传感器标定
传感器的标定
武汉理工大学机电工程学院
第12章 传感器的标定
2. 静态特性标定系统 对传感器进行静态特性标定,首先要建立标定系统。一般组成: (1) 被测物理量标准发生器。如测力机、活塞式压力计、恒温 源等。 (2) 被测物理量标准测试系统。如标准力传感器、压力传感器、 标准长度——量规等。 (3) 被标定传感器所配接的信号调节器和显示、记录器等配接 仪器精度应是己知的,也作为标准测试设备。
武汉理工大学机电工程学院
第12章 传感器的标定 比较法的原理简单、操作方便,对设备精度要求较低, 所以应用很广。
上图为一个用比较法标定振动传感器的示意图,将相同的运动 加在两个传感器上,比较它们的输出。在比较法中,标准传感 器是关键部件,因此它必须满足如下要求:灵敏度精度优于 0.5%,并具有长期稳定性,线性好;横向灵敏度比小于2.5%; 对环境的响应小,自振频率尽量高。
武汉理工大学机电工程学院
第12章 传感器的标定
一阶传感器只有时间常数 一个参数, 二阶传感器则有固有频率 n 和阻尼比 两个参数。 传感器动态特性标定方法: 1. 阶跃响应法 对于一阶传感器,简单的方法就是测得阶跃响应之后,传感器 输出值达到最终稳定值的63.2%所经历的时间,即时间常数。 备注:为获得较可靠的结果,应记录下整个响应期间传感器的 输出值,然后利用下述方法来确定时间常数。
武汉理工大学机电工程学院
第12章 传感器的标定
复现表 12-1 中这些基准点的方法是用一个内装有参考材料的 密封容器,将待标定的温度传感器的敏感元件放在伸入容器中 心位置的套管中。然后加热,使温度超过参考物质的熔点,待 物质全部熔化。随后冷却,达到三相点 ( 或凝固点 ) 后,只要同 时存在固、液、气三态或 ( 固、液态 ) 约几分钟,温度就稳定下 来,并能保持规定值不变。 对于定义固定点之间的温度,ITS-1990国际温标把温度分为4 个温区,各个温区的范围、 (1) 0.65~5.0 K间为3He或4He (2) 3.0~24.5561 K间为3He或4He (3) 13.8033 K~961.78℃ (4) 961.78℃以上为光学或光电高温计。 以上有关标准测温仪器的分度方法以及固定点之间的内插公式, ITS-1990国际温标都有明确的规定,可参考ITS-1990标准文本。
tof传感器的标定
tof传感器的标定
tof传感器的标定方法如下:
1.生成标定用的图像:使用已知几何形状和空间位置的物体生成多
幅图像。
2.计算物体表面每个点的深度:将物体表面划分为多个区域,每个
区域都包含多个点,根据tof相机获取的深度信息,计算每个点的深度值。
3.计算每个点在图像上的对应点:根据相机拍摄的图像和深度信息,
将每个点的深度值转换为像素坐标。
4.计算相机内参和畸变系数:根据已知的几何形状和空间位置的物
体以及图像中每个点的像素坐标,使用相机标定程序计算相机的内部参数(例如焦距、主点、畸变系数等)和畸变系数。
5.生成标定结果:根据计算出的相机内参和畸变系数,生成tof相机
的标定结果。
传感器的标定
返回
上页
下页
11.4.2 激波管标定法
一、激波管标定装置工作原理:
激波管标定装置系统组成:
➢ 激波管:产生激波的核心部分
➢ 入射激波测速系统
➢ 标定测量系统:由被标定传感器4,5,电荷放大器10及记忆
示波器11等组成。被标定传感器既可以放在侧面位置上,也可以放 在底端面位置上。从被标定传感器来的信号通过电荷放大器加到记 忆示波器上记录下来,以备分析计算,或通过计算机进行数据处理, 直接求得幅频特性及动态灵敏度等。
返回
上页
下页
11.4.2 激波管标定法
三、误差分析
➢ 测速系统的误差 ➢ 激波速度在传播过程中的衰减误差 ➢ 破膜和激波在端部的反射引起振动造成的
误差
