第二章 数列 单元检测卷
第二章 数列测试题(题目+答案)
第2章 数列 单元测试一、选择题(本大题共10小题,每小题5分,共50分)1. 在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A .11 B .12 C .13 D .14 1答案:C 12n n n a a a +++=2.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .212.答案C 21)1,1x x ===±3.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893答案:C 本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21, 即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84. 4.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54答案.B . 解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8. 5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -105答案.B 解析:∵{a n }是等差数列, ∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列, ∴(a 1+4)2=a 1(a 1+6), 解得a 1=-8, ∴a 2=-8+2=-6.6.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1B .-1C .2D .216答案.A 解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A .7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+7答案:B 5103132310312103453log log ...log log (...)log ()log (3)10a a a a a a a a +++====8.数列{}n a 的通项公式11++=n n a n ,则该数列的前15项之和等于( )。
第2章数列单元测试
第2章数列单元测试1.在等比数列}{n a 中,若93-=a ,17-=a ,则5a 的值为_____________。
1.-3.提示:q 4=19--,q 2=13.5a =-9×13=-3. 2.在正整数100至500之间能被11整除的个数为 .2.36.提示:观看出100至500之间能被11整除的数为110、121、132、…它们构成一个等差数列,公差为11,数a n =110+(n -1)·11=11n +99,由a n ≤500,解得n ≤36. 3.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于 。
3.-1.提示:由已知:a n +1=a n 2-1=(a n +1)(a n -1), ∴a 2=0,a 3=-1,a 4=0,a 5=-1.4.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9= 。
4.33.提示:a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,故a 3+a 6+a 9=2×39-45=33. 5.正项等比数列{a n }中,S 2=7,S 6=91,则S 4= 。
5.28.提示:∵{a n }为等比数列,∴S 2,S 4-S 2,S 6-S 4也为等比数列,即7,S 4-7,91-S 4成等比数列,即(S 4-7)2=7(91-S 4),解得S 4=28或-21(舍去). 6.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的43,若洗n 次后,存在的污垢在1%以下,则n 的最小值为_________.6.4.提示:每次能洗去污垢的43,确实是存留了41,故洗n 次后,还有原先的(41)n ,由题意,有:(41)n<1%,∴4n >100得n 的最小值为4. 7.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大是第 项。
高中数学 第2章 数列单元测试单元测试
第02章 数列章末检测(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{}n a 中,7914a a +=,41a =,则12a 的值为 A .16 B .15 C .14D .132.设等差数列{}n a 的前n 项和为n S ,已知130S >,140S <,若10k k a a +⋅<,则k = A .6B .7C .13D .143.已知数列{}n a 中,13a =,111n n a a +=-+,则能使3n a =的n 可以等于 A .2016 B .2017 C .2018D .20194.已知数列{}n a 是公差为2的等差数列,且1a ,2a ,5a 成等比数列,其前n 项和为n S ,则8S =A .36B .49C .64D .815.已知等比数列{}n a 满足375a a +=,则2446682a a a a a a ++等于 A .5B .10C .20D .256.设等差数列{}n a 的前n 项和为n S ,其中15512a a S +=,且1120a =,则13S = A .130 B .60 C .160D .267.若数列{}n a 满足12a =,21n n a a +=,且0n a >,则n a =A .210n -B .110n -C .1210n -D .122n -8.在等差数列{}n a 中,已知67S S <,78S S >,则下列说法中正确的是①前七项递增,后面的项递减;②96S S <;③1a 是最大项;④7S 是n S 的最大值. A .②④B .①②④C .②③④D .①②③④9.已知数列{}n a 是首项为1、公差为2的等差数列,数列{}n b 满足关系31212312n n n a a a a b b b b ++++=,数列{}n b 的前n 项和为n S ,则5S 的值为 A .454- B .450- C .446-D .442-10.已知数列{}n a 满足12n n a a +=,且3123a a -=,则22212111na a a +++= A .114n -B .1(41)4n- C .31(1)22n -D .11(1)164n -11.