原子物理习题4
(完整版)原子核物理及辐射探测学1-4章答案
第一章 习题答案1-1 当电子的速度为18105.2-⨯ms 时,它的动能和总能量各为多少?答:总能量 ()MeV ....c v c m mc E e 924003521511012222=⎪⎭⎫ ⎝⎛-=-==;动能 ()MeV c v c m T e 413.011122=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 1-2.将α粒子的速度加速至光速的0.95时,α粒子的质量为多少?答:α粒子的静止质量()()()u M m M m e 0026.44940.9314,244,224,20=∆+=≈-= α粒子的质量 g u m m 2322010128.28186.1295.010026.41-⨯==-=-=βα1-4 kg 1的水从C 00升高到C 0100,质量增加了多少?答:kg 1的水从C 00升高到C 0100需做功为J t cm E 510184.41001184.4⨯=⨯⨯=∆=∆。
()kg c E m 1228521065.4100.310184.4-⨯=⨯⨯=∆=∆ 1-5 已知:()();054325239;050786238239238u .U M u .U M ==()()u .U M ;u .U M 045582236043944235236235==试计算U-239,U-236最后一个中子的结合能。
答:最后一个中子的结合能()()()[]MeV .uc .c ,M m ,M ,B n n 774845126023992238922399222==⋅-+=()()()[]MeV .uc .c ,M m ,M ,B n n 54556007027023692235922369222==⋅-+= 也可用书中的质量剩余()A ,Z ∆:()()()()MeV ....,n ,,B n 806457250071830747239922389223992=-+=∆-∆+∆= ()()()()MeV ....,n ,,B n 545644242071891640236922359223692=-+=∆-∆+∆=其差别是由于数据的新旧和给出的精度不同而引起的。
高三物理原子练习题
高三物理原子练习题1. 题目:下列关于原子和原子结构的说法中,正确的是()A. 电子、质子和中子是原子的基本组成部分B. 电子负载在一个原子核外的轨道上C. 原子核是一个带正电的粒子D. 原子的大小主要由电子云决定2. 题目:以下关于元素周期表的叙述,错误的是()A. 元素周期表是按照元素的原子序数从小到大排列的B. 周期表的第一行代表着1周期C. 周期表的最后一行代表着7周期D. 元素周期表中的元素以相似的化学性质周期性地分布3. 题目:下列关于原子核的说法中,不正确的是()A. 原子核由质子和中子组成B. 原子核带有正电荷C. 原子核在原子中的体积很小,但质量却占据绝大部分D. 原子核带有自旋4. 题目:下列关于电子云的说法中,错误的是()A. 电子云是由电子构成B. 电子云在原子核外形成了一定的空间分布C. 电子云的位置和速度可以同时确定D. 电子云的分布与电子的能量有关5. 题目:下列关于原子尺寸的说法中,正确的是()A. 原子的尺寸是确定且不变的B. 原子的尺寸越大,其原子核和电子间的相互作用越强C. 原子的尺寸可由原子核的大小确定D. 原子的尺寸可以用电子云的外径表示6. 题目:下列关于原子核内质子和中子的说法中,正确的是()A. 质子和中子的质量相等B. 质子和中子的数量决定了元素的化学性质C. 质子和中子的电荷数相等D. 质子和中子均带有自旋7. 题目:以下关于原子模型的发展历程的说法,正确的是()A. 托姆逊提出的原子模型中,原子有质子和电子两种基本组成部分B. 波尔提出的原子模型中,电子分布在不同的轨道上C. 瑞利提出了电子云的概念,说明了电子的双性D. 卢瑟福通过金箔实验发现了原子核的存在,提出了实验原子模型8. 题目:下列关于元素的说法中,不正确的是()A. 元素是由相同种类的原子组成的,具有相同的原子序数B. 元素可以在化学反应中被分解为其他化合物C. 元素是构成物质的基本单位D. 元素可以通过化学方法进行定性分析9. 题目:下列关于原子核和电子云的比较中,正确的是()A. 原子核带有负电,电子云带有正电B. 原子核的质量占据了整个原子的大部分C. 电子云的体积大于原子核D. 原子核和电子云都是以静止的状态存在10. 题目:以下关于同位素的叙述中,错误的是()A. 同位素是指具有相同质子数但中子数不同的核素B. 同位素具有相似的化学性质C. 同位素的存在导致了同一元素的相对原子质量不同D. 同位素的存在对元素周期表的排列没有影响以上是高三物理原子练习题,希望能够帮助你巩固对原子和原子结构的理解。
高考物理新近代物理知识点之原子结构经典测试题及答案解析(4)
高考物理新近代物理知识点之原子结构经典测试题及答案解析(4)一、选择题1.一个氢原子从2n =能级跃迁到4n =能级,该氢原子( )A .吸收光子,能量减少B .吸收光子,能量增加C .放出光子,能量增加D .放出光子,能量减少2.如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
下列说法正确的是( )A .该实验是卢瑟福建立原子核式结构模型的重要依据B .该实验证实了汤姆孙原子模型的正确性C .α粒子与原子中的电子碰撞会发生大角度偏转D .绝大多数的α粒子发生大角度偏转3.一个氢原子从n =3能级跃迁到n =2能级,该氢原子( )A .放出光子,能量增加B .放出光子,能量减少C .吸收光子,能量增加D .吸收光子,能量减少4.下列说法正确的是( )A .β衰变现象说明电子是原子核的组成部分B .在光电效应实验中,只增加入射光的强度,饱和光电流不变C .在核反应方程41417278He N O X +→+中,X 表示的是中子D .根据玻尔理论,处于基态的氢原子吸收光子发生跃迁后,其电子的动能减少 5.氢原子光谱在可见光区域内有四条谱线,都是氢原子中电子从量子数n >2的能级跃迁到n =2的能级发出的光,它们在真空中的波长由长到短,可以判定 A .对应的前后能级之差最小B .同一介质对的折射率最大C .同一介质中的传播速度最大D .用照射某一金属能发生光电效应,则也一定能 6.图甲所示为氢原子能级图,大量处于n =4激发态的氢原子向低能级跃迁时能辐射出多种不同频率的光,其中用从n =4能级向n =2能级跃迁时辐射的光照射图乙所示光电管的阴极K 时,电路中有光电流产生,则A.改用从n=4能级向n=1能级跃迁时辐射的光,一定能使阴极K发生光电效应B.改用从n=3能级向n=1能级跃迁时辐射的光,不能使阴极K发生光电效应C.改用从n=4能级向n=1能级跃迁时辐射的光照射,逸出光电子的最大初动能不变D.入射光的强度增大,逸出光电子的最大初动能也增大n 的激发态的氢原子,能够自发跃迁7.