Phase-contrast Imaging Simulation Based on a Micro-CT System

合集下载

格雷码与六步相移编码融合的三维结构光学测量方法

格雷码与六步相移编码融合的三维结构光学测量方法

·强激光物理与技术·格雷码与六步相移编码融合的三维结构光学测量方法*孙帮勇1,2, 吴思远2(1. 西安理工大学 印刷包装与数字媒体学院,西安 710048; 2. 中国科学院 西安光学精密机械研究所 光谱成像技术重点实验室,西安 710119)摘 要: 编码结构光技术是一种获取复杂目标三维结构的典型测量技术,其将编码后的结构光图案投射到待测物体表面进行调制、采集,并通过解码计算三维面形数据,可见编码方法是结构光三维测量技术的核心问题。

然而,通用的格雷码编码方法和六步相移编码方法都存在一定缺陷,为此,以获取物体的高精度三维点云数据为目标,提出了一种融合格雷码与六步相移的结构光技术。

首先,将格雷码结构光设计为7幅黑白相间的条纹周期图像,并通过投射角度解码操作将图像划分为多个区域;然后,设计六步相移结构光为6幅具有相位差的余弦周期图像,通过相位解包裹操作将每个子区域细分到单个像素单元;最后,融合以上两种编码结构光解码值,计算图像内每个空间点的绝对相位信息。

仿真实验与实际测试实验显示,与传统六幅莫尔条纹结构光技术相比,融合结构光技术计算量较小,同时也克服了单独使用格雷码或相移技术所存在的问题,能够以较高精度获取物体目标的三维结构细节,为基于结构光的双目三维扫描系统提供一定理论依据。

关键词: 三角测量原理; 六步相移; 格雷码; 结构光; 三维点云中图分类号: O439 文献标志码: A doi : 10.11884/HPLPB202133.200242Structured light technology based on gray code and six-step phase shift methodSun Bangyong 1,2, Wu Siyuan 2(1. College of Printing , Packaging Engineering and Digital Media , Xi’an University of Technology , Xi’an 710048, China ;2. Key Laboratory of Spectral Imaging Technology , Xi'an Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Xi'an 710119, China )Abstract : Structured light technology is a typical method for capturing the three-dimensional point cloud dataof realistic objects. Structured light images are projected on the surface of the object, which are modulated by theheight of the object. Then, the modulated structured light is captured by the camera. Finally, the triangulation principleis used to calculate the three-dimensional surface shape data. To scan the high-precision three-dimensional point cloudof the object, this paper proposes a structured light technology based on Gray code and six-step phase shift method.The structured light based on Gray code is composed of 7 black and white fringe periodic images, and the image canbe divided into 128 areas through the gray code decoding operation; the structured light based on six-step phase shift iscomposed of 6 cosine periodic images with phase difference. Phase shift decoding can subdivide each of the 128 areasinto a single pixel. Compared with the cumbersome calculation of six Moiré fringes, the proposed structured lighttechnology based on six-step phase-shift method has less calculation. In the simulation experiment and actual test, theproposed structured light technology showed excellent performance.Key words : principle of triangulation ; six-step phase shift ; Gray code ; structured light ; cloud point随着光学成像理论与设备的发展,人们已实现复杂目标物体的三维结构获取,特别是所提出的格雷编码结构光技术和相移编码结构光技术,能够探测目标复杂的外部结构,被广泛应用于三维重建任务中[1]。

优美斯(Optimax Systems)的相位平移干扰光学测量方法白皮书说明书

优美斯(Optimax Systems)的相位平移干扰光学测量方法白皮书说明书

The Effect Of Phase Distortion On InterferometricMeasurements Of Thin Film Coated Optical SurfacesJon Watson, Daniel SavageOptimax Systems, 6367 Dean Parkway, Ontario, NY USA*********************©Copyright Optimax Systems, Inc. 2010This paper discusses difficulty in accurately interpreting surface form data from a phase shifting interferometer measurement of a thin film interference coated surfaces.PHASE-SHIFTING INTERFEROMETRYPhase-shifting interferometry is a metrology tool widely used in optical manufacturing to determine form errors of an optical surface. The surface under test generates a reflected wavefront that interferes with the reference wavefront produced by the interferometer 1. A phase-shifting interferometer modulates phase by slightly moving the reference wavefront with respect to the reflected test wavefront 2 . The phase information collected is converted into the height data which comprises the surface under test3.Visibility of fringes in an interferometer is a function of intensity mismatch between the test and reference beams. Most commercially available interferometers are designed to optimize fringe contrast based on a 4% reflected beam intensity. If the surface under test is coated for minimum reflection near or at the test wavelength of the interferometer, the visibility of the fringe pattern can be too low to accurately measure.OPTICAL THIN-FILM INTERFERENCE COATINGSOptical thin-film interference coatings are structures composed of one or more thin layers (typically multiples of a quarter-wave optical thickness) of materials deposited on the surface of an optical substrate.The goal of interference coatings is to create a multilayer film structure where interference effects within the structure achieve a desired percent intensity transmission or reflection over a given wavelength range.The purpose of the coating defines the design of the multilayer structure. Basic design variables include:• Number of layers• Thickness of each layer• Material of each layerThe most common types of multilayer films are high reflector (HR) and anti-reflection (AR) coatings. HR coatings function by constructively interfering reflected light, while AR coatings function by destructively interfering reflected light. These coatings are designed to operate over a specific wavelength range distributed around a particular design wavelength.To produce the desired interference effects, thin-film structures are designed to modulate the phase of the reflected or transmitted wavefront. The nature of the interference effect depends precisely on the thickness of each layer in the coating as well as the refractive index of each layer. If the thickness and index of each layer is uniform across the coated surface, the reflected wavefront will have a constant phase offset across the surface. However, if layer thicknesses or index vary across the coated surface, then the phase of thereflected wavefront will also vary. Depending on the design of the coating and the severity of the thickness or index non-uniformity, the distortion of the phase of the reflected wavefront can be severe. 4Layer thickness non-uniformity is inherent in the coating process and is exaggerated by increasing radius of curvature of the coated surface.5 All industry-standard directed source deposition processes (thermal evaporation, sputtering, etc) result in some degree of layer thickness non-uniformity.5 Even processes developed to minimize layer non-uniformity, such as those used at Optimax, will still result in slight layer non-uniformity (within design tolerance).TESTING COATED OPTICS INTERFEROMETRICALLYPhase-shifting interferometers use phase information to determine the height map of the surface under test. However, surfaces coated with a thin-film interference coating can have severe phase distortion in the reflected wavefront due to slight layer thickness non-uniformities and refractive index inhomogeneity. Therefore, the measured irregularity of a coated surface measured on a phase shifting interferometer at a wavelength other than the design wavelength, may not represent the actual irregularity of the surface. Even using a phase shifting interferometer at the coating design wavelength does not guarantee accurate surface irregularity measurements. If a coating has very low reflectance over any given wavelength range (such as in the case of an AR coating), the phase shift on reflection with wavelength will vary significantly in that range.7 Figure 1 shows an example of how the phase can vary with coating thickness variations.Figure 1In this particular case, if a point at the lens edge has the nominal coating thickness and the coating at lens center is 2% thicker, expect ~38° phase difference in the measurement (~0.1 waves). This will erroneous be seen as height by the interferometer, despite the actual height change in this case being less than 7nm (~0.01 waves). Also, depending on coating design, low fringe visibility may inhibit measurements.There is an extreme method to determine the irregularity of a thin-film interference coated surface by flash coating it with a bare metal mirror coating. A metal mirror coating is not a thin-film interference coating, and the surface of the mirror represents the true surface, This relatively expensive process requires extra time, handling, and potential damage during the metal coating chemical strip process.CONCLUSIONS•There can be practical limitations to getting accurate surface form data on coated optical surfaces due to issues with phase distortion and fringe visibility.•The issues are a function of thin film coating design particulars and the actual deposition processes.1 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Pg 340, McGraw Hill, New York City, 20082 H.H. Karow, Fabrication Methods For Precision Optics, Pg 656, John Wiley & Sons, New York City, 19933 MetroPro Reference Guide OMP-0347J, Page 7-1, Zygo Corporation, Middlefield, Connecticut, 20044 H.A. Macleod, Thin Film Optical Filters, Chapter 11: Layer uniformity and thickness monitoring, The Institute of Physics Publishing, 2001.5 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Pg 581, McGraw Hill, New York City, 2008。

TEM -投射电镜 Lecture 11 - 高分辨透射电子显微镜HRTEM and 扫描投射STEM

TEM -投射电镜 Lecture 11 - 高分辨透射电子显微镜HRTEM and 扫描投射STEM

High-resolution EM
general idea
So, the lens effectively ‘scrambles’ the information embedded in the exit wave
The amount of scramble depends on the defocus & Cs
factors
V(x,y)
Model structure
Projected potential
φ(x,y)
Projected potential
Object transmission
function
Objective lens
Multislice calculation
Back focal plane Objective aperture
– In fact, it is because each diffracted wave represents a different solution to the Schrödinger Eqn. for the electron in the crystal
• Resulting phase depends on the strength & spacing of the periodic potential of the lattice along a given direction in the crystal
Transmitted & diffracted waves each have a different phase
Result is an interference pattern - our ‘phase contrast’ or HREM image

