1.2.2同角三角函数基本关系式
高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系
故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=
−
15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.
同角三角函数的基本关系与诱导公式
同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z.公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α. 公式三:sin(-α)=-sin α,cos(-α)=cos α.公式四:sin(π-α)=sin α,cos(π-α)=-cos α.公式五:sin )(απ-2=cos α,cos )(απ-2=sin α. 公式六:sin )(απ+2cos α,cos )(απ+2=-sin α. 一个口诀:诱导公式的记忆口诀为:(απ±2k )奇变偶不变,符号看象限. 三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….一、已知某角的一个三角函数值,求其它三角函数值 例1:① 已知sinA=23, A 为第二象限的角,求cosA ,tanA 的值;②已知cosA=23, A 为第四象限的角,求sinA ,tanA 的值;③已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________;二、由某角的正切值求该角关于正弦余弦的三角函数式的值例 2:已知tan α=2,求:(1)4sin 2cos 5sin 3cos αααα-+;(2)2222sin 2sin cos cos 4cos 3sin 1αααααα---+;(3)25sin 3sin cos 2ααα+-变式(1)已知tan α=13,求12sin αcos α+cos 2α的值;三、关于某角的正弦与余弦之和,正弦与余弦之差,正弦与余弦之积,知一求二例3: 已知-π2<x <0,sin x +cos x =15①求sinxcosx 的值, ②求sinx+cosx 的值③求sin 2x -cos 2x 的【试一试】 (1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形(2)已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.四、利用诱导公式求值,化简例4: 已知sin)(2πα+=-55,α∈(0,π). (1)求)3cos()sin()23cos()2sin(απαπαππα++-+--的值; (2)求cos )(απ-65的值.(2)已知sin α是方程5x 2-7x -6=0的根,α是第三象限角, 则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.专项基础训练一、选择题1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32B.32C .-12 D.12 2. cos(-2 013π)的值为( ) A.12B .-1C .-32D .03.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝ ⎛⎭⎪⎫-25π3的值为( )A.12B .-12C.32 D .-324.当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x的最小值是( )A.14B.12 C .2 D .4 二、填空题5.如果sin α=15,且α为第二象限角,则sin ⎝ ⎛⎭⎪⎫3π2+α=________.6.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为________.7. sin ⎝ ⎛⎭⎪⎫α+3π2·tan (α+π)sin (π-α)=________.三、解答题(共22分)8. (10分)已知sin θ+cos θ=23(0<θ<π),求tan θ的值.9. (12分)已知sin(3π+θ)=13,求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.。
1.2.2同角三角函数的基本关系
1.2.2同角三角函数的基本关系猜想:sin 2α+cos 2α=1 αααcos sin tan =二、知识探究(一):基本关系(1、以正弦线MP 、余弦线OM 和半径OP 三者的长度构成直角三角形,由勾股定理得sin 2α+cos 2α=12、根据三角函数的定义当)(2Z k k ∈+≠ππα时,有αααtan cos sin =) 思考1:如图,设α是一个任意角,它的终边与单位圆交于点P ,那么,正弦线MP 和余弦线OM 的长度有什么内在联系?由此能得到什么结论?MP 2+OM 2=1sin 2α+cos 2α=1思考2:上述关系反映了角α的正弦和余弦之间的内在联系,根据等式的特点,将它称为平方关系.那么当角α的终边在坐标轴上时,上述关系成立吗?sin 2α+cos 2α=1思考3:设角α的终边与单位圆交于点P(x ,y ),根据三角函数定义,有sin α=y ,cos α=x ,)0(tan ≠=x xy α, 由此可得sin α,cos α,tan α满足什么关系? αααtan cos sin =思考4:上述关系称为商数关系,那么商数关系成立的条件是什么?)(2Z k k ∈+≠ππα思考5:平方关系和商数关系是反映同一个角的三角函数之间的两个基本关系,它们都是恒等式,如何用文字语言描述这两个关系?sin 2α+cos 2α=1 αααtan cos sin = 同一个角的正弦、余弦的平方和等于1,商等于这个角的正切.三、知识探究(二):基本变形思考1:对于平方关系sin 2α+cos 2α=1可作哪些变形?sin 2α=1-cos 2αcos 2α=1-sin 2α(sinα+cos α)2=1+2sinαcos α(sinα-cos α)2=1-2sinαcos α思考2:对于商数关系αααtan cos sin =可作哪些变形? s inα=cos αtan α αααtan sin cos = 四、课本例6练习P20 1、2、3、4五、课本例7练习P20 5六、小结1.同角三角函数的两个基本关系是对同一个角而言的,由此可以派生出许多变形公式,应用中具有灵活、多变的特点.2.利用平方关系求值时往往要进行开方运算,因此要根据角所在的象限确定三角函数值符号,必要时应就角所在象限进行分类讨论.3.化简、求值、证明,是三角变换的三个基本问题,具有一定的技巧性,需要加强训练,不断总结、提高.七、习题例1、化简︒-440sin 12分析1:︒=︒=︒-=︒-80cos 80cos 80sin 1440sin 1222分析2:︒=︒=︒=︒=︒-80cos 440cos |440cos |440cos 440sin 122练习1、4sin 12-练习2、教材P22 B 组2例2、已知tanα=2,求下列各式的值.ααααsin 11sin 112cos sin 11++-⨯)()( 例3、已知π<<=+q q q 0,51cos sin 求sin q -cos q 的值. 练习3、P21 12练习4、已知21cos sin =+q q ,求sin 4q +cos 4q 的值. 例4、 已知tanα=2,(1)求sinα和cosα的值. (2)1sin cos sin 5cos 3cos sin sin 222++--ααααααα求 (3)αααα22cos 3cos sin sin 2-+求八、作业P21习题1.2A 组:11 13(1)(2)。
1.2.2 同角三角函数关系(1)
角α的终边 y (cosα,sinα) P
Mo
x
sin cos 1.