如图所示为氢原子的能级图,一群处于量子数4到较低的能量状态,并向外辐射光子.已知可见光的光子的能量范围为1.64~3.19 eV,锌板的逸出功为3.34 eV,则向外辐射的多种频率的光子中A.最多有4种频率的光子B.最多有3种频率的可见光C.能使锌板发生光电效应的最多有4种频率的光子D.能使锌板发射出来的光电子,其初动能的最大值为9.41 eV8.人们发现,不同的原子核,其核子的平均质量(原子核的质量除以核子数)与原子序数有如图所示的关系.下列关于原子结构和核反应的说法正确的是( )A.由图可知,原子核D和E聚变成原子核F时会有质量亏损,要吸收能量B.由图可知,原子核A裂变成原子核B和C时会有质量亏损,要放出核能C.已知原子核A裂变成原子核B和C时放出的γ射线能使某金属板逸出光电子,若增加γ射线强度,则逸出光电子的最大初动能增大D.卢瑟福提出的原子核式结构模型,可以解释原子的稳定性和原子光谱的分立特征9.在卢瑟福的α粒子散射实验中,有少数的α粒子发生了大角度的偏转,其原因是( ) A.原子中有带负电的电子,电子会对α粒子有引力的作用.B.正电荷在原子中是均匀分布的.C.原子的正电荷和绝大部分的质量都集中在一个很小的核上.D.原子是不可再分的.10.下列叙述中不正确的是()A.光的粒子性被光电效应和康普顿效应所证实B.玻尔建立了量子理论,成功解释了所有原子发光现象C.在光的干涉现象中,干涉亮条纹部分是光子到达几率大的地方D.宏观物体的物质波波长非常小,不易观察到它的波动性11.下列说法正确的是( )A.天然放射性现象表明了原子内部是有复杂的结构B.一个氢原子从高能级向低能级跃迁的过程中,该氢原子辐射光子,总能量减少C.某放射性元素由单质变为化合物后,其半衰期会变短D.目前核电站的能量主要来自轻核的聚变12.玻尔的原子模型在解释原子的下列问题时,和卢瑟福的核式结构学说观点不同的是()A.电子绕核运动的向心力,就是电子与核之间的静电引力B.电子只能在一些不连续的轨道上运动C.电子在不同轨道上运动时能量不同D.电子在不同轨道上运动时静电引力不同13.在科学技术研究中,关于原子定态、原子核变化的过程中,下列说法正确的是A.采用物理或化学方法可以有效地改变放射性元素的半衰期B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力D.原子核所含核子单独存在时的总质量小于该原子核的质量14.图为氢原子能级的示意图,现有大量的氢原子处于以n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是A.最容易表现出衍射现象的光是由,n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34eV的金属铂能发生光电效应15.图示是氢原子的能级图,大量处于n=5的能级的氢原子,在向低能级跃迁的过程中,下列说法正确的是A.辐射的光子频率最多有5种B.辐射的光子频率最多有8种C.可能辐射能量为2.86eV的光子D.可能辐射能量为11eV的光子16.子与氢原子核(质子)构成的原子称为氢原子(hydrogen muon atom),它在原子核的物理研究中有很重要作用,如图氢原子的能级示意图。
原子物理 (4)
-e
2021/1/12
24
二、原子实极化与轨道贯穿
1、原子实极化 (影响小)
价电子产生的电场,使原子实中原子核和电子的中心会发 生微小的相对位移。原子实中的电子的中心不在原子核上,形 成一个电偶极子。
+-
P (z 1)el
虚线:极化前
实线:极化后
2021/1/12
25
原子实极化 的作用 极化产生的电偶极子的电场作用于价电子,使它受到除库
R (n p )2
R
R
第二辅线系: vsn (3 p )2 (n s )2
n=3.4.5… np 3s n=4.5.6…. ns 3 p
第一辅线系:
vdn
R (3 p )2
R (n d )2
n=3.4.5….. nd 3 p
柏格曼系:
R
R
v fn (3 d )2 (n f )2
s,l=0
0.40
n* 1.589 2.596 3.598 4.599 5.599 6.579
T 28581.4 12559.9 7017.0 4472.8 3094.4 2268.9 主线系 p, l=1 n* 1.960 2.956 3.954 4.954 5.955 6.954 0.05
第一辅
用2两021/个1/1量2 子数 n, l 来描述
4
类比H原子光谱
v
RH
(1 m2
1 n2
)
m=1,2,3……; 对每个m, n=m+1,m+2,m+3……构成谱线系
n n>m
m
每一个线系的每一条光谱线的波数都可表示为两个光谱项
之差
vn
原子物理习题集
第六章 X射线
• 例1.某X光机的高压为10万伏,问发射光子 的最大能量多大?算出发射X光的最短波长。 • 例2.铝(Al)被高速电子束轰击而产生的连 续X光谱的短波限为5A。问这时是否也能观 察到其标识谱K系线。
• 例3.已知Al和Cu对于λ=0.7A的X光的质量 吸收系数分别是0.5m2/kg和5.0m2/kg。Al和 Cu的密度分别为2.7×103kg/m3和 8.93×103kg/m3。现若分别单独用Al板或铜 板作挡板,要使波长为0.7A的X光的强度减 至原来强度的1/100,问要选用的Al板或Cu 板应多厚?
• 例7.已知一对正负电子绕共同的质心转动会 暂时形成类似于H原子结构的“正电子素”, 试计算“正电子素”由第一激发态向基态 跃迁发射光谱的波长为多少? • 例8.某类H原子,它的帕邢系第三条谱线和 H原子的Lyman系第一条谱线的频率几乎一 样,问该原子是何种元素?
• 例9.计算H原子的2p态电子在质子处产生的磁场 (根据玻尔模型作估计) • 例10.在Stern-Gerlach实验中,处于基态的窄银原 子束通过不均匀横向磁场,梯度为103T/m,磁场 横向范围L1=0.04m,L2=0.10m,原子速度为5 ×102m/s,屏上两束分开的距离为d=0.002m,试 确定原子磁矩在磁场方向上的投影的大小(磁场 边缘的影响可忽略)。
第一章 卢瑟福模型
• 例1.若Rutherford 散射用的α粒子是放射性 物质Ra放射的,其动能是7.68MeV,散射 物质是原子序数Z=79的金箔,试问θ=150。 所对应的瞄准距离b多大? • 例2. 若用动能为1MeV的质子射入金箔 (Z=79),问质子与金箔原子核可能达到的 最小距离多大。若用同样能量的D核代替质 子,其与金箔原子核的最小距离是多大?
4420201原子物理计算题
28-29
计算题
2011年天津市滨海新区大港第一中学高三第二次月考物理题
高中物理综合库》动量》动量守恒定律
高中物理综合库》原子物理》原子核》质能方程
试题内容
28.海水中含有丰富的氘,完全可充当未来的主要能源。两个氘核的核反应为: + → + n,其中氘核的质量为2.013u,氦核的质量为3.0150u,中子的质量为1.0087u.(1u=931.5Mev).