已知函数2()cos()f n n n =π,且()(1)n a f n f n =++,则12100a a a +++=A .100-B .0C .100D .1020012.设等差数列{}n a 的前n 项和为n S ,113m S -=,0m S =,115m S +=-,其中m ∈*N 且2m ≥,则数列11{}n n a a +的前n 项和n T 的最大值为 A .24143B .1143 C .2413D .613第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.若等差数列{}n a 的前n 项和为n S ,23a =,352a a +=-,则使得n S 取得最大值时的正整数n =______________.14.已知单调递减的等比数列{}n a 满足23428a a a ++=,且32a +是2a ,4a 的等差中项,则数列{}n a 的通项公式n a =______________.15.在数列{}n a 中,已知11a =,122()n n n a a n +=+∈*N ,则数列{}n a 的通项公式n a =______________.16.已知数列{}n a 的前n 项和为(1)n S n n =+,数列{}n b 的前n 项和为n T ,若1122n n n S b S b S b a +++=,则2017T =______________.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知等差数列{}n a 的公差不为零,其前n 项和为n S ,223a S =,且1S ,2S ,4S 成等比数列.(1)求数列{}n a 的通项公式n a ;(2)记15943n n T a a a a -=++++,求n T .18.(本小题满分12分)已知在等比数列{}n a 中,首项13a =,公比1q >,且213100()()n n n n a a a ++-=∈+*N .(1)求数列{}n a 的通项公式;(2)设13{}n n b a +是首项为1,公差为2的等差数列,求数列{}n b 的通项公式及前n 项和n S .19.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,满足11a b =,222a b =,2213S T +=,332S b =.(1)求数列{}n a ,{}n b 的通项公式;(2)设2nn na cb =,求数列{}n c 的前n 项和n C . 20.(本小题满分12分)已知正项数列{}n a 满足:2122(n n n S S t a n -+=⨯+≥,0)t >,11a =,其中n S 是数列{}n a 的前n 项和.(1)求2a 及数列{}n a 的通项公式;(2)记数列11{}n n a a +的前n 项和为n T ,若2n T <对所有的*n ∈N 都成立,求证:01t <≤.21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,12a =,2212(1)n n n S n a n a +=+-,数列{}n b 满足11b =,12n a n n b b λ+=⋅.(1)求数列{}n a 的通项公式;(2)是否存在正实数λ,使得数列{}n b 为等比数列?若存在,求出λ的值;若不存在,请说明理由.22.(本小题满分12分)设满足以下两个条件的有穷数列123n a a a a ,,,,为n 阶“期待数列”:①1230n a a a a ++++=;②123||||||||1n a a a a ++++=.(1)若等比数列{}n a 为2k 阶“期待数列”(*k ∈N ),求首项1a 及公比q ;(2)若一个等差数列{}n a 既是2k 阶“期待数列”又是递增数列(*k ∈N ),求该数列的通项公式.学必求其心得,业必贵于专精攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志.11。
第二章数列单元综合测试(人教A版必修5)
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
第二章 数列 单元测试人教A版必修5.doc
B. 9C.10D. 11 A. 8第二章数列单元测试一、选择题(本大题共12个小题,每个小题5分,共60分,每小题给出的 四个备选答案中,有且仅有一个是符合题目要求的)1. 在等差数列仏}中,若a 4+«6=12, S”是数列仙}的前"项和,则S9的 值为()A. 48B. 54C. 60D. 662. 若等比数列仙}的公比g>0,且gHl,又如<0,那么() A. fl2 + «6>«3+«5B. <?2 + «6<«3 + «5C. 02+06=03+05D. «2+«6与血+衍的大小不能确定 3. AABC 中三内角A 、B 、C 成等差数列,三边a 、b 、c 成等比数列,则 三内角的公差等于()A. 0°B. 15°C. 30°D. 45°5. 某工厂去年产值为Q,计划今后5年内每年比上年产值增加10%,则从 今年起到第5年,这个厂的总产值为()A. l.l 4aB. l.l 5aC. llX (l.l s -l )aD. 10(l.l 6-l>6. 2*+4扌+8|-------- 1024j^等于()A- 2046器I B. 2007器IC. 1047儲D. 2046儲7. 等差数列S“}中,ai>0,若其前n 项和为S”且有Si4=S8,那么当S n取最大值时,”的值为()e ----------------8.正项数列⑺”}满足«ti=^+4(«eN*),且ai=l,则Q7的值为()A. 4B. 5C. 6D. 79.若等比数列仙}的前”项和S” = 2010"+血为常数),则如的值为()A. 2008B. 2009C. 2010D. 201110.若log32, log3(2"—l), 10g3(2"+ll)成等差数列,则x 的值为()A. 7 或一3B. log37C. log27D. 411.已知0<a<b<c<l,且a、b、c成等比数列,n为大于1的整数,则log fl n, \0gb“,10gc” 成( )A.等差数列B.等比数列C.各项倒数成等差数列D.各项倒数成等比数列12.把数列{2“ + 1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环分为:(3), (5,7), (9,11,13), (15,17,19,21), (23), (25,27), (29,31,33), (35,37,39,41), (43),…则第104个括号内各数之和为()A. 2036B. 2048C. 2060D. 2072二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上)13.