2 2
由正切函数的定义知,当
2
k (k Z )时,有
sin tan . cos
由此可得下列同角三角函数之间的基本关系式:
sin cos 1,
2 2
sin an . cos
4 例1.已知 sin , 且是第二象限角, 求 cos , 5 tan 的值.
12 例2.已知 tan , 求 sin , cos 的值. 5
分层训练
必做题:P18 练习3、4
选做题:P22 : 8 作业:P22 习题1.2: 7
1.2.2同角三角函数关系(1)
学习目标
1.掌握同角三角函数的基本关系式; 2.会运用同角三角函数基本关系式求值.
自学指导
1.同角三角函数的基本关系式是怎样的? 2.运用的前提条件是什么?如何推导? 3.结合例1,例2体会同角三角函数基本关 系式的运用.
自主检测:课本P17练习1、2
设角α的终边与单位圆交于P点 (如图), 则点P的坐标为(cosα,sinα).
同角三角函数的基本关系式
证法二:因为
(1 sin )(1 sin ) 1 sin cos
2 2
由原题可知 1 - sin 0, cos 0, cos 1 sin 所以 1 sin cos
证法三:
cos 0,1 sin 0 cos cos (1 sin ) 原式左边 2 1 sin cos cos (1 sin ) cos (1 sin ) 2 2 1 sin cos 1 sin 右边 cos
同角三角函数基本关系式的应用
1.求值题型
已知某个角的一个三角函数 值,求这个角的其余三角函数值.
3 例6 已知 sin , 求 cos ,tan 的值. 5
注意开方运算时根号前正、负号的选取, 即根据角所在的象限讨论正负号。
课本P23 练习 1,2,3
2.化简三角函数式. 函数种类要最少,项数要最少,函数 次数尽量低,能求出值的要求出数值,尽 量使分母不含三角形式和根式。
主客呀."能给咱壹千斤吗?"根汉问道."壹千斤..."在场の十几人都张大了嘴巴,这还是人吗,这小子也太能吃了,买壹千斤腌牛肉吃?(正文贰叁贰7壹千斤)贰叁贰捌赚钱"有!"中年老板立即拍板道:"小老弟呀,给你算便宜壹些吧,你给二十二壹斤就好了,壹共是二万二...""好, 谢谢了..."根汉立即就掏出了二万五千星海币,厚厚の壹大叠放在桌上,又说道:"再给咱准备十几缸红米酒吧,这里剩下の钱能装多少装多少吧...""好の..."中年老板笑得合不拢嘴,赶紧将这壹大叠钱给收好了,开什么玩笑,这壹天の功夫,就做了两个月の生意.今天真得烧香 拜拜财神了,壹斤少说也得赚个八到十块星海币
1.2.2同角的三角函数基本关系式
能力训练(化简)
例3.化简 : 1 2 sin 2 10 cot 10 sin 10 1 sin 2 10
分析 :" 脱" 根号,因此设法把根号内式子 配成完全平方式 , 可以从1入手.
2 ) 01 soc 01 ni s( ) 01 soc 01 ni s( 01 soc 01 ni s 2 1 .1 式原 01 soc 01 ni s 01 soc 01 ni s 01 2 ni s 1 01 ni s
分析 : 找与题设条件最接近关 系式 : sin 2 cos 2 1, 故 cos 的值最容易求得在求 cos 时需要开方运算因此 , , 应根据角的所在象限确定cos 的符号. 4 对于tan 的负号,是根据商数关系直接运 算后的结果 ,
3 不需要根据的 是第二象限角来事先确 . 定 思路 : 找最接近题设的基本关 ;只有应用平方关系才根 系 据 角的象限来确定开方时 符号;应用商数关系 倒数关系时不 、 需要确定符号由运算自然得到符号 , . 本题由于角所在的象限 已指定,则求得的只有一组结果 .
1 2
3 2
2 2 2 2
3 2
1
0 1 0
不 存在
0
cos
tan
1
0
不 存在
1 2
0 1 0
不 存在
1
0
不 存在
cot
3 3
1 1
不 3 存在
3
3 3
0
0
问题探究(一)
计算下列各式的值: 1. sin 2 90 cos 2 90 ; 2. sin 2 30 cos 2 30 ; 5 5 3. tan 45 cot 45 ; 4. tan cot . 6 6 问题 : 如果把上面具体的数据 改为一般角会 有同样的结果吗 ?