小题数
2
【题目1】
写出射线轰击铍核的核反应方程。
【题目2】
试根据上面所述的各种情况,通过具体计算说明该射线是由中子组成,而不是射线。
题号:2
22
计算题
2012届江苏省高三高考压轴物理试卷
高中物理综合库》原子物理
试题内容
22.氢原子处于基态时,原子能量E1=-13.6eV,已知电子电量e,电子质量m,氢的核外电子的第一条可能轨道的半径为r1,已知氢原子各定态能量与基态能量之间关系为 ,式中n=2、3、4、5……
评分标准
2.13MeV
试题解析及建议
(1)由△E=△mc2可知释放的核能E=(2mH-mHe-mn)c2=2.14MeV
(2)把两个氘核作为一个系统,碰撞过程系统的动量守恒,由于碰撞前两氘核的动能相等,
其动量等大反向,因此反应前后系统的总动量为零,即mHevHe+ mnvn=0
反应前后系统的总能量守恒,即
评分标准
【题目1】 【题目2】
试题解析及建议
氢原子核外电子绕核做匀速圆周运动,库仑力作向心力,有
(1分)
根据电流强度的定义 得 (1分)
氢原子处于n=2的定态时能级为 ,要使处于n=2的氢原子电离,需要吸收的能量值为 ,即电离能为 .(2分)
原子物理期末复习题
可能的原子态:
4s4s:1S0;
4s3d:1D2、3D3,2,1;
4s4p:1P1、3P2,1,0;
4s5s:1S0、3S1。
能级跃迁图:
常数表
普朗克常数h= 6.62610-34Js = 4.13610-15eVs里德堡常数R= 1.097107m-1
基本电荷e= 1.60210-19C阿伏伽德罗常数NA= 6.0221023mol-1
可形成的原子态为
3S1,3P2, 1, 0,3D3, 2, 1,1S0,1P1,1D2
4.钙原子(Z=20)基态的电子组态是4s4s,若其中一个电子被激发到5s态(中间有3d和4p态),当它由4s5s组态向低能态直至基态跃迁时,可产生哪些光谱跃迁?画出能级跃迁图(钙原子能级属 耦合,三重态为正常次序)。
A. 10-2; B. 10-4; C. 10-6; D. 10-10。
2.卢瑟福由 粒子散射实验得出原子核式结构模型时,所依据的理论基础是:[D]
A.普朗克能量子假设; B.爱因斯坦的光量子假设;
C.狭义相对论; D.经典理论。
3.对氢原子,考虑精细结构之后,其赖曼系一般结构的每一条谱线应分裂为:[A]
4.二次电离的碳离子(C++)按其能级和光谱的特点,应属于类氦离子;其基态原子态是___ (或 )____________;由 态向 态跃迁可产生3条光谱线。
5.在正电子与负电子形成的电子偶素中,正电子与负电子绕它们共同的质心的运动,在n= 2的状态,电子绕质心的轨道半径等于0.212nm。
6.钾原子的电离电势是4.34V,其主线系最短波长为2.86 102nm。
Vmin= (2 /me)1/2= (2 48.36/(0.511 106))1/2 3 108= 4.13 106ms-1(3分)
原子物理学第四,五,六,七章课后习题答案
第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。
试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。
高考物理近代物理知识点之原子结构基础测试题(4)
高考物理近代物理知识点之原子结构基础测试题(4)一、选择题1.在物理学的发展过程中,许多物理学家做出了重要贡献,下列叙述正确的是 A .库仑发现了电子B .安培发明了电池C .法拉第最早提出了电场的概念D .奥斯特首先发现了电磁感应现象2.如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。
下列说法正确的是( )A .该实验是卢瑟福建立原子核式结构模型的重要依据B .该实验证实了汤姆孙原子模型的正确性C .α粒子与原子中的电子碰撞会发生大角度偏转D .绝大多数的α粒子发生大角度偏转3.下列说法正确的是( )A .β衰变现象说明电子是原子核的组成部分B .在光电效应实验中,只增加入射光的强度,饱和光电流不变C .在核反应方程41417278He N O X +→+中,X 表示的是中子D .根据玻尔理论,处于基态的氢原子吸收光子发生跃迁后,其电子的动能减少4.不断发现和认识新现象,进而理解事物的本性,这是一切科学发展的必由之路。
下列说法正确的是A .放射性元素衰变的快慢是由原子所处的化学状态和外部条件决定的B .原子核越大,它的比结合能越大C .电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构D .如果大量氢原子处在n =3的能级,会辐射出6种不同频率的光5.如图所示为氢原子的能级结构示意图,一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49 eV 的金属钠.下列说法正确的是( )A .这群氢原子能辐射出三种不同频率的光,其中从n =3能级跃迁到n =2能级所发出的光波长最短B.这群氢原子在辐射光子的过程中电子绕核运动的动能减小,电势能增大C.能发生光电效应的光有三种D.金属钠表面所发出的光电子的最大初动能是9.60 eV6.下列有关原子结构和原子核的认识,其中正确的是.A. 射线是高速运动的电子流B.氢原子辐射光子后,其绕核运动的电子动能增大C.太阳辐射能量的主要来源是太阳中发生的重核裂变D.21083Bi的半衰期是5天,100克21083Bi经过10天后还剩下50克7.下列四幅图涉及到不同的物理知识,其中说法正确的是()A.甲图中,卢瑟福通过分析α粒子散射实验结果,发现了质子和中子B.乙图中,在光颜色保持不变的情况下,入射光越强,饱和光电流越大C.丙图中,射线甲由电子组成,射线乙为电磁波,射线丙由α粒子组成D.丁图中,链式反应属于轻核聚变8.物理学家通过对现象的深入观察和研究,获得正确的科学认识,推动了物理学的发展.下列说法正确的是A.卢瑟福通过对阴极射线的研究,提出了原子的核式结构模型B.玻尔的原子理论成功地解释了氢原子光谱的实验规律C.爱因斯坦通过对光电效应的研究,揭示了光具有波粒二象性D.德布罗意提出微观粒子动量越大,其对应的波长越长9.关于科学家在电磁学中的贡献,下列说法符合历史事实的是()A.库伦测出了元电荷e的数值B.安培提出了电场线和磁感线的概念C.奥斯特首先发现了电流的磁效应D.洛伦兹提出了分子电流假说10.下列现象中,与原子核内部变化有关的是A.粒子散射现象B.天然放射现象C.光电效应现象D.原子发光现象11.可见光光子的能量在1. 61~3.10 eV范围内。
原子物理学习题4
皖西学院近代物理期末考试试卷(共100分)姓名:_________ 学号:_________ 成绩:_________一.选择题(共10题, 共有28分 )4 1.氢原子分别处于32D 3/2 , 32P 3/2 和 32P 1/2 状态,这些状态对应的能级是否相同(不考虑兰姆位移)?A. 都不同;B. 32P 3/2 和32P 1/2 相同;C. 都相同;D. 32D 3/2 和32P 3/2 相同。
3 2.通过测量β衰变的β粒子能谱,可得出正确的结论:A. 为连续谱,但最大值不确定,故与核具有能级相矛盾;B. 为连续谱,有确定的最大值,故与核具有能级相矛盾;C. 为连续谱,有确定的最大值,但仍可确定核能级;D. 为连续谱,没有确定的最大值,故仍可确定核能级。
2 3.由壳层结构理论和洪德定则可知,氯原子(Z=17)基态时的原子态应是:A. 2P 1/2;B. 2P 3/2;C. 4P 1/2;D. 4P 3/2。
1 4.电子填充外层原子轨道时,先填4s 轨道后填3d 轨道,是由于:A. 内层电子对4s 电子的屏蔽作用不如对3d 电子的屏蔽作用强;B. 3d 电子的自旋-自旋作用比4s 电子的强;C. 两电子间的自旋轨道作用使4s 能级低于3d 能级;D. 3d 电子与核的库仑作用比4s 电子的更强。
4 5.LS 耦合中关于J 的选择定则为除外)00(1,0→±=∆J ,其中除外00→的原因是由于:A. 宇称守恒;B. 轨道角动量守恒;C. 泡利原理限制;D. 总角动量守恒。
3 6.在LS 耦合下,两个等价p 电子能形成的原子态是:A. 1D ,3D ;B. 1P ,1D ,3P ,3D ;C. 1D ,3P ,1S ;D. 1D ,3D ,1P ,3P ,1S ,3S 。
3 7.在观测顺磁共振的实验装置中,所使用的交变电磁场的波长处于:A. 0.3 — 300A范围内; B. 0.4 — 0.7μm 范围内;C. 300 — 0.3mm 范围内;D. 0.03 — 0.4μm 范围内。
原子物理学(褚圣麟)完整答案
2
(2)
t, 60º t
图 1.1
Word 资料
.
把(2)式代入(1)式,得:
dn n
Nt (
1 40
)2 (Mzev22 )2
d sin 4
……(3)
2
式中立体角元 d ds/ L2 ,t t' / sin 600 2t' / 3, 200
N 为原子密度。 Nt' 为单位面上的原子数, Nt' / m Ag (AAg / N )0 1 ,其中是单位
下式决定:
1 Mv2 2
2Ze 2
/ 4
R0
3.78 1016 焦耳
2.36 103电子伏特
由此可见,具有106 电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子
表面和原子内部时,所受原子中正电荷的排斥力不同,它们分别为:
F 2Ze 2 / 4 R0 2和F 2Ze 2r/ 4 R 30。可见,原子表面处粒子所受的斥力最大,越
解:散射角在 d 之间的粒子数 dn与入射到箔上的总粒子数 n 的比是:
d n N td n
其中单位体积中的金原子数: N / mAu N0 / AAu
而散射角大于 900 的粒子数为: dn' dn nNt d 2
dn ' 所以有: n
1.5 粒子散射实验的数据在散射角很小( 15)时与理论值差得较远,时什么原
因?
答:粒子散射的理论值是在“一次散射“的假定下得出的。而 粒子通过金属箔,经过
Word 资料
.