返回
上页
下页
第11章 本章要点
传感器的静态特性标定
➢ 静态标准条件
所谓静态标准是指没有加速度、振动、冲击(除非这些参数 本身就是被测物理量)及环境温度一般为室温(20±5℃), 相对温度不大于85%,大气压力为7kPa的情况。
返回
上页
下页
11.1 传感器的静态特性标定
静态特性标定的方法
➢ 将传感器全量程(测量范围)分成若干等间距点;
➢ 根据传感器量程分点情况,由小到大逐渐一点一点的 输入标准量值,并记录下与各输入值相对的输出值;
➢ 将输入值由大到小一点一点的减少下来,同时记录下 与各输入值相对应的输出值;
➢ 按前两步所述过程,对传感器进行正、反行程往复循 环多次测试,将得到的输出--输入测试数据用表格列 出或画成曲线;
11.1 传感器的静态特性标定
静态标准条件
kuka零点标定的三种方法
kuka零点标定的三种方法KUKA是一家工业机器人制造商,其机器人系统具有高精度和高可靠性。
对于KUKA机器人的零点标定,根据不同的需求和适用性,可以采用以下三种方法:1.传感器标定法:传感器是机器人系统中最常见的零点标定工具,例如激光测距仪、视觉传感器等。
传感器标定法是通过将传感器与机器人坐标系进行对齐,以实现测量精度的提升和机器人系统的定位准确性。
传感器标定法通常包括以下步骤:-标定基准:确定机器人基坐标系和传感器参考系之间的对应关系。
-数据采集:通过传感器测量机器人坐标系的位置和姿态,并记录测量数据。
-参数计算:利用采集到的数据,计算出传感器对应的误差参数,如偏移量、尺度偏差等。
-校正操作:根据计算出的误差参数,对后续的测量结果进行修正或校准,以达到高精度的测量结果。
2.基准板标定法:基准板标定法是一种常用的机器人零点标定方法,通过在工作区域中放置一个已知位置和姿态的标定板,测量机器人末端执行器与标定板之间的相对关系,从而实现机器人的零点标定。
基准板标定法通常包括以下步骤:-放置标定板:将标定板放置在工作区域中,确保标定板的位置和姿态已知。
-机器人运动:通过控制机器人进行一系列运动,使机器人末端执行器触碰到标定板上的关键点位置。
-数据采集:在机器人运动过程中,记录机器人末端执行器和标定板关键点之间的相对坐标信息。
-参数计算:利用采集到的数据,计算出机器人坐标系和标定板坐标系之间的转换矩阵。
-校正操作:应用转换矩阵对后续的机器人运动进行坐标转换,以实现定位和运动控制的高精度。
3.反向运动学标定法:反向运动学标定法是一种通过机器人的运动学模型来进行零点标定的方法。
反向运动学标定法通常包括以下步骤:-数据采集:通过对机器人执行一系列已知位姿的运动,记录机器人末端执行器的位置和姿态。
-反向运动学求解:根据机器人的运动学模型和采集到的数据,求解出机器人运动学模型中的未知参数,如关节角度、杆长等。
-参数计算:利用求解得到的运动学参数,计算出机器人坐标系和末端执行器之间的关系,如正向运动学转换矩阵。
传感器的标定..课件
智能化标定
自动化标定
通过智能化技术实现传感 器自动标定,减少人工干 预和操作成本。
数据驱动标定
利用大量传感器数据通过 机器学习算法进行自动标 定和校准。
在线标定
在传感器工作过程中进行 实时标定,提高传感器性 能和稳定性。
标准化发展
制定统一标准
推动制定全球统一的传感器标定标准和规范,促 进传感器产业的发展。
多参数标定能够更全面地描述传感器特性的多参数性,提高标定 的精度和可靠性,但计算复杂度更高,需要更多的计算资源和时 间。
03
传感器标定实验
实验设备与环境
传感器标定设备
包括传感器标定架、数据采集系 统、计算机等。
环境要求
实验室应保持恒温、恒湿,避免 外界干扰,确保实验结果的准确 性。
实验步骤
准备工作
动调整传感器的性能参数,以适应环境变化。
06
传感器标定未来发展与展望
