS S S=+=△△△;(3)由题意可得如图所示:当以P、M、O为顶点的三角形与COD△相似时,始终有90PMO COD∠=∠=︒,由(2)可得OC=2,OD=4,设点6,P aa⎛⎫⎪⎝⎭,则6,PM OM aa==,12OCOD=,①当OPM OCD∠=∠时,∴12OC PMOD OM==,即612aa=,解得:a =±,∴点(P或(P -; ②当OPM ODC ∠=∠时, ∴12OC OM OD PM ==,即62a a =,解得:a = ∴点P或(P -;综上所述:当以P 、M 、O 为顶点的三角形与COD △相似时,P点的坐标为或(-或(或(-.【点睛】本题主要考查反比例函数与几何综合及相似三角形的性质,熟练掌握反比例函数与几何综合及相似三角形的性质是解题的关键. 24.(1)2y x=;(2)01x <<或1x <- 【分析】(1)先利用正比例函数解析式确定A (1,2),再根据A 点坐标即可得到反比例函数解析式;(2)结合两个函数,先求出点B 的坐标,然后结合图像,即可得到答案. 【详解】解:()1把()1,A a 代入2y x =, 解得:2,a = 则()1,2A 把()1,2A 代入k y x=, 得:122,k =⨯=∴反比例函数解析式为2y x=; ()2解方程组22y xy x =⎧⎪⎨=⎪⎩, 得:12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩,B ∴点坐标为(1,2)--,观察图象可知,不等式2kx x>的解集为:01x <<或1x <-.【点睛】本题考查了反比例函数和正比例函数的性质,解题的关键是掌握待定系数法求函数的解析式. 25.(1)6y x=;(2)5;(3)存在,()0,1D - 【分析】(1)将A 的坐标代入反比例函数解析式中,求出k 的值,即可确定出反比例函数解析式;(2)将反比例函数解析式与一次函数解析式联立组成方程组,求出方程组的解,根据B 所在的象限即可得到B 的坐标;三角形ABC 的面积可以由BC 为底边,A 横坐标绝对值与B 横坐标绝对值之和为高,利用三角形的面积公式求出即可.(3)作C 关于y 轴的对称点C′,连接BC′交y 轴上一点D ,连接CD ,求出BC′的直线解析式,即可求出D 的坐标. 【详解】(1)∵一次函数1y x =+与反比例函数ky x=相交于()2,3A 6k x y =⋅=6y x∴=(2)如图:16yx y x =+⎧⎪∴⎨=⎪⎩,∴123,2x x =-=. ∴()3,2B -- 过B 作BC x ⊥轴12552ABCS∴=⨯⨯= (3)存在.作C 关于y 轴的对称点C ',连接BC '交y 轴上一点D , 连接CD ,()3,0C '设BC '的直线方程(0)y mx n m =+≠3032m n m n +=⎧⎨-+=-⎩∴131m n ⎧=⎪⎨⎪=-⎩ 113y x ∴=-令0,1x y ==-∴()0,1D - 【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:因式分解法解一元二次方程,待定系数法确定函数解析式,坐标与图形性质,以及三角形面积公式,待定系数法是数学中重要的思想方法,学生做题时注意灵活运用.26.(1)-12;(2)点P 的坐标为()()()12340,5, 0,5,0,8,250,8P P P P ⎛⎫-- ⎝-⎪⎭【分析】()1可先求得B 点坐标,再结合△OAB 的面积可求得AB 的长,则可求得A 点坐标,把A 点坐标代入反比例函数解析式可求得k 的值;()2分三种情况: ①OP=OA ;②AP=OA ;③AP=OP 三种情况进行讨论【详解】 解:()1点B 在直线4y x =-的图象上,点B 的纵坐标为1-,41,x ∴-=- 3,x ∴=3,(1).B ∴-设点A 的坐标为(3,)t , 则1,1t AB t <-=--.92OAB S ∆= ()191322t ∴--⨯=, 解得4,t =-∴点A 的坐标为(3,4)-.4,123kk -=-∴=12y x∴=-()2分三种情况:①点O 为顶点时:如图1,12OP OP OA ==.∵点A 的坐标为(3,4)-,∴5OA =;∴125==OP OP()()120,5,0,5P P ∴-.②点A 为顶点时:如图2.35,AP OA ==作AH y ⊥轴于H ,则34==HP HO ;()30,8P ∴-③点P 为顶点时:如图3.44AP OP =作OA 的垂直平分线PQ ,交y 轴于点4P ,∵点A 的坐标为(3,4)-,∴OA 的表达式为43y x =-; ∴OA 的中点坐标为3,22⎛⎫- ⎪⎝⎭,设PQ 的表达式为34y x b =+,将3,22⎛⎫- ⎪⎝⎭代入得,258b =- 4P Q ∴的表达式为32548y x =-. 4250,8P ⎛⎫∴- ⎪⎝⎭ 综上得出,点P 的坐标为()()()1234250,5,0,5,0,8,0,8P P P P ⎛⎫---⎪⎝⎭. 【点睛】 本题考查反比例函数和几何、反比例函数和一次函数相结合等知识,解题的关键是灵活运用所学知识解决问题,学会利用分类讨论的数学思想,属于中考常考题型.。

数学(冀教版)九年级上册30.1 反比例函数 同步练习(含答案)

数学(冀教版)九年级上册30.1 反比例函数 同步练习(含答案)

30.1 反比例函数习题精选1.下列是反比例函数的是( )A .x y 5-=B .xy 51-= C .2)7(-=x y D .24x y = 2.若524-=n x y 是反比例函数,则n= ,图像在 象限。

3.如果521-=n x y 是反比例函数,则n= 。

4.已知y 与(2x+1)成反比,x=1时,y=4,则y 与x 之间的函数关系式 。

5.一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( )A .正比例函数关系B .反比例函数关系C .一次函数关系D .不能确定6.甲、乙两地相距100km ,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t (h )表示为汽车速度v (km/h )的函数,并说明t 是v 的什么函数。

7.已知一个面积为60的平行四边形,设它的其中一边长为x ,这边上的高为y ,试写出y 与x 的函数关系式,并判断它是什么函数。

8.近视镜的度数y (度)与镜片焦距为0.5米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 。

9.购买x 斤水果需24元,购买一斤水果的单价y 与x 的关系式是( )A .)0(24>=x x yB .)(24为自然数x xy = C .)(24为整数x x y = D .)(24为正整数x xy = 10.水池内装有12立方米的水,如果从排水管中每小时流出x 立方米的水,则经过y 小时就可以把水放完,求y 与x 的函数关系,并说明y 是x 的什么函数。

11.已知道21y y y +=,y 1与x 2成正比例,y 2与x+3成反比例。

并且x=0时,y=2,x=1时,y=0。

试求函数y 的解析式,并指出自变量的取值范围。

12.水池内有水40m 3,经过排水管的时间y (h )与每小时流出的水量xm 3之间的关系是反比例函数吗?13.计划修建铁路1200km ,试写出铺轨天数y (d )与每天铺轨量x (km/d )之间的函数关系式,并判断该函数是否是反比例函数。

【易错题】北师大版九年级数学上册第六章反比例函数单元测试卷学生用

【易错题】北师大版九年级数学上册第六章反比例函数单元测试卷学生用

【易错题解析】北师大版九年级数学上册第六章反比例函数一、单选题(共10题;共30分)1.下列函数中,反比例函数是( )A. B. C. D.2.点A(3,2)在反比例函数y=(x>0),则点B的坐标不可能的是()A. (2,3)B. (,)C. (,)D. (tan60°,)3.反比例函数y= 的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3B. k≤3C. k>3D. k≥34.如图,双曲线y= 的一个分支为()A. ①B. ②C. ③D. ④5.已知甲、乙两地相距(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度(km/h)的函数关系图像大致是()A. B.C. D.6.如图,矩形OABC上,点A、C分别在x、y轴上,点B在反比例y= 位于第二象限的图象上,矩形面积为6,则k的值是()A. 3B. 6C. ﹣6D. ﹣37.已知点A(x1,y1)、B(x2,y2)是反比例函数y=﹣图象上的两点,若x2<0<x1,则有()A. 0<y1<y2B. 0<y2<y1C. y2<0<y1D. y1<0<y28.如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为().A. 1B. 2C. 3D. 49.函数y=x+m与在同一坐标系内的图象可以是()A. B.C. D.10.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB 上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的面积为()A. 2B. 4C. 6D. 12二、填空题(共10题;共30分)11.若点P(2,6)、点Q(-3,b)都是反比例函数y= (k≠0)图象上的点,则b=________.12.若函数的图象在其所在的每一象限内,函数值随自变量的增大而增大,则的取值范围是________13.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为________;14.如图,根据图中提供的信息,可以写出正比例函数的关系式是________;反比例函数关系式是________.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为________.16.函数y=- 的图象的两个分支分布在________象限.17.如图,反比例函数y= 的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S△BEF=1,则k=________18.如图,点A是反比例函数y= (x≠0)的图象上一点,AB⊥y轴于B,若△ABO的面积为4,则k的值为________.19.(2017•辽阳)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y= (x<0)的图象经过点B和CD边中点E,则k的值为________.20.如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为________.三、解答题(共7题;共60分)21.已知反比例函数y=的图象经过点(﹣1,﹣2).(1)求y与x的函数关系式;(2)若点(2,n)在这个图象上,求n的值22.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y1= (x<0)图象上一点,AO的延长线交函数y2= (x>0,k<0)的y2图象于点B,BC⊥x轴,若S△ABC= ,求函数y2.23.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.24.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.(1)求该反比例函数的解析式;(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.25.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若S△BOD=4,请回答下列问题:(1)求反比例函数解析式;(2)求C点坐标.26.如图,已知一次函数y= x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.(1)填空:n的值为________,k的值为________;(2)以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数的图象,当时,请直接写出自变量的取值范围.27.综合题(1)探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数,的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a,b).①若,请用含n的代数式表示;②求证:;(2)应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数,的图象交于点C,D两点(点C在点D的左边),已知,△OBD的面积为1,试用含m的代数式表示k.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】B10.【答案】B二、填空题11.【答案】-412.【答案】m<-213.【答案】v =14.【答案】y=-2x;15.【答案】616.【答案】二、四17.【答案】-418.【答案】819.【答案】﹣420.【答案】9三、解答题21.【答案】解:(1)∵点(﹣1,﹣2)在反比例函数y=上,∴k=﹣1×(﹣2)=2,∴y与x的函数关系式为y=.(2)∵点(2,n)在这个图象上∴2n=2∴n=1.22.【答案】解:设A(m,)(m<0),直线AB的解析式为y=ax(k≠0),∵A(m,),∴ma= ,解得a= ,∴直线AB的解析式为y= x.∵AO的延长线交函数y= 的图象于点B,∴B(﹣mk,﹣),∵△ABC的面积等于,CB⊥x轴,∴×(﹣)×(﹣mk+|m|)= ,解得k1=﹣5(舍去),k2=3,∴y2=23.【答案】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y= (x>0)的图象上,∴.解得.∴反比例函数解析式:y= ,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∠∠′,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).∠∠′∴,解得:.∴一次函数的表达式为y= x+3.24.【答案】解:(1)∵AC∥x轴,AD=1,∴A(1,k),∵∠C=90°,AC=2,BC=4,∴B(3,k﹣4),∵点B在y=的图象上,∴3(k﹣4)=k,解得k=6,∴该反比例函数的解析式为y=;(2)作BM⊥x轴于M,EN⊥x轴于N,如图,∵△ABC绕点B顺时针旋转得到△EBF,∴BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,∵BC⊥x轴,A(1,6),∴BM=CM﹣BC=6﹣4=2,在Rt△BMF中,∵cos∠MBF===,∴∠MBF=60°,MF=BM=,∴∠CBF=180°﹣∠MBF=120°,∴旋转角为120°;∵∠BFM+∠MBF=90°,∠BFM+∠EFN=90°,∴∠MBF=∠EFN,∴Rt△BMF∽Rt△FNE,∴==,即==,∴FN=1,EN=,∴ON=OM+MF+FN=1++1=2+,∴E点坐标为(2+,).25.【答案】(1)解:∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y= ;(2)解:∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组,得或,∵C在第一象限,∴C点坐标为(2,4).26.【答案】(1)解:把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;;把点A(4,3)代入反比例函数y=,可得3=,解得k=12;(2)解:∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0);如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,∵AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,∠∠∠∠∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3;∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3)(3)解:当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.27.【答案】(1)①∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB=90°,又∵∠ACE=∠DCG,∴△ACE∽△DCG∴;②证明:易证△ACE∽△DCG∽△DBF又∵G(a,b)∴C( ) ,D(a,)∴即△ACE与△DBF都和△DCG相似,且相似比都为∴△ACE≌△DBF∴AC=BD.(2)如图,过点D作DH⊥x轴于点H由(2)可得AC=BD∵∴∴又∵∴∴∴.。