人教a版必修4学案:1.2.2同角三角函数的基本关系(含答案)
1.2.2 同角三角函数的基本关系自主学习知识梳理1.同角三角函数的基本关系式(1)平方关系:____________________.(2)商数关系:____________________.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=__________;cos 2α=__________;(sin α+cos α)2=__________;(sin α-cos α)2=____________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=____________.(2)tan α=sin αcos α的变形公式:sin α=____________; cos α=____________.自主探究1.利用任意角三角函数的定义推导平方关系.2.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.对点讲练知识点一 已知某一个三角函数值,求同角的其余三角函数值例1 已知cos α=-817,求sin α、tan α.回顾归纳 同角三角函数的基本关系式揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.变式训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.知识点二 利用同角的三角函数基本关系式化简例2 化简:1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.回顾归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.变式训练2 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.知识点三 利用同角的三角函数基本关系式证明恒等式例3 求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.回顾归纳 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.变式训练3 求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan 2x 1+tan 2x.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.课时作业一、选择题1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是( )A.14B.12 C .1 D.322.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-13.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±434.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是( ) A.13 B .3 C .-13D .-3 5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8二、填空题6.已知α是第二象限角,tan α=-12,则cos α=________. 7.已知sin αcos α=18且π4<α<π2,则cos α-sin α= ______________________________________________________________________.8.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.三、解答题9.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).10.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π) 求:(1)m 的值;(2)方程的两根及此时θ的值.1.2.2 同角三角函数的基本关系答案知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α (α≠k π+π2,k ∈Z ) 2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22(2)cos αtan α sin αtan α自主探究1.解 ∵sin α=y r ,cos α=x r ,tan α=y x,x 2+y 2=r 2, ∴sin 2α+cos 2α=y 2r 2+x 2r 2=x 2+y 2r 2=1 (α∈R ). sin αcos α=y r x r=y x =tan α (α≠k π+π2,k ∈Z ). 2.解 关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(1)原式=4tan α-23tan α+5=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 对点讲练例1 解 ∵cos α=-817<0且cos α≠-1, ∴α是第二或第三象限的角.(1)如果α是第二象限的角,可以得到sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517. tan α=sin αcos α=1517-817=-158. (2)如果α是第三象限的角,可得到:sin α=-1517,tan α=158. 变式训练1 解 由tan α=sin αcos α=43, 得sin α=43cos α. ① 又sin 2 α+cos 2α=1, ②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 例2 解 原式=1cos α 1+sin 2αcos 2α+(1+sin α)21-sin 2α -(1-sin α)21-sin 2α =|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α为第一或第四象限角),-1-2tan α(α为第二或第三象限角). 变式训练2 解 原式=(1-cos 4 α)-sin 4 α(1-cos 6 α)-sin 6 α=(1-cos 2α)(1+cos 2α)-sin 4 α(1-cos 2α)(1+cos 2α+cos 4 α)-sin 6 α=sin 2α(1+cos 2α)-sin 4 αsin 2α(1+cos 2α+cos 4 α)-sin 6 α=1+cos 2α-sin 2α1+cos 2α+cos 4 α-sin 4 α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 例3 证明 左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α=(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边. ∴原式成立.变式训练3 证明 左边=cos 22x +sin 22x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x=1-tan 2x 1+tan 2x=右边.∴原等式成立.课时作业1.C [sin 2β+cos 4β+sin 2βcos 2β=sin 2β+cos 2β(cos 2β+sin 2β)=sin 2β+cos 2β=1.]2.B [∵α为第三象限角,cos α<0,sin α<0,∴原式=cos αcos 2α+2sin αsin 2α=cos α-cos α+2sin α-sin α=-3.] 3.A [α为第二象限角,sin α=45,cos α=-35, tan α=-43.] 4.C [1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)·(sin α+cos α)(sin α+cos α)·(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.] 5.C [tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8.] 6.-255 解析 由α是第二象限的角且tan α=-12,则⎩⎪⎨⎪⎧sin α=-12cos αsin 2α+cos 2α=1,则⎩⎨⎧ sin α=55cos α=-255.7.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32.8.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.9.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin 2α-cos 2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α=2+2tan 2α+sin 2α右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α∴左边=右边,原式成立.10.解 (1)由韦达定理知⎩⎨⎧ sin θ+cos θ=3+12①sin θ·cos θ=m2 ②由①式可知1+2sin θcos θ=1+32, ∴sin θcos θ=34,∴m2=34,∴m =32, (2)当m =32时,原方程2x 2-(3+1)x +32=0, ∴x 1=32,x 2=12. ∵θ∈(0,2π)∴⎩⎨⎧ sin θ=32cos θ=12或⎩⎨⎧ sin θ=12cos θ=32. ∴θ=π3或θ=π6.。
1.2.2 同角三角函数的基本关系
2
又 tan 为非零实数
为象限角
当 在第一、四象限时,即有 cos 0 ,从而
1 1 tan 2 cos 2 1 tan 1 tan 2
tan 1 tan 2 sin tan cos 1 tan 2
引入
1.任意角的三角函数定义: 设角 是一个任意角, 终边上任意一点
2 2 2 2 P( x, y) 它与原点的距离为 r ( r | x | | y | x y 0)
那么:
y sin r
x cos r
y tan x
.
2.当角α分别在不同的象限时,sinα、cosα、 tanα的符号分别是怎样的?
数值;
3.在以上的题型中:先确定角的终边位置,再根
据关系式求值。如已知正弦或余弦,则先用平方
关系,再用其它关系求值;若已知正切或余切, 则可构造方程组来求值。
作业
课本20页练习
3 3.背景:如果 si n A ,A为第一象限的角, 5 如何求角A的其它三角函数值;
4.问题:由于α的三角函数都是由x、y、r 表 示的,则角α的六个三角函数之间有什么关系?