好多原子核的附近,实际上经过多次散射。至于实际观察到较小的 角,那是多次小角散射 合成的结果。既然都是小角散射,哪一个也不能忽略,一次散射的理论就不适用。所以, 粒
高考物理最新近代物理知识点之原子结构经典测试题含解析(4)
高考物理最新近代物理知识点之原子结构经典测试题含解析(4)一、选择题1.子与氢原子核(质子)构成的原子称为氢原子(hydrogen muon atom),它在原子核的物理研究中有很重要作用,如图氢原子的能级示意图。
假定光子能量为E的一束光照射容器中大量处于能级的氢原子,氢原子吸收光子后,发出频率为....和的光,且依次增大,则E等于()A. B. C. D.2.一个氢原子从量子数n=2的能级跃迁到量子数n=3的能级,该氢原子A.吸收光子,能量增加B.放出光子,能量减少C.放出光子,能量增加D.吸收光子,能量减少3.下列说法符合物理学事实的是()A.伽利略最早证明了行星公转的轨道是椭圆B.牛顿将物体间复杂多样的相互作用抽象为“力”C.法拉第在实验中将导线南北放置发现了电流的磁效应D.汤姆孙通过 粒子散射实验,提出了原子具有核式结构4.如图为氢原子的能级示意图,锌的逸出功是3.34eV,那么对氢原子在能级跃迁过程中发射或吸收光子的规律认识错误..的是()A.用能量为14.0eV的光子照射,可使处于基态的氢原子电离B.一群处于n=4能级的氢原子向低能级跃迁所辐射的光中,有3种不同频率的光能使锌发生光电效应C.一群处于n=3能级的氢原子向基态跃迁时,发出的光照射锌板,锌板表面所发出的光电子的最大初动能为8.75eVD.用能量为10.21eV 的光子照射,可使处于基态的氢原子跃迁到激发态5.下列说法正确的是:()A.汤姆孙通过研究阴极射线发现了电子,从而建立了核式结构模型B.贝克勒尔通过对天然放射现象的硏究,发现了原子中存在原子核C.原子核由质子和中子组成,稳定的原子核内,中子数一定小于质子数D.大量处于基态的氢原子在单色光的照射下,发出多种频率的光子,其中必有一种与入射光频率相同6.如图所示为氢原子的能级示意图,假设氢原子从n能级向较低的各能级跃迁的概率均为11 n-。
则对300个处于4n=能级的氢原子,下列说法正确的是()A.向低能级跃迁时,向外辐射的光子的能量可以是任意值B.向低能级跃迁时,向外辐射的光子能量的最大值为12.75eVC.辐射的光子总数为500个D.吸收大于1eV的光子时不能电离7.氢原子能级图如图所示,下列说法正确的是A.当氢原子从n=2能级跃迁到n=3能级时,需要吸收0. 89eV的能量B.处于n=2能级的氢原子可以被能量为2eV的电子碰撞而向高能级跃迁C.一个处于n=4能级的氢原子向低能级跃迁时,可以辐射出6 种不同頻率的光子D.n=4能级的氢原子跃迁到n=3能级时辐射出电磁波的波长比n=3能级的氢原子跃迁到n=2能级时辐射出电磁波的波长短8.在卢瑟福的α粒子散射实验中,有少数的α粒子发生了大角度的偏转,其原因是( ) A.原子中有带负电的电子,电子会对α粒子有引力的作用.B.正电荷在原子中是均匀分布的.C.原子的正电荷和绝大部分的质量都集中在一个很小的核上.D .原子是不可再分的.9.我国科学家潘建伟院士预言十年左右量子通信将“飞”入千家万户.在通往量子论的道路上,一大批物理学家做出了卓越的贡献,下列有关说法正确的是A .爱因斯坦提出光子说,并成功地解释了光电效应现象B .德布罗意第一次将量子观念引入原子领域,提出了定态和跃迁的概念C .玻尔在1900年把能量子引入物理学,破除了“能量连续变化”的传统观念D .普朗克把光的波粒二象性推广到实物粒子,预言实物粒子也具有波动性10.下列说法正确的是( )A .α粒子散射实验的结果证明原子核是由质子和中子组成的B .比结合能越大,原子核中的核子结合得越牢固,原子核越稳定C .核力是短程力,其表现一定为吸引力D .质子、中子、α粒子的质量分别为1m 、2m 、3m ,由2个质子和2个中子结合成一个α粒子,释放的能量是()2123m m m c +-11.一群氢原子中的电子从较高能级自发地跃迁到较低能级的过程中A .原子要吸收一系列频率的光子B .原子要吸收某一种频率的光子C .原子要发出一系列频率的光子D .原子要发出某一种频率的光子12.一个氢原子从n =3能级跃迁到n =2能级,该氢原子( )A .放出光子,能量增加B .放出光子,能量减少C .吸收光子,能量增加D .吸收光子,能量减少13.下列叙述中符合物理学史的有( )A .汤姆孙通过研究阴极射线实验,发现了电子B .卢瑟福通过对α粒子散射实验现象的分析,证实了原子核是可以再分的C .法国物理学家库仑测出元电荷e 的电荷量D .玻尔提出的原子模型,彻底否定了卢瑟福的原子核式结构模型14.如图,为氢原子能级图;金属钾的逸出功为2.25eV ,则下面有关说法正确的是A .处于基态的氢原子能吸收13.0eV 的光子后跃迁至n =3能级B .大量处n =4能级的氢原子向低能级跃迁时,最多可辐射出5种不同频率的光C .用处于n =3能级的氢原子向低能级跃迁所辐射出的各种色光照射金属钾,都能发生光电效应D .用大量处于n =4能级的氢原子向低能级跃迁所辐射出的光照射金属钾,所产生光电子的最大初动能为10.5eV15.下列说法正确的是A .23411120H+H He+n →是α衰变B .α粒子散射实验中,极少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据C .核反应方程:9412426Be+He C+x →中的x 为质子D .氡的半衰期为3.8天,若有4个氡原子核,经过3.8天后就一定只剩下2个氡原子核16.下面是历史上的几个著名实验的装置图,其中发现电子的装置是( )A .B .C .D .17.使某种金属X 发生光电效应所需的光子最小的能量为2.60eV .已知一群氢原子处于量子数n =3的激发态,其能级如图所示.这些氢原子能够自发地跃迁到较低的能量状态,并向外辐射多种频率的光.那么,若用这些氢原子辐射的光照射这种金属X ,能够使这种金属X 发生光电效应的不同频率的光有( )A .一种B .两种C .三种D .四种18.了解科学家发现物理规律的过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要,以下符合物理发展史实的是A .汤姆孙通过对天然放射性现象的研究发现了电子B .玻尔进行了α粒子散射实验并提出了著名的原子核式模型C .约里奥·居里夫妇用α粒子轰击金属铍并发现了中子D .卢瑟福用α粒子轰击氮原子核发现了质子,并预言了中子的存在19.氦氖激光器能产生三种波长的激光,其中两种波长分别为λ1=0.632 8 μm ,λ2=3.39 μm .已知波长为λ1的激光是氖原子在能级间隔为ΔE 1=1.96 eV 的两个能级之间跃迁产生的.用ΔE 2表示产生波长为λ2的激光所对应的跃迁的能级间隔,则ΔE 2的近似值为 A .10.50 eV B .0.98 eV C .0.53 eV D .0.37 eV20.氢原子能级如图所示,则下列说法正确的是A .氢原子能级越高原子的能量越大,电子绕核运动的轨道半径越大,动能也越大B .用动能为12.3eV 的电子射向一群处于基态的氢原子,原子有可能跃迁到n=2的能级C .用光子能量为12.3eV 的光照射一群处于基态的氢原子,氢原子有可能跃迁到n=2的能级D .用光子能量为1.75eV 的可见光照射大量处于n=3能级的氢原子时,氢原子不能发生电离21.原子从a 能级跃迁到b 能级时辐射波长为λ1的光子,原子从b 能级跃迁到c 能级时吸收波长为λ2的光子,已知λ1>λ2.那么原子从a 能级状态跃迁到c 能级状态时将要( )A .辐射波长为1212λλλλ-的光子 B .辐射波长为λ1-λ2的光子C .吸收波长为λ1-λ2的光子D.吸收波长为1212λλλλ-的光子 22.物理学是一门以实验为基础的科学,任何学说和理论的建立都离不开实验,下面给出了几个在物理学发展史上有重要地位的物理实验,以及与之相关的物理学发展史的说法,其中错误的是( )A .粒子散射实验是原子核式结构理论的实验基础B .光电效应实验表明光具有粒子性C .电子的发现揭示了原子不是构成物质的最小微粒D .康普顿效应进一步证实了光的波动特性23.图甲所示为氢原子的能级,图乙为氢原子的光谱.已知谱线a 是氢原子从n =4的能级跃迁到n =2能级时的辐射光,则谱线b 可能是氢原子( )时的辐射光A .从5n =的能级跃迁到3n =的能级B .从4n =的能级跃迁到3n =的能级C .从5n =的能级跃迁到2n =的能级D .从3n =的能级跃迁到2n =的能级24.卢瑟福提出了原子的核式结构模型,这一模型建立的基础是A .α粒子的散射实验B .对阴极射线的研究C .天然放射性现象的发现D .质子的发现 25.下列现象中,与原子核内部变化有关的是 A .粒子散射现象 B .天然放射现象C .光电效应现象D .原子发光现象【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【详解】μ子吸收能量后从n=2能级跃迁到较高m 能级,然后从m 能级向较低能级跃迁,若从m 能级向低能级跃迁时如果直接跃迁到基态n=1能级,则辐射的能量最大,否则跃迁到其它较低的激发态时μ子仍不稳定,将继续向基态和更低的激发态跃迁,即1、2、3…m 任意两个轨道之间都可以产生一种频率的辐射光,故总共可以产生的辐射光子的种类为,解得m=4,即μ子吸收能量后先从n=2能级跃迁到n=4能级,然后从n=4能级向低能级跃迁。
