小专题五 一、二次函数的实际应用问题攻略
数学二次函数应用题解题技巧
数学二次函数应用题解题技巧
数学二次函数应用题解题技巧包括以下几个方面:
1. 熟悉二次函数的基本性质:二次函数有三个重要的性质,即抛物线的基本性质、对称性和伸缩性。
2. 理解二次函数的图像特点:二次函数的图像通常呈现出抛物线的特点,即开口方向朝上或朝下,对称轴通常是抛物线的横坐标,且经过原点。
3. 利用二次函数的顶点式和一般式:顶点式是二次函数的一种特殊形式,一般式也是二次函数的一种形式。
对于顶点式和一般式,可以利用它们的性质进行变形,从而得到有关函数值、图像等信息。
4. 利用二次函数的求导法则:求导法则是解决二次函数问题的重要工具。
通过求导法则,可以求出函数在某一点处的导数,进而求出函数在该点的函数值。
5. 利用二次函数的图像性质和求导法则,通过图像进行推理和猜测,找到函数的取值范围或者零点位置。
6. 掌握常见的二次函数应用场景:常见的二次函数应用场景包
括求解几何图形、计算函数值、构造函数图像等。
7. 常规解题方法:对于常规问题,可以使用二次函数的基本概念、求导法则和图像特点等工具进行求解。
二次函数问题需要结合函数的性质和图像特点进行思考,同时掌
握求导法则和常见的应用场景,才能进行高效的解题。
二次函数的应用与实际问题解决
二次函数的应用与实际问题解决二次函数是高中数学中一个非常重要的概念,它在现实生活中有广泛的应用。
本文将介绍二次函数的基本概念和特点,并以几个实际问题为例,阐述二次函数在实际问题解决中的应用。
一、二次函数的基本概念和特点二次函数是代数学中的一种函数类型,其数学表达式为:\[y = ax^2 + bx + c\]其中,a、b、c为常数,且a≠0。
在二次函数中,x为自变量,y为因变量,它们之间存在一种二次关系。
二次函数的图像是一个抛物线,具有一些特点:1. 对称轴二次函数的对称轴是一个垂直于x轴的直线,它将图像分为两个对称的部分。
对称轴的方程为\(x = -\frac{b}{2a}\)。
2. 零点二次函数的零点是函数图像与x轴相交的点,也就是满足方程\(ax^2 + bx + c = 0\)的x的值。
如果方程有实根,则函数图像与x轴有两个交点,如果方程无实根,则函数图像与x轴没有交点。
3. 极值点二次函数的极值点是函数图像上离对称轴最近(或最远)的点,其y坐标称为极值。
如果a>0,则函数的图像开口向上,极值点是最低点;如果a<0,则函数的图像开口向下,极值点是最高点。
4. 函数增减性二次函数的增减性取决于a的正负性。
当a>0时,函数在对称轴左侧递减,在对称轴右侧递增;当a<0时,函数在对称轴左侧递增,在对称轴右侧递减。
以上是二次函数的基本概念和特点,下面我们将介绍几个实际问题,并运用二次函数解决这些问题。
二、实际问题的应用1. 弹体运动问题假设一个弹体从地面上射出,其轨迹可以用二次函数描述。
我们已知弹体离地面的高度与时间的关系为$h = -5t^2 + 20t$,其中h表示高度(米),t表示时间(秒)。
现在要求解这个问题的几个具体情况:(1)弹体达到最大高度时的时间和高度是多少?(2)弹体什么时间落地?(3)弹体射出后的高度变化过程。
对于(1),我们可以通过求解二次函数的极值点来得到。
专题55 二次函数的应用【九大题型】(举一反三)(苏科版)(原卷版)
专题5.5 二次函数的应用【九大题型】【苏科版】【题型1 图形面积或周长问题】 (1)【题型2 图形运动问题】 (4)【题型3 拱桥问题】 (7)【题型4 销售问题】 (10)【题型5 投球问题】 (12)【题型6 喷水问题】 (16)【题型7 增长率问题】 (20)【题型8 车过隧道问题】 (22)【题型9 行程问题】 (25)【题型1 图形面积或周长问题】【例1】(2022秋•越城区期末)为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式1-1】(2022•永春县校级自主招生)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【变式1-2】(2022秋•清江浦区校级月考)爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【变式1-3】(2022•市南区一模)小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中Ⅰ、Ⅱ、Ⅲ三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合:矩形MFNC(区域Ⅱ)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为300元/米2,种植花卉的面积为S(米2),草坪均价为200元/米2,且花卉和草坪栽种总价不超过43600元,求S的最大值.(2)若矩形MFNC满足MF:FN=1:2.①求MF,FN的长.②若甲、乙、丙三种花卉单价分别为为180元/米2,90元/米2,180元/米2,且边BN的长不小于边ME长的5倍.求图中Ⅰ、Ⅱ、Ⅲ三个区域栽种花卉总价W元的最大值.4【题型2 图形运动问题】【例2】(2022秋•利川市校级期中)如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式2-1】(2022•巨野县期末)如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.【变式2-2】(2022秋•丹阳市校级月考)如图,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A 点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,请解答下面的问题,并写出探索的主要过程:(1)经过多少时间后,P、Q两点的距离为5√2cm2?(2)经过多少时间后,S△PCQ的面积为15cm2?(3)请用配方法说明,何时△PCQ的面积最大,最大面积是多少?【变式2-3】(2022秋•杭州期末)如图(a),点F、G、H、E分别从正方形ABCD的顶点B、C、D、A 同时出发,以1cm/s的速度沿着正方形的边向C、D、A、B运动.若设运动时间为x(s),问:(1)四边形EFGH是什么图形?证明你的结论;(2)若正方形ABCD的边长为2cm,四边形EFGH的面积为y(cm2),求y关于x的函数解析式和自变量x的取值范围;(3)若改变点的连接方式(如图(b)),其余不变.