湘教版九年级上册数学第1章 反比例函数 单元测试题(有答案)

湘教版九年级上册数学第1章 反比例函数  单元测试题(有答案)

第1章反比例函数一、选择题1.以下函数中,y与x成反比例的是〔〕A. y=B. y=C. y=3x2D. y=+12.关于反比例函数,以下说法不正确的选项是〔〕A. 点(-2,-1)在它的图象上B. 它的图象在第一、三象限C. 当x>0时,y随x的增大而减小D. 当x<0时,y随x的增大而增大3.假设点A(﹣2,3)在反比例函数的图像上,那么k的值是〔〕。

A.﹣6B.﹣2C.2D.64.假设反比例函数y= 的图象经过〔﹣2,5〕,那么该反比例函数的图象在〔〕A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限5.函数图象如图,以下结论,其中正确有〔〕个:①m<0;②在每个分支上y随x的增大而增大;③假设A〔﹣1,a〕,点B〔2,b〕在图象上,那么a<b④假设P〔x,y〕在图象上,那么点P1〔﹣x,﹣y〕也在图象上.A. 4个B. 3个C. 2个D. 1个6.在同一直角坐标系中,函数与y=ax+1〔a≠0〕的图象可能是〔〕A. B. C. D.7. A〔x1,y1〕、B〔x2,y2〕、C〔x3,y3〕是反比例函数y= 上的三点,假设x1<x2<x3,y2<y1<y3,那么以下关系式不正确的选项是〔〕A. x1•x2<0B. x1•x3<0C. x2•x3<0D. x1+x2<08.如图,在直角坐标系中,点是轴正半轴上的一个定点,点是双曲线〔〕上的一个动点,当点的横坐标逐渐增大时,的面积将会〔〕A. 逐渐增大B. 不变C. 逐渐减小D. 先增大后减小9.,如上右图,动点P在函数y=〔x>0〕的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1相交于点E,F,那么AF•BE的值是〔〕A. 4B. 2C. 1D.10.如图,在x轴正半轴上依次截取OA1=A1A2=A2A3=…=A n﹣1A n〔n为正整数〕,过点A1、A2、A3、…、A n分别作x轴的垂线,与反比例函数y=〔x>0〕交于点P1、P2、P3、…、P n,连接P1P2、P2P3、…、P n﹣1P n,过点P2、P3、…、P n分别向P1A1、P2A2、…、P n﹣1A n﹣1作垂线段,构成的一系列直角三角形〔见图中阴影局部〕的面积和是〔〕A. B. C. D.二、填空题11.某工厂有煤1500吨,那么这些煤能用的天数y与每天用煤的吨数x之间的函数关系式为________ .12.假如函数y=kx k﹣2是反比例函数,那么k=________ ,此函数的解析式是________ .13.在以下四个函数①y=2x;②y=﹣3x﹣1;③y= ;④y=x2+1〔x<0〕中,y随x的增大而减小的有________〔填序号〕.14.函数y=- 的图象的两个分支分布在________象限.15.假设函数y=4x与y=的图象有一个交点是〔,2〕,那么另一个交点坐标是________ .16.反比例函数的图象经过点〔m,6〕和〔﹣2,3〕,那么m的值为________.17.点A〔﹣2,y1〕,B〔﹣1,y2〕和C〔3,y3〕都在反比例函数y= 的图象上,那么y1,y2,y3的大小关系为________.〔用“<〞连接〕18.如图,双曲线(k<0〕经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.假设点A的坐标为〔﹣6,4〕,那么△AOC的面积为________.19.反比例反数y=〔x>0〕的图象如下图,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=〔x>0〕的图象于点C,连接BC、OC,S△BOC=3,那么k=________ .三、解答题20.函数y=〔m2+2m〕〔1〕假如y是x的正比例函数,求m的值;〔2〕假如y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.21.近年来,我国煤矿平安事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中现:从零时起,井内空气中CO的浓度到达4mg/L,此后浓度呈直线型增加,在第7小时到达最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如以下图,根据题中相关信息答复以下问题:〔1〕求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;〔2〕当空气中的CO浓度到达34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?〔3〕矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展消费自救,求矿工至少在爆炸后多少小时才能下井.22.,如图,反比例函数y= 的图象与一次函数y=x+b的图象交于点A〔1,4〕,点B〔m,-1〕,〔1〕求一次函数和反比例函数的解析式;〔2〕求△OAB的面积;〔3〕直接写出不等式x+b>的解.23.M为双曲线y= 上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D,C两点,假设直线y=﹣x+m与y轴交于点A,与x轴相交于点B.〔1〕求AD•BC的值.〔2〕假设直线y=﹣x+m平移后与双曲线y= 交于P、Q两点,且PQ=3 ,求平移后m的值.〔3〕假设点M在第一象限的双曲线上运动,试说明△MPQ的面积是否存在最大值?假如存在,求出最大面积和M的坐标;假如不存在,试说明理由.参考答案一、选择题B D A D B B AC C A二、填空题11.y=12.1;y=13.②④14.二、四15.〔﹣,﹣2〕16.﹣1 17.y2<y1<y318.9 19.4三、解答题20.解:〔1〕由y=〔m2+2m〕是正比例函数,得m2﹣m﹣1=1且m2+2m≠0,解得m=2或m=﹣1;〔2〕由y=〔m2+2m〕是反比例函数,得m2﹣m﹣1=﹣1且m2+2m≠0,解得m=1.故y与x的函数关系式y=3x﹣1.21.解:〔1〕因为爆炸前浓度呈直线型增加,所以可设y与x的函数关系式为y=k1x+b〔k1≠0〕,由图象知y=k1x+b过点〔0,4〕与〔7,46〕,那么,解得,那么y=6x+4,此时自变量x的取值范围是0≤x≤7.〔不取x=0不扣分,x=7可放在第二段函数中〕∵爆炸后浓度成反比例下降,∴可设y与x的函数关系式为y=〔k2≠0〕.由图象知y=过点〔7,46〕,∴=46,∴k2=322,∴y=,此时自变量x的取值范围是x>7.〔2〕当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2〔小时〕.∴撤离的最小速度为3÷2=1.5〔km/h〕.〔3〕当y=4时,由y=得,x=80.5,80.5﹣7=73.5〔小时〕.∴矿工至少在爆炸后73.5小时才能下井.22.〔1〕解:把A点坐标〔1,4〕分别代入y= ,y=x+b,得:k=1×4,1+b=4,解得:k=4,b=3,∴反比例函数、一次函数的解析式分别为y= ,y=x+3〔2〕解:当y=﹣1时,x=﹣4,∴B〔﹣4,﹣1〕.又∵当y=0时,x+3=0,x=﹣3,∴C〔﹣3,0〕,∴S△AOB=S△AOC+S△BOC= ×4+ ×3×1=〔3〕解:不等式x+b>的解是x>1或﹣4<x<023.〔1〕解:过C作CE⊥x轴于E,过D作DF⊥y轴于F,如图1,当x=0时,y=m,∴A〔0,m〕;当y=0时,x=m,∴B〔m,0〕.∴△ABO为等腰直角三角形∴∠OAB=∠OBA=45°∴△ADF和△BCE也是等腰直角三角形设M〔a,b〕,那么ab= ,CE=b,DF=a∴AD= DF= a,BC= CE= b∴AD•BC= a• b=2ab=2〔2〕解:将y=﹣x+m代入双曲线y= 中,整理得:x2﹣mx+ =0,设x1、x2是方程x2﹣mx+ =0的两个根〔x1<x2〕,∴x1+x2=m,x1•x2= .∵PQ=3 ,直线的解析式为y=﹣x+m,∴x2﹣x1=3= = ,解得:m=±〔3〕解:由上述结论知x1=y2,x2=y1,且AO=BO=y1+y2=x1+x2=m ①,∵x1x2= ②,∴P,Q两点的坐标可表示为P〔x1,x2〕,Q〔x2,x1〕,∴PQ= 〔x2﹣x1〕,∵〔x2﹣x1〕2=〔x1+x2〕2﹣4x1x2=m2﹣4 ,∴PQ= ,∵S△MPQ= PQ•h,∵PQ为定值,∴PQ边上的高有最大值时,即存在面积的最大值,当m无限向x轴右侧运动时,〔或向y轴的上方运动时〕h的值无限增大,∴不存在最大的h,即△MPQ的面积不存在最大值.。