已知{a”}为等差数列,a3+as=22, a6=7,则俯= __________ .14.已知数列1,如,血,4成等差数列,1, bi,b2,亦,4成等比数列,则聖严的值为 ______ .15.(2011•湖北理)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4 升,则第5节的容积为_______ 升.16.在等差数列仏}中,S”为它的前”项和,若ai>0,弘>0, S17VO,则当"= ________ 时,S”最大.S ----------------三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)数列{如是等差数列,Qi = l, a…=-512, S…=~1022, 求公差d.18.(本小题满分12分)数列仏}的前n项和为S n = 2~2a n ,求证: 数列仏”}为等比数列,并求通项19.(本小题满分12分)已知等差数列仏}的前n项和为S”,且a2=L Sii =33.⑴求S”}的通项公式;(2)设方"=(扣”.求证:{〃”}是等比数列,并求其前"项和T”.e ----------------20. ------------------------------------------------------------------------- (本小题满分12 分)设数列{a”}满足ai = l,3(ai+d2 -------------------------------------- a…) = (n+2)a…,求通项a n.21.(本小题满分12分)设正项等比数列也”}的首项前n项的和为S”,且21O S3O-(21O+1)-S2O+S1O=O.⑴求S”}的通项;(2)求{“S”}的前n项和几.22.(本小题满分14分)已知/(X)=3X2-2X,鞭!]仏}的前n项和为S”,点(", S”)(” e N*)均在函数j =f(x)的图象上.⑴求数列{如的通项公式;⑵设久=」一,7;是数列{〃”}的前"项和,求使得几<筹对所有都成立的最小正整数m.。
高中数学第二章 数列单元测试题 A必修5 试题(共5页)
文昌中学高中数学必修(bìxiū)五?第二章数列?单元测试题一、选择题(本大题一一共12小题,每一小题5分,一共60分.)1.在等比数列中,,那么公比q的值是( )A. 2B. 3C. 4D. 82. 设数列{a n}中,a1 =3,a n+1=a n+4,那么它的第5项是( )A、9B、7C、19D、233.数列12,23,34,45,……,nn+1,……那么0.96是该数列的第( )项,A、20B、22C、24D、264.{}n a为等差数列,且-2=-1, =0,那么公差d=〔A〕-2 〔B〕-〔C〕12〔D〕25.设是等差数列{}n a的前n项和,,,那么等于( )A.13 B.35 C.49 D. 636.假设数列{a n}是等比数列,那么下面四个命题:①数列{|a n|}也是等比数列;②数列{a2n}也是等比数列;③数列{1a n}也是等比数列;④数列{lg|a n|}也是等比数列.正确的个数是( )A、1个B、2个C、3个D、4个7.在等比数列{}n a中,,公比,假设,那么m=( )〔A〕9 〔B〕10 〔C〕11 〔D〕128.{}n a为等差数列,+3a+=105,=99,以n S表示{}n a的前项和,那么使得nS到达最大值的n是〔A〕21 〔B〕20 〔C〕19 〔D〕 189. 等比数列{}n a的前n项和为,且41a,2,3a成等差数列。
假设1a=1,那么( )〔A〕7 〔B〕8 〔C〕15 〔D〕1610.两个(liǎnɡɡè)等差数列和的前n项和分别为A 和,且,那么使得为整数的正整数n的个数是〔〕A.2 B.3 C.4 D.511.设等比数列{ }的前n 项和为S,假设=3 ,那么 =n〔A〕 2 〔B〕〔C〕〔D〕312、设数列{x n}满足log a x n+1 = 1+log a x n,且x1+x2+x3+……+x100 = 100,那么x101+x102+x103+……+x200 = ( )A、100aB、100a2C、101a100D、100a1001 2 3 4 5 6 7 8 9 10 11 12题号选项二、填空题(本大题一一共4小题,每一小题5分,一共20分,把答案填在题中横线上)13.设等差数列{}n a的前n项和为n s,假设,那么 .14.在等比数列中,假设公比,且前3项之和等于21,那么该数列的通项公式a=.na满足:那么15.数列{}n________;=_________.16.设{}n a是公比为的等比数列,,令,假设数列有连续四项在集合中,那么三、解答题(本大题一一共4小题,一共40分)17、根据下面(xià mian)各题中的条件,求相应的有关未知数:(1)等差数列{a n}中,a10=30,a20=50,S n=242,求公差d及n;(2)等比数列{a n}中,,求公比q及数列的前n项和;18.数列{}n a是等差数列,且,.〔Ⅰ〕求{}n a的通项n a;〔Ⅱ〕求{}n a前n项和S n的最大值.19.设数列(shùliè){}n a满足(1)求数列{}n a的通项公式;〔2〕令,求数列的前n项和n S a}的各项均为正数,且=1,=,20.等比数列{na}的通项公式;〔Ⅰ〕求数列{n〔Ⅱ〕设=,求数列{}的前n项和.内容总结(1)文昌中学高中数学必修五(2), eq \f(n,n+1) ,。
高中数学必修5第2章数列单元试题.doc
A. 35.在数列{。