哈姆林中心杨广中实验室

哈姆林中心杨广中实验室

Predictive Cardiac Motion Modeling and Correction with PLSR Predictive cardiac motion modeling and correction based on partial least squares regression to extract intrinsic relationships between three-dimensional (3D) cardiac deformation due to respiration and multiple one-dimensional real-time measurable surface intensity traces at chest or abdomen. - see IEEE TMI 23(10), 2004
Myocardial Strain and Stain Rate Analysis Virtual tagging with MR myocardial velocity mapping - IEEE TMI Strain rate analysis with constrained myocardial velocity restoration Review of methods for measuring intrinsic myocardial mechanics - JMRI Atheroma Imaging and Analysis The use of selective volume excitation for high resolution vessel wall imaging (JMRI, 2003;17(5):572-80). 3D morphological modeling of the arterial wall Feature reduction based atheroma classification Volume Selective Coronary Imaging A locally focused MR imaging method for 3-D zonal echo-planar coronary angiography using volume selective RF excitation. Spatially variable resolution was used for delineating coronary arteries and reducing the effect of residual signals caused by the imperfect excitation profile of the RF pulse. The use of variable resolution enabled the derivation of basis functions having variable spatial characteristics pertain to regional object details and a significantly smaller number of phase encoded signal measurements was needed for image reconstruction. Gatehouse PD, Keegan J, Yang GZ, Firmin DN. Magn Reson Med, 2001 Nov;46(5):1031-6. Yang GZ, Burger P, Gatehouse, PD, Firmin DN. Magn Reson Med, 41, 171-178, 1999. Yang GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN. J. Magn Reson Med, 39: 833-842, 1998.

光学光刻中掩模频谱研究

光学光刻中掩模频谱研究

光学光刻中掩模频谱研究电子与通信工程系应用物理学专业2005级一班肖学美指导老师:周远讲师摘要本文从频谱角度分析传统二元掩模和几种相移掩模,通过对各种掩模透过率函数进行频谱计算建立数学模型。

在此基础上利用MATLAB7.0软件设计仿真程序界面,仿真得出各种掩模的频谱。

通过比较分析各种掩模频谱,得出各自特点和优缺点。

结果表明,相对于传统二元掩模,衰减相移掩模0级衍射光减弱,1级衍射光增强;交替相移掩模和无铬掩模0级光干涉相消,为两束光干涉(±1级)。

相移掩模使参与成像的相干光光强更匹配,可显著提高成像对比度,是一种有效的分辨率增强技术。

关键词:光学光刻,相移掩模,掩模频谱,成像对比度1.引言半导体产业已成为事关国民经济,国防建设,人民生活和信息安全的基础性,战略性产业。

在传统二元掩模技术无法满足工业发展要求条件下,作为重要的分辨率增强技术——相移掩模技术得到了很快的发展。

我国对相移掩模技术的研究才刚起步,其光掩模制造业也仅能满足国内低档产品的要求,因此对高分辨率光刻掩模进行前瞻性研究势在必行。

为了进一步研究光学光刻中的掩模频谱及相移掩模对成像对比度的影响,用实验的方法来验证或设计相移掩模显然既费时又昂贵,因而仿真模拟已成为重要的研究手段。

本设计运用MATLAB的图形用户界面建立该仿真模型。

同时在该过程中对线条周期、透过率、线条宽度等条件变化在掩模频谱中的影响也进行了研究。

2.数学及仿真模型的建立掩模图形为一维密集线条的光栅,透过率函数的傅里叶变换就是掩模的频谱分布,在一维条件下,光栅常数愈小谱线间隔愈大,若光栅宽度愈大,谱线愈窄,光栅分辨率愈高,根据瑞利判据可以知道一条谱线的强度极大值与另一条谱线强度的极小值重合时,两条谱线刚好能够分辨。

[16]本文就一维线空条件下对掩模的频谱进行前瞻性的分析。

在模型建立的时候用到两个特殊函数来表达掩模频谱的计算公式,他们分别是sinc函数和梳状函数(comb函数),sinc函数在数学和物理上都有的重要的意义:数学上,sinc函数和rect函数互为傅里叶变换;物理上,单一矩形脉冲()rect t的频- 1 - / 8谱是sinc 函数,单缝的夫琅和费衍射花样是sinc 函数。

磁共振MAGIC成像技术在脑转移瘤中的应用价值

磁共振MAGIC成像技术在脑转移瘤中的应用价值

·35CHINESE JOURNAL OF CT AND MRI, MAY. 2024, Vol.22, No.5 Total No.175【通讯作者】欧阳佳裕,男,技师,主要研究方向:医学影像技术。

E-mail:****************Application Value of Magnetic Resonance36·中国CT和MRI杂志 2024年5月 第22卷 第5期 总第175期1.4 主观评价 由2名具有影像诊断工作经验的放射科医师采用双盲法独立分析图像,存在分歧时协商完成,通过增强MAGIC序列后处理得到的10种对比度图像与常规增强序列扫描图像判断转移瘤数量和位置分布。

采用5级评分法进行后续评阅,评分标准为:图像清晰可明确诊断,解剖细节无伪影为5分;图像比较清晰能准确诊断,解剖细节较少的伪影为4分;图像质量一般,基本符合诊断要求,解剖细节不清,有伪影为3分;图像质量不高,解剖细节不清伪影较多,不能满足诊断需要,只能提供参考意见为2分;图像质量差,伪影严重不能诊断为1分。

1.5 统计学分析 采用SPSS 27.0软件处理数据。

计数资料以百分率(%)表示,符合正态分布的数据,以均数±标准差(χ-±s )表示,比较采用配对样本 t 检验。

以P <0.05为差异有统计学意义。

2 结 果2.1 增强MAGIC序列与常规增强序列图像信噪比SNR的比较 增强MAGIC序列T 1WI、T 2WI、T 1WI-Flair和T 2WI-Flair的信噪比分别为976.56±138.23、577.93±88.64、596.70±113.03、 397.17±79.04。

常规增强序列T 1WI、T 2WI、T 1WI-Flair和T 2WI-Flair的信噪比分别为117.86±39.98、72.63±33.95、115.49±20.64、81.01±13.24。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

ZEISS Xradia 520 Versa LabDCT 实验室基于差分辐射成像技术的文档说明书

ZEISS Xradia 520 Versa LabDCT 实验室基于差分辐射成像技术的文档说明书

LabDCT on ZEISS Xradia 520 VersaUnlocking crystallographic information in your labWith LabDCT ZEISS brings you the first-ever laboratory-based diffraction contrast tomography imaging module. This unique grain imaging analytical technology enables non-destructive mapping of orientation and microstructure in 3D. No longer confined to conventional 2D metallography investigations, direct visualization of 3D crystallographic grain orientation opens up a new dimension in the characterization of metal alloys and polycrystalline materials.Benefits• Combine 3D grain orientation with 3D microstructural features such as defects or precipitates you have observed in tomography: You will see new possibilities for characterizing damage, deformation and growth mechanisms – or even to couple with modeling.• Investigate microstructure evolution with 4D imaging experiments: LabDCT extends metals research to 3D – and on to 4D with routine tool access for longitu- dinal studies such as corrosion. Compared to the synchrotron, being able to expose your samples to environments in the micro- scope across days, weeks or even months is a unique strength of laboratory-based XRM experiments.• Complement your grain imaging with 3D grain morphology: Routinely acquire grain statistics on larger volumes at faster acquisition times. Crystallographic information provided by LabDCT lets you supplement other analyses like EBSD or synchrotron methods.Applications• Metals and alloys (automotive, aerospace, nuclear, biomedical, electrochemical, and additive manufacturing applications)• Grain growth & recrystallization • Abrasives• Energetic materials • S emiconductor• Non-destructive correlation to 2D/3D EBSD or optical methods • Input for computational modelsArmco iron: (left) LabDCT diffraction pattern, (middle) 3D grain reconstruction and visualization from GrainMapper3D, (right) 3D grain map with inverse pole figure (IPF) coloring.Sample courtesy of University of Florida400 µmB e a m s t o pLabDCT on ZEISS Xradia 520 VersaUnlocking crystallographic information in your labLabDCT analysis with GrainMapper3D™ developed by Xnovo Technology• Workflow based analysis guiding the non-expert user and increasing productivity• Completeness maps and interactive histogram based parameter selection• Instantaneous preview of reconstructed grains for parameter selection optimization• Interactive 3D view• Easy export of data into an open format for subsequent analysis (i.e. HDF5)Acquisition Processing Validation ResultLabDCT is a fully integrated module(hardware + software) for the X-raymicroscope ZEISS Xradia 520 Versa.The sample is illuminated through anaperture in front of the X-ray source.Both the sample absorption and diffractioninformation are recorded with a highresolution detection system. A beamstopis added to the set-up to block out thedirect beam and to enhance the contrastof the diffraction signal. 3D crystallographicinformation (e.g. grain maps, shape, ID,orientation and completeness) are recon-structed using GrainMapper3D™ software,by Xnovo Technology. Data is exportablein an open data format suitable foradditional investigation using customanalysis software or simulation tools.********************/labdctSchematic of the LabDCT implementation on ZEISS Xradia 520 Versa X-ray microscope.LabDCT employs Laue-focusing effect in which a crystal grain acts as a cylindrical lens focusing polychromaticand divergent X-ray beam into a line instead of spots in the diffraction pattern onto the detector.Notfortherapeutic,treatmentormedicaldiagnosticevidence.Notallproductsareavailableineverycountry.ContactyourlocalZEISSrepresentativeformoreinformation.EN_44_12_47CZ1-217|Design,scopeofdeliveryandtechnicalprogresssubjecttochangewithoutnotice.|©CarlZeissMicroscopyGmbH。