新技术应用
01
02
03
人工智能技术
利用人工智能算法对传感 器数据进行处理和分析, 提高标定精度和效率。
物联网技术
通过物联网技术实现传感 器远程标定和数据传输, 降低成本和提高灵活性。
虚拟现实技术
利用虚拟现实技术模拟传 感器工作环境,进行传感 器性能测试和标定。
温度补偿
通过测量传感器在不同温度下 的性能参数,对其进行温度补 偿,以提高测量精度。
噪声抑制
采用滤波器等方法抑制传感器 输出信号中的噪声,提高测量
信号的信噪比。
02
传感器标定原理
线性标定原理
线性标定是指通过已知的标准量对传感器的输出进行标定,以确定其输入与输出之 间的线性关系。
线性标定通常使用最小二乘法或多项式拟合等方法,通过一系列已知的标准量对传 感器的输出进行线性回归分析,得到输入与输出之间的线性方程。
传感器标定技术
传感器标定技术
对于车辆上⾯安装的各个传感器,需要统⼀到车体坐标系,为了测量⽅便,我们先以车头为原点,建⽴笛卡尔坐标系。
标定步骤如下:
1,以其中⼀个传感器为基础,最好选择⼀条有车道线的地⽅,车辆以车道线平齐。
2,以车道线为基础,在车辆正前⽅放置标定物,在单个传感器的可视化图中,此标定物体应该为中⼼位置。
如果不在中⼼,可以调整⼀下,保证在中⼼位置。
3,以此传感器为基础,将其他传感器的数据也合并到该传感器的可视化图中。
4,最后⼀步,将gps和传感器坐标标定到统⼀坐标。
⼀般,我们会选取⼀条长直道,然后在此直道上,采集轨迹,然后将标定物放置在车道正中间,调整障碍物的标定参数,使得物体在轨迹的正中间。
前向传感器:
对于⼀般的传感器,⽐如四线激光雷达:
最后的⼀条线,根据⾼度,⼀般保证 20-30m左右即可,或者⽔平安装。
0.45m : tan89.2 * 0.45 = 32m.
雷神16线:
⼤概是 5m左右。
视觉传感器的标定流程
视觉传感器的标定流程
视觉传感器的标定流程可以分为以下几个步骤:
1. 准备标定板:选择一个具备特定特征的标定板,例如黑白相间的棋盘格或者圆点模式的标定板。
确保标定板平整,并且清晰可见。
2. 安装标定板:将标定板安装到视觉传感器的可视范围内,保持标定板表面与传感器平行。
3. 采集图像:利用视觉传感器采集多组包含标定板的图像,覆盖不同视角和距离的情况。
4. 提取特征点:对每组图像进行特征点的提取,例如识别棋盘格的角点或者圆点的中心。
5. 计算内参:利用提取的特征点,通过相机几何模型计算相机的内参(例如焦距、主点、畸变系数等)。
6. 计算外参:利用已知的物体空间坐标和对应的图像特征点,通过相机与物体之间的变换关系计算相机的外参(例如旋转矩阵、平移向量)。
7. 优化:对计算得到的内外参数进行优化,以提高标定精度。
8. 验证标定结果:采用一些评价指标(如重投影误差)来验证标定结果的精度和稳定性。
9. 应用标定参数:将标定得到的内外参数应用到实际的视觉任务中,如目标检测、位姿估计等。
需要注意的是,标定流程中的具体方法和步骤可能根据不同的视觉传感器和标定场景而有所差异。
第11章 传感器的标定讲解
第11章 传感器的标定
传感器的静态特性标定
1.静态标定条件
(205)℃;≤85%RH;(76060)mm汞柱
2.标定仪器设备(标准量具)精度等级的确定
●标准量具的精度等级比被标定传感器至少高一个等级; ●附加设备又必须比标准量具至少高一个等级。
3.静态特性标定方法——比较法
●创造一个静态标准条件; ●选择标准量具; ●标定步骤: 全量程等间隔分点标定; 正、反行程往复循环一定次数逐点标定(输入标准量,测试 传感器相应的输出量); 列出传感器输出-输入数据表格或绘制输出-输入特性曲线; 数据处理获取相应的静态特指标。
F P S
定
§11-2 压力传感器的动态标定
传感器的动态特性取决于什么?