”}中, B.5C. 7D. 9a” = (一1)"2如(〃n 2),则°5 =()A . 16J B. 16 c._8数学必修5第2章数列单元试题%1.选择题1.数列1, 3, 6, 10,…的一个通项公式是()(A)a…=n-(n-l)(B)a…=n-l(O a”=十°(〃)——2 22.已知数列乜,3,届,…,J3(2“-1),那么9是数列的()(〃)第12项(B)第13项(C)第14项(〃)第15项3.已知等差数列{a”}的公差dHO,若a§、a9, a阴成等比数列,那么公比为()r -j -t -A. -B. -C. -D.-4 3 2 34.等差数列{&}共有2n+l项,其中奇数项之和为4,偶数项之和为3,则n的值是(6.在等差数列{a”}中,Q1 + 弘 +=39 ,+ 08 =33 则=()C. 24D. 21,前三项的和是12,前三项的积为48,则它的首项是(C. 4D. 6&两个等差数列,它们的前刀项和之比为色出,则这两个数列的第9项之比是()2n-l5 8 8 7A. -B. -C. -D.-3 5 3 49. ------------------------------------------------------------------------------------------------ 设等比数列{a n}中,每项均为正数,且a3• a s=81, log3ai + log3a2d ----------------------------------------------------------------- log3ai0等于A. 5B. 10C. 20D. 4010.设函数f 3满足/(/T+1)二(力WN*)且/(l)二2,则/(20)为()2A. 95B. 97C. 105D. 192二、填空题:11>数列{a讣中,ai=5, a n+i —a n=3则这个数列的通项公式是______________ 。
数列单元测试
人教新课标版(A )高二必修五第二章数列单元测试(时间:90分钟 满分:100分)一、选择题(每小题3分,共36分)1、已知{a n }是等差数列,且有48a a a a 111032=+++,则67a a +=( )A 、12B 、16C 、20D 、24 2、若等差数列的第一、二、三项依次是x1,x 65,1x 1+,那么这个等差数列的第101项是( ) A 、3150 B 、3213 C 、24 D 、3283、设等比数列{a n }的前n 项和为S n ,前n 项的倒数之和为T n ,则nn T S的值为( )A 、n 1a aB 、n1a aC 、nn n 1a aD 、nn 1aa ⎪⎪⎭⎫ ⎝⎛ 4、在等比数列中,已知首项为89,末项为31,公比为32,则该数列的各项之和为( ) A 、4 B 、2465 C 、89 D 、8195、在各项均为正数的等比数列{a n }中,若,9a a 76=则2313a log a log ++…+123113103a log a log a log ++等于( )A 、12B 、10C 、8D 、2+log 35 6、已知数列{a n }的前n 项和为3n n S =,则9876a a a a +++等于( ) A 、729B 、387C 、604D 、8547、如果数列{a n }的前n 项和1n 2n 8S 2n -+=,那么{a n }是( )A 、等差数列B 、等比数列C 、从第二项开始,以后各项成等差数列D 、从第二项开始,以后各项成等比数列 8、数列{a n }和{b n }是等差数列,其中100b a ,75b ,25a 10010011=+==,则数列}b a {n n +的前100项的和是( ) A 、0 B 、100 C 、10 000 D 、50 5009、一个等比数列的前3项之和为48,前6项之和为60,则前9项之和为( ) A 、108 B 、75 C 、63 D 、310、已知数列{a n }的前三项依次是,6,2,2-前n 项的和S n 是n 的二次函数,则a 100=( ) A 、390 B 、392 C 、394 D 、39611、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…第1000项等于( ) A 、42 B 、45 C 、48 D 、51 12、已知{a n }中,)2n (n 2a a ,2a 1n n 1≥=-=-,则a n 等于( ) A 、n n 2+B 、n n 2-C 、2nD 、2n 2二、填空题(每小题4分,共12分)13、等比数列{a n }的首项a 1=1,前n 项和为S n ,若3231S S 510=,则公比q 等于 。
人教A版高中数学必修五必修5第二章《数列》单元测试题.docx
必修5第二章《数列》单元测试题一、选择题1.数列⋯--,924,715,58,1的一个通项公式是( )A .12)1(3++-=n n n a nn B .12)3()1(++-=n n n a n n C .121)1()1(2--+-=n n a n n D .12)2()1(++-=n n n a n n2.已知{}{},n n a b 都是等比数列,那么 ( ) A. {},{}n n n n a b a b +⋅都一定是等比数列B. {}n n a b +一定是等比数列,但{}n n a b ⋅不一定是等比数列C. {}n n a b +不一定是等比数列,但{}n n a b ⋅一定是等比数列D. {},{}n n n n a b a b +⋅都不一定是等比数列 3.在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A.4-B. 4±C.2-D.2±4.已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A. 4- B.6- C. 8- D. 10-5.等差数列{n a }中,39||||,a a =公差0,d <那么使前n 项和n S 最大的n 值为( ) A.5 B.6 C.5 或6 D.6或76.n S 等差数列}{n a 的前n 项和,已知59355,9a Sa S ==则( ). A .1 B .1- C .2 D .127.若两个等差数列{n a }、{n b }的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则1313a b 的值为( )A.5160 B.6051 C.2019D.878.若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( ) A .6 B .8 C .10 D .129.若{}n a 是等比数列,前n 项和21n n S =-,则2222123n a a a a ++++=L ( )A.2(21)n -B.21(21)3n - C.41n - D.1(41)3n-10.等比数列{}n a 中,0n a >,965=a a ,则313233310log log log log a a a a +++⋅⋅⋅+=( ) A.12 B.10 C.8 D.32log 5+ 二、填空题11.等差数列{}n a 中,123420,80a a a a +=+=,则10S =________12.在-9和3之间插入n 个数,使这2+n 个数组成和为-21的等差数列,则=n _______. 13.在等差数列{n a }中,已知1231215,78,155,n n n n a a a a a a S --++=++==则__.n = 14.已知数列{}n a 满足1n n a a n +=+,11=a ,则n a = . 15.