相空间,光场,与计算光学成像

相空间,光场,与计算光学成像

相空间,光场,与计算光学成像英文回答:Phase space, optical field, and computational optical imaging are all concepts in the field of optics that are used to describe and analyze the behavior of light and its interactions with various systems. Let me explain each of these concepts in more detail.Phase space is a mathematical concept that is used to describe the state of a physical system. In optics, phase space refers to the space in which the position and momentum of a light wave are represented. It is a four-dimensional space, with two dimensions representing the position of the wave and the other two dimensions representing the momentum of the wave. The position and momentum of the wave are related by the uncertainty principle, which states that the more precisely we know the position of the wave, the less precisely we can know its momentum, and vice versa.The optical field refers to the distribution of light intensity and phase in space. It is a fundamental conceptin optics that is used to describe the behavior of light waves. The optical field can be described by a complex-valued function, known as the electric field, which represents the amplitude and phase of the light wave ateach point in space. The optical field can be manipulated and controlled using various optical components, such as lenses, mirrors, and wave plates, to achieve desiredoptical functionalities, such as focusing, imaging, and polarization manipulation.Computational optical imaging is a branch of opticsthat combines optical systems with computational algorithms to enhance and improve the imaging capabilities of optical systems. It involves the use of digital image processing techniques to extract useful information from optical images. For example, in traditional optical imaging systems, the resolution of the image is limited by the diffractionof light. However, by using computational algorithms, it is possible to overcome the diffraction limit and achievesuper-resolution imaging. Another example is the use of computational algorithms to correct for aberrations in optical systems, which can improve the image quality and sharpness.中文回答:相空间、光场和计算光学成像都是光学领域中用来描述和分析光的行为及其与不同系统的相互作用的概念。