则当动点出发几秒时,图中空白部分的面积为3cm2.【题型3 拱桥问题】【例3】(2022•海曙区校级开学)图1是一座彩虹桥两条抛物线型钢梁在桥面上的跨度分别为AB=50米和CD=40米(如图2所示),x轴表示桥面,BC=10米.若两抛物线交y轴于同一点,且它们的形状的值为.相同,则OBOC【变式3-1】(2022秋•西城区校级期中)廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)【变式3-2】(2022秋•诏安县校级月考)如图所示,桥梁的两条钢缆具有相同的抛物线形状,按照图中的直角坐标系,左边的一条抛物线可以用y =9400x 2+910x +10表示,而且左、右两条抛物线关于y 轴对称. (1)钢缆的最低点到桥面的距离是多少?(2)两条钢缆最低点之间的距离是多少?(3)写出如图抛物线的表达式?【变式3-3】(2022秋•袁州区校级期中)宜春袁山公园内有一座景观桥,桥洞形状如抛物线ABC,其横截x2+c且过顶点C(0,8)(长度单面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=−150位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,求需要多少平方米的地毯?(不计损耗)(3)为了使景观桥夜晚更加漂亮,需在桥洞下方洞壁相同高度处如图示的E、F位置安装两盏LED灯,且点E的横坐标与纵坐标之和为﹣4,求安装的LED灯距离水面AB的高度.【题型4 销售问题】【例4】(2022秋•平谷区期末)某地的药材批发公司指导农民养植和销售某种药材,经市场调研发现1﹣8月份这种药材售价(元)与月份之间存在如表所示的一次函数关系,同时,每千克的成本价(元)与月份之间近似满足如图所示的抛物线,观察两幅图表,试判断5月份出售这种药材获利最大.月份…36…每千克售价…86…【变式4-1】(2022秋•舞阳县期末)某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价1元,每天可多销售8件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?【变式4-2】(2022秋•椒江区期末)某一种蜜桔在农贸水果市场的需求量y1(万斤)、市场供应量y2(万斤)与市场价格x(元/斤)分别满足下列关系:y1=﹣0.2x+2.8,y2=0.4x﹣0.8,当y1=y2时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.(1)求平衡价格和平衡需求量;(2)若该蜜桔的市场销售量y(万件)是市场需求量y1和市场供应量y2两者中的较小者,该蜜桔的市场销售额P(万元)等于市场销售量y与市场价格x的乘积.当市场价格x取何值时,市场销售额P取得最大值?(3)蜜桔的每斤进价为m元,若当3≤x≤10时,随着x的增大,蜜桔的销售利润(万元)会经历先减小后增大再减小的变化,请直接写出m的取值范围.【变式4-3】(2022•庐阳区校级一模)某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价﹣进价)(1)求y关于x的函数表达式;(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m元利润(m≤6)给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围.【题型5 投球问题】【例5】(2022•威县校级模拟)弹力球游戏规则:弹力球抛出后与地面接触一次,弹起降落,若落入筐中,则游戏成功.弹力球着地前后的运动轨迹可近似看成形状相同的两条抛物线.如图16,甲站在原点处,从离地面高度为1m的点A处抛出弹力球,弹力球在B处着地后弹起,落至点C处,弹力球第一次着地前抛物线的解析式为y=a(x﹣2)2+2.(1)a的值为;点B的横坐标为;(2)若弹力球在B处着地后弹起的最大高度为着地前手抛出的最大高度的一半.①求弹力球第一次着地后抛物线解析式;②求弹力球第二次着地点到点O的距离;③如果摆放一个底面半径为0.5m,高0.5m的圆柱形筐,且筐的最左端距离原点9m,若要甲能投球成功,需将筐沿x轴向左移动bm,直接写出b的取值范围.【变式5-1】(2022•六盘水模拟)如图,篮球场上OF的长为25米,篮球运动员小明站在左方的点O处向右抛球,球从离地面2米的A处抛出,球的运动轨迹可看作一条抛物线,在距O点4米的B处达到最高点,最高点C距离地面4米;篮球在点D处落地后弹起,弹起后在点E处落地,且弹起后的轨迹与抛出后的轨迹形状相同,但高度减少为原来最大高度的一半.以点O为坐标原点,建立如图所示的平面直角坐标系.(1)求抛物线ACD的函数表达式;(2)求篮球第二次落地点E与点O之间的距离;(3)若运动员小易在点E处拿球前进到点G处起跳投篮,起跳后篮球在距离地面3米的地方出手,球出手后的运动轨迹与抛出后的轨迹形状相同,高度相等,并且恰好投入离地面3米的篮筐中,求EG的长?【变式5-2】(2022•巧家县模拟)如图所示的是小青同学设计的一个动画示意图,某弹球P(看作一点)从数轴上表示﹣8的点A处弹出后,呈抛物线y=﹣x2﹣8x状下落,落到数轴上后,该弹球继续呈现原抛物线状向右自由弹出,但是第二次弹出高度的最大值是第一次高度最大值的一半,第三次弹出的高度最大值是第二次高度最大值的一半,…,依次逐渐向右自由弹出.(1)根据题意建立平面直角坐标系,并计算弹球第一次弹出的最大高度.(2)当弹球P在数轴上两个相邻落点之间的距离为4时,求此时下落的抛物线的解析式.【变式5-3】(2022•潍坊模拟)女生排球考试要求:垫球后,球在运动中离地面的最大高度至少为2米.某次模拟测试中,某女生在O 处将球垫偏,之后又在A ,B 两处先后垫球,球沿抛物线C 1→C 2→C 3运动(假设抛物线C 1,C 2,C 3在同一平面内),最终正好在O 处垫住,O 处离地面的距离为1米.如图所示,以O 为坐标原点1米为单位长度建立直角坐标系,x 轴平行于地面水平直线m ,已知点A (32,38),点B 的横坐标为−32,抛物线C 1和C 3的表达式分别为y =ax 2﹣2ax 和y =2ax 2+bx (a ≠0).(1)求抛物线C 1的函数表达式.(2)第一次垫球后,球在运动中离地面的最大高度是否达到要求?请说明理由.(3)为了使第三次垫球后,球在运动中离地面的最大高度达到要求,该女生第三次垫球处B 离地面的高度至少为多少米?