传感器的动态模型,即阶数以及τ,ξ,ω等
幅频特性、相频特性
阶跃响应
各种已知频率的正 弦信号激励试验
阶跃信号激励试验
19
这种方法的缺点是标定频率低(低于500 Hz), 标定装置制作困难,应用受到限制。
气压表 泄气门 膜片 侧面被标定的传感器 底面被标定的传感器 高压室 低压室 测速压力传感器 测速 前置级 数字 频率计 测压 前置级 记录 装置
§11-2 压力传感器的动态标定
气源
25
第11章 传感器的标定
激波管法
原理:标定时根据要求对高、低 压室充以不同的压缩空气,低压 室一般为一个大气压力,对高压 室则充以高压气体。当高、低压 室的压力差达到一定值时膜片破 裂,高压气体迅速膨胀冲入低压 室,从而形成激波。 这个激波的波阵面压力保持恒定, 接近理想的阶跃波,并以超音速 冲向被标定的传感器。
第11章 传感器的标定
1. 实验确定一阶传感器时间常数的方法
传感器的标定
2 )3 0.015396 3
迟滞误差为:
eH
(yH )max 2 yFS
100%
0.015396 100% 0.1925% 24
输出量 测量
2.4.2 传感器的静态标定
1.静态标定的条件与仪器精度 (1)传感器静态标定的条件 传感器的静态标定是在静态标准条件下进行
的。静态标准条件是指无加速度、振动与冲击 (除非这些参数本身就是被测物理量),环境温 度一般为室温(205C),相对湿度不大于 85%,大气压力为101.327.999kPa。
2.4.2 传感器的静态标定
(2)标准器具精度的选择 为保证标定精度,须选择与被标定传感器
的精度要求相适应的一定等级的标准器具(一 般所用的测量仪器和设备的精度至少要比被标 定传感器的精度高一个量级),它应符合国家 计量量值传递的规定,或经计量部门检定合 格。这样,通过标定所确定的传感器精度才是 可靠的。
同时用输出量测量环节将待标定传感器的输出 信号测量并显示出来(待标定传感器本身包括 后续测量电路和显示部分时,标定系统也可不 要输出量测量环节);对所获得的传感器输入 量和输出量进行处理和比较,从而得到一系列 表征两者对应关系的标定曲线,进而得到传感 器性能指标的实测结果。
标定分类
标定 装置
标准传 待标定 输出量 感器 传感器 显示
2.4 传感器的标定
所谓传感器的标定,是指通过试验建立传 感器输出与输入之间的关系并确定不同使用条 件下的误差这样一个过程。
一般来说,对传感器进行标定时,必须以 国家和地方计量部门的有关检定规程为依据, 选择正确的标定条件和适当的仪器设备,按照 一定的程序进行。
2.传感器标定的基本方法 将已知的被测量作为待标定传感器的输入,
传感器的标定
气源
图11-10 激波管 图11-11 激波管中压力波动
返回 上页 下页 图库
图11-10 激波管
退出
图11-11 激波管中压力波动
退出
11.4.2 激波管标定法
二、激波管阶跃压力波的性质
激波管法是不可能得到如此理想的阶跃压 力波,通常它的典型波形如图11.13所示。可 所示。 力波,通常它的典型波形如图 所示 个参量来描述, 用4个参量来描述,即初始压力 1、阶跃压力 个参量来描述 即初始压力P △P、上升时间 R及持续时间 、上升时间t 及持续时间τ
返回 上页 下页 图库
11.2 传感器的动态特性标定
传感器的动态标定主要研究传感器的动态响 而与动态响应有关的参数, 应 , 而与动态响应有关的参数 , 一阶传感器只有 一个时间常数τ, 二阶传感器则有固有频率ω 一个时间常数 , 二阶传感器则有固有频率 n 和 阻尼比ξ两个参数 两个参数。 阻尼比 两个参数。
上页 下页 图库
返回
11.4 压力传感器的标定
动态标定压力源 激波管标定法
返回
上页
下页
图库
11.4.1 动态标定压力源
1、稳态周期性压力源 、 2、非稳态压力源 、
活塞与缸筒 凸轮控制喷嘴 声谐振器 验音盘