新课
1.由三角函数的定义,我们可以得到以下关系:
(1)商数关系:
sin tan ( k , k Z ) cos 2
1 cos (1 2 ) 1 m
2
m2 cos 2 1 m2
又 m 0, 为象限角
当 在第一、四象限时,即有
cos 0
m2 cos 2 m 1
当 在第二、三象限时,即有
三角函数的基本关系式
1. 同角三角函数的基本关系式 tan α ⋅ cot α = 1 sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 2. 倒数关系:
tan α =
sin α sec α = cos α csc α 1 cos α csc α = = tan α sin α sec α
正弦为奇函数 余弦为偶函数 正切为奇函数 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2+α)=-cosα cos(3π/2+α)= sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中 k∈Z)
3. 商的关系: cot α = 4. 平方关系:
sin 2 α + cos 2 α = 1
1 + tan 2 α = sec2 α =
(对应于勾股定理)
1 (上述公式的扩展) cos 2 α 1 1 + cot 2 α = csc2 α = sin 2 α
5. 诱导公式 单一角公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα
同角三角函数基本关系式与诱导公式知识点讲解+例题讲解(含解析)
同角三角函数基本关系式与诱导公式一、知识梳理1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tanα.2.三角函数的诱导公式总结:1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.()(2)六组诱导公式中的角α可以是任意角.()(3)若α∈R,则tan α=sin αcos α恒成立.()(4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 解析 (1)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13. 答案 (1)× (2)√ (3)× (4)×2.已知tan α=-3,则cos 2α-sin 2α=( ) A.45B.-45C.35D.-35解析 由同角三角函数关系得cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-91+9=-45.答案 B3.已知α为锐角,且sin α=45,则cos (π+α)=( ) A.-35B.35C.-45D.45解析 因为α为锐角,所以cos α=1-sin 2α=35, 故cos(π+α)=-cos α=-35. 答案 A4.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( )A.-79B.-29C.29D.79 解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α, ∴sin 2α=1-⎝ ⎛⎭⎪⎫432=-79.答案 A5.(2019·济南质检)若sin α=-513,且α为第四象限角,则tan α=( ) A.125B.-125C.512D.-512解析 ∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,因此tan α=sin αcos α=-512. 答案 D6.(2018·上海嘉定区月考)化简:sin 2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin 3⎝ ⎛⎭⎪⎫π2+α·sin(-α-2π)=________.解析 原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案 1考点一 同角三角函数基本关系式 角度1 公式的直接运用【例1-1】 (2018·延安模拟)已知α∈⎝⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=( ) A.-223 B.223 C.±223 D.23解析 因为α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13>-22=sin ⎝ ⎛⎭⎪⎫-π4,所以α为第三象限角,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223. 答案 A角度2 关于sin α,cos α的齐次式问题 【例1-2】 已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.解 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53. (2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.角度3 “sin α±cos α,sin αcos α”之间的关系 【例1-3】 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x 1-tan x 的值.解 (1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125, 整理得2sin x cos x =-2425.所以(sin x -cos x )2=1-2sin x cos x =4925. 由x ∈(-π,0),知sin x <0,又sin x +cos x >0, 所以cos x >0,则sin x -cos x <0, 故sin x -cos x =-75.(2)sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练1】 (1)(2019·烟台测试)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34(2)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35B.-35C.-3D.3解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34, ∴cos α-sin α=32.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,可得tan α=2,则cos 2α+12sin 2α=cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.答案 (1)B (2)A考点二 诱导公式的应用【例2】 (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________. (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________. 解析 (1)∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos α(1+2sin α)sin α(1+2sin α)=1tan α,∴f ⎝ ⎛⎭⎪⎫76π=1tan 76π=1tan π6= 3. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=-a +a =0.答案 (1)3 (2)0【训练2】 (1)(2019·衡水中学调研)若cos ⎝ ⎛⎭⎪⎫π2-α=23,则cos(π-2α)=( )A.29B.59C.-29D.-59 (2)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________. 解析 (1)由cos ⎝ ⎛⎭⎪⎫π2-α=23,得sin α=23.∴cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×29-1=-59. (2)α与β的终边关于y 轴对称,则α+β=π+2k π,k ∈Z ,∴β=π-α+2k π,k ∈Z .∴sin β=sin(π-α+2k π)=sin α=13. 答案 (1)D (2)13考点三 同角三角函数基本关系式与诱导公式的综合应用【例3】 (1)(2019·菏泽联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=( ) A.427B.±225C.±427D.225(2)(2019·福建四地六校联考)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( ) A.355B.377C.31010D.13解析 (1)∵α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,tan α=sin αcos α=-2 2.∴tan(π+2α)=tan 2α=2tan α1-tan 2α=-421-(-22)2=427. (2)由已知得⎩⎨⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角). 答案 (1)A (2)C(3)已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x 的值; ②求sin 2x +2sin 2 x 1-tan x的值.解 ①由已知,得sin x +cos x =15, 两边平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,由-π<x <0知,sin x <0, 又sin x cos x =-1225<0, ∴cos x >0,∴sin x -cos x <0, 故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.【训练3】 (1)(2019·湖北七州市联考)已知α∈(0,π),且cos α=-513,则sin ⎝ ⎛⎭⎪⎫π2-α·tan α=( ) A.-1213 B.-513C.1213D.513(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析 (1)∵α∈(0,π),且cos α=-513,∴sin α=1213,因此sin ⎝ ⎛⎭⎪⎫π2-α·tan α=cos α·sin αcos α=sin α=1213.(2)由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝ ⎛⎭⎪⎫θ+π4=34.∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-43. 答案 (1)C (2)-43三、课后练习1.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为( ) A.1+ 5 B.1-5 C.1± 5D.-1-5解析 由题意知sin θ+cos θ=-m 2,sin θ·cos θ=m4.又()sin θ+cos θ2=1+2sin θcos θ,∴m 24=1+m2,解得m =1± 5.又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 答案 B2.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析 sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45. 答案 35 453.已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)=________.解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1. 综上,原式=-1. 答案 -14.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由. 解 假设存在角α,β满足条件,则由已知条件可得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2. ∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π),∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.5.已知sin α=23,α∈⎝ ⎛⎭⎪⎫0,π2,则cos(π-α)=________,cos 2α=________.解析 cos(π-α)=-cos α=-1-sin 2α=-73,cos 2α=cos 2α-sin 2α=⎝ ⎛⎭⎪⎫-732-⎝ ⎛⎭⎪⎫232=59.答案 -73 59。
1.2.2同角三角函数基本关系
基本变形 2 2 思考:对于平方关系 sin cos 1 可作哪些变形?