已知数列1, ,则其前n 项的和等于 .三、解答题16.已知数列{}n a 的前n 项和nn S 23+=,求n a17.一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数18.已知等比数列{}n b 与数列{}n a 满足*,3N n b n an ∈=(1)判断{}n a 是何种数列,并给出证明; (2)若2021138,b b b m a a Λ求=+19.甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第一分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m .(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?20.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (1)求数列{}n a 的通项公式;(2)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.21.已知数列{}n a 中,n S 是其前n 项和,并且42(1,2,)1S a n n n =+=+L ,11a =(1)设nn n a a b 21-=+),2,1(ΛΛ=n ,求证:数列{}n b 是等比数列;(2)求数列{}n a的通项公式;(3)数列{}n a中是否存在最大项与最小项,若存在,求出最大项与最小项,若不存在,说明理由.必修5第二章《数列》单元测试题参考答案一、选择题 1.答案:D2.答案:C3.答案:A4.答案:B5.答案:C提示:由0,93<=d a a 得0,093<>a a ,于是93a a -=,则06=a ,故0,075<>a a ,所以选择C6.答案:A 提示:由已知可得955292225951913535==++==S S a a a a a a a a ,于是159=S S 7.答案:A 提示:55142))(12(2))(12(221212121121121121--==+-+-=++==------n n B A b b n a a n b b a a b a b a n n n n n n n n n n8.答案:A 提示:设边数为n ,则可得到等式2)140100(360180+=-n n ,解得6=n9.答案:D 提示:由21nn S =-得等比数列的首项为1,公比为2,于是数列}{2n a 是以1为首项,以4为公比的等比数列,其前n 项和可直接运用公式得到.10.答案:B 提示:10)(log )(log log log log log 565310213103332313==⋅⋅⋅=++++a a a a a a a a a ΛΛ二、填空题11.答案:700提示:直接由已知条件求出首项和公差,然后再运用前n 项和公式可求出10S . 12.答案:6提示:直接利用等差数列求和公式可求解.13.答案:10提示:利用等差数列的性质得23121--+=+=+n n n a a a a a a ,再利用等差数列求和公式可得到结果.14.答案:12)1(+-=n n a n 提示:利用叠加法可求得数列的通项 15.答案:12+n n提示:根据通项)111(2)1(23211+-=+=++++=n n n n n a nΛ,采用裂项求和的方法可得到结果. 三、解答题16.解:111132,32,2(2)n n n n n n n n S S a S S n ----=+=+=-=≥而115a S ==,∴⎩⎨⎧≥==-)2(,2)1(,51n n a n n17.解:设此数列的公比为,(1)q q ≠,项数为2n则22222(1)1()85,170,11n na q q S S q q--====--奇偶 2221122,85,2256,28,14nn S a q n S a -======-偶奇 ∴,2=q 项数为818.解:(1){}n b Θ是等比数列,依题意可设{}n b 的公比为)0(>q q2(1≥=∴-n q b b n n ) )2(331≥=∴-n q n na a )2(31≥=∴--n q n n a a )2(log 31≥=-∴-n q a a n n 为一常数。
高中数学第二章数列单元质量测评含解析新人教A版必修5081931
高中数学第二章数列单元质量测评含解析新人教A 版必修5081931本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n 等于( ) A .2n B .2n +1 C .2n -1 D .2n +1答案 B解析 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n+1.(或特值法,当n =1时只有B 项符合.)2.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d =( ) A .2 B .3 C .6 D .7 答案 B解析 S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12,∴d =3. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .49 B .50 C .51 D .52 答案 D解析 ∵2a n +1-2a n =1,∴a n +1-a n =12.∴数列{a n }是首项a 1=2,公差d =12的等差数列.∴a 101=2+12×(101-1)=52.4.在等差数列{a n }中,若a 1+a 2+a 3=32,a 11+a 12+a 13=118,则a 4+a 10=( ) A .45 B .50 C .75 D .60 答案 B解析 ∵a 1+a 2+a 3=3a 2=32,a 11+a 12+a 13=3a 12=118,∴3(a 2+a 12)=150,即a 2+a 12=50,∴a 4+a 10=a 2+a 12=50.5.公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90 答案 C解析 由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),即2a 1+3d =0. ① 又S 8=8a 1+562d =32,则2a 1+7d =8. ②由①②,得d =2,a 1=-3. 所以S 10=10a 1+902d =60.故选C .6.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项B .第12项C .第13项D .