(完整版)新北师大版九年级上册数学反比例函数练习题

(完整版)新北师大版九年级上册数学反比例函数练习题

新北师大版九年级上册数学第六章反比例函数同步练习题一.选择题(共12小题)1.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=3(x>0)上的一个动点,PB⊥y轴于点B,当点P的x横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小2.若ab>0,则函数y=ax+b与函数y=可能是()b在同一坐标系中的大致图象xA. B.k C. D.3.已知反比例函数y=x图象在一、三象限内,则一次函数y=kx-4的图象经过的象限是()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限4.如图,直线y=-3kx+k与y轴交于点A,与双曲线y=在第一象3x限交于B、C两点,且AB•AC=8,则k=()A.33B. C.3 D.23 235.如图,△ABC的边BC=y,BC边上的高AD=x,△ABC的面积为3,则y与x的函数图象大致是()A. B. C. D.6.如图,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数y=k(k>0)的图象经过另外两个顶点C、D,且点D(4,n)x(0<n<4),则k的值为()A.12 B.8 C.6 D.47.函数y=kx-k与y=k(k≠0)在同一坐标系中的图象可能是()xA. B. C.D.8.如图,点P是反比例函数y=6的图象上的任意一点,过点P x分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1 B.2 C.3 D.49.如图,在平面直角坐标系xOy中,两反比例函数y=k k1,y=2x x(x>0,0<k1<k2<12)分别交矩形OABC于点P、Q、M、N,已知OA=4,OC=3.则线段MP与NQ的长度比为()A.34k1kB.2 C. D.43k2k12x10.如图,直线y=4-x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=()A.2 B.4 C.6 D.4211.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=-k的图象上,若点A的坐标为(-2,2x-2),则k的值为()A.4 B.-4 C.8 D.-812.如图,是反比例函数y=kk1,y=2(k1<k2)在第一象限的图象,xx直线AB∥y轴,并分别交两条曲线于A、B两点,若S△AOB =4,则k2-k1的值是()A.1 B.2 C.4 D.8二.填空题(共8小题)13.如图,在平面直角坐标系中,△ABC的边AB∥x轴,点A在双曲线y=5k(x<0)上,点B在双曲线y=(x>0)上,边AC中点x xD在x轴上,△ABC的面积为8,则k=14.如图,已知点A是双曲线y=2在第一象限的分支上的一个动x点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但k点C始终在双曲线y=(k<0)上运动,则k的值是.x15.如图,点P1(x1,y1),点P2(x2,y2),…,点Pn(xn,yn)k都在函数y=(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,x△Pn An-1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,…,An-1An都在x轴上(n是大于或等于2的正整数),已知点A1的坐标为(2,0),则点P1的坐标为;点P2的坐标为;点Pn的坐标为(用含n的式子表示).16.如图,四边形OABC是正方形,点A在双曲线y=18x上,点P,Q同时从点A出发,都以每秒1个单位的速度分别沿折线AO-OC 和AB-BC向终点C移动,设运动时间为t秒.①若点P运动在OA上,当t=秒时,△PAQ的面积是正方形OABC的面积的1;4②当t=秒时,△PAQ一边上中线的长恰好等于这边的长.17.如图所示,直线AB与x轴交于点A(3,0),与y轴交于点B(0,4),点P为双曲线y=6(x>0)上的一点,点P分别作x轴、y轴的x垂线段PE、PF,当PE、PF分别与线段AB交于点C、D时.(1)AB=;(2)AD•BC=.18.如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为19.如图,点A、B在反比例函数y=k(k>0,x>0)的图象上,过点A、xB作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为.20.如图,在反比例函数y=6(x>0)的图象x上,有点P1,P2,P3,P4,…,Pn,它们的横坐标依次为1,2,3,4,…,n.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积分别为S1,S2,S3,…,Sn,则S1+S2+S3+…+S10的值为三.解答题(共10小题)21.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,4与双曲线y=-(x<0)交于点P(-1,n),且F是PE的中点.(1)x求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?22.如图,已知反比例函数y=2的图象与正比例函数y=kx的图象交x于点A(m,-2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式2xkx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.23.如图,直线y=-x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=1.m24.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=k(k是常数,k≠0).已知某轿车油箱注满油后,以平均a耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S 与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?25.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-1,0),与反比例函数y=m1在第一象限内的图象交于点B(,n).连接OB,若S△AOB=1.x2(1)求反比例函数与一次函数的关系式;⎧x>0⎪(2)直接写出不等式组⎨m的解集.⎪>kx+b⎩x26.已知双曲线y=k和直线AB的图象交于点A(-3,4),xk的解析式;(2)当直线xAC⊥x轴于点C.(1)求双曲线y=AB绕着点A转动时,与x轴的交点为B(a,0),并与双曲线y=k另一支还有一个交点的情形下,求△ABC的面积S与xa之间的函数关系式,并指出a的取值范围.27.已知直线OA:y1=k1x与双曲线y2=k2交于第一象限于点A(2,2)x(1)求直线和双曲线的解析式;(2)将直线OA沿y轴向下平移,交y轴于点C,交双曲线于点B,直线BA交y轴于点D,若O恰好是CD的中点,求平移后直线BC的解析式.28.如图,在平面直角坐标系中,反比例函数y=k的图象和矩形xABCD 在第二象限,AD 平行于x 轴,且AB=2,AD=4,点C 的坐标为(-2,4).(1)直接写出A、B、D 三点的坐标;(2)若将矩形只向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,求反比例函数的解析式和此时直线AC 的解析式y=mx+n.并直接写出满足29.已知直线y=4-x 与x 轴、y 轴分别相交于C、D 两点,有反比例函数y=的图象与之在同一坐标系.(1)若直线y=4-x 与反比例函数图象相切,求m 的值;(2)如图1,若两图象相交于A、B 两点,其中点A 的横坐标为1,利用函数图象求关于x 的不等式4-x<k<mx+n 的x 取值范围.xm(m>0,x>0)xm的解集;x(3)在(2)的情况下,过点A 向y 轴作垂线AM,垂足为M,如图2,有一动点P 从原点O 出发沿O→B→A→M(BA 段为曲线)的路线运动,点P 的横坐标为a,由点p 分别向x、y 轴作垂线,垂足为E、F,四边形OEPF 的面积为S,求S 关于a 的函数关系式.30.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.k x。

北师大版九年级上数学反比例函数专题练习题(含答案)

北师大版九年级上数学反比例函数专题练习题(含答案)