sin 1 cos , cos 1 sin , 2 (sin cos ) 1 2 sin cos 2 (sin cos ) 1 2 sin cos
又是第二象限角, cos 0
1 2 2 sin 2 cos t an 3 3 cos 4 2 2 3
三、应用示例
3 例2.已知 sin , 求 cos , tan 的值。 5 解:因为 sin 0, sin 1, 所以 是第三或第四象限角.
1的替换 — 3 3 1 3(sin cos )
2 2
1 (1) 2 1 ( 2) 32 20 (3) 13
1的替换 — 看作分母为 1 sin 2 cos 2
cos x 1 sin x 例4 求证 1 sin x cos x
恒等式证明常用方法?
基本思路:由繁到简 可以从左边往右边证,
因此
cos 1 sin 1 sin cos
化简
例5.化简
解:原式
1 sin 440
2
2
2
2
1 sin (360 80 ) 1 sin 80
cos 80 cos80
例6.化简 解:原式
1 2sin40 cos40
sin 40 cos 40 2sin40 cos40
2 2
2 2
思考:对于商数关系 哪些变形?
sin tan 可作 cos
sin cos tan ,
sin cos . tan
同角三角函数的基本关系
16 4 25=-5
探要点·究所然
sin α 4 4 解 由 tan α=cos α=3,得 sin α=3cos α.
①
又sin2α+cos2α=1,
16 2 9 2 2 由①②得 9 cos α+cos α=1,即 cos α=25.
P(x,y) α
(2)余弦:cosα= x ;
A(1,0) x
0
y ( x 0) (3)正切:tanα= x
2
由三角函数的定义得:
平方关系: sin cos 1
2
商数关系: sin tan cos
同角三角函数的基本关系式:
sin cos 1 , sin tan , cos
1+sin α cos α ∴ = cos α . 1-sin α
探要点·究所然
跟踪训练 3
2sin xcos x-1 tan x-1 求证: = . 2 2 cos x-sin x tan x+1
证明
方法一
∵左边=
2sin xcos x-sin2x+cos2x cos2x-sin2x
1+cos θ = sin θ =右边.
∴原等式成立.
当堂测·查疑缺
1, 已知 是三角形的 角,且 sin cos 内 例. 5 求 sin , cos , tan 的值 . 1 由 sin cos ① 平方得 1 2sin cos 1 解: 5 25 即 2sin cos 24 0 25 sin 0 ,cos 0. 是三角形的内角 , ,sin cos 0 , 2 2 由 (sin cos ) 1 2sin cos 1 24 49 , 25 25 得 sin cos 7 , ② 联立①②得: 5 sin 4 ,cos 3 ,tan sin 4 . 5 5 3 cos
§1.2.2同角三角函数的基本关系式
§1.2.2同角三角函数的基本关系式
1.任意角的三角函数(代数表示)-----定义
y
y 正弦:sin P (x, y) r x 余弦: cos r x 正切:tan y x
P (x, y) y
o x
o
y
余切:cot
x y
y
o
P (x, y)
2013-1-12
§1.2.2同角三角函数的基本关系式
cos x 1 sin x 例2.求证: 1 sin x cos x
思路5:利用公分母将原式的左边和右边转化为同一 种形式的结果. cos2 x cos x cos x 证法5 : 左边 , 1 sin x cos x (1 sin x ) cos x 1 sin 2 x 1 sin x 1 sin x 右边 cos x 1 sin x cos x(1 sin x )
cos2 x , (1 sin x) cos x
∵左边=右边
2013-1-12
∴原等式成立.
12
重庆市万州高级中学 曾国荣 wzzxzgr@
§1.2.2同角三角函数的基本关系式
cos x 1 sin x 例2.求证: 1 sin x cos x
思路6:由乘积式转化为比例式
x
(1)y叫做 的正弦,记作
sin ,即
y (3) 叫做 的正切,记作 tan ,即 y x tan =AT ( x 0)
有向线段MP、OM、AT,分别叫做角 的正弦线、 余弦线、正切线,统称为三角函数线. 同一个角的不同三角函数之间的关 系如何?