第6项 答案 C解析 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项. 7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .54钱B .43钱C .32钱D .53钱 答案 B解析 依题意设甲、乙、丙、丁、戊所得钱分别为a -2d ,a -d ,a ,a +d ,a +2d ,则由题意可知,a -2d +a -d =a +a +d +a +2d ,即a =-6d ,又a -2d +a -d +a +a +d +a +2d =5a =5,∴a =1,则a -2d =a -2×⎝ ⎛⎭⎪⎫-a 6=43a =43.故选B .8.已知{a n }是等差数列,a 3=5,a 9=17,数列{b n }的前n 项和S n =3n,若a m =b 1+b 4,则正整数m 等于( )A .29B .28C .27D .26 答案 A解析 因为{a n }是等差数列,a 9=17,a 3=5,所以6d =17-5,得d =2,a n =2n -1.又因为S n =3n,所以当n =1时,b 1=3,当n ≥2时,S n -1=3n -1,b n =3n -3n -1=2·3n -1,由a m =b 1+b 4,得2m -1=3+54,得m =29,故选A .9.在各项均为正数的等比数列{a n }中,a 1=2且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5=( )A .32B .62C .27D .81 答案 B解析 设各项均为正数的等比数列{a n }的公比为q , 又a 1=2,则a 2=2q ,a 4+2=2q 3+2,a 5=2q 4, ∵a 2,a 4+2,a 5成等差数列,∴4q 3+4=2q +2q 4, ∴2(q 3+1)=q (q 3+1),由q >0,解得q =2, ∴S 5=21-251-2=62.故选B .10.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( )A .13B .-76C .46D .76 答案 B解析 ∵S n =1-5+9-13+17-21+…+ (-1)n -1(4n -3),∴S 14=7×(1-5)=-28,a 15=60-3=57, S 22=11×(1-5)=-44, S 30=15×(1-5)=-60, a 31=124-3=121,∴S 15=S 14+a 15=29,S 31=S 30+a 31=61. ∴S 15+S 22-S 31=29-44-61=-76.故选B .11.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤0,f x -1+1,x >0,把方程f (x )=x 的根按从小到大的顺序排列成一个数列{a n },则该数列的通项公式为( )A .a n =n n -12(n ∈N *)B .a n =n (n -1)(n ∈N *) C .a n =n -1(n ∈N *) D .a n =n -2(n ∈N *) 答案 C解析 令2x-1=x (x ≤0),易得x =0. 当0<x ≤1时,由已知得f (x -1)+1=x , 即2x -1-1+1=2x -1=x ,则x =1.当1<x ≤2时,由已知得f (x )=x , 即f (x -1)+1=x ,即f (x -2)+1+1=x , 故2x -2+1=x ,则x =2.因此,a 1=0,a 2=1,a 3=2, 结合各选项可知该数列的通项公式为a n =n -1(n ∈N *).故选C .12.已知数列{a n }满足a n +1+(-1)na n =2n -1,S n 为其前n 项和,则S 60=( ) A .3690 B .1830 C .1845 D .3660 答案 B解析 ①当n 为奇数时,a n +1-a n =2n -1,a n +2+a n +1=2n +1,两式相减得 a n +2+a n =2;②当n 为偶数时,a n +1+a n =2n -1,a n +2-a n +1=2n +1,两式相加得a n +2+a n =4n ,故S 60=a 1+a 3+a 5+…+a 59+(a 2+a 4+a 6+…+a 60)=2×15+(4×2+4×6+…+4×58) =30+4×450=1830.故选B .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n }中,a 1=10,a n +1=a n -12,则它的前n 项和S n 的最大值为________.答案 105解析 ∵a n +1-a n =-12,∴d =-12,又a 1=10,∴a n =-n 2+212(n ∈N *).∵a 1=10>0,d =-12<0,设从第n 项起为负数,则-n 2+212<0(n ∈N *).∴n >21,于是前21项和最大,最大值为S 21=105.14.已知等比数列{a n }为递增数列,若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.答案 2解析 ∵{a n }是递增的等比数列,且a 1>0,∴q >1.又∵2(a n +a n +2)=5a n +1,∴2a n +2a n q 2=5a n q .∵a n ≠0,∴2q 2-5q +2=0,∴q =2或q =12(舍去),∴公比q 为2.15.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则a 1+a 2+…+a 51=________.答案 676解析 当n 为正奇数时,a n +2-a n =0,又a 1=1,则所有奇数项都是1;当n 为正偶数时,a n +2-a n =2,又a 2=2,则所有偶数项是首项和公差都是2的等差数列,所以a 1+a 2+…+a 51=(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26a 1+25a 2+25×242×2=676.16.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于________.答案 7解析 设该设备第n 年的运营费用为a n 万元,则数列{a n }是以2为首项,3为公差的等差数列,则a n =3n -1.设该设备使用n 年的运营费用总和为T n , 则T n =n 2+3n -12=32n 2+12n . 设n 年的盈利总额为S n ,则S n =21n -⎝ ⎛⎭⎪⎫32n 2+12n -9=-32n 2+412n -9. 