北师大版九年级上数学反比例函数专题练习题一.选择题(共18小题)1.若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.2或﹣2D.22.下列函数中,是反比例函数的是()A.y=﹣B.y=﹣C.y=﹣2x2D.y=﹣2x+13.下列关系式中,y是x的反比例函数的是()A.y=4x B.y=C.y=﹣D.y=4.若反比例函数y=的图象经过点(﹣2,﹣3),则该函数图象位于()A.第一、二象限B.第二、四象限C.第三、四象限D.第一、三象限5.已知反比例函数y=(k≠0)的图象经过点(1,﹣3),若x<﹣1,则y的取值范围为()A.y>3B.y<3C.﹣3<y<0D.0<y<36.反比例函数y=的图象在每一象限内,y随x的增大而减小,则k的取值范围是()A.k>1B.k<1C.k=1D.k≠17.对于反比例函数,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象分布在第二、四象限C.点A(x1,y1),B(x2,y2)都在反比例函数的图象上,若x1<x2,则y1<y2D.当x>0时,y随x的增大而增大8.已知反比例函数(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.在同一坐标系中,函数和y=kx+2的图象大致是()A.B.C.D.10.函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限11.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB =1,则k的值为()A.1B.﹣1C.2D.﹣212.如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.213.如图,设P是函数y=在第二象限的图象上的任意一点,点P关于原点的对称点P′.过P作P A∥y 轴,过P′作P′A∥x轴,P A与P′A交于点A,则△P AP′的面积是()A.2B.4C.8D.随P的变化而变化14.如图所示,直线l和反比例函数y=(k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC 面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S315.如图,A、B是双曲线y=上关于原点对称的任意两点,AC∥y轴,BD∥y轴,则四边形ACBD的面积S满足()A.S=1B.1<S<2C.S=2D.S>216.如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x>0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P3A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S1+S2+S3+S4+S5的值为()A.2B.C.3D.17.如图,点A、B是函数y=x与y=的图象的两个交点,作AC⊥x轴于C,作BD⊥x轴于D,则四边形ACBD的面积为()A.S>2B.S>1C.S<1D.S=218.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足为C、D,连接OA、OB.设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,则()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定二.填空题(共13小题)19.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.若△ABP的面积为4,则k=.20.如图,已知矩形OABC的面积为,它的对角线OB与双曲线y=相交于点D,且OB:OD=5:3,则k=.21.如图,已知双曲线y=经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC 的面积为9,则k=.22.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k=.23.如图,已知双曲线y=(k>0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C.点A在x轴上.若△DOC的面积为3,则k=.24.双曲线y=(k<0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C,若△OAB的面积为3,则k=.25.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)26.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.27.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为.28.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为.29.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.30.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.31.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.三.解答题(共29小题)32.已知一次函数y=(m﹣1)x+m﹣2与反比例函数y=(k≠0).(1)若一次函数与反比例函数的图象都经过点A(m,﹣1),求m与k的值.(2)已知点B(x1,y1),C(x2,y2)在该一次函数图象上,设k=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.33.如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.34.如图,已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的解析式;(2)观察图象,写出使得y1<y2成立的自变量x的取值范围.35.已知一次函数y1=x﹣a+2的图象与反比例函数的图象相交.(1)判断y2是否经过点(k,1).(2)若y1的图象过点(k,1),且2a+k=5.①求y2的函数表达式.②当x>0时,比较y1,y2的大小.36.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.37.M(1,a)是一次函数y=3x+2与反比例函数y=图象的公共点,将一次函数y=3x+2的图象向下平移4个单位得到的解析式为y=kʹx+b(1)求y=kʹx+b和y=的解析式;(2)若A1(x1,x2),A2(x2,y2),A3(x3,y3)为双曲线y=上三点,且x1<0<x2<x3,请直接写出y1,y2,y3大小关系;(3)画出图象,观察图象直接写出不等式kʹx+b>的解集.38.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)根据图象填空:AB的解析式为(0≤x≤10);BC的解析式为(10≤x≤25);CD的解析式为(x≥25);(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?39.武汉某钢材市场调进1200吨钢材产品,需要入库存放.(1)入库所需要的时间t(单位:天)与入库速度V(单位:吨/天),有怎样的函数关系;(2)市场计划安排40名工人,每天最多可入库300吨,预计这批产品最快可在几天内完成入库工作;(3)这批工人连续工作2天后,接到通知要在第二天之内将剩下的产品全部入库,需要增加多少人帮忙才能完成任务?40.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.41.在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(m,n),B(2,1),且n>1,过点B作y轴的垂线,垂足为C,若△ABC的面积为2,求点A的坐标.42.将x=代入函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数y=﹣中,所得的函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…,继续下去.y1=;y2=;y3=;y2006=.43.如图,已知动点P在函数y=(x>0)的图象上运动,PM丄x轴于点M,PN丄y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E,F,求AF•BE的值.44.如图,在平面直角坐标系中,函数(x>0,常数k>0)的图象经过点A(1,2),B(m,n),(m >1),过点B作y轴的垂线,垂足为C.若△ABC的面积为2,求点B的坐标.45.如图,在平面直角坐标系中,反比例函数的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.46.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去.(1)完成下表y1y2y3y4y5(2)观察上表,你发现了什么规律?猜想y2004=.47.如图,已知反比例函数的图象上有一点P,过点P分别作x轴和y轴的垂线,垂足分别为A、B,使四边形OAPB为正方形.又在反比例函数的图象上有一点P1,过点P1分别作BP和y轴的垂线,垂足分别为A1、B1,使四边形BA1P1B1为正方形,求点P和点P1的坐标.48.如图,P1(x1,y1),P2(x2,y2),…P n(x n,y n)在函数y=(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…△P n A n﹣1A n都是等腰直角三角形,斜边OA1、A1A2、A2A3,…A n﹣1A n都在x轴上(1)求P1的坐标;(2)求y1+y2+y3+…y10的值.49.如图,一次函数y=﹣2x+b(b为常数)的图象与反比例函数(k为常数,且k≠0)的图象交于A,B两点,且点A的坐标为(﹣1,4).(1)分别求出反比例函数及一次函数的表达式;(2)求点B的坐标.50.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)51.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.52.如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=AD(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB=a(a为常数),n=3时,求FG的长;(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当=时,求n的值.(直接写出结果,不必写出解答过程)53.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.54.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B 两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标及△P AB的面积.55.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.56.如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.57.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x >0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.58.如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.59.在平面直角坐标系xOy中,反比例函数y=(x>0)的图象经过点A(3,4),过点A的直线y=kx+b 与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.60.如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.参考答案与试题解析一.选择题(共18小题)1.若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.2或﹣2D.2【解答】解:∵函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,∴|m|﹣3=﹣1,且m2﹣3m+2≠0,∴m=±2,当m=2时,m2﹣3m+2=0,不合题意舍去,当m=﹣2时,m2﹣3m+2=12≠0,∴m=﹣2,故选:B.2.下列函数中,是反比例函数的是()A.y=﹣B.y=﹣C.y=﹣2x2D.y=﹣2x+1【解答】解:A、是正比例函数,不是反比例函数,故此选项不合题意;B、是反比例函数,故此选项符合题意;C、是二次函数,不是反比例函数,故此选项不符合题意;D、是一次函数,不是反比例函数,故此选项不符合题意;故选:B.3.下列关系式中,y是x的反比例函数的是()A.y=4x B.y=C.y=﹣D.y=【解答】解:A、是正比例函数,不是反比例函数,故此选项不合题意;B、不是反比例函数,故此选项不合题意;C、是反比例函数,故此选项符合题意;D、不是反比例函数,故此选项不合题意;故选:C.4.若反比例函数y=的图象经过点(﹣2,﹣3),则该函数图象位于()A.第一、二象限B.第二、四象限C.第三、四象限D.第一、三象限【解答】解:将点(﹣2,﹣3)代入y=得,k=6,可知函数图象位于一、三象限.故选:D.5.已知反比例函数y=(k≠0)的图象经过点(1,﹣3),若x<﹣1,则y的取值范围为()A.y>3B.y<3C.﹣3<y<0D.0<y<3【解答】解:把(1,﹣3)代入y=(k≠0)得k=1×(﹣3)=﹣3,∴反比例函数y=﹣的图象在二、四象限,在每个象限,y随x的增大而增大,当x=﹣1时,y=﹣=3;所以当x<﹣1时,函数值y的取值范围为0<y<3,故选:D.6.反比例函数y=的图象在每一象限内,y随x的增大而减小,则k的取值范围是()A.k>1B.k<1C.k=1D.k≠1【解答】解:∵反比例函数y=的图象在每一象限内,y随x的增大而减小,∴k﹣1>0,解得:k>1,故选:A.7.对于反比例函数,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象分布在第二、四象限C.点A(x1,y1),B(x2,y2)都在反比例函数的图象上,若x1<x2,则y1<y2D.当x>0时,y随x的增大而增大【解答】解:A.把(1,﹣3)代入得:左边=﹣3,右边=﹣3,左边=右边,所以点(1,﹣3)在该函数的图象上,故本选项说法正确;B.∵反比例函数中﹣3<0,∴该函数的图象在第二、四象限,故本选项说法正确;C.∵反比例函数中﹣3<0,∴函数的图象在每个象限内,y随x的增大而增大,∴若A(x1,y1),B(x2,y2)在同一象限,x1<x2,则y1<y2,故本选项说法不正确;D.反比例函数的图象在第四象限,y随x的增大而增大,故本选项说法正确;故选:C.8.已知反比例函数(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【解答】解:因为反比例函数(k≠0),当x<0时,y随x的增大而增大,根据反比例函数的性质,k<0,再根据一次函数的性质,一次函数y=kx﹣k的图象经过第一、二、四象限.故选:B.9.在同一坐标系中,函数和y=kx+2的图象大致是()A.B.C.D.【解答】解:∵两个函数的比例系数均为k,∴两个函数图象必有交点,y=kx+2交y轴的正半轴,符合这两个条件的选项只有C,故选:C.10.函数y=﹣的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=﹣中k=﹣,∴函数y=﹣的图象在第二、四象限.故选:B.11.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB =1,则k的值为()A.1B.﹣1C.2D.﹣2【解答】解:由于点A在反比例函数y=的图象上,则S△AOB=|k|=1,k=±2;又由于函数的图象在第二象限,故k<0,则k=﹣2.故选:D.12.如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【解答】解:∵点A、C位于反比例函数图象上且关于原点对称,∴A、C两点到x轴的距离相等,∴S△OBA=S△OBC,∵S△OBA=|k|=×4=2,∴S△OBC=2∴S△ABC=S△OBA+S△OBC=4.故选:C.13.如图,设P是函数y=在第二象限的图象上的任意一点,点P关于原点的对称点P′.过P作P A∥y 轴,过P′作P′A∥x轴,P A与P′A交于点A,则△P AP′的面积是()A.2B.4C.8D.随P的变化而变化【解答】解:连接OA,P A交x轴于B,如图,∵点P关于原点的对称点P′,∴PO=P′0,∵P′A∥x轴,∴OB∥AP′,∴PB=AB,∵S△POB=×|﹣4|=2,∴S△POA=2S△POB=4,∴S△P AP′=2S△POA=8.故选:C.14.如图所示,直线l和反比例函数y=(k>0)的图象的一支交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC 面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【解答】解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而线段AB之间,直线在双曲线上方;故S1=S2<S3.故选:D.15.如图,A、B是双曲线y=上关于原点对称的任意两点,AC∥y轴,BD∥y轴,则四边形ACBD的面积S满足()A.S=1B.1<S<2C.S=2D.S>2【解答】解:∵A,B是函数y=的图象上关于原点O对称的任意两点,且AC平行于y轴,BD平行于y轴,∴S△AOC=S△BOD=,假设A点坐标为(x,y),则B点坐标为(﹣x,﹣y),则OC=OD=x,∴S△AOD=S△AOC=,S△BOC=S△BOD=,∴四边形ABCD面积=S△AOD+S△AOC+S△BOC+S△BOD=×4=2.故选:C.16.如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x>0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P3A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S1+S2+S3+S4+S5的值为()A.2B.C.3D.【解答】解:由于OA1=A1A2=A2A3=A3A4=A4A5,S1=|k|,S2=|k|,S3=|k|,S4=|k|,S5=|k|;则S1+S2+S3+S4+S5=(++++)|k|=×2=,故选:B.17.如图,点A、B是函数y=x与y=的图象的两个交点,作AC⊥x轴于C,作BD⊥x轴于D,则四边形ACBD的面积为()A.S>2B.S>1C.S<1D.S=2【解答】解:根据反比例函数的对称性可知:OB=OA,OD=OC,∴四边形ABCD的面积为S△AOC+S△ODA+S△ODB+S△OBC=1×2=2.故选:D.18.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足为C、D,连接OA、OB.设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,则()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【解答】解:∵S△AOC=S△OBD,即S△AOE+S△OEC=S△OEC+S梯形ECDB,∴S△AOE=S梯形ECDB.即S1=S2.故选:B.二.填空题(共13小题)19.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.若△ABP的面积为4,则k=16.【解答】解:∵△ABP的面积为•BP•AP=4,∴BP•AP=8,∵P是AC的中点,∴A点的纵坐标是B点纵坐标的2倍,又∵点A、B都在双曲线y=(x>0)上,∴B点的横坐标是A点横坐标的2倍,∴OC=DP=BP,∴k=OC•AC=BP•2AP=16.故答案为:16.20.如图,已知矩形OABC的面积为,它的对角线OB与双曲线y=相交于点D,且OB:OD=5:3,则k=6.【解答】解:设D的坐标是(3m,3n),则B的坐标是(5m,5n).∵矩形OABC的面积为,∴5m•5n=,∴mn=.把D的坐标代入函数解析式得:3n=,∴k=9mn=9×=6.故答案为6.21.如图,已知双曲线y=经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC 的面积为9,则k=6.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=9k=6.故答案为:6.22.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k=4.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为6.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=6k=4.故答案为:4.23.如图,已知双曲线y=(k>0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C.点A在x轴上.若△DOC的面积为3,则k=4.【解答】解:如图,过D点作DE⊥x轴,垂足为E.∵Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,∵△OED∽△OAB,∴=.∵双曲线的解析式是,∴S△AOC=S△DOE=k,∴S△AOB=4S△DOE=2k,由S△AOB﹣S△AOC=S△OBC=2S△DOC=6,得2k﹣k=6,解得k=4.故答案为:4.24.双曲线y=(k<0)经过Rt△OAB斜边OB的中点D,与直角边AB相交于点C,若△OAB的面积为3,则k=﹣.【解答】解:过D点作DE⊥x轴,垂足为E,由双曲线y=(k<0),可知S△AOC=S△DOE=﹣k,∵D为Rt△OAB斜边OB的中点D,∴DE为Rt△OAB的中位线,S△AOB=4S△DOE=﹣2k,由S△AOB=3,得﹣2k=3,解得k=﹣.故答案为:﹣.25.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)【解答】解:方法一:过点F作FG⊥y轴于点G,∵S四边形MEFO=S△MEO+S△OEF=+S△OEF,又∵S四边形MEFO=S梯形MEFG+S△FGO=S梯形MEFG+,∴S△OEF=S梯形MEFG=S2,则=,又∵CF=MG,∴=,由=,得:=,∵OB∥NC,∴==,则=,∴=.方法二:如图2,过点F作FD⊥BO于点D,EW⊥AO于点W,∵,∴=,∵ME•EW=FN•DF,∴=,∴=,设E点坐标为:(x,my),则F点坐标为:(mx,y),∴△CEF的面积为:S1=(mx﹣x)(my﹣y)=(m﹣1)2xy,∵△OEF的面积为:S2=S矩形CNOM﹣S1﹣S△MEO﹣S△FON,=MC•CN﹣(m﹣1)2xy﹣ME•MO﹣FN•NO,=mx•my﹣(m﹣1)2xy﹣x•my﹣y•mx,=m2xy﹣(m﹣1)2xy﹣mxy,=(m2﹣1)xy,=(m+1)(m﹣1)xy,∴==.故答案为:.26.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是﹣1.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.27.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为(,).【解答】解:BC交y轴于D,如图,设C点坐标为(a,)解方程组得或,∴A点坐标为(2,3),B点坐标为(﹣2,﹣3),设直线BC的解析式为y=kx+b,把B(﹣2,﹣3)、C(a,)代入得,解得,∴直线BC的解析式为y=x+﹣3,当x=0时,y=x+﹣3=﹣3,∴D点坐标为(0,﹣3)设直线AC的解析式为y=mx+n,把A(2,3)、C(a,)代入得,解得,∴直线AC的解析式为y=﹣x++3,当x=0时,y=x++3=+3,∴P点坐标为(0,+3)∵S△PBC=S△PBD+S△CPD,∴×2×6+×a×6=20,解得a=,∴C点坐标为(,).故答案为:(,).28.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为(3n﹣1,0).【解答】解:∵菱形A1B1C1D1的边长为2,∠A1B1C1=60°,∴OA1=A1B1•sin30°=2×=1,OB1=A1B1•cos30°=2×=,∴A1(1,0).∵菱形B1C2D1A2∽菱形A1B1C1D1,∴OA2===3,∴A2(3,0).同理可得A3(9,0)…∴A n(3n﹣1,0).故答案为:(3n﹣1,0).29.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【解答】解:(方法一)设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.(方法二)∵直线y=﹣x+1上有两点A、B,且AB=2,∴设点A的坐标为(a,﹣a+1),则点B的坐标为(a+2,﹣a﹣1),点A′的坐标为(,),点B′的坐标为(,﹣).∵点A′,B′均在反比例函数y=的图象上,∴,解得:.故答案为:﹣.30.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.31.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是﹣3.【解答】解:∵m是一元二次方程x2+2x﹣1=0的根,∴m2+2m﹣1=0,∴m2+2m=1,∵m、n是一元二次方程x2+2x﹣1=0的两个根,∴m+n=﹣2,∴m2+4m+2n=m2+2m+2m+2n=1+2×(﹣2)=﹣3.故答案为:﹣3.三.解答题(共29小题)32.已知一次函数y=(m﹣1)x+m﹣2与反比例函数y=(k≠0).(1)若一次函数与反比例函数的图象都经过点A(m,﹣1),求m与k的值.(2)已知点B(x1,y1),C(x2,y2)在该一次函数图象上,设k=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.【解答】解:(1)一次函数的图象都经过点A(m,﹣1),∴﹣1=m(m﹣1)+m﹣2且m﹣1≠0,∴m=﹣1,∴A(﹣1,﹣1),∵反比例函数的图象都经过点A(﹣1,﹣1),∴k=1;(2)∵点B(x1,y1),C(x2,y2)在该一次函数图象上,∴①﹣②得y1﹣y2=(m﹣1)(x1﹣x2),∵k=(x1﹣x2)(y1﹣y2),∴k=(m﹣1)(x1﹣x2)2,∴当m>1时,k>0,反比例函数的图象在一三象限;当m<1时,k<0,反比例函数的图象在二四象限.33.如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.【解答】解:(1)一次函数y1=x+4的图象过A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函数y2=得,k=﹣3(2)反比例函数y2=﹣,由题意得,,解得,,,∴点B(﹣3,1)当y1>y2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:﹣3<x<﹣1或x>0;(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,即,方程=x+4有实数根,也就是x2+4x﹣k=0有实数根,∴16+4k≥0,解得,k≥﹣4,∵k≠0,∴k的取值范围为:k≥﹣4且k≠0.34.如图,已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的解析式;(2)观察图象,写出使得y1<y2成立的自变量x的取值范围.【解答】解:(1)∵A(1,4)在反比例函数y1=的图象上,∴k=4,∴反比例函数解析式为y1=,∵点B(m,﹣2)在反比例函数y1=的图象上,∴﹣2m=4,解得m=﹣2,∴B点坐标为(﹣2,﹣2),∴一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得,∴一次函数解析式为y2=2x+2;(2)由图象可知当反比例函数图象在一次函数图象下方时,对应的x的取值范围为﹣2<x<0或x>1,∴使得y1<y2成立的自变量x的取值范围﹣2<x<0或x>1.35.已知一次函数y1=x﹣a+2的图象与反比例函数的图象相交.(1)判断y2是否经过点(k,1).(2)若y1的图象过点(k,1),且2a+k=5.①求y2的函数表达式.②当x>0时,比较y1,y2的大小.【解答】解:(1)点(k,1)满足反比例函数的关系式,因此y2经过点(k,1).(2)①把(k,1)代入一次函数y1=x﹣a+2得,k﹣a+2=1,又∵2a+k=5,解得:a=2,k=1,∴y2的函数表达式为y2=.②由函数的图象可知:当0<x<1时,y1<y2,当x=1时,y1=y2,当x>1时,y1>y2.36.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.【解答】解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=﹣2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b﹣<0.37.M(1,a)是一次函数y=3x+2与反比例函数y=图象的公共点,将一次函数y=3x+2的图象向下平移4个单位得到的解析式为y=kʹx+b(1)求y=kʹx+b和y=的解析式;。