2013-1-12 重庆市万州高级中学 曾国荣 wzzxzgr@ 2
1.2.2同角三角函数的基本关系
sin 3 cos 3 1
2 2
练习1.化简下列各式
(1) cos tan
2 cos2 1 (2) 1 2 sin 2
1 cos 2 sin 2 2a 2 2 a
2
1 sin
2
cos
2
sin( ) 6 tan( ) 6 cos( ) 6
M O
你能利用三角函数的定义说 明这个平方关系吗? 由三角函数定义知: y 2 x 2 2 2 sin α+cos α=( ) +( ) r r y2+x2 = r2 r2 = r2 =1 同一个角的正弦、余弦的平方和等于1.
你还能从三角函数定义出发, 找到同一个角的三种三角函数间的 联系吗? 注意:今后凡没有 π 当α≠kπ+ (k∈Z)时 特别注明,我们假定三 2 角恒等式都是在使两边 y sinα y r 都有意义的情况下的恒 = tan α = = x cosα x 等式. r 所以,同一个角的正弦与余弦的商等于这个角的 正切.
3 例1:已知sinα= - 5,求cosα,tanα的值. 解:因为sinα<0,sinα≠-1,所以α是第三或第四 象限角. 由sin2α+cos2α=1,得 32 16 2 2 cos α=1-sin α=1-( - ) 5 = 25 如果α是 第三象限角,那么cosα<0,于是 16 - 4 cosα= - 25 = 5 从而 3 5 3 sinα tanα= =( - 5 )×( - 4 )= 4 cosα
已知某个角的一个三角函数值,可求 出它的其余三角函数值. 步骤:
分类讨论
先判断角的象限,再利用平方关系求解
变式二:已知tan 3, 求sin , cos值
21-22版:1.2.2 同角三角函数的基本关系(创新设计)
课前预习
课堂互动
课堂反馈
学习目标 1.理解并掌握同角三角函数的基本关系(重点).2.会 用同角三角函数的基本关系进行三角函数式的求值、化简和证 明(难点).
课前预习
课堂互动
课堂反馈
知识点 同角三角函数的基本关系
1.同角三角函数的基本关系式 (1)平方关系:__s_in_2_α_+__c_o_s_2α__=__1___. (2)商数关系:_t_a_n_α_=__cs_oi_ns_αα___(α_≠__k_π_+__π2_,__k_∈__Z_)________.
答案 B
课前预习
课堂互动
课堂反馈
2.已知 sin α=13,tan α=- 42,则 cos α=( )
A.-2
2 3
B.2 3 2
C.-13
D.
2 4
解析 由 sin α=13>0,tan α=- 42<0,可知 α 是第二象限角, ∴cos α=- 1-sin2α=-232.
答案 A
课前预习
课堂互动
=tan
tan2αsin2α α-sin αtan
αsin
α=tatnanαα-sisninαα=左边,
∴原等式成立.
课前预习
课堂互动
课堂反馈
课堂达标
1.若 cos α=-45,且 α 是第二象限角,则 tan α 的值等于( )
A.34
B.-34
C.43
D.-43
解析 由题意可得 sin α= 1-cos2α=35, ∴tan α=csoins αα=-34.
课堂反馈
3.化简1+cocsoθs θ-1-cocsoθs θ的结果是________.
同角三角函数关系式
cos(α+β)-cosγ=-2cosγ,∴(3)式不是常数;
又tan(α+β)=tan(π-γ)=-tanγ,∴(4)式不是常数, ∴(1),(2),(5)式为常数,共4个. 答案:3
知识要点
双基巩固
典型例题
易错辨析
提升训练
方法技巧:
1 在△ABC
(1)若△ABC
(2)若△ABC为直角三角形(∠C cosB. (3)若△ABC为钝角三角形(∠C cosB.
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
方法技巧:1. 化简是一种不指定结果的恒等变形,
其结果要求:项数尽可能少、次数尽可能低、尽量使根 号内或分母中不含三角函数(式),能求值的尽量求值.
2. 化简前,注意分析角及式子的结构特点,选择恰
当的公式和化简顺序.
知识要点
双基巩固
典型例题
易错辨析
提升训练
综合应用
【思路点拨】 先利用诱导公式,将条件化简,再利用平方
关系,消去A(或B)得到B(或A)的某一三角函数值,进
而求出A,B,C.