原子物理学习题与答案
《原子物理学》习题Kg c MeVm e 3121011.9511.0-⨯==;23.938c MeV m p =;26.939c MeV m n = 25.931c M e V u =;s J h ⋅⨯==-3410055.12π一、选择题:1.原子半径的数量级是: A .10-10cm ; B.10-8m ; C. 10-10m ; D.10-13m2.原子核式结构模型的提出是根据α粒子散射实验中:A. 绝大多数α粒子散射角接近180︒; B.α粒子只偏2︒~3︒;C. 以小角散射为主也存在大角散射 ;D. 以大角散射为主也存在小角散射3.汤川介子理论认为核力是交换下列粒子而产生:A.电子和中微子;B. μ±;C.π±,π0;D.胶子4.动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯ ;B.3.01210-⨯ ;C.5.9⨯10-12 ;D.5.9⨯10-14(5) 若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1 ;B .n(n-1)/2 ;C .n(n+1)/2 ;D .n(6) 氢原子光谱赖曼系和巴耳末系的系线限波长分别为:A.R/4 和R/9 ;B.R 和R/4 ;C.4/R 和9/R ;D.1/R 和4/R(7) 氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:A .3Rhc/4 ; B. Rhc ; C.3Rhc/4e ; D. Rhc/e(8)氢原子基态的电离电势和第一激发电势分别是:A .13.6V 和10.2V;B –13.6V 和-10.2V; C.13.6V 和3.4V; D. –13.6V 和-3.4V9)由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:A.5.291010-⨯m ;B.0.529×10-10m ;C. 5.29×10-12m ;D.529×10-12m 10.根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系;B.可能出现9条谱线,分别属3个线系;C.可能出现11条谱线,分别属5个线系 ;D.可能出现1条谱线,属赖曼系11.氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论最多能看到几条光谱线?A.1 ;B.6 ;C.4 ;D.312.用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋);A .3 ; B.10 ; C.1 ; D.413.按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:A.1/10倍 ;B.1/100倍 ; C .1/137倍; D.1/237倍14.玻尔磁子B μ为多少焦耳/特斯拉?A .0.9271910-⨯; B.0.9272110-⨯ ; C. 0.9272310-⨯ ; D .0.9272510-⨯15.已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A .3∞R /8; B.3∞R /4 ; C.8/3∞R ; D.4/3∞R16.电子偶素是由电子和正电子组成的原子,基态电离能量为:A.-3.4eV ;B.+3.4eV ;C.+6.8eV ;D.-6.8eV17.夫—赫实验的结果表明:A 电子自旋的存在;B 原子能量量子化;C 原子具有磁性;D 原子角动量量子化18.为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:A.电子的波动性和粒子性; B.电子的波动性; C.电子的粒子性; D.所有粒子具有二象性19.德布罗意假设可归结为下列关系式:A .E=h υ, p =λh; B.E=h ω,P=κ ; C. E=h υ ,p =λ; D. E=ω ,p=λ20为使电子的德布罗意假设波长为0.39nm , 应加多大的能量:A .20eV ; B.10eV ; C.100eV ; D.150eV21.如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):A .10-34; B.10-27; C.10-24; D.10-3022.将一质子束缚在10-13cm 的线度内,则估计其动能的量级为:A. eV ;B. MeV ;C. GeV ;D.10-20J23.按量子力学原理,原子状态用波函数来描述. 不考虑电子自旋,对氢原子当有确定主量子数n 时,对应的状态数是:A .2n ; B.2n+1; C.n 2; D.2n 224.按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.n 2;B.2n ;C.l ;D.2l +125.按原子力学原理,原子状态用波函数来描述.考虑电子自旋,对氢原子当nl 确定后,对应的状态数为:A.2(2l +1) ;B.2l +1;C. n ;D.n 226.按量子力学原理,原子状态用波函数来描述.考虑自旋对氢原子当nl m 确定后对应的状态数为:A.1; B.2; C.2l +1; D. n27.单个f 电子总角动量量子数的可能值为:A. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/228.单个d 电子的总角动量投影的可能值为:A.2 ,3 ;B.3 ,4 ;C. 235, 215; D. 3/2, 5/2 . 29.已知一个价电子的21,1==s l ,试由s l j m m m +=求j m 的可能值:A .3/2,1/2 ,-1/2 ,-3/2 ; B. 3/2 ,1/2 ,1/2, -1/2 ,-1/2,-3/2;C .3/2,1/2 ,0,-1/2, -3/2; D. 3/2,1/2 ,1/2 ,0,-1/2, -1/2,-3/2;30.锂原子主线系的谱线在不考虑精细结构时,其波数公式的正确表达式应为: A.3S nP ν=→; B. S nP 2~→=ν; C .nP S →=2~ν; D .3nP S ν=- 31.锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构和考虑精细结构两种情况)?A.1条,3条;B.3条,5条;C.4条,8条 ;D.6条,12条32.已知锂原子光谱主线系最长波长为6707埃,辅线系线系限波长为3519埃,则Li 原子的电离电势为:A .5.38V ; B.1.85V ; C.3.53V ; D.9.14V33.碱金属原子能级的双重结构是由于下列哪一项产生:A.相对论效应;B.原子实的极化;C.价电子的轨道贯穿;D.价电子的自旋-轨道相互作用34.产生钠的两条黄谱线的跃迁是:A.2P 1/2→2S 1/2 , 2P 3/2→2S 1/2 ;B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2 ;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2 , 2D 3/2→2P 3/235.若已知K 钾原子共振线(主线系的第一条)双重成分的波长等于7698.98埃和7664.9埃,则该原子4p 能级的裂距为多少eV ?A.7.4×10-2; B .7.4×10-3; C .7.4×10-4; D .7.4×10-5.36.碱金属原子光谱精细结构形成的根本物理原因:A.电子自旋的存在;B.观察仪器分辨率的提高;C.选择定则的提出 ;D.轨道角动量的量子化37.已知钠光谱的主线系的第一条谱线由λ1=5890埃和λ2=5896埃的双线组成,则第二辅线系极限的双线间距(以电子伏特为单位):A.0;B.2.14⨯10-3;C.2.07⨯10-3;D.3.42⨯10-238.考虑电子自旋,碱金属原子光谱中每一条谱线分裂成两条且两条线的间隔随波数增加而减少的是什么线系?A.主线系;B.