初中数学鲁教版(五四制)九年级上册第一章 反比例函数1 反比例函数-章节测试习题(2)

初中数学鲁教版(五四制)九年级上册第一章 反比例函数1 反比例函数-章节测试习题(2)

章节测试题1.【答题】反比例函数y=的图象在第二、四象限,则n的取值范围为______,,为图象上两点,则______用“<”或“>”填空.【答案】n<1 <【分析】根据反比例函数的性质再结合反比例函数图象上点的坐标特征即可求解.【解答】因为反比例函数y=的图象在第二、四象限,所以n-1<0,所以n<1.又因为A(2,y1),B(3,y2)在第四象限,所以y1<y2.故答案为:n<1,<.2.【题文】反比例函数的图象经过A(-2,1)、B(1,m)、C(2,n)两点,试比较m、n大小.【答案】m<n【分析】将点A代入反比例函数解出k值,再将B、C的坐标分别代入已知反比例函数解析式,分别求得m、n的值,然后再来比较它们的大小即可【解答】反比例函数,它的图象经过A(-2,1),,k=-2,,将B,C两点代入反比例函数得,,,∴m<n.3.【答题】下列函数中是反比例函数的是()A. y=x﹣1B. y=C. y=D. =1【答案】C【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】A、y=x-1是一次函数,不符合题意;B、y=不是反比例函数,不符合题意;C、y=是反比例函数,符合题意;D、=1不是反比例函数,不符合题意;选C.4.【答题】已知函数是反比例函数,则m的值为()A. 2B. ﹣2C. 2或﹣2D. 任意实数【答案】B【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】解:∵函数是反比例函数,∴,解得:m=﹣2.选B.5.【答题】下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【答案】C【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;选C.6.【答题】下列函数中,表示y是x的反比例函数的是()A. y=B. y=C. y=2xD. y=【答案】B【分析】根据反比例函数的定义判断各选项即可.【解答】根据反比例函数的定义,可判断出只有y=表示y是x的反比例函数.选B.7.【答题】下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A. B. C. D.【答案】C【分析】根据正比例函数y=kx,反比例函数y=kx-1或y=,可得答案.【解答】A、是反比例函数,故A错误;B、是正比例函数,故B错误;C、既不是正比例函数也不是反比例函数,故C正确;D、是反比例函数,故D错误;选C.8.【答题】将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A. 2B.C.D. 6【答案】A【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2012=670…2,即可得到y2012=y2.【解答】y1=-=-,把x=+1=-代入y=-中得y2=-,把x=2+1=3代入反比例函数y=-中得y3=-,把x=-+1=代入反比例函数y=-得y4=,如此继续下去每三个一循环,2012=670…2,∴y2012=2.选A.9.【答题】下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长l与边长a的关系C.矩形的长为a,宽为20,其面积S与a的关系D.矩形的面积为40,长a与宽b之间的关系【答案】D【分析】此题应根据反比例函数的定义进行判断.【解答】A、根据题意,得,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、根据题意,得,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、根据题意,得,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、根据题意,得,所以正方形的面积S与边长a的关系是反比例函数关系;故本选项正确.选D.10.【答题】反比例函数中常数k为()A. ﹣3B. 2C.D.【答案】D【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是(k≠0).【解答】反比例函数中常数k为.选D.11.【答题】函数是y关于x的反比例函数,则m=______.【答案】3【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】由题意得,解得m=3.12.【答题】若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为______.【答案】2【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.【解答】∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,∴m=2.故答案为2.13.【答题】若函数是反比例函数,则m=______.【答案】±1【分析】根据反比例函数的定义先求出m的值,再根据系数不为0进行取舍.【解答】∵是反比例函数,∴m2-2=-1,∴m2=1,∴m=±1.故答案为±1.14.【答题】若反比例函数的图象在第二、四象限,m的值为______.【答案】-2【分析】由反比例函数的定义可知3-m2=-1,由反比例函数图象在第二、四象限可知m+1<0.【解答】∵是反比例函数,∴3-m2=-1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<-1.∴m=-2.故答案为:-2.15.【题文】列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【答案】见解答【分析】(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.【解答】解:(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.16.【题文】函数是反比例函数,则m的值是多少?【答案】-2【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断.【解答】∵是反比例函数,∴3-m2=-1,m-2≠0,解得:m=-2.故m的值为-2.17.【题文】若反比例函数的图象经过第二、四象限,求函数的解析式.【答案】y=﹣【分析】根据反比例函数的定义,可以得到m2-24=1,而图象经过第二、四象限,则比例系数是负数,据此即可求解.【解答】根据题意得:解得:m=﹣5.则函数的解析式是:y=﹣.18.【题文】给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.【答案】见解答【分析】根据反比例函数的定义及形式y=(k≠0)可判断各个命题的真假.【解答】解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.19.【答题】下列函数中,不是反比例函数的是()A. B. C. D.【答案】D【分析】本题考查了反比例函数的定义。