采用稳态周期性压力源来确定压力传感器的动态特性时, 采用稳态周期性压力源来确定压力传感器的动态特性时,往往受到 所能产生的振幅和频率的限制。高的振幅和稳态频率很难同时获得。 所能产生的振幅和频率的限制。高的振幅和稳态频率很难同时获得。 为此,在较高振幅范围内,为了确定压力传感器的高频响应特性, 为此,在较高振幅范围内,为了确定压力传感器的高频响应特性, 必须借助于阶跃活数理论。所谓激波管, 必须借助于阶跃活数理论。所谓激波管,无疑它能产生非常接近的 瞬态"标准 压力。激波管的结构十分简单, 标准"压力 瞬态 标准 压力。激波管的结构十分简单,它是一根两端封闭的长 用膜片分成两个独立空腔。 管,用膜片分成两个独立空腔。 快速卸荷阀 脉冲膜片 闭式爆炸器 激波管
传感器的标定与校准讲义
绝对误差在理论上是指测量值x与被测量的真值xi之间的 差值,即
=xxi=xx0 (真值xi一般用相对真值x0代替) 绝对误差是可正可负的,而不是误差的绝对值;绝对误 差还有量纲,它的单位与被测量的单位相同。
12.1 测量误差基本概念
测量误差的分类:
●标准活塞压力计标定装置,如图14-7所示;压力标定 曲线如图14-8所示。
图14-7 活塞压力计标定压力示意图
图4-8 压力标定曲线
12.4 压力传感器的标定和校准
●杠杆式测力计标定装置,如图14-9所示,砝码重量与 压力的关系
W=pSb/a p=Wa/Sb
图14-9 杠杆式压力标定机示意图
12.4 压力传感器的标定和校准
静态标定—标定静态特性:灵敏度,线性度,
传感器的标定
精度…;
动态标定—动态特性参数(;n,)测试; 动态标定信号:阶跃信号或正弦信号。
传感器的标定与校准的目的:保正测量的准确、统一和法
制性。
12.1 测量误差基本概念
12.1.1 测量与测量误差
1.测量 “测量是以确定量值为目的的一种操作”。这种“操作” 就是测量中的比较过程——将被测参数与其相应的测量单 位进行比较的过程。实现比较的工具就是测量仪器仪表 (简称仪表)。 检测是意义更为广泛的测量,它包含测量和检验的双 重含义。工程参数检测就是用专门的技术工具(仪表), 依靠能量的变换、实验和计算找到被测量的值。一个完整 检测过程应包括:
12.3 传感器的动态特性标定
二、二阶传感器的动态标定
确定传感器的阻尼比和固有频率 n 。 欠阻尼二阶传感器的阶跃响应(如图14-3)
y(t) k 1
传感器标定方法
进入主程序:
参数设置-传感器标定
选择位移传感器
首先将传感器清零:X .-
清零方法:当前状态下点击【清零】按钮。
此时【实际值】位置应显示0左右的数字。
然后:将位移传感器拉长20-30mm,使用精度相对高的测量工具,测量出位移传感器当前动了多少。
假设动了26.5mm。
将【测试值】位置当前的数字填入【第二点性能值(mv)】对应的位置。
将测量出的值【26.5】填入【第二点对应的实际值】位置。
点击保存。
标定完成。
点退出按钮返回主画面
重新做实验看一下效果。
如果仍有问题,请实际测量主缸到底走了多少行程。
力传感器的标定方法
力传感器的标定方法嘿,咱今天就聊聊力传感器的标定方法。
这力传感器啊,就像个小侦探,能准确地感知力的大小。
可要是没标定好,那可就不靠谱啦,就像没瞄准的枪,打不准目标。
一、准备工作1.1 选好标准器具。
这就像挑武器一样,得选个靠谱的。
标准砝码那是常用的,要选质量准确、精度高的,不能有“缺斤少两”的情况。
就像上战场得有把好枪,咱标定力传感器也得有好的标准器具。
1.2 搭建稳定平台。
得找个稳当的地方,把力传感器放好。
不能摇摇晃晃的,不然就像在风浪里的小船,定不了向。
平台要牢固,就像一座坚固的城堡,给力传感器一个安稳的“家”。
二、标定步骤2.1 安装力传感器。
把力传感器小心地安装在平台上,就像给小侦探找个合适的岗位。
安装要牢固,不能有松动,不然就像没扎好根的树,容易倒。
2.2 加载标准砝码。
一个一个地加上标准砝码,就像给小侦探增加任务。
要慢慢地加,不能着急,就像走楼梯一样,一步一步来。
看着力传感器的读数变化,心里要有数。
2.3 记录数据。
把每次加载砝码后的力传感器读数都记下来,这就像记账一样,得清楚明白。
不能马虎,不然就像糊涂账,没法算清楚。