锐线系;C.漫线系;D.基线系39.如果l 是单电子原子中电子的轨道角动量量子数,则跃迁选择定则为:A.0=∆l ;B. 0=∆l 或±1;C. 1±=∆l ;D. 1=∆l40.碱金属原子的价电子处于n =3, l =1的状态,其精细结构的状态符号应为:A .32S 1/2.32S 3/2; B.3P 1/2.3P 3/2; C .32P 1/2.32P 3/2; D .32D 3/2.32D 5/241.对碱金属原子的精细结构12S 1/2 ,12P 1/2, 32D 5/2, 42F 5/2,22D 3/2这些状态中可能存在的是:A.12S 1/2,32D 5/2,42F 5/2;B.12S 1/2 ,12P 1/2, 42F 5/2;C.12P 1/2,32D 5/2,22D 3/2;D.32D 5/2, 42F 5/2,22D 3/242.钠原子由nS 跃迁到3P 态和由nD 跃迁到3P 态产生的谱线分别属于:A.第一辅线系和基线系;B.柏格曼系和锐线系;C.主线系和第一辅线系 ;D.第二辅线系和漫线系43.d 电子的总角动量取值可能为: A. 215,235; B . 23,215; C. 235,263; D. 2,644.氦原子由状态1s2p 3P 2,1,0向1s2s 3S 1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.145.氦原子由状态1s3d 3D 3,2,1向1s2p 3P 2,1,0跃迁时可产生的谱线条数为:A.3;B.4;C.6;D.546.下列原子状态中哪一个是氦原子的基态?A.1P 1;B.3P 1 ;C.3S 1; D .1S 0 ;47.氦原子的电子组态为n 1sn 2p,则可能的原子态:A.由于n 不确定不能给出确定的J 值,不能决定原子态;B.为n 1pn 2s 3D 2,1,0和n 1pn 2s 1D 1;C.由于违背泡利原理只存单态不存在三重态;D.为n 1pn 2s 3P 2,1,0和n 1pn 2s 1P 1.48.C ++离子由2s3p 3P 2,1,0到2s3s 3S 1两能级的跃迁,可产生几条光谱线?A.6条; B .3条; C .2条; D .1条.49.氦原子有单态和三重态,但1s1s 3S 1并不存在,其原因是:A.因为自旋为1/2,l 1=l 2=0 故J=1/2;B.泡利不相容原理限制了1s1s 3S 1的存在;C..因为三重态能量最低的是1s2s 3S 1;D.因为1s1s 3S 1和 1s2s 3S 1是简并态50.若某原子的两个价电子处于2s2p 组态,利用L -S 耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.51. 4D 3/2 态的L s ⋅值是:A.-2 2 ; B.3 2; C.-3 2; D.2 252.一个p 电子与一个 s 电子在L -S 耦合下可能有原子态为:A.3P 0,1,2, 3S 1 ; B .3P 0,1,2 , 1S 0; C.1P 1 , 3P 0,1,2 ; D.3S 1 ,1P 153.设原子的两个价电子是p 电子和d 电子,在L-S耦合下可能的原子态有:A.4个 ;B.9个 ;C.12个 ;D.15个 ;54.电子组态2p4d 所形成的可能原子态有:A .1P 3P 1F 3F ; B. 1P 1D 1F 3P 3D 3F;C .3F 1F; D.1S 1P 1D 3S 3P 3D.55.铍(Be )原子若处于第一激发态,则其电子组态:A.2s2s ;B.2s3p ;C.1s2p;D.2s2p56.若镁原子处于基态,它的电子组态应为:A .2s2s ; B.2s2p ; C.3s3s ; D.3s3p57.今有电子组态1s2p,1s1p,2d3p,3p3s ,试判断下列哪些电子组态是可以存在的:A.1s2p ,1s1p ;B.1s2p,2d3p ; C,2d3p,2p3s ; D.1s2p,3p3s58.电子组态1s2p 所构成的原子态应为:A1s2p 1P 1 , 1s2p 3P 2,1,0 ; B.1s2p 1S 0 ,1s2p 3S 1;C1s2p 1S 0, 1s2p 1P 1 , 1s2p 3S 1 , 1s2p 3P 2,1,0; D.1s2p 1S 0,1s2p 1P 159.判断下列各谱项中那个谱项不可能存在:A.3F 2;B.4P 5/2;C.2F 7/2;D.3D 1/260.试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是可能存在的?A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 ; B .1s2p 3P 2 1s2p 1D 1;C. 1s2p 3P 2 2s2p 3P 2 ;D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 161.钙原子的能级应该有几重结构?A .双重; B.一、三重; C.二、四重; D.单重62.在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; B.1; C.2; D.363. B 原子态2P 1/2对应的有效磁矩(g =2/3)是 A. B μ33; B. B μ32; C. B μ32 ; D. B μ22. 64.在强外磁场中原子的附加能量W 除正比于B 之外,同原子状态有关的因素有:A.朗德因子和玻尔磁子 ;B.磁量子数、朗德因子;C.朗德因子、磁量子数M L 和M J ;D.磁量子数M L 和M S65.塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A ;)(0);(1πσ±=∆J M ; B. )(1);(1σπ+-=∆J M ;0=∆J M 时不出现;C. )(0σ=∆J M ,)(1π±=∆J M ;D. )(0);(1πσ=∆±=∆S L M M66. 若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值:A .1和2/3; B.2和2/3; C.1和4/3; D.1和267.由朗德因子公式,当L=S,J ≠0时,可得g 值:A .2; B.1; C.3/2; D.3/468.由朗德因子公式当L=0但S ≠0时,可得g 值:A .1; B.1/2; C.3; D.269.某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为:A .2个; B.9个; C.不分裂; D.4个70.判断处在弱磁场中,下列原子态的子能级数那一个是正确的:A.4D 3/2分裂为2个;B.1P 1分裂为3个;C.2F 5/2分裂为7个;D.1D 2分裂为4个71.如果原子处于2P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:A.3个;B.2个 ;C.4个 ;D.5个72.态1D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?A.3个 ;B.5个 ;C.2个 ;D.4个73.钠黄光D 2线对应着32P 3/2→32S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:A.3条;B.6条 ;C.4条;D.8条74.碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2P 3/2)在磁场中发生塞曼效应,光谱线发生分裂,沿磁场方向拍摄到的光谱线条数为A.3条 ;B.6条;C.4条;D.9条75.元素周期表中,下列描述正确的:A.同周期各元素的性质和同族元素的性质基本相同;B.同周期各元素的性质不同,同族各元素的性质基本相同C.同周期各元素的性质基本相同,同族各元素的性质不同D.同周期的各元素和同族的各元素性质都不同76.当主量子数n=1,2,3,4,5,6时,用字母表示壳层依次为:A.K 、L、M、O、N、P; B.K、L、M、N、O、P;C.K、L、M、O、P、N;D.K、M、L、N、O、P;77.下列哪一个元素其最外层电子具有最小电离能?A.氟(Z=9); B.氖(Z=10); C.钠(Z=11); D.镁(Z=12)78.在原子壳层结构中,当l =0,1,2,3,…时,如果用符号表示各次壳层,依次用下列字母表示:A.s,p,d,g,f,h... B.s,p,d,f,h,g...C.s,p,d,f,g,h... D.s,p,d,h,f,g...79.周期表中对K 、L 、M 、N 主壳层所能填充的最大电子数依次为:A.2,8,18,32;B .2,8,18,18;C .2,8,10,18;D .2,8,8,18。