九年级数学上册 第5章 反比例函数单元综合测试题 试题

九年级数学上册 第5章 反比例函数单元综合测试题  试题

反比例函数一选择题1.〔2021·〕反比例函数y =kx的图象经过点〔1,-2〕,那么k 的值是〔 〕 A .2 B .-12C .1D .-22.〔2021·〕如图,正方形ABOC 的边长为2,反比例函数y =kx的图象经过点A ,那么k 的值是〔 〕A .2B .-2C .4D .-43.〔2021·〕在反比例函数()=0ky k x≠的图象上有两点〔-1,y 1〕,〔14-,y 2〕,那么y 1-y 2的值是〔 〕A. 负数B.非正数C.正数D.不能确定4.〔2021·〕假设一个圆锥的侧面积是10,那么以下图象中表示这个圆锥母线l 与底面半径r 之间的函数关系的是〔 〕A. B. C. D.5.〔2021•〕近视眼镜的度数y(度)与镜片焦距x(m)成反比例,400度近视眼镜镜片的焦距为,那么y 与x 的函数关系式为( ) A.400y x =B.14y x =C.100y x =D. 1400y x= 6. (2021·) 矩形的长为x ,宽为y ,面积为9,那么y 与x 之间的函数关系用图象表示大致为〔 〕7.〔2021·〕点A 〔x 1,y 1〕,B(x 2,y 2),C(x 3,y 3)都在反比例函数y=-3x 的图象上,假设x 1<x 2<0<x 3,那么y 1,y 2,y 3的大小关系是〔 〕 A . y 3<y 1<y 2 B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 38.〔2021·〕一次函数y=x+m(m ≠)与反比例函数my x=的图象在同一平面直角坐标系中是〔 〕9.(2021·黔西南)一次函数y 1=x -1和反比例函数y 2=2x 的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是( )A.x >2B.-1<x <0C.x >2或者-1<x <0D.x <2,x >010.〔2021·〕如图,过点C 〔1,2〕分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,假设反比例函数k y x=〔x >0〕的图象与△ABC 有公一共点,那么k 的取值范围是〔 〕 A .2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤8 二填空题1.(2021·黔西南)反比例函数的图象经过点(m ,2)和(-2,3),那么m 的值是__________.2.〔2021·〕如图,双曲线()=0ky k x≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,那么该双曲线的表达式为 . 3.〔2021•〕反比例函数ky x=的图象与一次函数y=2x+1的图象的一个交点是〔1,k 〕,那么反比例函数的解析式是 .4.〔2021·〕如图,函数y =2x 和函数y =kx的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,假设△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,那么满足条件的P 点坐标是 . 5.(2021·〕如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x 轴平行. 点P(3a,a)是反比例函数(k>0)ky x=的图象与正方形的一个交点.假设图中阴影局部的面积为9,那么这个反比例函数的解析式为 .6.〔2021•〕如图,是反比例函数y=-2k x的图象的一个分支,对于给出的以下说法:①常数k 的取值范围是k >2;②另一个分支在第三象限;③在函数图象上取点A 〔a 1,b 1〕和点B 〔a 2,b 2〕,当a 1>a 2时,那么b 1<b 2;④在函数图象的某一个分支上取点A 〔a 1,b 1〕和点B 〔a 2,b 2〕,当a 1>a 2时,那么b 1<b 2;其中正确的选项是 〔在横线上填出正确的序号〕.7.〔2021·〕双曲线()=>0ky k x与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线.点P 的坐标为〔1,3〕那么图中阴影局部的面积为 . 三计算题1.〔2021•〕用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水〔约10升〕,小敏每次用半盆水〔约5升〕,假如她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有,小敏的衣服中残留的洗衣粉还有2克.〔1〕请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;〔2〕当洗衣粉的残留量降至时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?2.〔2021·〕据媒体报道,近期“手足口病〞可能进入发病顶峰期,某校根据?卫生工作条例?,为预防“手足口病〞,对教室进展“薰药消毒〞.药物在燃烧机释放过程中,室内空气中每立方米含药量y〔毫克〕与燃烧时间是x〔分钟〕之间的关系如图8所示〔即图中线段OA 和双曲线在A点及其右侧的局部〕,根据图象所示信息,解答以下问题:〔1〕写出从药物释放开场,y与x之间的函数关系式级自变量的取值范围;〔2〕据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开场,至少在多长时间是内,师生不能进入教室?反比例函数试题答案一选择题1.-2【解析】反比例函数y=kx的图象经过点〔1,-2〕,说明在解析式y=kx中,当x=1时,y =-2,所以k =xy =1×(-2)=-2.2. D 【解析】∵正方形ABOC 的边长为2,∴A 的坐标〔-2,2〕,∴把A 点坐标代入y=kx得:2=2-k,∴k=-4.应选D. 3.A 【解析】∵反比例函数ky x=中的k <0,∴函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大;又∵点〔-1,y 1〕和(14-,y 2)均位于第二象限,-1<14-,∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,应选A .4. D 【解析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求得圆锥母线长l 与底面半径r 之间函数关系,看属于哪类函数,找到相应的函数图象即可. 由圆锥侧面积公式可得l=10rπ,属于反比例函数.应选D . 5. C 【解析】设y =kx,400度近视眼镜镜片的焦距为, ∴k=0.25×400=100,∴y=100x.应选C . 6.C 【解析】由矩形的面积知xy =9,可知它的长x 与宽y 之间的函数关系式为y=9 x 〔x >0〕,是反比例函数图象,且其图象在第一象限.应选C .7.A 【解析】由反比例函数的增减性可知,当x <0时,y 随x 的增大而增大,当x 1<x 2<0时,那么0<y 1<y 2.又C 〔x 3,y 3〕在第四象限,那么y 3<0,所以y 3<y 1<y 2.应选A.8.C 【解析】根据一次函数的图象性质,y=x+m 的图象必过第一、三象限,可对B 、D 进展判断;根据反比例函数的性质当m <0,y=x+m 与y 轴的交点在x 轴下方,可对A 、D 进展判断. A. 对于反比例函数图象得到m <0,那么对于y=x+m 与y 轴的交点在x 轴下方,所以A 选项不正确;B 、对于y=x+m ,其图象必过第一、三象限,所以B 选项不正确;C 、对于反比例函数图象得到m <0,那么对于y=x+m 与y 轴的交点在x 轴下方,并且y=x+m 的图象必过第一、三象限,所以C 选项正确;D 、对于y=x+m ,其图象必过第一、三象限,所以D 选项不正确.应选C .9.C 【解析】解⎩⎪⎨⎪⎧y=x -1y=2x,得⎩⎨⎧x 1=2y 1=1,⎩⎨⎧x 2=-1y 2=-2.所以,两个函数的交点为(2,1),(―1,―2).在同一平面直角坐标系中作出两个函数的图象(图略),观察图象,y 1>y 2,那么对应一次函数的图象高于反比例函数的图象,对应x 的取值范围是:x >2或者-1<x <2.应选C. 10. A 【解析】当点C 〔1,2〕在反比例函数k y x =上时,那么k=2,由=-+6kx x那么260x x k -+=,当2(6)40k --=时,直线与双曲线有且一个交点,即k=9,因此反比例函数ky x=〔x >0〕的图象与△ABC 有公一共点,那么k 的取值范围是2≤k ≤9. 二填空题1. -3【解析】设反比例函数的解析式为y=k x ,把点(―2,3)代入,得k=―6.所以,y=―6x ,点(m ,2)代入,得2=―6m,解得m=―3.2. 【解析】先根据反比例函数图象所在的象限判断出k 的符号,再根据S △AOB =2求出k 的值即可.3.3y x=【解析】将〔1,k 〕代入一次函数y=2x+1得,k=2+1=3; 那么反比例函数解析式为3y x =.故答案为3y x =. 1(0,-4),P 2(-4,-4),P 3(4,4)【解析】根据反比例函数中比例系数k 的几何意义,得出等量关系12|k|=4,求出k 的值是8,然后结合函数y =2x 和函数y =8x可求出点A(2,4),再根据平行四边形的性质可求得P 点坐标. 5.3y x=【解析】如图,根据正方形是以点O 为中心对称图形,将第三象限局部绕点O 顺时针旋转180º,恰好与第×4=36,所以正方形边长为 6. 正方形又是轴对称图形,P(3a,a)是反比例函数)0(>=K xky 的图象的点,所以正方形边长为3a ×2=6a ,于是a=1.所以k=3×3y x =.6.【解析】解:①根据函数图象在第一象限可得k ﹣2>0,故k >2,故①正确;②根据反比例函数的性质可得,另一个分支在第三象限,故②正确;③根据反比例函数的性质,图象在第一、三象限时,在图象的每一支上y 随x 的增大而减小,A 、B 不一定在图象的同一支上,故③错误;④根据反比例函数的性质,图象在第一、三象限时,在图象的每一支上y 随x 的增大而减小,故在函数图象的某一个分支上取点A 〔a 1, b 1〕和点B 〔a 2,b 2〕,当a 1>a 2时,那么b 1<b 2正确;故答案为:①②④.7. 4【解析】此题考察反比例函数k 值的几何意义,阴影局部的面积等于2k 〔1,3〕,故k=3,由对称性易知Q(3,1)于是重叠局部是边长为1的正方形,那么S=2×3-6=4. 三计算题1. 【解析】〔1〕设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y 1=1k x,y 2=2k x,后根据题意代入求出k 1和k 2即可; 〔2〕当y=0.5时,求出此时小红和小敏所用的水量,后进展比拟即可.【答案】〔1〕设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y 1=1k x,y 2=2k x ,将11=1=1.5x y ⎧⎨⎩和11=1=2x y ⎧⎨⎩分别代入两个关系式得: 1.5=11k ,2=21k,解得:k 1=1.5,k 2=2. ∴小红的函数关系式是=,小敏的函数关系式是. 〔2〕把y=0.5分别代入两个函数得:132x =0.5,22x =0.5,解得:x 1=3,x 2=4, 10×3=30〔升〕,5×4=20〔升〕.答:小红一共用30升水,小敏一共用20升水,小敏的方法更值得提倡. 2.【解析】〔1〕设反比例函数解析式为y=kx,将〔25,6〕代入解析式得,k=25×6=150, 那么函数解析式为y=150x〔x ≥15〕, 将y=10代入解析式得,10=150xx=15,故A 〔15,10〕,设正比例函数解析式为y=nx ,将A 〔15,10〕代入上式即可求出n 的值,n=23. 那么正比例函数解析式为y=23x 〔0≤x ≤15〕. 〔2〕150x =2,解之得x=75〔分钟〕,答:从药物释放开场,师生至少在75分钟内不能进入教室.励志赠言经典语录精选句;挥动**,放飞梦想。