三、数据分析3.1 对比数据。
把力传感器的读数和标准砝码的实际值进行对比,看看有没有偏差。
要是有偏差,就像走路走歪了,得赶紧调整。
3.2 调整校准。
根据偏差情况,进行调整校准。
可以通过调整参数或者更换部件等方法,让力传感器更准确。
就像给小侦探纠正错误,让它更能干。
总之,力传感器的标定可不能马虎。
要像对待宝贝一样,精心准备,认真操作。
只有这样,才能让力传感器发挥出它的最大作用,为我们的工作和生活提供准确可靠的力值数据。
传感器的标定与校准讲义课件
要点二
位移传感器的校准
校准的目的是确保位移传感器在长时间内保持其准确性。 这包括检查传感器的线性度、重复性和可靠性等性能指标 。如果传感器读数与标准位移存在偏差,需要进行调整或 更换。
其他类型传感器的标定与校准
• 其他类型的传感器,如加速度传感器、陀螺仪和磁力计等,也 需要进行类似的标定和校准过程。这些传感器通常用于测量运 动和方向,并在许多应用中发挥着关键作用,如导航、运动检 测和游戏开发等。在进行标定和校准时,需要使用已知的标准 源来检查传感器的性能,并确保其在各种工作条件下都能提供 准确和可靠的数据。
读数,可以确定传感器的误差和精度。
温度传感器的校准
校准温度传感器是为了确保其在各种环境和工作条件下都能提供准确的温度读数。这包 括检查传感器的线性度、重复性和迟滞性等性能指标。如果传感器读数与标准温度源存
在偏差,需要进行调整或更换。
位移传感器的标定与校准
要点一
位移传感器的标定
位移传感器的标定涉及到使用已知位移的参考物来检查传 感器的输出。这个过程通常在多个位移点上进行,以覆盖 传感器的工作范围。通过比较标准位移和传感器的实际读 数,可以确定传感器的误差和精度。
延长传感器寿命
通过定期的标定与校准, 可以及时发现并解决传感 器潜伏的问题,从而延长 其使用寿命。
标定与校准的流程
性能测试
对传感器的各项性能指标进行 测试,如线性度、重复性、灵 敏度等。
结果评估
根据测试结果评估传感器的性 能,判断是否符合要求。
准备工作
选择合适的标准设备、搭建标 定与校准环境、准备相关资料 等。
其他误差来源包括电源噪声、电磁干扰等。
详细描述
除了上述常见的误差来源外,电源噪声和电 磁干扰也可能对传感器输出造成影响。为了 减小这些误差,可以采取相应的措施来抑制 电源噪声和电磁干扰,例如使用滤波器、屏 蔽电缆等。同时,在传感器设计和制造过程 中也应充分考虑这些因素的影响,以提高传 感器的性能和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③快速阀门装置
1-传感器 2-泄放阀 3-小容腔 4-阀芯 5-阀杆 6-活塞 7-供油管道
1.6.3传感器标定实例
1、应变式力传感器的静态标定
先超负荷加载20次以上,超载量为传感器额定 负荷的120%~150%。然后将传感器输入量以额定 负荷的10%为间隔分成若干个点,按前面所述一般 步骤标定,得到灵敏度、线性度、迟滞、重复性。 在无负荷情况下对传感器缓慢加温或降温到一 定的温度,可测得传感器的零点温漂;对传感器或 整个标定设备加恒温罩,则可测得零点漂移;如加 额定负荷而温度缓慢变化时,可测得灵敏度的温度 系数。需要时也可测出分辨力和阈值。
传感器静态标定设备分类:力标定设备(如测力 砝码、拉压式测力计)、压力标定设备(如活塞式压 力计、水银压力计、麦氏真空计)、位移标定设备 (如量块、直尺等)、温度标定设备(如铂电阻温度 计、铂铑-铂热电偶、基准光电高温比较仪)等。 (1)力标定设备 1)测力砝码 我国基准测力装置是固定式装基准测力机,图 1.15采用杠杆式砝码标定装置。
(5)应变标定设备 一般采用加载后能产生已知均匀准确的一维应力装 置,多采用泊松系数为0.285的合金钢的等弯矩梁或等 强度悬臂梁实现,梁的应变通常用挠度计转换后测得。
2、动态标定设备
标定中常用的动态激励设备有激振器(如电磁振动 台、低频回转台、机械振动台等)、激波管、周期与非 周期函数压力发生器等。其中激振器可用于加速度、速 度、位移、力、压力传感器的动态标定。