原子物理学 课后答案 全
原子物理学课后答案全原子物理学课后答案全原子物理学习题解答刘富义第一章原子的基本状况1.1若卢瑟福散射用的?粒子是放射性物质镭c放射的,其动能为'求解:将1.1题中各量代入rm的表达式,得:rmin7.68?106电子伏特。
000散射物质是原子序数z?79的金箔。
试问散射角??150所对应的对准距离b多小?解:根据卢瑟福散射公式:2ze21()(1)240mvsin219479(1.601019)21910(1)6197.68?10?1.60?10sin75ctg获得:240kmv2b40b1.3若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子222zeze与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个?e电荷而质量就是质子的两倍,就是氢的一种同位素的原子核)替代质子,其与金箔原子核的最小距离多大?3.02?10?14米ze2ctg?79?(1.60?1019)2ctg150180?。
当入射粒子的动解:当入射粒子与靶核对心碰撞时,散射角为?1522b3.97?10?126?194??0k?(4??8.85?10)?(7.68?10?10)能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
米2式中k??12mv是?粒子的功能。
根据上面的分析可以得:1.2已知散射角为?的?粒子与散射核的最短距离为1ze22mv?kp?,故存有:24??0rminrm2ze21?()(1?),何况上题?粒子与2?4??0mvsin21rminze2?4??0kp9散射的金原子核之间的最短距离rm多大?79?(1.60?10?19)2?13?9?10??1.14?10米6?1910?1.60?101原子物理学习题解答刘富义由上式窥见:rmin与入射光粒子的质量毫无关系,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为1.14?10?13米。
1.4钋放射治疗的一种?粒子的速度为1.597?107米/秒,负面横向入射光于厚度为10?7米、密度为1.932?104公斤/米3的金箔。
原子物理学第三次作业答案 (4)
1第三章 碱金属原子结构及光谱 碱金属原子的能级:E n = E n,l = - 2)(l n Rhcδ- = - 22*nR h c Z(和l, n 有关)四个主要线系(Na ):1, 锐线系(nS →3P , n =4,5,6,…, ) ∆ l =-1nS 能级能量:E n,s = - 2)(s n Rhc δ-; 3P 能级能量:E 3,p = - 2)3(p Rhcδ- ;nS →3P 的波数:由,E n,s - E 3,p = h ν=hc/λ= hc σσ = 2)3(p Rδ--2)(s n Rδ-2,主线系(nP →3S, n =3,4,5,…, ) ∆ l =1 3,漫线系(nD →3P , n =3,4,5,…, ) ∆ l =1 4,柏格曼线系(nF →3D, n =4,5,6,…, ) ∆ l =1除 nS 外, 所有能级都是双重能级。
问题:双重能级怎样产生?电子轨道运动的磁矩: l , μl =-me 2l =-g l m e 2l ,g l =1 (G 因子)电子自旋角动量: s , 自旋磁矩:μs =-g s me 2s ,g s =2 .电子的总角动量: j = s + l , s 和 l 的相互作用造成能级的精细结构分裂。
∆E l ,s =2,l n A { j (j +1)- l (l +1)- s (s +1) }j =l + s ,l + s -1,。
,| l - s | (两个角动量耦合的一般规律)m j = j , j -1, …,0, -1, …, -(j -1),-j (共2j +1个值)量子数j 的选择定则: ∆ j = ±1, 0 ( 0 ↔0除外); (∆ l = ±1) 原子核的自旋角动量:I原子的总角动量: F = I + j ,I 和J 的相互作用造成能级的超精细结构分裂。
原子核的自旋磁矩: μI =g IPMe 2I , g I : 核的G 因子;M P :质子的质量。
原子物理学习题答案4key
皖西学院近代物理期末考试试卷答案(共100分) 一.选择题(共10题, 共有28分)1.D----(3分)2.C----(3分)3.B----(3分)4.A----(3分)5.D----(2分)6.C (可应用偶数定则)----(3分)7.C----(2分)8.A----(3分)9.A----(3分)10.D----(3分) 二.填空题(共8题, 共有28分)1.n、l、s、m l、m s(1.5分); 2(2l+1)(1.5分)。
----(3分)2.主(1.5分); 二(1.5分)。
----(3分)3.单(或三); 三(或单); 两; 仲(或正); 正(或仲)。
(每空1分)----(5分)4.5⨯10-3----(3分)5.伦琴;很强的贯穿本领;不被电磁场偏转;使气体电离;使照相底片感光。
注:不能答:本质为电磁波。
----(5分)6.12C;1/12。
(各1.5分)----(3分)7.10.2----(3分)8.吸收体;(1分) 低温;(1分) 吸收。
(1分)----(3分) 三.计算题(共4题, 共有44分)1.解::氧原子的基态3P2, ∴==±±,,,=1,212S J M∴=++-++=+⋅+-⋅+⋅⋅+= g S S L L J J 32112132111111222132()()()()()() (3分) z B F B z Mg Bzzz z ==μμ∂∂∂∂, (3分) 设原子束在磁场时的方向为x 轴正向 原子束在磁场出口的偏离为: 1z F m d v z ==⋅⋅⎛⎝ ⎫⎭⎪1212at 22, (3分)与x 轴的夹角为α: tg d d d d d d α==z x z t t x F m dz =v 2,屏上两边缘线束之间的距离为:(cm ) 6.2102030.010.0100.110788.5232= )tg 2-(+2=2= 325B 1=⨯⨯⨯⨯⨯⨯⨯⨯⋅=⨯∆--zB E dD Mg d D z z z zk ∂∂μα (3分)----(15分)2.解: 2.证明:: (1) P L x L x L 12032313==⎰sin /πd ; (3分) (2) P L n x L x nL n 22021==⎰sin/πd . (2分) ----(5分)3.解:: ()..152********23610022262r a m n Znn n e ==⨯⨯⨯=⨯--μnm nmr 1 = 2.4⨯10-6nm, r 2 = 2.36⨯10-6⨯4 = 9.5⨯10-6nm (4分) )2( h ν= E 2 - E 1 = 13.6⨯273⨯822⨯3/4 = 19MeV (4分))3( 因r 1处于核内,故对于n = 1状态,π介子受到有限大小核的束缚要比受到点核的束缚来得小,所以E 1将比点核时略高,而r 2在核外,E 2可视作不变,故E 2- E 1减小,即共振线光子能量将要变小。
原子物理学期末复习习题
原子物理学期末复习习题1-7 单能的窄α粒子束垂直地射到质量厚度为2.0mg/cm 2的钽箔上,这时以散射角θ0>20?散射的相对粒子数(散射粒子数与入射数之比)为4.0×10-3.试计算:散射角θ=60°角相对应的微分散射截面Ωd d σ。
要点分析:重点考虑质量厚度与nt 关系。
解:ρm = 2.0mg/cm 22102.0->?='?NN d θA Ta =181 Z Ta =73 θ=60o A N An ρ=A mN tAn ρ=A mN Ant ρ=依微分截面公式 21642θασsin1=Ωd d 知该题重点要求出a 2/16由公式34180202234180202104.32sin sin 21610 6.0221812.02sin 16'-?==Ω=??θθθπθαd a d nt N dN 3180202221418020223104.32sin 1)4(161065.62sin sin 216106.0221812.0-?=-=??θπθθθπad a 3221104.3(-22.13))4(16106.65-?=?-πa所以 262102.3316-?=a 274264210456.1260sin11033.22sin116--?=??==Ωθασd d1-10 由加速器产生的能量为1.2MeV 、束流为5.0 nA 的质子束,垂直地射到厚为1.5μm 的金箔上,试求5 min 内被金箔散射到下列角间隔内的质子数。