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
,则sin(B
知识要点
双基巩固
典型例题
易错辨析
提升训练
知识要点
双基巩固
典型例题
易错辨析
提升训练
学科网
知识要点
三角函数之间的关系公式
三角函数之间的关系公式1. 同角三角函数的基本关系:倒数关系:tanα•cotα=1 sinα•cscα=1 cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=csc α/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式:sin²α+cos²α=1 tan α*cot α=12. 一个特殊公式:(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin (a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)3. 锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边4. 二倍角公式正弦sin2A=2sinA•cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1正切tan2A=(2tanA)/(1-tan^2(A))5. 三倍角公式sin3α=4sinα•sin(π/3+α)sin(π/3-α)cos3α=4cosα•cos(π/3+α)cos(π/3-α)tan3a = tan a •tan(π/3+a)•tan(π/3-a)6. n倍角公式sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n). 其中R=2^(n-1)7. 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA )=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))8. 和差化积sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ= 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ= 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)9. 两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ10. 积化和差sinαsinβ= [cos(α-β)-cos(α+β)] /2cosαcosβ= [cos(α+β)+cos(α-β)]/2sinαcosβ= [sin(α+β)+sin(α-β)]/2cosαsinβ= [sin(α+β)-sin(α-β)]/211. 双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tan αcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tan αcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sin αcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tan αcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tan αcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot (π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan (π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos (3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tan αsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z) A•sin(ωt+θ)+ B•sin(ωt+φ) = √{(A²+B²+2ABcos(θ-φ)} •sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容12. 诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosA tan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限13. 万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]14. 其它公式(1) (sinα)²+(cosα)²=1(2)1+(tanα)²=(secα)²(3)1+(cotα)²=(cscα)²证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可.(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC(8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a) sec(a) = 1/cos(a)15. 两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
1.2.2_同角三角函数的基本关系
∴ 1 cos θ=2
3 sin θ= 2
或 cos
1 sin θ= 2 3 θ= 2
,又∵θ∈(0,2π),
π π ∴θ= 或 θ= . 3 6
化解与证明
(1)化简: 1-2sin 20° cos 20° ; sin α-cos α+1 1+sin α (2)求证: = . cos α sin α+cos同角三角函数的基本关系
1.2.2 同角三角函数的基本关系
课 标 点 击
预 习 导 学
典 例 精 析
课 堂 导 练
课 堂 小 结
1.掌握同角三角函数的基本关系式并灵活运用于 解题,提高学生分析,解决三角问题的能力. 2.灵活运用同角三角函数基本关系式的不同变形, 提高三角恒等变形的能力,进一步树立化归思想方法.
证法三:∵sin2α+cos2α=1,∴1-cos2α=sin2α, 1+cos α sin α ∴ - sin α 1-cos α sin2α-1+cos α1-cos α = . sin α1-cos α sin2α+cos2α-1 1-1 = = =0, sin α1-cos α sin α1-cos α 1+cos α sin α ∴ = . sin α 1-cos α
同角三角函数的基本关系式
①平方关系: sin 2 cos2 1
当 kk Ζ 时
2
sin、 cos
及 tan 有没有商数关系?
y
tan y xຫໍສະໝຸດ r xsin cos
r
②商数关系: tan sin cos
;办公室装修设计:/
次数尽量低,能求出值的要求出数值,尽 量使分母不含三角形式和根式。
课本P23 练习 4
点评:(1)考虑化“切”为“弦”求值,有时也 需要化“弦”为“切”;
(2)注意“1”的代换.
3.证明三角恒等式.
一般方法有三种:
(1)由繁的一边证到简单的一边 (2)证明左、右两边等于同一式子 (3)证明与原恒等式等价的式子,从而 推出原式成立
2021/4/9
4
同角三角函数基本关系式的应用
1.求值题型 已知某个角的一个三角函数
值,求这个角的其余三角函数值.
例6 已知 sin 3 ,求 cos ,tan 的值.
5
注意开方运算时根号前正、负号的选取, 即根据角所在的象限讨论正负号。
课本P23 练习 1,2,3
2.化简三角函数式. 函数种类要最少,项数要最少,函数
)
1 sin 右边 cos
作业:
X 课本P24 10(1)(3)
课本P25 13
(1)根据(sin cos)2 1 2sin cos可由 sin cos,sin cos,sin cos中的任一
个求另外两个;
感谢您的阅读收藏,谢谢!
2021/4/9
12
;
以商州刺史严谟为黔中观察使 太子少保赵昌卒 亦有便宜 蔡州刺史 乙酉 壬午 许朝臣每年冬季准此闻荐 是月 判司三员 壬午 门下侍郎 宜却还龙武军 及是功
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15 15 如果是第二象限角时 , sin ; tan . 17 8
15 15 如果是第三象限角时 , sin ; tan . 17 8
21
数学应用:求值
12 例2 已知 tan , 求 sin , cos 的值. 5 sin 12 解:由 tan , 可得 sin 12 cos cos 5 5 12 2 2 2 故( )cos 2 cos 2 1 又 sin cos 1, 5 25 2 解得 cos 。 先定象限,后定值 169 又由tan 0, 知 是第一或第三象限角。 5 12 12 若 是第一象限角,则 cos , tan , sin 13 5 13 5 12 12 若 是第三象限角,则 cos , tan , sin 13 5 13 小结:(1)注意方程思想的运用; (2)分类讨论的数学思想. Company Logo
§1.2.2同角三角函数的基本关系式
同角三角函数基本关系式:
sin cos 1 tan cot 1.
2 2
称为平方关系 称为倒数关系
sin tan cos
称为商数关系
关于三种关系式
2.三种关系式(公式)都必须在定义域允许的范围内成立. 3.对于同一个角的sin 、cos 、tan 、cot 可以利用上三种基本 关系式, "知一求三".
sin sin (sin2 cos2 )
26
题型:齐次式求值
已知tan α=2,求:
2sin 3cos (1) 4sin 9 cos 1 (3) sin cos
2
2sin 3cos (2) 2 2 4sin 9 cos 1 1 + (5) 1 - sin a 1 + sin a
sin y tan cos x
角是否可以是任意角时 , 上式都成立呢 ?
sin 当 k ( k Z )时, tan 成立. 2 cos
sin tan cos
称为商数关系
10
平方关系和商数关系
y O r
r x y
2 2
sin2
± 0.6 已知:sin 0.8,填空:cos ______
小样!别以为你换 了个马甲我就认不 出你了!