1
2
3
4
1-支架 2-传感器 3-杠杆 4-砝码
图1.15杠杆式砝码标定装置
图1.16为另一种液压式测力机工作原理。
4 3 2 1 5 6 7 8
1-传感器 2-工作活塞,3-液压缸 4-液体 5-砝码 6-加力活塞 7-测力液压缸 8-导管
图1.16 液压ቤተ መጻሕፍቲ ባይዱ测力机工作原理
2)拉压式(环形)测力计 环形测力计是一种标准推力标定装置,它由液压缸 产生测力,测出测力环变形量作为标准输入。可以用杠 杆放大机构和百分表结构来读测力环变形量,也可用光 学显微镜读取。若用光学干涉法读取,则精度更高 (2)压力标定设备 1)活塞式压力计 利用图1.16的液压式测力机原理和不同的结构形式, 再将传感器受力由点改成面接触结构,就形成了活塞式 压力计,如图1.17所示。其中,砝码1经油路产生的压 力作为标准压力作用在待标定的传感器6上。
(2)根据传感器量程分点情况,由小到大、逐点递增 输入标准量值,并记录与各点输入值相对应的输出值。 (3)将输入量值由大到小、逐点递减,同时记录下与 各点输入值相对应的输出值。 (4)按上述步骤(2)、(3)所述过程,对传感器进 行正、反行程往复循环多次(一般为3~10次)测试, 将得到的输出-输入测试数据用表格列出或画成曲线。 (5)对测试数据进行必要处理。输入已知标准非电量, 测出传感器的输出,给出标定曲线、标定方程和标定常 数,计算灵敏度、线性度、滞差、重复性等静态特性指 标。
4. 动态标定
传感器的动态标定就是通过实验得到传感器动态性 能指标,确定方法常常因传感器的形式(如电的、机械 的、气动的等)不同而不完全一样,但从原理上一般可 分为阶跃信号响应法、正弦信号响应法、随机信号响应 法和脉冲信号响应法等。 (1)阶跃信号响应法 1)一阶传感器时间常数τ的确定 输入x是幅值为A的阶跃函数时,由一阶传感器的微 分方程可得: t − e y(t) = kA[1- τ ]
3. 静态标定
确定传感器静态指标,主要是线性度、灵敏度、 迟滞和重复性。传感器的静态特性是在静态标准条 件下进行标定的,主要用于检验、测试其静态特性 指标。静态标准条件主要包括没有加速度、振动、 冲击(除参数本身是被测量)及环境温度(一般为 室温20℃±5℃)、相对湿度不大于85%、气压为 (101±7)kPa等条件。 一般的静态标定包括如下步骤: (1)将传感器全量程(测量范围)分成若干等间 距点。
1.传感器标定、校准与检定概念
传感器或仪器在制造、装配完毕后必须对设计指标进行 一系列试验,进行全面检测,确定其实际性能,这个称之为标 定过程。
经使用一段时间 (中国计量法规定一般为一年)或修理后, 必须对其主要技术指标再次进行检测试验,即校准试验,以确保 其性能指标达到要求。 检定必须严格按照检定规程运作,对所检仪器给出具有法律 效应合格或不合格的结论。
(1)振动标定设备 1)电动式中、低频激振器
中频激振器工作的频率范围 为5~7.5kHz,一般采用电动式 激振器作为中频标定用振动台。 图1.18所示为电动式激振器 结构示意图,驱动线圈7固装在 顶杆4上,并由支承弹簧1支承 在壳体2中,线圈7正好位于磁 极5与铁心6的气隙中。磁钢3、磁极5、铁心6和气隙构成磁回路, 当线圈7通以经功率放大的交变电流时,它在气隙的磁场中受力, 该力通过顶杆4传到试件8上便是激振力。
也可以利用任意两个超调量来确定ξ,表达式为:
1 ξ= 1 + 4π 2 n 2 /[ln(σ Pi / σ P (i + n ) ]2
σpi-第i个超调量 σp(i+n)-第i+n个超调量 σpi和σp(i+n)之间相隔n个周期 (2)正弦信号响应法 1)一阶传感器时间常数τ的确定。 将一阶传感器的频率特性曲线绘成伯得图,则其 对数幅频曲线下降3dB处所测取的角频率ω0=1/τ,由 此可确定一阶传感器的时间常数τ。
2.传感器标定的方法与特点