【题型6 喷水问题】【例6】(2022•西城区校级模拟)某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分,若记水柱上某一位置与水管的水平距离为d 米,与湖面的垂直高度为h 米,下面的表中记录了d 与h 的五组数据: d (米) 0 1 2 3 4 h (米)0.51.251.51.250.5根据上述信息,解决以下问题:(1)在如下网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h与d函数关系的图象;(2)若水柱最高点距离湖面的高度为m米,则m=;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,如图所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为1.5米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).【变式6-1】(2022•安徽模拟)音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx 上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=3,a=−2,则喷出的抛物线水线能否达到岸边?7【变式6-2】(2022•河北模拟)音乐喷泉的某一个喷水口,喷出的一束水流形状是抛物线,在这束水流所在平面建立平面直角坐标系,以水面与此面的相交线为x轴,以喷水管所在的铅垂线为y轴,喷出的水流抛物线的解析式为:y=﹣x2+bx+2.但控制进水速度,可改变喷出的水流达到的最大高度,及落在水面的落点距喷水管的水平距离.(1)喷出的水流抛物线与抛物线y=ax2的形状相同,则a=;(2)落在水面的落点距喷水管的水平距离为2个单位长时,求水流抛物线的解析式;(3)求出(2)中的抛物线的顶点坐标和对称轴;(4)对于水流抛物线y=﹣x2+bx+2.当b=b1时,落在水面的落点坐标为M(m,0),当b=b2时,落在水面的落点坐标为N(n,0),点M与点N都在x轴的正半轴,且点M在点N的右边,试比较b1与b2的大小.【变式6-3】(2022•新昌县模拟)某喷泉中间的喷水管OA=0.5m,喷水点A向各个方向喷射出去的水柱为形状相同的抛物线,以水平方向为x轴,喷水管所在直线为y轴,喷水管与地面的接触点O为原点建立直角坐标系,如图所示.已知喷出的水柱在距原点的水平距离为3m处达到最高,高度为2m.(1)求水柱所在抛物线(第一象限)的函数表达式.(2)身高为1.7m的小明站在距离喷水管4m的地方,他会被水喷到吗?(3)现重新改建喷泉,升高喷水管,使落水点与喷水管距离7m,已知喷水管升高后,喷水管喷出的水柱抛物线形状不变,且水柱仍在距离原点3m处达到最高,则喷水管OA要升高多少?【题型7 增长率问题】【例7】(2022•武汉模拟)战疫扶贫两手抓,多措并举促增收.为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.2019年7月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭2019年1至6的人均月纯收入,汇总如下:月份代码123456人均月纯收入(元)310350390430470510根据分析,发现该家庭人均月纯收入y与月份代码x之间具有较强的一次函数关系(记2019年1月、2月、…、2020年1月、……分别为x=1,x=2,…,x=13,…,依此类推).但2020年1月突如其来的新型冠状病毒感染的肺炎疫情影响了奔小康的进展,该家庭2020年第一季度每月人均月纯收入只有2019年12月的预估值的三分之二.根据以上信息,完成以下问题.(1)求该家庭人均月纯收入y与月份代码x之间的函数关系式.(2)若疫情没有爆发,2020年该家庭是否能实现小康?(3)若2020年3月初开始,在当地党员干部的扶持下,该家庭的人均月纯收入y与月份代码x之间满足二次函数y=x2+bx+c的关系.若该家庭2020年12月人均月纯收入可达到1400元以上,求b的最小值.(4)若以该家庭2020年3月人均月纯收入为基数,以后每月的增长率为a,为了使该家庭2020年能实现小康,a至少为多少?(结果保留两位小数)参考数据:√452+4×120×4≈62.81,1.1510≈4.05;(1+a)10≈1+10a+45a2+120a3(|a|<0.15).参考公式:1+x+x2+…+x9=x10−1x−1【变式7-1】(2022•弥勒市校级月考)国家决定对某药品价格分两次降价,若设平均每次降价的百分比为x,该药品的原价为36元,降价后的价格为y元,则y与x之间的函数关系为()A.y=72(1﹣x)B.y=36(1﹣x)C.y=36(1﹣x2)D.y=36(1﹣x)2【变式7-2】(2021秋•西山区校级期中)某农机厂四月份生产零件60万个,设该厂第二季度平均每月的增长率为x,如果第二季度共生产零件y万个,那么y与x满足的函数关系式是()A.y=60(1+x)2B.y=60+60(1+x)+60(1+x)2C.y=60(1+x)+60(1+x)2D.y=60+60(1+x)【变式7-3】(2022•滨州校级月考)2009年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2010年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价﹣成本价)×年销售量)(1)求2010年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系.(2)该厂要是2010年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?【题型8 车过隧道问题】【例8】(2022•太原二模)如图1,在某段公路上有一条双行线隧道(可双向行驶).隧道的纵截面由矩形的三边和一段抛物线构成,如图2是它的示意图,隧道宽度AB=8m,内壁两侧各留有1m宽的安全带,顶部最高处距路面6m,矩形的宽AD=2m.(1)为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道的顶部在竖直方向上的高度差至少要0.5m,求一辆宽为3m的货运卡车通过该隧道时的限高应为多少?(2)若有一辆宽为5.5m的超宽箱式工程车欲通过该隧道,其顶部与隧道顶部在竖直方向上的高度差不小于10cm,在实行交通管制后,求这辆车单向通过该隧道的限高应为多少?