北师大版九年级数学上学期 期末单元复习 第6章 反比例函数 含答案

北师大版九年级数学上学期  期末单元复习 第6章 反比例函数  含答案

第6章反比例函数一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.126.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.67.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.88.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.310.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:;当mx+n≥时,x的取值范围是;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?参考答案与试题解析一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=【分析】根据反比例函数的一般形式即可作出判断.【解答】解:A、该函数是常函数,故本选项不符合题意.B、该函数是y与(1﹣x)成反比例函数关系,故本选项不符合题意.C、该函数是反比例函数,故本选项符合题意.D、该函数不是反比例函数,故本选项不符合题意.故选:C.2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.【分析】直接利用后期每个月分别付相同的数额,进而得出y与x的函数关系式.【解答】解:由题意得y=,即y=,故选:D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D 符合;故选:D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值【分析】先判断出k2+1的符号,再根据反比例函数的性质即可得出结论.【解答】解:A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=(k2+1)是定值,故本选项正确.故选:B.5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.12【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(﹣2,2),∴OA=2,∴BO==,∵直线AC的解析式为y=﹣x,∴直线BD的解析式为y=x,∴点B的坐标为(2,2),∵点B在反比例函数y=的图象上,∴,解得,k=12,故选:D.6.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.6【分析】作BE⊥y轴于E,根据勾股定理求得OD=4,然后证明△ABE≌△DAO,可得BE =AO=3,AE=OD=4,所以点B坐标为(﹣3,﹣1),把点B代入双曲线y=可得k的值.【解答】解:作BE⊥y轴于E,∵正方形ABCD的边长为5,点A的坐标为(0,3),∴AD=5,OA=3,∴OD===4,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD,∴∠BAE=90°﹣∠DAO=∠ADO,∵∠AEB=∠AOD=90°,∴△ABE≌△DAO(AAS),∴BE=AO=3,AE=OD=4,∴OE=AE﹣OA=1,∴B(﹣3,﹣1),∵反比例函数y=(k≠0)的图象经过点B,∴k=﹣3×(﹣1)=3,故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.8【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设C(x,2).则D(x,4),由勾股定理得出AB2+BC2=AC2,列出方程22+12+(x﹣1)2+22=x2,求出x,得到D点坐标,代入y=,利用待定系数法求出k.【解答】解:∵AC∥x轴,OA=2,OB=1,∴A(0,2),∴C、A两点纵坐标相同,都为2,∴可设C(x,2).∵D为AC中点.∴D(x,2).∵∠ABC=90°,∴AB2+BC2=AC2,∴12+22+(x﹣1)2+22=x2,解得x=5,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=【分析】由点C(8,5)可知A(3,0),OD'=4,过点C'作C'M⊥OB,可证△AOD'≌△BMC'(HL),可求C'(5,4),即可求反比例函数解析式;【解答】解:∵正方形ABCD中,点C(8,5),∴A(3,0),AB=5,∵AD'=5,∴OD'=4,过点C'作C'M⊥OB,∵BC'=AD',C'M=OD',∴△AOD'≌△BMC'(HL),∴MB=OA=3,∴C'(5,4),∴y=;故选:A.9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.3【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故选:A.10.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B(2,5),设双曲线BC的解析式为y=,得到k=10,于是得到结论.【解答】解:∵四边形AOEB是矩形,∴BE=OA=5,AB=2,∴B(2,5),设双曲线BC的解析式为y=,∴k=10,∴y=,∵CD为1∴当y=1时,x=10,∴DE的长=10﹣2=8m,故选:D.二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是±2 .【分析】根据反比例函数的定义解答.【解答】解:依题意得:k2﹣5=﹣1且k﹣1≠0.解得k=±2.故答案是:±2.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.【分析】过点F作FG⊥OC,垂足为G.由于四边形OABC是矩形,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上,可得△DGF∽△FAE,然后把D、F两点的坐标用含k的代数式表示出来,再由相似三角形对应边成比例求出CE的长,然后利用勾股定理求出k.【解答】解:过点F作FG⊥OC,垂足为G,如图所示.由题意知D(,6),F(3,),FG=3.又∵△DEF与△DBF关于直线DF对称,点E在边OC上,∴DE=DB,∠B=∠DEF=90°,∴∠DEC+∠GEF=90°,∵∠EGF=∠DCE=90°,∠GEF+∠EFG=90°,∴∠DEC=∠EFG,∴△EGF∽△DCE,∴=,即=,解得:CE=,∵DE2=DC2+CE2,即(3﹣)2=()2+()2,解得:k=.故答案为:.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为 6 .【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:方法一:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.方法二:作BD⊥x轴于点D,作AE⊥x轴于点E,∵点A在为函数y=(x>0)图象上一点,AO=AC,∴△AOC的面积是9,∵点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,∴=,∴,∴,∴S△ABC=6,故答案为:6.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围x≤﹣9或x>0 .【分析】首先画出图形,进而利用函数图象得出x的取值范围.【解答】解:如图所示:∵反比例函数y=﹣,当y≤,∴y=时,则x=﹣9,故y≤时,x≤﹣9或x>0.故答案为:x≤﹣9或x>0.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是8 .【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出ab﹣cd=8,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故答案为:8.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是4≤k≤.【分析】先求出点A、B的坐标,根据反比例函数图象上点的坐标特征可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.【解答】解:∵△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),∴把x=2代入y=x+6得,y=﹣×2+6=,把y=2代入y=x+6得,﹣x+6=2,解得x=6,∴点A、B的坐标分别为A(2,),B(6,2),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=2×2=4最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣)2+,∵2≤x≤6,∴当x=时,k值最大,此时交点坐标为(,3),因此,k的取值范围是4≤k≤.故答案为:4≤k≤.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为10 .【分析】分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b),则ab=﹣4.根据两角对应相等的两三角形相似,得出△OAE∽△ABF,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出B的坐标,进而得出结果.【解答】解:分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b).∵顶点A在反比例函数y=图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.【分析】(1)根据题意设出点C的坐标,由sin∠COB=可以求得点C的坐标,进而可以求得双曲线的解析式;(2)根据y=2x﹣4求得A、B的坐标,OD:AD=1:2,可知D的坐标,根据待定系数法求得BD的解析式,联立解析式即可求出E横坐标.【解答】解:(1)设点C的坐标是(a,2a﹣4),∵sin∠COB=,∴tan∠COB==,解得,a=6,∴点C为(6,8),∵点C在双曲线y=(x>0)上,∴k=6×8=48,即双曲线的解析式为:y=;(2)∵直线y=ax+b(a>0)交y轴于D点,∴点D的坐标是(0,b),∵直线y=2x﹣4分别交坐标轴于A、B两点,∴点A的坐标是(0,﹣4),B(2,0),∵OD:AD=1:2,∴OD=,∴D(0,﹣),把B(2,0),D(0,﹣)代入y=ax+b得,解得,∴y=x﹣,解x﹣=得x=1+,x=1﹣(舍去),∴E的横坐标为1+.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,即可得出A(m,3),B (﹣3,﹣m),根据三角形面积求得m、n的值,得到A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第一象限时和当点P在第三象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(m,3),B(﹣3,n)代入反比例函数y=得:k=3m=﹣3n,即m=﹣n,则B(﹣3,﹣m),∵A(m,3),B(﹣3,﹣m),S△ABC=•BC•(x A﹣x B)∴×m×(m+3)=5,解得:m=2或m=﹣5(舍去),∴n=﹣2,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k=6,即反比例函数的解析式是y=;把A(2,3)代入y=x+b得:3=2+b,解得:b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式x+b的解集是x≤﹣3或0<x≤2;(3)∵P(p,y1),Q(﹣2,y2)是反比例函数y=图象上,则点Q(﹣2,y2)在第三象限,∴当点P在第一象限时,总有y1>y2,此时p>0;当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,即P的取值范围是p≤﹣2或p>0.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:点A(﹣1,﹣4),点B(﹣4,﹣1);当mx+n ≥时,x的取值范围是x>﹣4或﹣1<x<0 ;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.【分析】(1)观察图象,可求解;(2)由题意画出图象,由待定系数法可求直线解析式;(3)由待定系数法可求反比例函数解析式,设点C(a,),由等腰三角形的性质和两点距离公式可求a的值,即可求点C坐标.【解答】解:(1)由图象可知:点A(﹣1,﹣4),点B(﹣4,﹣1),当mx+n≥时,x的取值范围是x>﹣4或﹣1<x<0,故答案为:点A(﹣1,﹣4),点B(﹣4,﹣1),x>﹣4或﹣1<x<0;(2)图象如图:∵点A(﹣1,﹣4),点B(﹣4,﹣1),且直线AB向右平移3个单位,再向上平移5个单位,∴点A'(2,1),点B'(﹣1,4)设直线A'B'解析式为:y=kx+b,∴解得:∴直线A′B′的解析式为:y=﹣x+3;(3)∵反比例函数y=的图象过点A(﹣1,﹣4),∴k=﹣1×(﹣4)=4,∴反比例函数的解析式为:y=,设点C(a,),∵△ABC是以AB为底的等腰三角形,∴CA=CB,∴(a+1)2+(+4)2=(a+4)2+(+1)2,∴a=±2,∴点C(﹣2,﹣2)或(2,2)21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?【分析】(1)由勾股定理可求点B坐标(4,3),代入解析式可求k的值,即可求函数的解析式;(2)分两种情况讨论,由相似三角形的性质可求解.【解答】解:(1)∵△ABC是直角三角形,且BA⊥x轴于A,OA=4,OB=5,∴∴B(4,3),∴将B(4,3)代入得k=12,∴函数的解析式为:;(2)在两个动点运动过程中,分两种情况:①若∠OMN=90°,如图1所示,则MN∥AB,此时OM=4﹣x,ON=2x,∵∠OMN=∠OAB,∠NOM=∠BOA,∴△MON∽△AOB,∴,即:∴;②若∠ONM=90°,如图2所示,则∠ONM=∠OAB,此时OM=4﹣x,ON=2x,∵∠ONM=∠OAB,∠MON=∠BOA,∴△OMN~△OBA,∴即:,∴,综上所述,当或秒时,使得以O,M,N为顶点的三角形与△OAB相似.22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?【分析】(1)应用待定系数法分段求函数解析式;(2)代入临界值y=10即可.【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得,得,AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)把y=10代入y=中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.。

鲁教版九年级数学上册反比例函数能力提升基础训练试题(含答案)

鲁教版九年级数学上册反比例函数能力提升基础训练试题(含答案)