标定的基本方法是将已知的被测量(亦即标准量)输入给 待标定的传感器,同时得到传感器的输出量;对所获得的传感器 输入量和输出量进行处理和比较,从而得到一系列表征两者对应 关系的标定曲线,进而得到传感器性能指标的实测结果。 标定系统分为绝对法标定系统和比较法标定系统。传感器的 标定有静态标定和动态标定两种。
P1
P2
传感器
图1.20 方波压力发生器 ④喇叭式压力发生器的工作原理类似于动圈式扬 声器,音圈受正弦信号激励,带动音膜振动,使空气 耦合腔内的压力变化。
2)非周期函数压力(力)发生器 ①激波管
1-壳体 2-破膜针 3-高压腔 4-管接头 5-膜片 6-低压腔 7-传感器
②落球装置
4 5
1-标准传动杆 2-本体 3-活塞杆 4-锤体 5-液压油 6-待标定传感器
变形整理得:Z=ln[l-y(t)/(kA)] 其中Z= -t/τ 根据测得的输出信号y(t)作出Z-t曲线, 则τ=-△t/△Z。 2)二阶传感器阻尼比ξ和固有频率ω0的确定
ξ=
ω0 =
1 1 + [π / ln(σ p / y (∞))]2
ωd
1−ξ
2
= tP
π
1−ξ
2
二阶传感器一般设计成 ξ= 0.7~0.8的欠阻尼系统。
2.压电式压力传感器的静态标定
压电式压力传感器的静态标定可在活塞式压力计上进行。 传感器安装在静重式标准活塞压力计的接头上,传感器配接由静 态标准电荷放大器和显示记录设备(可选用数字式峰值电压表、 光线示波器、笔录仪、磁带记录仪等)组成的标准测量系统。
3.热电阻的静态标定
标定步骤:用标准温度计测出恒温箱温度,将被测热电阻置 于恒温箱中,被测热电阻串联标准电阻Rs、可调电位器电压表和 毫安表,调节可调电位器使被测系统回路电流控制在4mA。先将 切换开关置标准电阻Rs一侧,读取电位差计示值Us,再转置被测 电阻端读出电位
2)二阶传感器阻尼比ξ和固有频率ω0的确定
Ar 1 = A0 2ξ 1 − ξ
2
ω0 =
ωr
1 − 2ξ
2
A0--欠阻尼时零频增益 Ar--共振频率(最大)增益 Ωr--共振角频率
(3)其他方法 如果用功率谱密度为常数C的随机白噪声作为待标定传 感器的标准输入量。
1.6.2 常用传感器标定设备
1.静态标定设备
第1章 传感检测技术基础
1.1 1.2 1.3 1.4 1.5 1.6 传感与检测的概念 传感与检测技术概述 传感器的基本特性 测量方法 测量误差 传感器标定
1.6 传感器标定
利用标准设备产生已知的非电量(标准量),或用基准 量来确定传感器电输出量与非电输入量之间关系的过程,称为 传感器标定。
1.6.1传感器标定
电位差计示值Ut,即可按下式求得被测电阻的阻值Rt Rt=(Ut/Us)Rs 一般取额定温度的90%、50%、10%为标定点。
4.压力传感器的动态标定
2)压电式高频激振器
1.被标传感器,2.内装传感器 3.压电片,4.底座 图1.19 压电式高频振动台
3)其他激振器 机械振动台种类很多,其中最常用的是偏心惯性质 量式。其原理是电机带动-偏心质量旋转,产生振动。 (2)压力标定设备 1)周期函数压力发生器 ①振动空腔校验器为封闭空腔,用适当方法产生空气谐 振,安装在空腔壁上的传感器能感受到周期变化的力。 ②非谐振空腔校验器的原理是用一定方式调制通过容器 的气流,使容器内的气体产生周期变化的压力。 ③转动阀门式方波压力发生器结构原理如图1.20所示:
1
2
3
4
5
6
7
8
9 1-标准压力表 2-砝码 3-活塞 4-进油阀 5-油杯 6-被标传感器 7-针形阀 8-手轮 9-手摇压力阀
图1.17 活塞压力计示意图
2)水银压力计 水银压力计是一种最普通的液体压力计,采用U形 管水银压力计的原理,靠水银的重力产生压力,根据两 端位置差和一端的压力,即可求出另一端的压力。 (3)位移标定设备 位移的标定设备主要是各种长度计量器具,如各种 直尺、深度尺、深度千分尺、量块、塞规、专门制造的 标准样柱等均可用作位移传感器的静态标定设备。 (4)温度标定设备 低温至630.74℃以内主要用铂电阻温度 计,630.74~1064℃用铂铑-铂热电偶,1064℃以上则 采用光学高温计。