(结果精确到1m)【变式8-1】(2022秋•始兴县校级期中)一拱形隧道的轮廓是抛物线如图,拱高6m,跨度20m,(1)建立适当的直角坐标系,求拱形隧道的抛物线关系式(2)拱形隧道下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m,高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.【变式8-2】(2022•长春校级模拟)路在山腹行是沪蓉西高速公路的显著特点之一,全线共有隧道37座,共计长达742421.2米.正在修建的庙垭隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线车道,即左右各5米宽的车道.(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;(2)在隧道拱两侧距地面3米高处各安装一盏灯,在(1)的平面直角坐标系中用坐标表示其中一盏灯的位置;(3)为保证行车安全,要求行驶车辆顶部(假设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米,现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否安全通过这个隧道?请说明理由.【变式8-3】(2022•东城区校级月考)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.【题型9 行程问题】【例9】(2022•宝应县三模)“城市发展,交通先行”,我市启动了缓堵保畅的快速路建设工程,建成后将大大提升道路的通行能力.研究表明,在确保安全行车情况下,快速路的车流速度v(千米/时)是车流密度x(辆/千米)的函数,其图象近似的如图所示.(1)求v关于x的函数表达式;(2)求车流量p和车流密度x之间的函数表达式并求出车流量p(辆/时)的最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)(3)经过测算,每日上下班高峰时段快速路车流量将不低于4000辆/时,为保证快速路安全畅通,城市道路交通指挥中心将实时发布道路预警信息,提醒驾驶员按预警速度要求行驶,请你帮助城市交通指挥中心测算一下上下班高峰时段车速应控制在什么范围才能确保快速路安全畅通?【变式9-1】(2022•定海区模拟)在长、宽均为45米的十字路口,现遇到红灯,有10辆车依次呈一直线停在路口的交通白线后,每两辆车间隔为2.5米,每辆车长5米,每辆车的速度v(米/秒)关于时间t(秒)的函数(如图1)所示,当绿灯亮起,第一辆车的车头与交通白线的距离s(米)关于时间t(秒)的函数解析式为s=a(t﹣1)2(1≤t≤4),如图2所示当前车启动后,后面一辆车在1秒后也启动.(1)求a的值;(2)当t>4时,求第一辆车的车头与交通白线的距离s(米)关于时间(秒)的函数解析式;(3)当t>4时,求第一辆车和第二辆车在这个十字路口中的最大间距;(第一辆车的车尾和第二辆车的车头哦)(4)绿灯持续时间至少要设置多长才能保证在绿灯期间这十辆车都能通过交通白线.【变式9-3】(2022•温岭市一模)当前,交通拥堵是城市管理的一大难题.我市城东高架桥的开通为分流过境车辆、缓解市内交通压力起到了关键作用,但为了保证安全,高架桥上最高限速80千米/小时.在一般条件下,高架桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到180辆/千米时,造成堵塞,此时车流速度为0;当0≤x≤20时,桥上畅通无阻,车流速度都为80千米/小时,研究表明:当20≤x≤180时,车流速度v是车流密度x的一次函数.(1)当0≤x≤20和20≤x≤180时,分别写出函数v关于x的函数关系式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)w=x•v可以达到最大,并求出最大值;(3)某天早高峰(7:30﹣9:30)经交警部门控制管理,桥上的车流速度始终保持40千米/小时,问这天早高峰期间高架桥分流了多少辆车?。
初中数学二次函数题型答题技巧和方法
初中数学二次函数题型答题技巧和方法一、理论基础1. 二次函数的定义二次函数是指形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c分别为二次项系数、一次项系数和常数项。
2. 二次函数的图像特征二次函数的图像是抛物线,开口朝上还是朝下取决于a的正负性;顶点的横坐标为-x=b/2a;若a>0,则二次函数的图像开口朝上,最小值为y轴的对称轴;若a<0,则二次函数的图像开口朝下,最大值为y 轴的对称轴。
3. 二次函数的零点和值域二次函数的零点即其图像与x轴的交点,可通过解二次方程求得;值域是二次函数在定义域内所有纵坐标的集合。
二、基本题型及解题技巧1. 求二次函数的图像特征首先计算顶点的坐标,并根据a的正负性判断开口方向;然后通过y=ax^2的形式,可知函数的对称轴为x=0,即y轴;进而可以根据a 的值判断最值是最大值还是最小值。
2. 求二次函数的零点通过解二次方程的方法,将二次函数与x轴相交的点作为函数的零点。
3. 求二次函数的值域首先求得函数的最值,然后根据a的正负性来确定值域的范围。
三、提高解题能力的方法1. 多练习经典题目通过练习一些经典的二次函数题目,可以加深对二次函数的理解,掌握基本的解题技巧。
2. 多思考图像特征在解题过程中,要多思考二次函数的图像特征,如顶点坐标、开口方向、对称轴等,这样可以帮助更快地理解题目并找到解题方法。
3. 注意解题方法和步骤解二次函数题目时,要注意分类讨论,分步解题,并注意逻辑推理的合理性。
四、常见错误与纠正1. 混淆二次函数的图像特征有些学生容易混淆二次函数图像的开口方向和对称轴位置,应该在理论学习和练习中多加注意,加深对二次函数图像特征的印象。
2. 解题步骤混乱有些学生在解题时,步骤混乱,缺乏逻辑性,应该在解题过程中多加练习,养成条理清晰的解题习惯。
五、案例分析及解决方案1. 案例:已知二次函数f(x)=2x^2-4x+3,求解以下问题:(1)求f(x)的顶点坐标;(2)求f(x)的零点;(3)求f(x)的值域范围。
二次函数的应用技巧与技巧
二次函数的应用技巧与技巧二次函数是高中数学中重要的概念之一,广泛应用于各个领域。
它的图像呈现出抛物线的形态,具有许多特性和性质,掌握其应用技巧对于解决实际问题非常有帮助。
本文将介绍二次函数的应用技巧与技巧,帮助读者更好地理解和应用二次函数。