哈哈~~~~~~~~ 我换了个马甲!
复习:三角函数的符号
已知:sin 0.8,填空:cos ______ ±0.6
y + - + - x - y + -
y
+ x O + -
公式运用题型
第一类题型
• 已知一个角的一个三角函数值,求这个角的 其它几个三角函数值。
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。 sin tan
cos
数学应用:求值
4 例1 已知 sin , 且 是第二象限角,求 cos , tan 的值. 5
sin cos 1 tan cot 1.
2 2
称为平方关系 称为倒数关系
注:上面两种关系直接可 以用三角函数定义得到.
9
可以证明吗? 如何证明吗? 角是否可以是任意角吗 ?
§1.2.2同角三角函数的基本关系式
问题探究(二)
请同学们继续根据三角 函数的定义探索: sin , cos , tan 三者之间是否有什么关 系?
3.三角函数值的符号
o
y
sin
x
x x o o
cos
y
y
tan cot
y
记忆:一全二正弦, 三切四余弦
sin
全正
tan o cos x cot
4
§1.2.2同角三角函数的基本关系式
4.特殊角的三角函数值
角的度数
角的弧度数
0
O
x O - +
cos、sec 右正左负
sin、csc 上正下负
tan、cot 奇正偶负
还需重新证明!
±0.6 已知:sin 0.8,填空:cos ______ 在初中,我们学过以下三个三角公式:
sin cos 1
2 2
在初中, 公式中的角 为锐角!
sin tan cos
x 注意: cot 叫余切函数, y
2
§1.2.2同角三角函数的基本关系式
2.三角函数的定义域
sin
cos
tan
{ | R且
R R
2
k , k Z }
cot
{ | R且 k , k Z }
3
§1.2.2同角三角函数的基本关系式
例题
2. 已知 tan 是不等于零, 用tan 表示sin , cos .
解: sin
cos 1 sin tan cos
2 2
cos 2 (1 tan 2 ) 1
1 cos 2 1 tan
2
25
练习
已知:tan 2,填空:
例题讲解
§1.2.2同角三角函数的基本关系式
3 例6. 已知 sin , 求 cos , tan 的值. 5
20
§1.2.2同角三角函数的基本关系式
基础训练
8 1. 已知cos , 求 sin , tan ,的值. 17
cos 0且 cos 1, 是第二或第三象限角 . 求得的结果有两组 .
x P(x,y)
x 2 y 2 (sin) (cos) r r ∵ y2 x2 r2, ∴ sin2 cos2 1 R cos2
y x y sin ; cot . r sin y y r tan x x cos x cos ; r r y tan ; x
1
§1.2.2同角三角函数的基本关系式
复习与回顾 1.任意角的三角函数的定义
设是一个任意角 , 的终边与单位圆的 交点P( x, y), 那么:
y (2) cos ___; x (1) sin ___;
x y y x (4) cot ___; (3) tan ___;
2 2
倒数关系: tan cot 1, 学习数学公 式需要做好 哪几件事?
公式成立的条件
平方关系: sin cos 1, R
2 2
sin tan , k (k Z) 商数关系: 2 cos k 倒数关系: tan cot 1, (k Z) 2
0
0
sin
30 45 60 90 180 270 360 3 2 4 6 3 2 2
1 2
2 2 2 2
3 2
1
0
0 1
1
0
cos
tan
1
0
不 存在
3 2
1 2
0
不 存在
1
0
不 存在
5
cot
3 3
1 1
不 3 存在
0
不 存在
3
3 3
0
0
引例
(1) sin cos
sin 3cos
________
2 2sin2 2cos2
-3
分子分母同除 以cos
7 sin 2 4 ________ (2) 2 2 3cos
sin 2 ________ (3) 3 3 sin 3cos
解: sin 2 cos2 1
2 2
先定象限,后定值
4 2 9 cos 1 sin 1 ( ) 5 25 又 是第二象限角, cos 0
3 cos , 5
4 sin 4 5 tan cos 3 3 5
tan cot 1
对任意角 这些公式 是否成立?
问题探究(一)
§1.2.2同角三角函数的基本关系式
计算下列各式的值: 1. sin 2 90 cos 2 90 ; 2. sin 2 30 cos 2 30 ; 5 5 3. tan 45 cot 45 ; 4. tan cot . 6 6 问题 : 如果把上面具体的数据 改为一般角会 有同样的结果吗 ?
Company Logo
化简
sin cos tan 1
例4:
解:原式=
sin cos sin cos cos sin sin cos 1 cos cos
1 把 tan cot 1变形为tan 等. cot
23
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。 sin
sin 2 cos 2 1
sin tan cos
cos
?
tan
?
§1.2.2同角三角函数的基本关系式
两边 都有意义 约定:
(详见课本 第19页)
游戏:判断对错
1 sin 27+cos 63 1
2 2
• • •
27
±
2 sin cos tan
3 cos 1 sin2 cos sin2 cos2 1 • 4 cot sin 1 2 • 5 tan +1 2 cos • 6 cos( x 30) sin( x 30) cot(x 30)