化学检测相关中英文对照

化学检测相关中英文对照

TEM: Subject indexAberration 像差chromatic 色差spherical 球差astigmatic像散Absorption coefficient 吸收系数abnormal 反常吸收系数uniform 均匀吸收系数Aperture 光阑objective aperture 物镜光阑selective area aperture 选区光阑condenser lens aperture 聚光镜光阑size 光阑尺寸Astigmatism 像散Anomalous absorption coefficient 反常吸收系数Alignment of electron microscope电子显微镜的对准Antiphase domains反相畴Antiphase domain boundaries 反相畴界Artefacts in specimens 样品中的人为缺陷Atomic scattering amplitude 原子散射振幅Back focal plane 后焦面Beam current density 束流密度Beam direction 电子束方向Bend contours 弯曲条纹Bend center 弯曲中心Bend extinction contours 弯曲消光条纹Bright field 明场Bright field image 明场像Burgers vector determinations柏氏矢量确定Calibration of electron microscope电子显微镜的校准Camera constant 相机常数Camera length 相机长度Cavities 空洞Characteristic images from a perfect crystal完整晶体特征图像thickness fringes 厚度消光条纹bend extinction contours 弯曲消光条纹bend contours 弯曲条纹bend center 弯曲中心Chemical polishing for specimen preparation试样的化学抛光Chromatic abberation色差Coherency of precipitates 沉淀相的共格性Coherency strain contrast 共格应变衬度Column approximation 晶柱近似Condenser lens 聚光镜Constrained strain 约束应变Dark field 暗场Dark-field images 暗场像Defocus 欠焦Deformation of specimen 试样变形Depth of field 景深Depth of focus 焦深Deviation parameter 偏移参量effective value of 有效偏移参量Diffraction contrast 衍射衬度Diffraction function 衍射函数Diffraction mode 衍射模式Diffraction pattern 衍射花样Diffraction theory 衍射理论Direct lattice images直接点阵像Dislocations 位错contrast from 位错衬度density of 位错密度determination of Burgers vector of位错柏氏矢量的确定displacement fields around 围绕位错的位移场nodes 位错结perfect (whole) 完全位错partial 不全位错Displacement fringe contrast from precipitates沉淀相粒子的位移条纹衬度Domain boundaries 畴界Double condenser lens 双聚焦透镜Double diffraction 双衍射Dynamical theory of electron diffraction电子衍射的动力学理论Edwald sphere 厄瓦尔德球Effective value 有效(值)deviation parameter 有效偏移参量extinction distance 有效消光距离Electron beam 电子束transmitted 透射(电子)束diffracted 衍射(电子)束Electron diffraction 电子衍射Electron diffraction patterns 电子衍射花样accuracy of 电子衍射花样的精度calibration of 电子衍射花样的校准effects of crystal shape电子衍射花样的形状效应indexing of 电子衍射花样的标定Kikuchi lines 菊池线花样polycrystalline ring 多晶环状衍射花样single crystal spot 单晶斑点衍射衍射streaks on 电子衍射花样的芒线Electron gun 电子枪Electron microscope 电子显微镜analytical 分析电镜attachments for 电子显微镜的附件high resolution 高分辩电镜magnification of 电子显微镜的放大倍数ray diagrams for 电子显微镜的光路图resolving power of 电子显微镜的分辩力transmission 透射电镜Electron microscopy 电子显微学(术) analytical 分析电子显微学(术) conventional 常规电子显微学high resolution 高分辩电子显微学(术) transmission 透射电子显微学Electron wavelengths 电子波长Electropolishing for specimen preparation电解抛光制备电镜试样Extinction 消光Extinction contours 消光条纹Extinction distance 消光距离Extrinsic插入型的Faults 缺陷Focus distance 焦距Foil thickness 薄膜厚度measurement of 膜厚测量Fringes 条纹displacement 位移条纹magnetic domain wall 磁畴壁条纹moire Moirre条纹precipitates, from 由沉淀相粒子引起的条纹stacking fault 层错条纹thickness 厚度条纹Goniometer stage 测角台Heating stages 加热台High order Laue Zone 高阶劳厄区High resolution electron microscopy 高分辩电镜Identification of precipitates沉淀相鉴别Illumination of specimen 试样照明contamination by 试样照明引起的污染damage by 试样照明引起的破坏Image 图像bright field 明场像dark field 暗场像intermediate 中间像rotation of 像转Image contrast 图像衬度origin of 图像衬度的来源antiphase domains, from 反相畴图像衬度antiphase domain boundaries, from反相畴界图像衬度cavities, from 空洞图像衬度dislocations, from, 位错的衬度dipoles 位错偶极子的衬度double images 位错双线衬度edges 刃型位错衬度general dislocation 一般位错的衬度inclined 倾斜位错的衬度invisibility criteria for 位错不可见位错loops 位错圈的衬度oscillation effects at 位错衬度的振荡效应partial 不全位错的衬度screws 螺型位错的衬度superdislocations 超位错的衬度surface relaxation effects位错衬度的表面松弛效应visibility rules for 位错不可见规律width of images 位错图像宽度partial dislocations 不全位错的衬度Frank Frank位错的衬度Schockley Schockley位错的衬度precipitates,from, 沉淀相粒子的衬度coherency strain field images沉淀相粒子的共格应变场衬度dislocation ring contrast沉淀相粒子的位错圈衬度displacement fringe contrast沉淀相粒子的位移条纹衬度matrix contrast 沉淀相粒子的基体衬度moire fringes 沉淀相粒子的Morrie条纹衬度orientation contrast 沉淀相粒子的取向衬度structure factor contrast沉淀相粒子的结构因子衬度visibility of 沉淀相粒子的可见性stacking faults, from, 层错引起的衬度determination of nature of 层错性质的确定twin boundaries, from 孪晶界的衬度Image force 镜像力Image formation 图像形成(成像) Ab by’s theory of Abby成像理论Image function 像函数Image mode 图像模式Image plane 像平面Image rotation 像转Inclusions 夹杂Indexing of electron patterns 电子衍射花样标定trier and error 尝试校核法known camera constant 已知相机长度standard diffraction patterns 标准衍射谱法computer simulation 计算机标定法ambiguous 不唯一性Inelastic scattering 非弹性散射Interface contrast 界面衬度Intermediate image 中间像Intermediate image plane 中间像平面Intrinsic 抽出型的Ion bombardment technique for specimen preparation 离子束轰击制样法Kikuchi pattern 菊池线花样Kikuchi lines 菊池线Kikuchi maps 菊池线图Kinematical theory of diffraction contrast运动学衍衬理论Lattice image 点阵像two beam 双束点阵(平面)像many beam 多束点阵像structure image 结构像Lattice plane spacing 点阵面间距Laue circle 劳厄园Laue zones 劳厄区high order 高阶劳厄区Line defect 线缺陷Line of no contrast 无衬度线Magnetic lens 电磁透镜aberrations of 电磁透镜的像差focal length of 电磁透镜的焦距pole-piece of 电磁透镜的极靴Many-beam effects 多束效应Measurements of; dislocation density,位错密度测量elastic strain fields of precipitates沉淀相粒子弹性应变场测量foil thickness 膜厚测量precipitate size, 沉淀相粒子尺寸测量stacking fault energy 层错能测量nodes, by 用位错结测量层错能ribbon widths, by 用层错带宽度测量层错能Microanalysis 微区分析Moire patterns Moire花样from precipitates 沉淀相粒子Moire花样mixed 混合Moire条纹parallel 平行Moire条纹rotation 旋转Moire条纹spacing of Moire条纹间距Nodes, extended threefold, 三维扩展位错结stacking fault energy from三维扩展位错结测量层错能Objective wave function 物波函数Objective lens物镜Operating vector 操作矢量Operation reflection 操作反射Orientation determination 取向确定Orientation relationship 取向关系Parallel moire patterns 平行Moire条纹Partial dislocations, contrast from平行位错的衬度determination of Burgers vectors of位错柏氏矢量的确定Frank Frank位错柏氏矢量确定Shockley Shockley位错柏氏矢量确定Particles 粒子Planar defect 面缺陷Point defects in specimen 试样中的点缺陷Pole-piece of magnetic lens 电磁透镜极靴Precipitates 沉淀相粒子contrast from 沉淀相粒子衬度size of 沉淀相粒子尺寸visibility of 沉淀相粒子可见性Precipitation contrast 沉淀相衬度Projective lens投影镜Reciprocal lattice 倒易点阵construction 倒易点阵的构筑definition of 倒易点阵的定义properties of 倒易点阵的性质Replica 复型Resolution 分辩率Ring diffraction patterns 环状衍射花样Rotation moirre patterns 旋转Moirre花样Satellites on electron diffraction patterns衍射花样卫星斑点Scattering amplitude 散射振幅Scattering of electrons 电子散射Second phase particles 第二相粒子Selected area diffraction 选区电子衍射accuracy of 选区电子衍射的精度Shape effect 形状效应Single crystal diffraction patterns单晶电子衍射花样Specimen 试样contamination of 试样污染cooling of 试样冷却deformation of 试样变形heating of 试样加热microanalysis of 试样微区分析orientation of 试样的取向preparation of 试样制备chemical machining 试样加工chemical polishing, by 用化学抛光制备试样ion bombardment, by 离子轰击制备试样electropolishing 电解抛光制备试样jet machining, by, 电解双喷制样法Specimen holder 试样台top enrty 顶插式试样台side entry 侧插式试样台Spherical aberration 球差Spinodal decomposition 拐点分解Stacking faults 层错contrast of 层错的衬度determination of nature of 确定层错的性质energy of 层错能types of 层错类型Sterogram 极图Stereomicroseopy 体视显微术Stigmator 消像散器Strain fields 应变场Streaks on electron diffraction patterns衍射花样的星芒线Structure factor 结构因子contrast from, 结构因子衬度Subsidiary fringe 副条纹Superlattice 超点阵reflections 超点阵反射Theory of diffraction contrast 衍射衬度理论kinematic 运动学衍衬理论dynamic 动力学衍衬理论Two beam approximation 双束近似Uniform absorption coefficient 反常吸收系数Viewing screen 荧光屏Weak beam technique 弱束技术Weak beam dark field image 弱束暗场象Zone 晶带Zone law晶带定理Zone axis 晶带轴Zone axis patterns 晶带轴花样HREMAiry disc Airy园(盘) Amplitude object 振幅物Amplitude contrast 振幅衬度Astigmatism 像散Astigmator 消像散器Axial 轴向照明Axial alignment 合轴调整Chromatic aberration coefficient色差系数Chromatic aberration 色差Chromatic aberration limited resolution色差限制的分辩率Cluster 偏聚区Coherence 相干性Defocus 欠焦Diffraction contrast 衍射衬度Diffraction limit 衍射极限Diffraction limited resolution 衍射限制的分辩率Diffused circle 弥散园Exact focus 准确聚焦Experimental condition 实验条件Exsolution 脱溶Focus 聚焦, 焦距, 焦点Focal length 焦距Frensnel fringes 菲捏尔条纹Grain boundaries晶界small angle 小角度晶界high angle 大角度晶界symmetrical 对称晶界asymmetrical 不对称晶界tilt 倾斜晶界Guinier-Preston zones GP区HREM images高分辩电镜图像interpretation 高分辩电镜图像的解释information available 高分辩电镜图像的信息image analysis of 图像分析computer simulation of 计算机模拟Illumination 照明axial 轴向照明tilted 倾斜照明Illumination semi-angle 照明半角Image analysis 图像分析Imaging mode 图像模式lattice plane 点阵平面像many beam 多束点阵像structure 结构像Image restoration 图像修复Incident wave 入射波Interaction constant 交互作用常数Interplanar spacing 面间距Internal standards 内标Line to line resolution 线分辩率Multi-slice approximation 多片近似Optical diffraction 光学衍射Optimum defocus 最佳欠焦(量) Optimum resolution 最佳分辩率Optimum illumination semi-angle 最佳照明半角Optimum aperture size 最佳光阑尺寸Order/disorder transition 有序/无序转变Orientation 取向Bragg Bragg取向Laue Laue取向Over focus 过焦Phase change 相位变化induced by defocus 欠焦引起的相位变化by spherical aberration 球差引起的相位变化Phase contrast 相位衬度Phase contrast transfer function 相位衬度传递函数Phase grating 相位光栅Phase grating approximation 相位光栅近似Phase object 相位物Phase object approximation 相位物近似Phase shift 相位变化Phase transition 相转变Phase transformation 相变Point source 点源Point to point 点分辩率Projected potential 投影势Propagation function 传递函数Polymorphism 多型性(转变) Resolution 分辩率line to line 线分辩率point to point 点分辩率Resolution limit 分辩率极限Scattered wave 散射波Spherical aberration 球差Spherical aberration coefficient 球差系数(C S) Spherical aberration limited resolution球差限制的分辩率Weak phase approximation 弱相位近似Tilted illumination 倾斜照明Through focus series 聚焦系列Two beam lattice plane imaging双束点阵平面像Two beam lattice fringe imaging双束点阵条纹像AEMAamorphous carbon 非晶碳EELS absolute quantification 用于EELS绝对定量analytical electron microscope 分析电镜alignment 对中calibration for EELS or EDS EELS或EDS定标analytical electron microscopy 分析电子显微学annular dark-field imaging 环状暗场像annular detector 环状探头apertures 光阑2nd condenser lens (C2) 第二聚光镜光阑effect on microanalysis 对微区分析的影响effect on microdiffraction 对微束衍射的影响effect on probe convergence 对探针会聚性的影响objective 物镜光阑selected area (SA) 选区光阑ultra-thick 超厚光阑Auger electrons俄歇electron spectroscopy 俄歇谱Bbackground spectrum 本底(背底)谱in EELS EELS背底谱subtraction in EDS 扣除EDS谱背底subtraction in EELS 扣除EDS谱背底X-rays 扣除X-射线背底(请参见bremsstrahlung 和continuum)backscattered electrons 背散射电子detector 背散射电子探头images 背散射电子像beam 电子束beam damage 电子束损伤beam-sensitive specimens 电子束敏感试样beam-specimen interactions 电子束-试样交互作用beam spreading 电子束扩展beryllium window 铍窗bremsstrahlung X-rays 背底辐射X-射线bright field detector 明场探头bright field image in STEM STEM 明场像brightness of electron source 电子源亮度Ccalibration 校准, 定标cathode ray tube 阴极射线管cathodoluminescence 阴极荧光(辐射)Cliff-Lorimer equation Cliff-Lorimer 公式condenser lens —first (C1) 第一聚光镜condenser lens —second (C2) 第二聚光镜condenser objective lens 聚光镜物镜contamination 污染use to determine thickness 用于厚度测定continuum X-rays 连续(背底)X-射线convergent beam diffraction 会聚束衍射use to determine thickness 用于厚度测定convergent beam diffraction patterns (CBDP)会聚束衍射花样convergent electron probe 会聚电子探针crystal point group (晶体)点群Ddark field detector 暗场探头dark field image in STEM STEM暗场像deconvolution 解谱, EDS或EELS of EDS spectrum, of EELS spectrumdiad symmetry 二次对称diffraction groups 衍射群diffraction maxima 衍射极大值EEDS (Energy Dispersive Spectroscopy) 能谱(能量色散谱)EDS defector能谱探头EELS spectrometer 电子能量损失谱仪EELS 电子能量损失谱 (electron energy loss spectrum) zero loss peak 零损失峰 plasmon peak 等离子振荡峰 energy loss peaks 能量损失峰 ionization edge 电离损失峰(边) background subtraction 背底扣除elastic scatter 弹性散射electron detectors 电子探头 collection angle 收集角electron energy loss spectrometer 电子能量损失谱仪electron energy loss spectrometry 电子能量损失谱 energy loss processes 电子能量损失过程 imaging/mapping 电子能量损失成象 ionization losses 电离损失 limitations 极限 plasmon losses 等离子振荡损失 spatial resolution 空间分辨率electron-hole pairs 电子-空位对electron probe 电子探针 brightness 亮度 convergence angle 会聚角 current 电流 diameter 直径energy dispersive spectrometer 能谱仪 (See X-ray energy dispersive 58spectrometer)energy filtered images 能量过滤图像extended absorption fine structure 广延吸收精细结构extraction replica 萃取复型 Ffirst order laue zone (FOLZ) 一阶劳厄区fine structure in ionization edge 电离峰(边)精细结构 post-edge (EXAFS) 峰后(EXAFS) pre-edge 峰前forbidden reflections禁止反射full width half maximum 半高宽Gg vector g 矢量Gaussian 高斯Hhard X-rays 硬X-射线higher order laue zone (HOLZ)高阶劳厄区indexing 标定lines高阶劳厄区线 reflections 高阶劳厄区反射 rings高阶劳厄区环HOLZ lines 高阶劳厄区线Iillumination system 照明系统imaging in STEM STEM 成像image enhancement 图像增强Indexing 标定 HOLZ lines 高阶劳厄区线 HOLZ patterns 高阶劳厄区花样 ZOLZ patterns 零阶劳厄区花样inelastic scatter 非弹性散射(See also electron energy loss) effect on EDS 对EDS 的影响 effect on EELS 对EELS 的影响ionization 电离ionization edges 电离损失峰(边) post-edge fine structure 峰后精细结构 pre-edge fine structure 峰前精细结构KKossel patterns (conditions) Kossel 花样Kossel-Möllenstedt fringes use to determine thickness K-M 条纹9用于确定试样厚度)Kossel-Möllenstedt (K-M) patterns K-M花样Llanthanum hexaboride gun 六硼化镧电子枪lattice parameter determination 点阵常数确定lattice strain 点阵应变effect on HOLZ lines 对高阶劳厄区线的影响lenses 透镜auxiliary 辅助透镜condenser 聚光镜condenser-objective 聚光镜-物镜intermediate 中间镜objective 物镜projector投影镜light element analysis by EDS EDS轻元素分析by EELS EELS轻元素分析limitations to X-ray analysis X-射线分析极限low loss electrons 低能量损失电子Mmicrodiffraction 微束衍射microprobe mode 微区探针模式minimum detectable mass 最小可探测质量minimum mass fraction 最小质量分数Nobjective aperture 物镜光阑objective lens 物镜Ppeak to background ratio 峰/背比in EDS spectrum EDS谱in EELS spectrum EELS谱(See also signal to noise ratio) 参见信/噪比phonon energy loss 声子能量损失plasmon energy losses 等离子振荡能量损失probe convergence angle 探针会聚角Qqualitative analysis 定性分析using EDS EDS定性分析using EE LS EE LS定性分析quantitative analysis 定量分析using E DS EDS定量分析using EE LS EE LS定量分析Rradial distribution function 径向分布函数radiation damage 辐射损伤resolution 分辨率of EDS spectrometer EDS谱仪分辨率ot EELS spectrometer EELS谱仪分辨率of STEM image STEM图像分辨率Riecke microdiffraction Riecke法微束衍射Sscanning electron microscope 扫描电镜scanning images 扫描图像scanning transmission electron microscope扫描透射电镜screw axis 螺旋轴second order laue zone (SOLZ) 二阶劳厄区secondary electrons 二次电子detectorsensitivity limits灵敏度极限in EDS EDSin EE LS EE LSspace group 空间群spurious effects 杂散效应signal processing 信号处理signal to noise ratio(See also peak to background ratio) 信/噪比spatial resolution 空间分辨率in EDS EDS in EE LS EE LSin microdiffraction 微束衍射in STEM image STEM图像spurious effects 杂散效应in EDS spectrum EDS谱杂散效应stationary diffraction pattern 稳定衍射花样strain measurements 应变测量symmetry (crystal) (晶体)对称changes 对称变化determination 对称确定systematic absences 系统消光Tterminology of CBDPs 会聚束衍射术语thickness determination 厚度确定transmitted electrons 透射电子triad symmetry 三重(次)对称tungsten hairpin filament 钨灯丝Uultra-thin window 超薄窗ultra-thick condenser apertures 超厚聚光镜光阑Vvalence electron interactions 价电子交互作用wwavelength dispersive spectrometer (WDS)波谱仪weak beam imaging 弱束暗场成象x X-ray(s) X-射线Absorption 吸收fluorescence generation 荧光的产生images/maps 像/成份分布ionization cross section 电离截面microanalysis 微区分析X-ray energy dispersive spectrometerX-射线能谱仪Calibration 校准, 定标collection angle 接收角dead layer 死层dead time 死时间efficiency 效率X-ray peak X-射线峰peak fitting in EDS 能谱峰位拟合X-ray spectrum X-射线谱background subtraction 背底扣除deconvolution 解谱digital filtering 数字过滤Yyttrium-aluminum garnet 钇铝石榴石yttrium-aluminum perovskite 钇铝钙钛矿zZ-contrast 原子序数衬度ZAF correction ZAF校正zero loss peak 零损失峰zero order laue zone (ZOLZ) 零阶劳厄区indexing 标定pattern symmetry 对称性zone axis 晶带轴patterns 晶带轴花样symmetry 对称性。