一、二次函数的基本形式二次函数的一般形式为:$y=ax^2+bx+c$,其中$a$、$b$和$c$是实数,$a\neq0$。
二次函数与抛物线的形状有关,方程中的$x^2$决定了开口的方向和抛物线的开口程度,而$a$决定了抛物线的开口方向。
基于这个基本形式,我们可以利用一些技巧来应用二次函数。
二、顶点与轴对称对于二次函数$y=ax^2+bx+c$,它的顶点坐标可以通过公式$(-\frac{b}{2a},f(-\frac{b}{2a}))$来确定。
顶点是抛物线的最低点(当$a>0$时)或最高点(当$a<0$时),是抛物线的关键特征。
另外,抛物线还具有轴对称性,其轴对称线的方程为$x=-\frac{b}{2a}$。
利用顶点和轴对称性,可以更好地分析和应用二次函数。
三、零点与因式分解二次函数的零点是指函数图像与$x$轴相交的点,也就是方程$ax^2+bx+c=0$的解。
求解二次方程可以通过因式分解、配方法或求根公式等方法。
当二次方程能够因式分解成$(x-p)(x-q)=0$的形式时,零点就是$p$和$q$。
利用零点可以进一步分析二次函数的图像特点和应用方向。
四、最大值与最小值对于二次函数$y=ax^2+bx+c$,当$a>0$时,函数的最小值发生在顶点,最小值是抛物线的底部值;当$a<0$时,函数的最大值也发生在顶点,最大值是抛物线的顶部值。
五、对称轴和焦点二次函数的对称轴是指抛物线关于轴对称线对称的线段,它与抛物线的开口方向垂直。
焦点是抛物线上到顶点距离相等的点的集合,对称轴与焦点可以帮助我们更好地理解和应用二次函数。
六、应用示例在实际问题中,二次函数的应用非常广泛。
二次函数与实际问题
二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。
本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。
二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。
2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。
(4)零点:即方程ax²+bx+c=0的解。
当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。
3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。
(2)常数函数y=c是一个水平直线,其值始终为c。
(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。
三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。
2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。
可以使用求根公式或配方法等方式来求解。
3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。
例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。
由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。
由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。
二次函数实际问题及解题方法
二次函数实际问题广泛存在于我们的日常生活中,例如物体的自由落体运动、桥梁的拱形设计、以及经济学中的成本收益问题等。
下面,我们将通过具体的例子,探讨二次函数实际问题的解题方法。
例题:一位农民有一块形状为直角三角形的土地,他计划将这块土地用于种植,需要围上篱笆。
已知直角三角形的两条直角边长度分别为a米和b米,假设篱笆的价格是每米p元,那么他需要花费多少元来围这块土地?
解题步骤如下:
根据题目,理解问题的背景和目标。
在这个问题中,我们需要找出农民围土地所需的总花费,这是我们的目标。
定义变量。
这里,直角三角形的两条直角边长度是已知的,分别为a米和b米,篱笆的价格也是已知的,为p元/米。
我们需要找出的是篱笆的总长度,我们设其为L米。
建立数学模型。
我们知道,直角三角形的周长等于其三条边的长度之和。
因此,篱笆的总长度L = a + b + 斜边长度。
而斜边的长度可以通过勾股定理求得,即斜边长度= √(a²+ b²)。
所以,L = a + b + √(a²+ b²)。
然后计算总的花费,即总价= Lp = p(a + b + √(a²+ b²))。
通过数学模型,我们得到了总价是p*(a + b + √(a²+ b²))元。
以上就是一个利用二次函数解决的实际问题。
需要注意的是,在解决这类问题时,首先要明确问题的目标,然后确定已知和未知的变量,通过建立数学模型,将实际问题转化为数学问题,最后求解数学模型,得出实际问题的答案。
二次函数的实际应用问题解题技巧
二次函数的实际应用问题解题技巧二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,比如物理、工程、经济学等等。
本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。
正文:1. 二次函数的实际应用问题二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。
在各个领域,二次函数都有广泛的应用,下面列举几个例子:- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。
- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。
- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。
例如,抛物线可以用来描述通货膨胀率的变化。
2. 二次函数的解题技巧在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列举一些常见的解题技巧:- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。
- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。
- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。
- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。
3. 拓展除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。
例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。
此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。
二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。
掌握这些技巧,可以帮助我们更好地理解和解决实际问题。
利用二次函数解决问题步骤
利用二次函数解决问题步骤正文:
二次函数在数学和实际问题中有着广泛的应用。
利用二次函数解决问题的步骤可以帮助我们更好地理解和解决各种实际情况中的数学难题。
下面将介绍利用二次函数解决问题的一般步骤。
1. 确定问题,首先,需要明确问题的背景和要求,明确所要解决的具体问题是什么,例如寻找最大值、最小值,或者确定某个变量的取值范围等。
2. 建立二次函数模型,根据问题的特点,建立二次函数模型。
二次函数的一般形式为 y = ax^2 + bx + c,其中 a、b、c 分别为二次项系数、一次项系数和常数项。
根据问题的特点,确定二次函数的具体形式。
3. 求解问题,利用二次函数的性质和相关知识,对建立的二次函数模型进行分析和求解。
可以通过求导数、配方法、公式法等方式,找到函数的极值点、零点等关键信息。
4. 验证和解释,在求解出结果后,需要对结果进行验证和解释,确保结果符合实际情况,并能够清晰地解释结果的意义和影响。
5. 应用实际问题,最后,将得到的结果应用到实际问题中,解
决实际情况中的数学难题,验证二次函数的有效性和实用性。
通过以上步骤,我们可以利用二次函数解决各种实际问题,提
高数学建模和问题解决能力,为实际生活和工程技术提供有效的数
学支持。
同时也可以更好地理解和掌握二次函数的性质和应用,为
进一步深入学习数学打下坚实的基础。
二次函数的应用问题解析
二次函数的应用问题解析Introduction:二次函数是高中数学中的重要内容之一,它在现实生活中具有广泛的应用。
本文将探讨二次函数在实际问题中的应用,包括最值问题、图像分析问题和最优化问题等。
1. 最值问题:一类常见的二次函数应用问题是求解最值。
以抛物线为例,当抛物线开口朝上时,函数有最小值;当抛物线开口朝下时,函数有最大值。
可以通过二次函数的顶点来确定最值点的坐标。
2. 图像分析问题:对于二次函数的图像分析问题,我们可以通过函数的图像特点来解决。
例如,从二次函数的方程中可以直接读出顶点坐标的横纵坐标值,进而确定函数的对称轴和顶点等。
3. 最优化问题:二次函数的最优化问题是另一种常见的应用情况。
通过求解二次函数的极值点来确定输入变量使得函数取得最大或最小值的情况。
这在经济学、物理学等领域中具有重要意义。
4. 物理应用问题:二次函数在物理学中的应用也是广泛存在的。
例如,在抛体运动中,二次函数可以描述出抛体的抛射轨迹。
通过解析抛物线的方程,可以求解出抛体的最大射程、最大高度等。
5. 经济应用问题:在经济学中,二次函数的应用也非常常见。
例如,成本函数、利润函数等经济学模型经常涉及到二次函数。
我们可以通过优化二次函数来求解最低成本、最高利润等经济问题。
6. 几何应用问题:几何中也有很多与二次函数相关的应用问题。
比如,通过二次函数的方程可以得到圆的方程,进而求解圆与直线的交点等。
Conclusion:二次函数作为数学中的重要内容,在实际问题中有着广泛的应用。
通过解析二次函数的方程,可以解决最值问题、图像分析问题和最优化问题等。
此外,在物理学、经济学和几何学中,二次函数也扮演着重要的角色。
掌握二次函数的应用,对于数学和实际生活都具有重要意义。
二次函数应用题解题技巧
二次函数应用题解题技巧一、二次函数的基本概念1、二次函数是指一元函数的最高次项是二次项的函数,即y=ax+bx+c(a≠0)。
2、二次函数图像描述二次函数是一条对称抛物线,其中a决定了抛物线的开口朝向,b决定抛物线的凹凸朝向,c只决定抛物线的位移。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;当b>0时,抛物线的凹凸朝右;当b<0时,抛物线的凹凸朝左。
二、二次函数解题技巧1、首先要把给定的二次函数化为标准格式y=ax+bx+c,把一般的表达式带入,可以得到函数的系数a、b、c。
2、根据a、b的值,判断函数开口朝向和凹凸朝向,以及抛物线的位移。
3、计算函数图像的极值点,极值点的坐标是:(-b/2a, c-b/4a),判断是极大值还是极小值:当a>0时,极值点是极小值;当a<0时,极值点是极大值。
4、判断函数图像的过程当a>0时,函数图像向上开口,在极值点之前增加,在极值点之后减少。
当a<0时,函数图像向下开口,在极值点之前减少,在极值点之后增加。
5、还可以利用图像判断函数的单调性:当a>0时,函数图像在极值点左边开口的加减性是单调递减的;当a<0时,函数图像在极值点右边开口的加减性是单调递增的。
6、画出函数图像,求出函数表达式中x、y的关系,便于确定问题的结果。
7、根据函数表达式,可以求出函数定义域和值域的大小,以便求解定义域内的结果。
8、用极值法解题,将一般问题化解为极值问题,快速求解。
9、对函数进行数值求解,让函数值解取代X参数,解决函数的微分、积分等问题。
二次函数的像与应用题解答步骤总结
二次函数的像与应用题解答步骤总结在解答二次函数的像与应用题时,我们需要遵循以下步骤:1. 确定函数表达式首先,我们需要根据题目给出的条件确定二次函数的函数表达式。
二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a,b,c为常数。
2. 确定函数的定义域根据题目给出的条件,确定函数的定义域。
一般而言,二次函数的定义域为一切实数。
3. 确定函数的平移、翻转和缩放根据题目中给出的平移、翻转和缩放的条件,确定函数的变化情况。
对于二次函数而言,平移可以通过改变函数表达式中的常数项c来实现,翻转可以通过改变二次项系数a的正负来实现,缩放可以通过改变二次项系数a的绝对值大小来实现。
4. 求解函数的顶点二次函数的顶点是函数图像的最高点或最低点,也是函数的极值点。
顶点坐标可以通过计算函数表达式对应的二次项系数a和一次项系数b来确定。