由二次函数的性质可知,当n =416时,S n 取得最大值,又n ∈N *,故当n =7时,S n 取得最大值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设a ,b ,c 是实数,3a ,4b ,5c 成等比数列,且1a ,1b ,1c成等差数列,求a c +c a的值.解 ∵3a ,4b ,5c 成等比数列,∴16b 2=15ac . ① ∵1a ,1b ,1c成等差数列,∴2b =1a +1c. ②由①,得4b2·15ac =64. ③ 将②代入③,得1a +1c2·15ac =64,∴1a 2+1c 2+2ac ac =6415. ∴c a +a c =3415. 18.(本小题满分12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解 (1)证明:∵a 1=S 1,a n +S n =n , ① ∴a 1+S 1=1,得a 1=12.又a n +1+S n +1=n +1, ②由①②两式相减得2(a n +1-1)=a n -1, 即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12,∴c n =-12n ,a n =c n +1=1-12n ,a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12也适合上式,∴b n =12n .19.(本小题满分12分)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n +1-2a n (n ∈N *). (1)证明:数列{a n +1-a n }是等比数列; (2)求数列{a n }的通项公式. 解 (1)证明:∵a n +2=3a n +1-2a n , ∴a n +2-a n +1=2(a n +1-a n ),∴a n +2-a n +1a n +1-a n=2.∵a 1=1,a 2=3,∴{a n +1-a n }是以a 2-a 1=2为首项,2为公比的等比数列. (2)由(1)得a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n-1.故数列{a n }的通项公式为a n =2n-1.20.(本小题满分12分)2010年4月14日,冰岛南部艾雅法拉火山喷发,弥漫在欧洲上空多日的火山灰严重影响欧洲多个国家的机场正常运营.由于风向,火山灰主要飘落在该火山口的东北方向与东南方向之间的地区.假设火山喷发停止后,需要了解火山灰的飘散程度,为了测量的需要,现将距离火山喷口中心50米内的扇形面记为第1区、50米至100米的扇环面记为第2区、…、50(n -1)米至50n 米的扇环面记为第n 区,若测得第1区的火山灰每平方米的平均质量为1吨、第2区每平方米的平均质量较第1区减少了2%、第3区较第2区又减少了2%,依此类推,问:(1)离火山口1225米处的火山灰大约为每平方米多少千克?(结果精确到1千克) (2)第几区内的火山灰总质量最大?提示:当n 较大时,可用(1-x )n ≈1-nx 进行近似计算. 解 (1)设第n 区的火山灰为每平方米a n 千克, 依题意,数列{a n }为等比数列,且a 1=1000(千克), 公比q =1-2%=0.98, ∴a n =a 1×qn -1=1000×0.98n -1.∵离火山口1225米处的位置在第25区,∴a 25=1000×(1-0.02)24≈1000×(1-24×0.02)=520,即离火山口1225米处的火山灰大约为每平方米520千克.(2)设第n 区的火山灰总质量为b n 千克,且该区的火山灰总质量最大. 依题意,第n 区的面积为14π{(50n )2-[50(n -1)]2}=625π(2n -1), ∴b n =625π(2n -1)×a n .依题意得⎩⎪⎨⎪⎧b n ≥b n -1,b n ≥b n +1,解得49.5≤n ≤50.5.∵n ∈N *, ∴n =50,即第50区的火山灰总质量最大.21.(本小题满分12分)设数列{a n }的前n 项和为S n =2n 2,数列{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n b n,求数列{c n }的前n 项和T n . 解 (1)当n =1时,a 1=S 1=2; 当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,∵当n =1时,a 1=4-2=2也适合上式, ∴{a n }的通项公式为a n =4n -2, 即{a n }是a 1=2,公差d =4的等差数列. 设{b n }的公比为q ,则b 1qd =b 1, ∴q =14.故b n =b 1q n -1=2×14n -1.即{b n }的通项公式为b n =24n -1.(2)∵c n =a n b n =4n -224n -1=(2n -1)4n -1,∴T n =c 1+c 2+…+c n =1+3×41+5×42+…+(2n -1)4n -1,4T n =1×4+3×42+5×43+…+(2n -3)4n -1+(2n -1)4n.两式相减,得3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n+5],∴T n =19[(6n -5)4n+5].22.(本小题满分12分)已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,….(1)证明:数列{lg (1+a n )}是等比数列; (2)设T n =(1+a 1)·(1+a 2)…(1+a n ),求T n ;(3)记b n =1a n +1a n +2,求数列{b n }的前n 项和S n ,并证明S n <1.解 (1)证明:由已知a n +1=a 2n +2a n , ∴a n +1+1=(a n +1)2,∴lg (1+a n +1)=2lg (1+a n ), ∴{lg (1+a n )}是公比为2的等比数列. (2)由(1)知lg (1+a n )=2n -1·lg (1+a 1)=2n -1·lg 3=lg 32n -1,∴1+a n =32n -1,∴T n =(1+a 1)(1+a 2)…(1+a n )=320.321.322 (32)n -1=31+2+22+…+2n -1=32n-1.(3)∵点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上, ∴a n +1=a 2n +2a n ,∴a n +1=a n (a n +2). ∴1a n +1=12⎝ ⎛⎭⎪⎫1a n -1a n +2,∴1a n +2=1a n -2a n +1, ∴b n =1a n +1a n +2=1a n +1a n -2a n +1=2⎝ ⎛⎭⎪⎫1a n -1a n +1. ∴S n =b 1+b 2+…+b n =2⎝ ⎛1a 1-1a 2+1a 2-1a 3+…+⎭⎪⎫1a n -1a n +1=2⎝ ⎛⎭⎪⎫1a 1-1a n +1. ∵a n =32n -1-1,a 1=2,a n +1=32n-1,∴S n =1-232n -1.32n-1>32-1=8>2,∴0<232n-1<1.∴S n <1.。