基于左心动脉系统的血流动力学参数估计

基于左心动脉系统的血流动力学参数估计

基于左心动脉系统的血流动力学参数估计刘佳1,徐礼胜1,2,何殿宁1,王昊1基金项目:辽宁省自然科学基金项目(201102067);教育部博士点基金项目(20110042120037);中央高校基本科研业务费探索导向重点项目(N110219001)作者简介:刘佳(1990-),女,研究生,研究方向:生物医学电子学通信联系人:徐礼胜(1975-),男,教授,博士生导师,研究方向:生物医学智能传感与信息获取、基于生物医学信号与影像的非线性分析和建模、移动健康技术、生物医学电子学等. E-mail: xuls@(1. 东北大学中荷生物医学与信息工程学院,沈阳 110819;2. 教育部医学计算重点实验室,沈阳 110819)5摘要:心血管疾病是当今世界死亡率最高的一类疾病,所以从脉搏波中提取人体的生理与病理信息作为临床诊断和治疗的依据,历来都受到了中外医学界的重视。

本文提出了基于双弹性腔模型的心动整周期脉搏波的血流动力学参数估计方法,运用非线性最小二乘Levenberg-Marqurdt 算法对实测脉搏波数据进行参数估计得到动脉系统的模型参数,即人体10的血流动力学参数。

本文利用MATLAB/Simulink 工具结合GUI 界面建立的左心与动脉系统耦合的动力学电路模型得到的仿真结果与人体实测脉搏波数据进行对比分析,验证了模型参数估计的有效性。

最终,用本文方法估计的参数结果符合生理参数范围,且效果优于传统的舒张期估计方法,得到了左心室容积和压力,主动脉压和血流,桡动脉压力的时间曲线等仿真结果,其中主要的特征数据和波形曲线与实际的生理情况相符。