金的密度(ρ=1.888×104 kg/m 3)[1] 59°~61°; [2] θ>θ0=60° [3] θ<θ0=10°要点分析:解决粒子流强度和入射粒子数的关系.注意:第三问,因卢瑟福公式不适用于小角(如0o)散射,故可先计算质子被散射到大角度范围内的粒子数,再用总入射粒子数去减,即为所得。
原子核物理及辐射探测学 1-4章答案
第一章 习题答案1-1 当电子的速度为18105.2-⨯ms 时,它的动能和总能量各为多少?答:总能量 ()MeV ....c v c m mc E e 924003521511012222=⎪⎭⎫ ⎝⎛-=-==;动能 ()MeV c v c m T e 413.011122=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 1-2.将α粒子的速度加速至光速的0.95时,α粒子的质量为多少?答:α粒子的静止质量()()()u M m M m e 0026.44940.9314,244,224,20=∆+=≈-= α粒子的质量 g u m m 2322010128.28186.1295.010026.41-⨯==-=-=βα1-4 kg 1的水从C 00升高到C 0100,质量增加了多少?答:kg 1的水从C 00升高到C 0100需做功为J t cm E 510184.41001184.4⨯=⨯⨯=∆=∆。
()kg c E m 1228521065.4100.310184.4-⨯=⨯⨯=∆=∆ 1-5 已知:()();054325239;050786238239238u .U M u .U M ==()()u .U M ;u .U M 045582236043944235236235==试计算U-239,U-236最后一个中子的结合能。
答:最后一个中子的结合能()()()[]MeV .uc .c ,M m ,M ,B n n 774845126023992238922399222==⋅-+=()()()[]MeV .uc .c ,M m ,M ,B n n 54556007027023692235922369222==⋅-+= 也可用书中的质量剩余()A ,Z ∆:()()()()MeV ....,n ,,B n 806457250071830747239922389223992=-+=∆-∆+∆= ()()()()MeV ....,n ,,B n 545644242071891640236922359223692=-+=∆-∆+∆=其差别是由于数据的新旧和给出的精度不同而引起的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这些表达式都只在弱磁场情况下成立,当磁场强到塞曼分裂 大小可以与自旋-轨道相互作用比拟时,塞曼效应被帕邢-巴 克效应替代,那时谱线分裂决定于
U2emBe (2Sz Lz)2em Be (2mS mL); 选择规 :m 则 S 0;mL 0,1
完整地描述原子中电子的运动状态的四个量子数:
n, l, ml, ms 或 n, l, j, mj
第四章原子的精细结构:
电子的自旋习题课
电子的磁矩表达式:
轨道磁矩:
l
e 2me
L
l(l1)B,l 0,1,2...n.1为轨道角量子
自旋磁矩
lz
e
2me
LZ
mlB,ml
0,1,2...l为轨道磁量子
s
e S me
s(s
1)B,s
1为自旋角量子数 2
sz
e me
SZ
msB,ms
1为自旋磁量子数 2
8.碱金属原子能级的双重结构是由于下面的原因产生: [ D ] A. 相对论效应; B. 原子实极化; C. 价电子的轨道贯穿; D. 价电子自旋与轨道角动量相互作用。
9.产生两条钠黄线的跃迁是:[ A ] A.32P1/2→32S1/2 , 32P3/2→32S1/2 B.32S1/2→32P1/2 , 32S1/2→32P3/2 C.32D3/2→32P1/2, 32D3/2→32P3/2 D.32D3/2→32P1/2 , 32D3/2→32P3/2
B2 e m e0.571 80 4 8eV /T0.921 70 4 2J 3/T为玻尔
电子的自旋是本章最重要的概念,在经典物理中找 不到对应物,它是与粒子运动状态无关的、粒子的内禀 属性.
三个实验从不同角度证明了电子自旋的存在:
(1)史特恩-盖拉赫实验: 在外加非均匀磁场情况下原子束的分裂;分裂间距由下式确定;
4.钠D1线是由跃迁__2_P_1_/2___2_S_1/_2______产生的. 5.处于4D3/2态的原子的朗德因子g等于___5_/6_____
6.已知He原子1P11S0跃迁的光谱线在磁场中分裂为三条 光谱线。若其波数间距为 ,则此磁场的磁感应强度
B= _4__m__ec____~_。
e
~ e B 4mec
h'h(m2g2m 1g1)BB h(0,BB)(正常塞 ,g2 曼 g1效 1,)应
电偶极跃迁的选择定则:m=0,1 只有电子数目为偶数并形成独态的原子才有正常的塞曼效应
塞曼效应的振特性:
纵向观察,平行于B的光的传播,看不到谱线,只看到(左右旋)圆偏振光; 横向观察,垂直于B 的光的传播,看到三条线偏振光,一条与B平行(), 两条与B垂直().
10.正常塞曼效应中,沿磁场方向观察时将看到几条谱线:
[ C]
A.0;
B.1;
C.2;
D.3
二、填空题
1.原子光谱的精细结构是由于 电子自旋-轨道运动 相互作 用引起的。
2.史特恩-盖拉赫实验的结果说明
。
原子具有磁矩、电子具有自旋、原子角动量空间取 向量子化
3.提出电子自旋概念的主要实验事实是___斯___特___恩___-_盖___拉___赫___实__ 验 和__碱__金__属__光__谱__精__细__结__构__,_____________-。
则电子自旋平行与反平行于磁场的电子能量差为
U 2 B B 2 0 . 5 1 7 4 e 0 T 8 1 V 1 . 2 8 T 1 . 4 1 4 e 0 V
z2
z
Bz z
3dkD TmJgJBBzz
dD, 3kT
其中 mJ J,J1,...J,共有 2J1个数值
gJ
31(s(s1)l(l1))为朗德因子 2 2 j(j1)
D表示屏幕离磁场中点距离; d为磁场区长度
(2)碱金属双线:在无外磁场情况下的谱线分裂;它是原子中
电子的自旋与轨道运动相互作用的结果,分裂间距由下式给
6原子在6G3/2状态,其有效磁矩为:[ B ]
A.
15 3
B
;
B. 0;
C.
15 2
B
;
D.
15 2
B
7.氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于: [C ] A.自旋-轨道耦合 B.相对论修正和原子实极化、轨道贯穿 C.自旋-轨道耦合和相对论修正 D. 原子实极化、轨道贯穿、自旋-轨道耦合和相对论修正
4朗德因子g的应用范围是 :[ A ] A. 弱外磁场中的正、反常塞曼效应; B. 弱外磁场中的正常塞曼效应; C. 对弱、强外磁场均成立, 但取值不同; D. 弱外磁场中的正常塞曼效应和帕邢-巴克效应。
5若原子处于1D2和2S1/2状态, 它们的朗德因子g的值分别为: [D ]
A. 1和2/3 ; B. 2和2/3 ; C. 1和4/3 ; D. 1和2 。
三、计算题
1.一束电子处在1.2T的均匀磁场时,试问电子自旋平行和反 平行于磁场的电子的能量差为多大?
解: 电子具有自旋,则存在与自旋相联系的磁矩s,它在磁场作用下的能量为
Us BszBgsmsBB
(其中 gs 2,ms
1分别表示平行 自和 旋 ) 反平 2
所以电子自旋平行与反平行于磁场的电子的能量为 U=BB
出;
U
(Z )4 E0
[
j(
j
1)
l(l
1)
3] 4 , (l
0,
j
l
1)
4n3
l(l 0.5)(l 1)
2
U
(Z )4 E0
2n3l(l 1)
Z4 n3l(l 1)
7.25104 eV ,
~ Z 4 5.84cm1
n3l(l 1)
这里E0 m0c2
塞曼效应: 在外加均匀磁场情况下的谱线分裂,尤其是反 常塞曼效应,直到电子自旋假设的提出才得以解释,谱线分 裂间距由式22-4决定
习题讲解
一、选择题
1.原始的斯特恩-盖拉赫实验是想证明轨道角动量空间取向
量子化, 后来结果证明的是: A. 轨道角动量空间取向量子化;
[C
]
B. 自旋角动量空间取向量子化;
C. 轨道和自旋角动量空间取向量子化;
D. 角动量空间取向量子化不成立。
2原子中轨道磁矩L和轨道角动量L的关系应为 :[ C ]
A.
L
e me
L;
B.
L
e 2m e
L;
C.
L
e 2m e
L;
D.
L
e me
L;
3在外磁场中的原子,若外磁场B可视为弱磁场,则:[ A ] A. L和S 先耦合成 再与B耦合; B. 由于B弱使L 与S 不能耦合成 ; C. 由于B弱,所以磁场对原子的作用总可忽略; D. L 与S 分别同B耦合,而后形成总附加能。