《反比例函数》单元测试一、填空题 1.已知函数y =(k +1)x 12−+k k(k 为整数),当k 为_________时,y 是x 的反比例函数.2.函数y =-x65的图象位于_________象限,且在每个象限内y 随x 的增大而_________.3.已知y 与 2x 成反比例,且当x =3时,y =61,那么当x =2时,y =_________,当y =2时,x =_________.4.如果函数y =(m +1)x 32−+m m表示反比例函数,且这个函数的图象与直线y =-x有两个交点,则m 的值为_________.5.如图1为反比例函数的图象,则它的解析式为_________.图16.已知双曲线经过直线y =3x -2与y =23x +1的交点,则它的解析式为_________.7.下列函数中_________是反比例函数.①y =x +x 1 ②y =xx 132+③y =21x − ④y =x238.对于函数y =x2,当x >0时,y _________0,这部分图象在第_________象限.对于函数y =-x2,当x <0时,y _________0,这部分图象在第_________象限.9.当m _________时,函数y =xm 1−的图象所在的象限内,y 随x 的增大而增大.10.如图2,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB =3,则反比例函数解析式为_________.图2二、选择题11.对于反比例函数y =x5,下列结论中正确的是( ) A.y 取正值B.y 随x 的增大而增大C.y 随x 的增大而减小D.y 取负值12.若点(1,2)同时在函数y =ax +b 和y =a bx −的图象上,则点(a ,b )为( ) A.(-3,-1) B.(-3,1) C.(1,3)D.(-1,3)13.已知y 与x 成正比例,z 与y 成反比例,则z 与x 之间的关系为( ) A.成正比例B.成反比例C.既成正比例又成反比例D.既不成正比例也不成反比例14.矩形面积为3 cm 2,则它的宽y (cm)与x (cm)长之间的函数图象位于( ) A.第一、三象限B.第二象限C.第三象限D.第一象限15.已知函数y =k (x +1)和y =xk,那么它们在同一坐标系中的图象大致位置是( )16.函数y =mx 922−−m m的图象是双曲线,且在每个象限内函数值y 随x 的增大而减小,则m 的值是( )A.-2B.4C.4或-2D.-117.如图3,过反比例函数y =x2(x >0)图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连结OA 、OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1、S 2,比较它们的大小,可得( )图3A.S 1>S 2B.S 1<S 2C.S 1=S 2D.S 1、S 2的大小关系不能确定18.已知一次函数y =kx +b 的图象经过第一、二、四象限,则函数y =xkb的图象在( )A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限19.函数y =kx -k ,与函数y =xk在同一坐标系中的图象大致如图4,则有( )图4A.k <0B.k >0C.-1<k <0D.k <-120.若在同一坐标系中,直线y =k 1x 与双曲线y =x k 2无交点,则有( )A.k 1+k 2>0B.k 1+k 2<0C.k 1k 2>0D.k 1k 2<0三、解答题21.已知函数y =-4x 2-2mx +m 2与反比例函数y =xm 42+的图象在第二象限内的一个交点的横坐标是-2,求此两个函数的解析式.22.如图5,Rt △AOB 的顶点A 是一次函数y =-x +m +3的图象与反比例函数y =xm的图象在第二象限的交点,且S △AOB =1,求点A 的坐标.图5 23.若反比例函数y =xm与一次函数y =kx +b 的图象都经过点(-2,-1),且当x =3时,这两个函数值相等,求反比例函数解析式.24.已知一个三角形的面积是12 cm 2,(1)写出一边y (cm)与该边上的高x (cm)间的函数关系式;(2)画出函数图象.25.某厂要制造能装250mL(1mL=1 cm 3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02 cm ,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm 3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.*26.已知直线y =-x +6和反比例函数y =xk(k ≠0) (1)k 满足什么条件时,这两个函数在同一坐标系xOy 中的图象有两个公共点?(2)设(1)的两个公共点分别为A 、B ,∠AOB 是锐角还是钝角?参考答案一、1.0 2.二、四 增大 3.41 41 4.-2 5.y =-x326.y =x 87.④8.> 一 > 二9.<1 10.y =x6二、11.C 12.D 13.B 14.D 15.B 16.B 17.C 18.C 19.A 20.D 三、21.y =-4x 2+14x +49 y =x10− 22.(-1,2) 23.y =x2 24.(1)y =x 24(2)略 25.y =252πx 2+02.010−x26.(1)0<k <9或k <0(2)k <0时,∠AOB 为钝角 0<k <9时,∠AOB 为锐角第1章 反比例函数一、填空题: 1.已知反比例函数xm y 23−=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大; 2.若直线)0(11≠=k x k y 和双曲线0)(22≠=k xk y 在同一坐标系内的图象无交点,则 1k 、2k 的关系是_________; 3.若反比例函数xk y 3−=的图象位于一、三象限内,正比例函数x k y )92(−=过二、四象限,则k 的整数值是________; 4.反比例函数xky =的图象经过点P (a ,b ),且a 为是一元二次方程042=++kx x 的两根,那么点P 的坐标是___ _,到原点的距离为_______; 5.反比例函数xky =的图象上有一点P (m ,n ),其坐标是关于t 的一元二次方程032=+−k t t 的两个根,且点P 到原点的距离为5,则该反比例函数解析式为___ __ 二、选择题:6.如果函数12−=m x y 为反比例函数,则m 的值是 ( )A 1−B 0C 21D 1 7.如图,A 为反比例函数x ky =图象上一点,AB ⊥x 轴与点B ,若3=∆AOB S ,则k 为( )A 6B 3C 23D 无法确定 8.若b y +与ax +1成反比例,则y 与x 的函数关系式是 ( ) A. 正比例 B. 反比例 C. 一次函数 D. 二次函数9.函数xky =的图象经过(1,)1−,则函数2−=kx y 的图象是 ( )10.在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D11.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y −的值是( )A 正数B 负数C 非正数D 不能确定12.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数1、(09福建漳州)矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( )2、(09甘肃兰州)如图,在直角坐标系中,点A 是x轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小3、(09湖北恩施)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是: ( )4、(09广东深圳)如图,反比例函数4y x=-的图象与直线13y x=-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) C .4 D .25、(09广西南宁)在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .26、(09广西贵港)如图,点A 是y 轴正半轴上的一个定点,点B 是反比例函数y =2x(x >0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( )A .逐渐增大B .逐渐减小C .不变D .先增大后减小7、(09广西梧州)已知点A (11x y ,)、B (22x y ,)是反比例函数x k y =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y8、(09浙江丽水)如图,点P 在反比例函数1y x=(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( ) A .)0(5>-=x x yB .)0(5>=x xyC . )0(6>-=x x yD .)0(6>=x xy9、(09山东青岛)一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( ) A .不小于4.8Ω B .不大于4.8ΩC .不小于14ΩD .不大于14Ω10、(09山东泰安)如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

若梯形ODBC 的面积为3,则双曲线的解析式为( ) (A )x y 1=(B )xy 2=(C ) x y 3= (D )x y 6= 第2题图第1题图第3题图R /第9题图第10题图P(第8题)第18题11、(09广东梅州)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 12、(09广西河池)如图12,A 、B 是函数2y x =的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S >13、(09湖南娄底)一次函数y =kx +b 与反比例函数y =kx 的图象如上图所示,则下列说法正确的是( )A.它们的函数值y 随着x 的增大而增大B.它们的函数值y 随着x 的增大而减小C.k <0D.它们的自变量x 的取值为全体实数 14、(09湖北仙桃)如图,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.15、(09湖北咸宁)反比例函数y 1= kx 与一次函数y 2=-x +b 的图象交于点A (2,3)和点B (m ,2).由图象可知,对于同一个x ,若y 1>y 2,则x 的取值范围是 .16、(09湖北黄石)如图7所示,P 1(x 1,y 1)、P 2(x 2,y 2),……P n (x n ,y n )在函数y=x9(x >0)的图象上,△OP 1A 1,△P 2A 1A 2,△P 3A 2A 3……△P n A n -1A n ……都是等腰直角三角形,斜边OA 1,A 1A 2……A n-1A n ,都在x 轴上,则y 1+y 2+…y n = 。

17、(09湖北十堰)如图,已知函数1+-=x y 的图象与x 轴、y 轴分别交于点C 、B ,与双曲线xk y =交于点A 、D , 若AB+CD=BC ,则k 的值为 .18、(09福建福州)已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)19、(09福建宁德)如图,已知点A 、B 在双曲线xk y =(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k = .20、(09福建莆田)正比例函数11y k x =与反比例函数22(0)k y x x=≠在同一平面直角坐标系中的图象如图所示,则当12y y >时x 的取值范围是_________.第19题图第17题图第16题图第20题图第21题图图12第13题图第22题图21、(09湖南常州)如图1,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 .22、(09甘肃兰州)如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的图象上,则点E 的坐标是( , ).23、(09广东清远)已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 24、(09广东广州)已知函数xy 2=,当x =1时,y的值是________25、(09广西柳州)反比例函数 xm y 1+=的图象经过点(2,1),则m 的值是26、(09广西钦州)如图是反比例函数y =kx在第二象限内的图象,若图中的矩形OABC 的面积为2,则k = .27、(09湖北武汉)如图,直线43y x =与双曲线k y x =(0x >)交于点A .将直线43y x=向右平移92个单位后,与双曲线k y x=(0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k = .28、(09湖南益阳)如图28,反比例函数x k y =)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,已知A 点坐标为)1,2(-,那么B 点的坐标为 .29、(09山东济宁)如图,A ⊙和B ⊙都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积等于 . 30、(09黑龙江牡丹江)如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .31、(09湖北荆州)直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1)、B (x 2,y 2)两点,则4x 1y 2-3x 2y 1=______30、(09湖北宜昌)已知点A (1,-k +2)在双曲线k xy =上.求常数k 的值31、(09广东肇庆)如图 7,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k y x =(k 为常数,0k ≠)的图象相交于点 A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.1(第29题)第27题图第26题图30题图32、(09湖北襄樊)如图32所示,在直角坐标系中,点A 是反比例函数1k y x =的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点,并将y 轴于点()02D -,,若4AOD S =△. (1)求反比例函数和一次函数的解析式; (2)观察图象,请指出在y 轴的右侧,当12y y >时,x 的取值范围.33、(09年北京)如图,A 、B 两点在函数()0m y x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

34、(09甘肃兰州)如图14,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0=-+xmb kx 的解(请直接写出答案); (4)求不等式0<-+xmb kx 的解集(请直接写出答案).35、(09湖北孝感)如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= (用含k 1、k 2的式子表示);(3分)(2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论;(4分) ②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由.(5分)图3236、(09广西贵港)如图,已知反比例函数y =mx的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B . (1)、求这两个函数的解析式; (2)、求点B 的坐标.37、(09广西河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图9所示.根据图中提供的信息,解答下列问题:(1)、写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;(2)图939、(09吉林长春)如图,在直角坐标系中,△OBA ∽△DOC ,边OA 、OC 都在x 轴的正半轴上,点B 的坐标为(6,8),∠BAO =∠OCD =90°,OD =5.反比例函数(0)ky x x=>的图象经过点D ,交AB 边于点E . (1)、求k 的值.(4分) (2)、求BE 的长.(2分)40、(09山东济南)已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.41、(09山东威海)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数k y x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B分别作BFx ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC与BD 交于点K ,连接CD .(1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形;②AN BM=.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM还相等吗?试证明你的结论.(第40题42、(09浙江金华)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0)。

相关文档
最新文档