15关键词:参数估计;双弹性腔;左心-动脉系统;脉搏波;血流动力学 中图分类号:请查阅《中国图书馆分类法》The Hemodynamic Parameters Estimation Based on LeftHeart Arterial Coupling System20LIU Jia 1, XU Lisheng 1,2, HE Dianning 1, WANG Hao 1(1. Sino-Dutch Biomedical and Information Engineering School, NortheasternUniversity,Shenyang 110819;2. Key Laboratory of Medical Image Computing, Ministry of Education, Shenyang 110819) Abstract: Nowadays, cardiovascular disease is a kind of diseases with the highest mortality rate, 25so the body's physiological and pathological information extracted from the pulse wave as the basis of the clinical diagnosis and treatment, and has always been the attention of Chinese and foreign medical profession. In this paper, the hemodynamic parameters estimation method of the entire cycle of the pulse wave based on double-Windkessel model is proposed, using Levenberg-Marqurdt algorithm to estimate parameters to get the model parameters of arterial 30system based on measured pulse wave, which are the body's hemodynamic parameters. Dynamics circuit model of left heart arterial coupling system is built by MATLAB / Simulink tools combining with the GUI interface. The validity of the estimated model parameters is verified by analyzing and comparing the simulation result with the measured pulse wave data. Ultimately, the result of the estimated parameters are in agreement with the range of physiological parameters, 35and the effect is superior to the traditional diastolic phase estimation method, and simulation results obtained in the left ventricular volume and pressure, aortic pressure and blood flow, the radial arterial pressure time curve, the characteristics of those and waveform curve is consistent with the actual physiological situation.Key words: parameter estimation ;double-Windkessel ;the left heart and arterial system ;pulse 40wave ;hemodynamics0引言心血管疾病的发病率和死亡率都高居当前疾病的首位[1]。

肖体乔_戚俊成博士学位论文2022

肖体乔_戚俊成博士学位论文2022
Shanghai Institute of Applied Physics Chinese Academy of Sciences
Aprial 2014
III
IV
V
同步辐射 X 射线光栅成像及其在相干性测量中的应用研究
戚俊成
导师:肖体乔 研究员
摘要
自 X 射线光栅成像出现以来,迅速成为了 X 射线成像领域的研究热点。由 于通过一套原始数据就可以获得样品的吸收、相位和暗场信息,既保持了传统 X 射线吸收成像的优点,又结合了暗场成像和相位衬度成像的优势,这三者各自可 以独立地展示样品的信息,同时三者之间又互为补充。具有重要的研究价值和广 泛的应用前景。
Qi Juncheng
A Dissertation Submitted to The University of Chinese Academy of Sciences
In partial fulfillment of the requirement For the degree of
Doctor of engineering
本研究工作基于上海光源 X 射线成像及其生物医学应用光束线站(BL13W) 的实验平台,建立了上海光源 X 射线光栅成像系统并对其进行了优化,同时基 于 X 射线光栅干涉仪对上海光源光束相干特性进行了研究,并取得了以下几方 面的成果: 1. 开展了基于上海光源 X 射线成像及其生物医学应用光束线的光栅成像方面
Imaging and Biomedical Application beamline of (SSRF). Firstly, establish the grating based X-ray imaging setup, and code the data process software; And then do same research about quantitative study and medical application. All the results shown that the feasibility of the system and can be open for user. 2. Optimized the Grating based X-ray imaging system based EST algorithm. By the means of translation of the coordinates, transform the rotation variable differential phase data to rotation invariable data, which can apply EST algorithm to reconstruction. The simulation and the experimental result testified the feasibility of the proposed method, and the method can

流体力学影像技术分析心脏血流状态

流体力学影像技术分析心脏血流状态

流体力学影像技术分析心脏血流状态陈伟冬;陈明【摘要】流体力学影像技术用于研究血液在心脏与血管中的运动规律,主要包括计算机模拟、粒子图像测速、核磁共振成像和血流向量成像等.血流向量成像较其他技术具有安全无创、操作简单、耗时少等优势,尤其在定量分析心腔内流场与涡流大小方面有一定优势.【期刊名称】《国际心血管病杂志》【年(卷),期】2014(041)001【总页数】3页(P42-44)【关键词】超声心动描记术;心脏血流;血流向量成像技术;流体力学【作者】陈伟冬;陈明【作者单位】200120上海,同济大学附属东方医院心脏医学部;200120上海,同济大学附属东方医院心脏医学部【正文语种】中文流体力学是研究流体的机械运动规律及其应用的科学,其在生物体的应用主要用于研究血液在心脏与血管中的运动规律。

目前研究心血管流体力学的主要方法有计算机模拟(computational fluid dynamics,CFD)、粒子图像测速(particle image velocimetry,PIV)、核磁共振成像(magnetic resonance imaging,MRI)、血流向量成像(vector flow mapping,VFM)等。

VFM具有无创伤性、安全性、操作简单、耗时少等特点,在流体结构显像上具有突出优势。

1 CFD技术CFD是应用数学方法解决和分析流体问题的流体力学分支。

该技术通过体外模拟不同的心血管模型研究循环系统中的流体动力学。

Watanabe等[1]应用CFD模拟了心室充盈时的血流传播速率。

CFD实验证实了涡流是正常人理想状态下左心室的流体力学特点,但是尚未应用该技术研究病理状态下心脏的涡流现象。

2 PIV技术研究人员采用PIV观察和评价慢性心力衰竭(chronic heart failure,CHF)患者心腔内血液流场的特征。

PIV是一种瞬态、多点、无接触式的流体力学测速方法,可以在瞬时状态下记录空间上速度情况,并提供流场分布结构和流动特点。

基于单像素成像的遥感图像分辨率增强模型

基于单像素成像的遥感图像分辨率增强模型

航天返回与遥感第44卷第6期130 SPACECRAFT RECOVERY & REMOTE SENSING2023年12月基于单像素成像的遥感图像分辨率增强模型陈瑞林章博段熙锴孙鸣捷*(北京航空航天大学仪器科学与光电工程学院,北京100191)摘要目前对地遥感的最主要途径之一便是通过遥感相机获得目标物信息,然而遥感相机的分辨率直接影响成像质量。

结合遥感相机的推扫式成像技术,文章提出了一种基于单像素成像的超分辨增强技术模型,该模型能够简化重建过程,其设计目标是基于单像素超分辨的技术手段将航天遥感相机的图像分辨率增强4倍。

为了验证该设计思想及其重建效果,文章设置了超分辨增强仿真试验,最终仿真试验结果表明,基于单像素的超分辨模型可以将图像的信噪比提高1.1倍,且重建的图像具有明显的抑制噪声的效果,起到了良好的降噪功能,相较于其他传统图像分辨率增强方法(如双三次内插、超深超分辨神经网络)具有更高的优越性。

该方法可为地理遥感探测、土地资源探查与管理、气象观测与预测、目标毁伤情况实时评估等诸多领域的图像处理和应用提供有力支持。

关键词单像素超分辨分辨率增强推扫式成像降噪效果遥感应用中图分类号: TP751.2文献标志码: A 文章编号: 1009-8518(2023)06-0130-10 DOI: 10.3969/j.issn.1009-8518.2023.06.012Remote Sensing Image Resolution Enhancement Technology Based onSingle-Pixel ImagingCHEN Ruilin ZHANG Bo DUAN Xikai SUN Mingjie*(School of Instrument Science and Optoelectronics Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191, China)Abstract At present, one of the most important ways of earth remote sensing is to obtain target information through remote sensing cameras, but the resolution of remote sensing cameras directly affects the imaging quality. Combined with the pushbroom imaging technology of remote sensing camera, this paper proposes a super-resolution enhancement technology model based on single-pixel imaging, which can simplify the reconstruction process, and its design goal is to enhance the image resolution of aerospace remote sensing camera by 4 times based on single-pixel super-resolution technology. In order to verify the design idea and its reconstruction effect, the super-resolution enhancement simulation experiment is set up, and the final simulation results show that the single-pixel super-resolution model can improve the signal-to-noise ratio of the image by 1.1 times, and the reconstructed image has the obvious effect of suppressing noise, which plays a good noise reduction function, and has higher superiority than other收稿日期:2023-06-30基金项目:国家自然科学基金委项目(U21B2034)引用格式:陈瑞林, 章博, 段熙锴, 等. 基于单像素成像的遥感图像分辨率增强模型[J]. 航天返回与遥感, 2023, 44(6): 130-139.CHEN Ruilin, ZHANG Bo, DUAN Xikai, et al. Remote Sensing Image Resolution Enhancement Technology Based on Single-Pixel Imaging[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(6): 130-139. (in Chinese)第6期陈瑞林等: 基于单像素成像的遥感图像分辨率增强模型 131traditional image resolution enhancement methods (such as bicubic interpolation and ultra-deep super-resolution neural network). This method can provide strong support for image processing and application in many fields, such as geographic remote sensing detection, land resources exploration and management, meteorological observation and prediction, and real-time assessment of target damage.Keywords single-pixel super-resolution; resolution enhancement; push-broom imaging; noise reduction effect; remote sensing application0 引言对地遥感成像的主要途径之一就是航天遥感相机,由于其具有覆盖范围广、成像速度快、风险低等优势,在国土资源管理、气象预报、地理测绘等领域发挥着举足轻重的作用。