顶点的x坐标为:-b / (2a),顶点的y坐标为:f(-b / (2a))。
5. 求解函数的零点二次函数的零点是函数图像与x轴相交的点,也是函数的根。
零点可以通过将函数表达式等于0来解方程得到。
一般而言,使用因式分解或配方法求解二次方程。
6. 绘制函数图像根据以上步骤求得的函数表达式、定义域、平移、翻转、缩放、顶点和零点等信息,可以绘制出二次函数的图像。
一般可使用坐标轴和刻度线的方式来表示。
7. 分析函数的性质与应用根据绘制的函数图像,分析二次函数的性质,如开口方向(上凸或下凸)、最值、对称轴、增减性等。
根据这些性质,可以进一步应用到具体问题中,如求解最值、优化问题等。
通过以上步骤的逐步分析和计算,我们可以准确地解答二次函数的像与应用题。
在实际应用中,熟练掌握这些步骤并结合具体题目的特点和条件,能够更加高效地解决问题。
总结:对于二次函数的像与应用题,我们需要确定函数表达式、定义域,进行平移、翻转和缩放操作,求解顶点和零点,绘制函数图像,分析函数性质和应用场景。
通过这些步骤的实施,我们能够有效地解答与二次函数相关的问题。
二次函数的实际问题求解技巧
二次函数的实际问题求解技巧二次函数是高中数学中重要的内容之一,它在实际问题中有着广泛的应用。
掌握二次函数的实际问题求解技巧,可以帮助我们解决各种与实际相关的数学难题。
本文将介绍一些二次函数实际问题的求解技巧,帮助读者更好地理解和应用二次函数。
1. 问题分析在解决二次函数实际问题时,首先需要对问题进行充分的分析。
这包括理解问题的背景、已知条件以及需要求解的未知量。
例如,假设我们要求解某个抛物线的最高点坐标,我们需要明确已知的抛物线方程以及需要求解的顶点坐标。
2. 绘制函数图像绘制函数图像可以直观地了解二次函数的性质,帮助我们更好地解答问题。
对于给定的二次函数,我们可以利用平移、缩放等变换来确定其图像的形状和位置。
通过观察图像,我们可以得到一些关于函数的重要信息,如最值、对称轴等。
3. 求解函数的零点二次函数的零点即函数与x轴的交点,求解函数的零点对解决实际问题非常重要。
可以使用解二次方程或者图像法来求解函数的零点。
解二次方程通常是使用配方法或求根公式,而图像法可以通过观察函数图像上与x轴的交点来得到零点的近似值。
4. 求解函数的最值对于实际问题求解,常常需要求解函数的最值,这些最值往往与问题的关键指标有关。
求解函数最值的方法主要有两种:一是利用函数图像的几何性质,如抛物线的顶点即为函数的最值点;二是利用导数的性质,通过求解函数的导数为零的点来确定最值。
5. 利用模型求解问题在实际问题中,我们往往需要根据已知的情况构建二次函数模型,并通过求解模型来得到问题的答案。
这需要灵活运用二次函数的性质和求解技巧。
例如,我们可以根据已知的关系式构建二次函数方程,然后通过求解方程来得到问题的解。
6. 检验结果的合理性在解决实际问题时,我们应该对得到的结果进行合理性检验。
这包括对结果进行估算和比较,看是否符合实际情况。
如果结果与实际情况相差太大,就需要回顾整个求解过程,找出问题所在并进行修正。
综上所述,二次函数的实际问题求解技巧涉及问题分析、绘制函数图像、求解函数的零点和最值、利用模型求解问题以及检验结果的合理性等方面。
二次函数的应用巧妙运用二次函数解决算式问题
二次函数的应用巧妙运用二次函数解决算式问题二次函数的应用:巧妙运用二次函数解决算式问题二次函数是高中数学中的一个重要概念,它的应用广泛而深远。
在解决算式问题的过程中,我们可以巧妙地运用二次函数,提高解题效率。
本文将通过几个具体的例子,来展示如何巧妙地运用二次函数解决不同类型的算式问题。
例子一:求解最大值问题:对于函数y = 2x² - 3x + 1,求其在定义域内的最大值。
解法:为了求解最大值,我们可以利用二次函数的顶点坐标来找到答案。
二次函数的顶点坐标为(h,k),其中h为x的值,k为y的值。
根据二次函数的性质,当x = h 时,二次函数取得最大值k。
首先,我们需要找到二次函数的顶点坐标。
根据二次函数的标准式可知,顶点的横坐标为:h = -b / (2a)。
将函数y = 2x² - 3x + 1的系数代入得到:h = -(-3) / (2 * 2) = 3/4。
接下来,将h的值代入函数中,即可求得最大值k。
代入得:k = 2 * (3/4)² - 3 * (3/4) + 1 = 1/8。
因此,函数y = 2x² - 3x + 1在定义域内的最大值为1/8。
例子二:求解交点问题:已知函数y = 2x² - 3x + 1与直线y = x + 1相交于两个点,请求出这两个交点的坐标。
解法:为了求解交点的坐标,我们可以将二次函数和直线的方程联立,解得交点的横坐标,再代入其中一个方程求得纵坐标。
将函数y = 2x² - 3x + 1与直线y = x + 1联立得到方程:2x² - 3x + 1 = x + 1。
化简方程得到:2x² - 4x = 0。
因此,x * (2x - 4) = 0。
解得x₁ = 0 和 x₂ = 2。
将x₁ = 0代入y = x + 1,得到y₁ = 1。
将x₂ = 2代入y = x + 1,得到y₂ = 3。
二次函数问题解决方案
二次函数问题解决方案二次函数是高中数学中重要的内容,也是许多学生感到困惑的部分。
本文将提供针对二次函数问题的解决方案,帮助学生更好地理解和应用这一概念。
一、二次函数的基本定义和特点二次函数是一种以x的平方为最高次数的多项式函数。
它的一般形式可以表示为f(x) = ax² + bx + c,其中a、b、c为实数且a ≠ 0。
二次函数的图像一般是一个开口向上或向下的抛物线。
根据a的正负,可以判断抛物线的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二、求解二次函数的零点求解二次函数的零点是解决二次函数问题的第一步。
某个数在函数中的零点即为该函数的解。
对于二次函数而言,可以通过求解方程ax²+ bx + c = 0来找到零点。
有两种常见的求解零点的方法:配方法和公式法。
1. 配方法:当无法直接使用一元二次方程公式求解零点时,可以尝试使用配方法。
配方法的基本思想是通过变形将二次项变为平方项,从而便于求解。
以方程x² + 3x + 2 = 0为例,我们可以通过将常数项2分解成两个数的乘积,即2 = 1 * 2,来进行配方法的求解过程。
先将方程变形为(x + m)(x + n) = 0的形式,然后根据展开式展开并比较系数,得到m + n = 3,mn = 2。
根据这两个条件可以解得m = 1,n = 2,从而得到方程的解为x = -1,-2。