三频相位展开算法和建立的相位-高度映射关系

三频相位展开算法和建立的相位-高度映射关系

三频相位展开算法和建立的相位-高度映射关系1.三频相位展开算法是一种用于处理多频率相位数据的算法。

The three-frequency phase unwrapping algorithm is a method used to process multi-frequency phase data.2.它可以将多个频率的相位数据展开成连续的相位信息。

It can unwrap the phase data of multiple frequencies into continuous phase information.3.相位展开算法可以用于雷达成像、光学相位测量等领域。

The phase unwrapping algorithm can be applied in radar imaging, optical phase measurement, and other fields.4.该算法通过对三个不同频率的相位数据进行组合来实现相位展开。

The algorithm achieves phase unwrapping by combiningphase data from three different frequencies.5.其原理是利用三个频率之间的相位差异来消除相位不连续。

The principle is to use the phase differences betweenthree frequencies to eliminate phase discontinuities.6.在相位-高度映射关系中,相位对应于信号传播的距离或高度。

In the phase-height mapping relationship, the phase corresponds to the distance or height of signal propagation.7.高度测量技术常常利用相位-高度映射来实现对目标高度的测量。

相场模拟的基本思想和流程

相场模拟的基本思想和流程

相场模拟的基本思想和流程The basic idea behind phase-field simulation is to model the evolution of microstructural features in materials by considering them as continuous fields that evolve over time. 相场模拟的基本思想是通过将材料的微观结构特征视为随时间演化的连续场来建模。

In this type of simulation, the evolution of these fields is governed by a set of partial differential equations that describe the kinetics of phase transformations. 在这种类型的模拟中,这些场的演变受到一组描述相变动力学的偏微分方程的控制。

By solving these equations numerically, researchers can study the complex interactions between different phases and understand how microstructural features develop over time. 通过数值求解这些方程,研究人员可以研究不同相之间复杂的相互作用,并了解微观结构特征随时间发展的过程。

One of the key advantages of phase-field simulation is its ability to capture the dynamics of microstructural evolution without the need for explicit interfaces. 相场模拟的一个关键优势是它能够捕捉微观结构演化的动态过程,而无需明确的界面。

基于APD面阵探测器的非扫描激光主动成像雷达

基于APD面阵探测器的非扫描激光主动成像雷达

基于APD面阵探测器的非扫描激光主动成像雷达陈德章;张华;冷杰;高建波;路英宾;陶刚;郭嘉伟;李萧【摘要】为了获得目标区域的高精度3-D距离图像,采用自研带读出电路的雪崩光电二极管(APD)面阵探测器组件,研制了一台非扫描激光主动成像雷达.雷达采用波长1.064μm脉冲激光泛光照射目标区域,APD面阵探测器组件接收目标漫反射激光回波信号,经信息处理获得目标区域3-D距离图像,对典型目标开展了3-D成像实验研究.结果表明,所研制的非扫描激光主动成像雷达可获得较好的目标区域3-D 距离图像,成像距离达1.2km,距离分辨率为0.45m,成像帧频为20 Hz.基于APD面阵探测器组件的非扫描激光主动成像雷达技术取得突破.%In order to obtain high-precision 3-D range images of target regions , a non-scanning active imaging lidar was developed by using avalanche photodiode ( APD) array detector assembly with readout circuit developed by ourselves.Pulse laser at wavelength of 1.064μm was used to irradiate target areas and an APD array detector module was used to receive target diffuse reflection laser echo signal.After information processing , the target area 3-D range images were obtained.The experiment study was carried out on typical targets 3-D imaging.The results show that, the developed non-scanning active imaging lidar can obtain good target area 3-D range images with imaging distance of 1.2km, range resolution of 0.45m and imaging frame rate of 20Hz. The technology of non-scanning active imaging lidar based on APD array detector has made a breakthrough.【期刊名称】《激光技术》【年(卷),期】2017(041)006【总页数】4页(P775-778)【关键词】成像系统;非扫描激光成像雷达;雪崩光电二极管面阵探测器;3维距离图像【作者】陈德章;张华;冷杰;高建波;路英宾;陶刚;郭嘉伟;李萧【作者单位】西南技术物理研究所,成都610041;西南技术物理研究所,成都610041;西南技术物理研究所,成都610041;西南技术物理研究所,成都610041;西南技术物理研究所,成都610041;西南技术物理研究所,成都610041;西南技术物理研究所,成都610041;西南技术物理研究所,成都610041【正文语种】中文【中图分类】TN958.98由于激光主动成像雷达可获得目标的距离图像,具有极强的目标分类识别能力,甚至可识别被部分遮挡或伪装目标,近年来该技术获得了长足的发展。

光学手术导航系统用于颅内和ENT手术ISO13485说明书

光学手术导航系统用于颅内和ENT手术ISO13485说明书

1. Surgical planning optimization
The Excelim-04 surgical navigation can present 2D tomographic patient image and 3D visualization of anatomical structure simultaneously. With navigation probe, operators can conveniently select any two points in the 2D tomographic pictures ( sagittal/coronal/axial) and measure the distance between them.
To m o g r a p h i c i m a g e s i n D I C O M a n d c a p t u r e d w i t h CT/C-arm/MRI/fMRI all are applicable in Excelim-04 surgical navigation system.
The intelligent software will help calibrate and compensate for unexpected anatomical-structure change and brain shift induced by removal of intracranial lesion area.
Surgical Application
Excelim-04 optical surgical navigation system can be used for all neurological and ENT surgeries,especially
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Phase-contrast Imaging Simulation Based on a Micro-CT SystemGUI Jian-bao,ZOU Jing,RONG Jun-yan,HU Zhan-li,ZHANG Qi-yang,ZHENG Hai-rong,XIA DanPaul uterbur Research Center for Biomedical Imaging,Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen518055,ChinaAbstract.Propagation-based phase-contrast imaging was simulated based onparaxial Fresnel-Kirchoff diffraction integral and spherical wave illumination.Under adeveloped micro-CT system parameters,the effects of focal-spot size and imaginggeometry on phase-contrast imaging have been investigated using a2-mm-thicknesspolystyrene edge phantom.An equivalent mono-energy was used to substitute thepolychromatic spectrum of the micro-focus X-ray source.To consider effects offocal-spot size and detector resolution,the obtained phase-contrast image with an idealpoint source was convolved with source intensity distribution and point spread functionof detector.Simulations show reasonable influences of the two parameters which are ingood agreement with experimental results.Key words:micro-CT;phase-contrast imaging;X-ray;micro-focus source;simulationINTRODUCTIONSince1996,Wilkins[1]firstly implemented phase-contrast imaging(PCI)using polychromatic micro-focus X-ray sources,this technique of propagation-based X-ray phasecontrast imaging(PB-PCI) becomes a hot spot of researches.As we all known,many parameters(focal-spot size,imaging geometry, etc.)can influence the performance.We can recognize the influences of different parameters by experiments,but often,experiments need much time and cost;fortunately,simulations supply a helpful tool as the computer technique progresses.Simulation has become a convenient and important tool to develop and optimize a new imaging system.We can also have a better understanding on the physical mechanism of PCI technique by simulation.Presently,for PB-PCI technique,there are mainly three theory models.A classical and reliable way to model phase-contrast image formation mechanism was provided by Fresnel-Kirchoff diffraction integrals[2-3],which allows a precise prediction of the pattern that would be generated by a monochromaticCLC number:R318.6Document code:A Article ID:1004-0552(2016)02-0087-06Grant sponser:National Natural Science Foundation of China;grant number:61002041,61102161;grant sponser:National973Basic Research Program of China;grant number:2010CB732600;grant sponser:2010-Guangdong Province Innovational Research Team Program and Programs of Shenzhen;grant number:JC201005270313A,JC201005280493A,JC201005280581A,ZYA201006300034ACorresponding author:GUI Jian-bao.E-mail:jb.gui@Received15June2016;revised12September2016point source and recorded with a detector with infinite spatial resolution.Another alternative,simplified approach is provided by the ray tracing technique,in which each X-ray is followed along its path through the sample,and the deviation from its original propagation direction is calculated via the gradient of the projected phase shift introduced by the sample[4].A third approach was developed by Wu and Liu[5],in which the Wigner distribution formalism is used to take the partial coherence into account.In the following,we will focus the effects of two important system parameters(focal-spot size and imaging geometry)on PB-PCI by simulation,which was based on paraxial Fresnel-Kirchoff diffraction integral and monochrome spherical wave illumination.In order to evaluate the simulation validity,the same experiments have been performed using our developed micro-CT.MATERIALS AND METHODSTheoriesIn case of monochromatic radiation of energy E,the complex refractive index n at the position r is as Equation(1):n(E,r)=1-δ(E,r)+iβ(E,r)(1) whereδis the refractive index decrement andβis the absorption index,which is related to the linear absorption coefficientμas Equation(2):μ(E,r)=2kβ(E,r)(2) where k is wave number.Values ofδandμused in this study are obtained from online NIST data.The transmission function t(x,y)represents the phase shift and the attenuation effect due to the sample,t(x,y)is usually written as Equation(3),(4),and(5)[2,6-7]:t(x,y)=e i准(x,y)-μ(x,y)/2=A(x,y)e i准(x,y)(3)准(x,y)=-2πλ乙δ(x,y,z)dz(4)μ(x,y)=4πλ乙β(x,y,z)dz(5) in order to be able to model an object via Equation(3),(4)and(5),the object is supposed to be"thin"for X-rays so that the projection approximation holds true.If d is the object thickness,the object can be deemed thin[8]as long as the size of the finest feature to image is larger than(λd)0.5.PGW modeled the diffracted X-ray wave field for a monochromatic spherical wave illumination with an ideal point source according to the paraxial Fresnel diffraction theory as Equation(6)[6]:f s(x;R1,R2)=iλR2exp(-ikR2)乙exp(-ik X22R2),t(X)exp(-ik(x-X)22R2)d X(6)where R1and R2are source to object-plane distance and object-plane to image-plane distance,x and X are two-dimension vectors in the image-plane and object-plane,respectively,f indicates wave function with spherical wave illumination.In Fourier space as Equation(7):F s(uM ;R1,R2)=exp(-ikR2M)F{exp(-ik X22R2)t(X)}·exp(iπλR2u2/M)(7)where M=(R1+R2)/R1is the magnification factor,u is spatial frequency vector at the object plane,F isFourier transform.The intensity at image-plane can be written as Equation(8):I(x,y)=f s(x,y)2(8) with the effects of the X-ray focal-spot size and the detector resolution taken into account as presented by Wu and Liu[9],the intensity in Fourier space can be written as Equation(9):I軇(u M ;R1,R2)=I軇point(uM;R1,R2),·OTF G.U.(uM)·OTF det(uM)(9)if the X-ray focal spot was supposed to be a circular disk of diameter f,the modulus of OTF G.U.is given by Equation(10):OTF G.U.(uM )=2J1[πf(M-1)u/M]πf(M-1)u/M(10)where f is the diameter of the focus spot and J1(x)is a Bessel function of the first kind.The modulus of OTF det is as Equation(11):OTF det.(u)=sin c(p ax u xM )sin c(p ay u yM)(11)where sin c(x)is the sinc function and p ax,y is the active pixel size determined from the pixel pitch and the fill factor of the detector.In order to focus on the edge-enhanced phenomenon,a polystyrene sheet with2mm thickness was used as imaging phantom in this simulation and monochromatic radiation of energy E was used. ExperimentsTo evaluate the simulation validity,experimental results were compared and the simulation parameters were set according to the parameters.This imaging system mainly consists of an open X-ray tube(FXE160.51,YXLON)and a cool X-ray CCD imaging detector(Quad-R04320,Princeton Instruments).The focal-spotsize of the X-ray tube can be adjusted from2μm to15μm.The CCD imaging detector employed in our micro-CT system consists of a2084×20842D imaging array with a pixel size of24×24μm2.The source-to-detector distance(SDD) is fixed at720mm.A thin plastic sheet with2mm thickness was used in this study.RESULTS AND DISCUSSIONEffect of focal-spot sizeWe obtained simulated phantom images by setting different values of focal-spot size.Two images are shown in Fig.1(a)and(b)with the focal-spot sizes of3pLm and10μm.One bright vertical line and one dark vertical line can be found in the obtained images,which show a strong phase-contrast edge-enhancement effect.Fig.1(c)shows the profiles of phantom images simulated with four different focal-spot sizes.It can be observed that peaks of edge enhancement become lower when the focal-spot becomes larger,which indicates that the edge-enhancement becomes weaker as the focal-spot size increases.The reason is that X-ray coming from a smaller focal-spot has a better spatial coherence.As shown in Fig.2,we can see a same change trend and a similar peak height as the simulated result shows,meaning that the simulation is reasonable and is in good agreement with experimental results.(a)3μm (b)10μm(c)profiles Fig.1The phantom images simulated with the focal-spot sizes of 3μm(a)and 10μm (b).Display window is [0.81.05].(c)Profiles of the middle horizontal lines in the phantomimages simulated with four different focalspot sizes.Photon energy was 20keV,pixelsize of detector was 24μm and SOD was 50mm.Fig.2Profilesofthe middlehorizontal lines in phantom images obtained by a micro-CTsystem with an open microfocus tubeNote:Tube voltage was 50kVp,pixel size of detector was 24μm and SOD was 50mm.Effect of imaging geometryThe profiles of phantom images simulated with different source-to-object distances (SODs)are shown in Fig.3.We can see that edge enhancement becomes stronger firstly,and then drops as SOD increases.The reason is that the PB-PCI technique depends on X-ray refraction,a sufficient propagation distance(a)3μm(b)10μmR2is favorable to the forming of refraction contrast.However,because of the limited source size(not an ideal point source),the increasing of propagation distance(a larger geometrical magnification)can degrade the phase-contrast effect through penumbral blurring.As shown in Fig.4,we can also see the same change trend.A SOD value near100mm makes the edge enhancement maximum for both simulated result and experimental result,which shows much more about the good agreement between our simulation and experiment.Fig.3Profiles of the middle horizontal lines in the phantom images simulated with seven different SODs Note:Photon energy was20keV,focal-spot size was3μm and pixe1size of detector was24μm.Fig.4Representative pixel intensity values across the images of the plastic edge phantom obtained by the micro-CT system at different SODsNote:Tube voltage was70kVp and focal-spot size was3μm.Propagation-based X-ray phase-contrast imaging was simulated under the developed micro-CT parameters.The preliminary simulations show reasonable influences of two important parameters, focal-spot size and imaging geometry.Results show that our simulations are in good agreement with experimental results,which means that the simulation can be used to optimize our system to obtain a good phasecontrast image.REFERENCES[1]Wilkins SW,Gureyev TE,Gao D,et al.Phase-contrast imaging using polychromatic hard X-rays[J].Nature,1996,384(6607):335-338.[2]Peterzol A,Berthier J,Duvauchelle P,et al.X-ray phase contrast image simulation[J].Section B of NuclearInstruments and Methods in Physics Research,2007,254(2):307-318.[3]Olivo A,Speller R.Experimental validation of a simple model capable of predicting the phase contrast imagingcapabilities of any X-ray imaging system[J].Physics in Medicine and Biology,2006,51(12):3015-3030.[4]Peterzol A,Olivo A,Rigon L,et al.The effects of the imagingsystem on the validity limits of the ray-optical approachto phase contrast imaging[J],Medical Physics,2005,32(12):3617-3627.[5]Xizeng W,Hong L.A new theory of phase-contrast X-ray imaging based on Wigner distributions[J].MedicalPhysics,2004,31(9):2378-2384.[6]Pogany A,Gao D,Wilkins SW.Contrast and resolution inimaging with a microfocus x-ray source[J].Review ofScientific Instruments,1997,68(7):2774-2782.[7]Wu X,Liu H.A general theoretical formalism for X-ray phase contrast imaging[J].Journal of X-ray Science andTechnology,2003,11(1):33-42.[8]Wu X,Liu H.Clinical implementation of X-ray phase-contrast imaging:Theoretical foundations and designconsiderations[J].Medical Physics,2003,30(8):2169-2179.[9]Wu X,Liu H.Phase-space formulation for phase-contrast X-ray imaging[J].Applied Optics,2005,44(28):5847-5854.(From:p.86)[17]Behr M,Leibrock A,Stich W,et al.Adhesive-fixed partialdentures in anterior and posterior areas.Results of anon-going prospective study begun in1985[J].Clinical Oral Investigations,1998,2(1):31-35.[18]Djemal S,Setchell D,King P,et al.Long-term survival characteristics of832resin-retained bridges and splintsprovided in a postgraduate teaching hospital between1978and1993[J].Journal of Oral Rehabilitation,1999,26: 302-320.[19]Han J,Li Y,Fei R,et al.Three dimensional modeling of composite resin-bonded fixed partial dentures for FEAanalysis[J].Beijing Biomedical Engineering,2006,25:231-234.[20]Helkimo E,Carlsson GE,Helkimo M.Bite force and state of dentition[J].Acta Odontologica Scandinavica,1977,35(6):297-303.[21]van Eijden TM.Three-dimensional analysis of human bite force magnitude and moment[J].Archives of Oral Biology,1991,36(7):535-539.[22]Carlsson GE.Bite force and chewing efficiency[J].Frontiers of Oral Physiology,1974,1(1):265-292.[23]Raadsheer MC,van Eijden TM,van Ginkel FC,et al.Contribution of jaw muscle size and craniofacial morphology tohuman bite force magnitude[J].Journal of Dental Research,1999,78(1):31-42.。

相关文档
最新文档