2. 一元二次方程公式:当方程的形式为ax² + bx + c = 0时,可以直接使用一元二次方程公式求解零点。
一元二次方程公式为x = (-b ± √(b² - 4ac)) / (2a)。
以方程2x² + 3x - 5 = 0为例,代入公式得到x = (-3 ± √(3² - 4*2*(-5))) / (2*2) = (-3 ± √(9 + 40)) / 4 = (-3 ± √49) / 4。
二次函数应用题的解法技巧
二次函数应用题的解法技巧及实际应用情况1. 应用背景二次函数是高中数学中的重要概念,它具有很多实际应用,尤其是在物理和经济领域。
二次函数应用题主要通过建立二次函数模型来描述和解决与现实生活相关的问题。
这些问题往往涉及到物体运动、水平抛射、最优化等方面。
2. 应用过程解决二次函数应用题的关键是找到问题的背景信息并建立与之相符的二次函数模型,然后通过解方程或运用二次函数的性质来求解问题。
以下将介绍二次函数应用题的解法技巧及实际应用情况的几个常见例子。
2.1. 最高点与最低点问题描述:一个抛物线由一个向上凸起的二次函数模型来表示,我们需要找到这条抛物线的最高点或最低点。
解法步骤: 1. 根据问题的背景信息建立一个二次函数模型,通常形式为y=ax2+bx+c,其中a是二次项的系数。
2. 最高点对应于抛物线的顶点,最低点对应于抛物线的谷点,它们的x坐标可以通过公式x=−b2a 来求得。
3. 将x坐标代入二次函数模型中,可以得到最高点或最低点的y坐标。
实际应用情况:这个问题在物理学中常常出现,比如求取一个抛体达到最高点的高度或射程,或者求取一个反比例函数的最低点。
2.2. 描述物体运动问题描述:一个物体被抛出,上升到最高点后再下落,我们需要通过二次函数模型来描绘物体的运动轨迹。
解法步骤: 1. 将物体的初始高度设为c,初始速度设为v。
2. 物体的运动轨迹可以用二次函数模型y=−12gt2+vt+c来表示,其中g是重力加速度,t是时间。
3. 利用二次函数模型,可以求出物体达到最高点和落地点的时间,也可以求出这些点的高度。
实际应用情况:这个问题在物理学中经常出现,用以描述抛体的轨迹,比如抛球运动的高度、飞行物体的运动轨迹等。
2.3. 求取最优解问题描述:某个问题需要求取一个最大或最小值,我们需要利用二次函数模型来解决这个问题。
解法步骤: 1. 根据问题的背景信息建立一个二次函数模型,通常形式为y=ax2+bx+c,其中a是二次项的系数。
二次函数做题技巧和方法
二次函数做题技巧和方法以下是二次函数解题的一些技巧和方法:1. 确定二次函数的形式:二次函数的一般形式为 f(x) = ax^2 + bx + c,其中 a、b和c都是常数。
确定二次函数的形式有助于理解问题和选择合适的解题方法。
2. 了解二次函数的图像特征:二次函数的图像通常是一个开口向上或向下的抛物线。
根据 a 的正负可以判断抛物线的方向。
3. 确定二次函数的顶点:二次函数的顶点是抛物线的最高点或最低点。
顶点的横坐标可以通过公式 x = -b / (2a) 来求得。
4. 分析二次函数的轴对称性:二次函数沿着顶点所在的直线具有轴对称性。
可以利用轴对称性简化计算。
5. 求解二次函数的零点:二次函数的零点是函数与 x 轴交点的横坐标。
可以通过因式分解、配方法、求根公式、配方法等来求解二次函数的零点。
6. 利用判别式分析二次函数的解的情况:二次函数的判别式为b^2 - 4ac,可以根据判别式的正负情况判断二次函数的解的情况(有两个不相等的实根、有两个相等的实根、无实根)。
7. 利用二次函数的性质进行证明:二次函数具有一些特殊的性质,例如对称性、最值问题等,可以利用这些性质进行证明或推导。
8. 利用二次函数的图像进行问题解答:二次函数的图像具有一些特殊的形状和性质,可以根据图像解答有关最值、范围、增减性等问题。
9. 注意二次函数的定义域和值域:定义域是使二次函数有意义的取值范围,值域是函数的所有可能取值。
在解题过程中要注意限制二次函数的定义域和值域。
10. 综合运用各种解题方法:在解题过程中可以综合运用因式分解、求根公式、配方法等多种方法,选择最适合的方法求解。
专题15 巧解二次函数的实际应用问题(含答案)
专题15 巧解二次函数的实际应用问题知识解读应用二次函数解决实际问题,从题设给定形式和解法上看,常见的有以下三种类型:(1)待定系数法型,即对于题目明确给出两个变量间是二次函数关系,并且给定几组变量间的对应值,要求求出函数解析式,并进行简单的应用。
解答的关键是熟练掌握待定系数法,准确求出函数解析式;(2)分析数量关系型,即题设结合实际情景给出了一定数与量的关系,要求在分析的基础上,直接写出函数关系式,并进行应用.解答的关键是认真分析题意,正确写出数量关系;(3)建模型,即要求自主构建二次函数,利用二次函数的图象,性质等解决实际问题.这类问题,建模要求高,有一定难度。
培优学案典例示范例1甲、乙两名滑雪爱好者同时从某山坡滑下,滑行距离y (单位:m )与滑行时间t (单位:s )之间的函数图象分别记为C 甲,C 乙(部分图象如图15-1所示),C 甲的函数关系式为y kt =,C 乙的函数关系式为252()25y t n =++,当t =4时,两人滑行的距离相同。
(1)求k ,n 的值;(2)当甲滑行36m 时,乙滑行的距离是多少?(3)在0<t<4的什么时刻,两人相差距离最大,最大距离是多少?【提示】(1)二次函数的解析式中含有一个待定系数n ,只要从图中读出一个点(0, 0)代入解析式便可求得n 的值;再由t=4时,两人滑行的距离相同,故可由二次函数 的解析式求出该点的坐标,然后由待定系数法求出k 的值;(2)可由甲滑行36m ,求出相应的时间t ,再把这个t 的值代入二次函数的解析式,可求出对应的函数值; 图15-1(3)在0<t<4时,只要求出两函数差的最大值,即是此段时间的最大距离.求出两函数差的解析式,然后应用二次函数的性质得到最大值.跟踪训练1.如图15-2,某大桥有一段抛物线型的拱梁,抛物线的表达式为2y ax bx =+.小强 骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面QC ,当小强骑自行车行驶10秒时 和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.【提示】设在10秒时到达A 点,在26秒时到达B 点,10秒时和26秒时拱梁的高 度相同,则A ,B 一定是关于对称轴对称的点,据此即可确定对称轴,则O 到对称轴的时间可以求得,进而即可求得OC 之间的时间。