高中数学五必修第二章数列单元测试试卷 试题
创作;朱本晓苏教版高中数学五〔必修〕第二章?数列?单元测试试卷一、选择题:〔本大题一一共10小题,每一小题3分,一共30分.在每一小题列出的四个选项里面,选出符合题目要求的一项,请将每一小题答案写在下面的表格中〕1. 在数列1,1,2,3,5,8,x ,21,34,55,…中,x 等于A .11B .12C .13D .14 2. 在数列{}n a 中,12a =,1221n n a a +=+,那么101a 的值是A .49B .50C .51D .523. 数列11110,21110,31110,…,1110n ,…,使数列前n 项的乘积不超过510的最大正整数n 是A .9B .10C .11D .124. 在公比为整数的等比数列{}n a 中,假如,12,183241=+=+a a a a 那么该数列的前8项之和为A .513B .512C .510D .82255. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,那么数列{}n a 的前9项的和S 9等于A .66B .99C .144D .297创作;朱本晓 6. 命题甲:“任意两个数a ,b 必有唯一的等差中项〞,命题乙:“任意两个数a ,b 必有两个等比中项〞.那么A .甲是真命题,乙是真命题B .甲是真命题,乙是假命题C .甲是假命题,乙是真命题D .甲是假命题,乙是假命题 7. 设S n 是等差数列{}n a 的前n 项和,假设5359a a =,那么95SS 的值是 A .1 B .-1 C .2 D .218. 在等差数列{}n a 中,假设4,184==S S ,那么20191817a a a a +++的值是A .9B .12C .16D .179. 数列{a n }、{b n }的通项公式分别是a n =an+b (a ≠0,a 、b ∈R),b n =q n-1(q>1),那么数列{a n }、{b n }中,使a n =b n 的n 值的个数是A 、2B 、1C 、0D 、可能为0,可能为1,可能为210. 在各项均不为零的等差数列{}n a 中,假设2110(2)n n n a a a n +--+=≥,那么214n S n --= A.2-B.0C.1D.2二、填空题:〔本大题一一共6小题,每一小题4分,一共24分〕11. 在等比数列{}n a 中, 假设101,a a 是方程06232=--x x 的两根,那么创作;朱本晓74a a ⋅=___________.12. 等差数列110,116,122,128,…在[400,600]内的一共有________项. 13. 数列的12++=n n S n ,那么12111098a a a a a ++++=_____________。
第2章数列测试题含详细答案
贝v 数列{&}前9项 南京市高一数学5 (必修)第二章:数列、选择题1 在数列 1, 1,2,3, 5, 8, x, 21, 34, 55 中,x 等于() A. 11 B. 125•已知一等比数列的前三项依次为x, 2x - 2, 3x 3 ,1那么-13—是此数列的第()项 2A. 2B. 4C. 6D. 86 .在公比为整数的等比数列'弘{中,如果ai ai 二1& as as 二12,那么该数列的前8项之和为() A. 513B. 512 225C. 510D.8、填空题1. 等差数列 右,中,a? =9, as =33,贝广厂的公差为 __________________________2. 数列(a.)是等差数列,a4 =7,贝ij S7 = ___________________ 6 ■计算 log 3 : ,,3*3]…、<3,二 __________ . A • 66B. 99 C ■ 144D. 297 彎比欢列a 冲, &2 二 9, 35 二 243,则 的前4项和为(A . 81B . 120C • 1684..2 1 与 2 -1, D • 192 两数的等比中项是( )1A. 1B. 一 1C. _1D.—2.等差数列{&}中,Qi 乜 4=39, S3 一 a 27,的和S9等于( )三、解答题1 •成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
2.在等差数列 屮,厂 一 0. 3, a (2 =3. 1,求 a (s + a 〔9 + a?o + a?i + a?2 的值。
3. 求和:(a -1) (a 2 -2) ••• (a 21 - n), (a = 0)4.设等比数列& •'前n 项和为5 ,若S3 • S6二2S“求数列的公比q 参考答案(数学5必修)第二章[基础训练A 组]l.C A E- n - n 1 =a n • 2 -B ai ' ai' a? — 39, a3 >a a a - 27, 3ai —13, a6 —99 9 9s 9 (d aj (d aj (13 9> 993. B 色二27 二 q 3, q —3,印二生二3, £ 二 冯二A120 a 2 q 1-34. C x :=( l)f -2 =l)x ; 1一、选择题——39, 3a 5. B x(3x 3)= (XT 22)x 尸或 lx 二而 4x 二-lx 二-46. C3x 32x 2=_4x(3ai(l q ) =18, ai (q q2)二12,jfn q Z, q = 2, ai = 2,z\1-2二、填空题5.—124. -753 35. -26.三、解答题1.2. 5-2〃d5-22(bl .=8 2.9/吩a】a9)岂仝q J或q=2,22 251049 S7=7 (a<i ■ a:) = 7 印二4 9bi b 65-12 =25, q = ± 5, a<io = a.9 q=±75 5logL ・T3 = log3(3,z 3 刁…3 戶)二log3(3八二丄+丄+ +丄二址3“ 12-2n解:设四数为a—3d, a -d, a d, a 3d, 则4a = 26, a2 -d2 = 4013,d或,23时,时, 四数为2, 5,8,113四数为11,8, 5,2解:dis &19 &20 &21 &22 ―5&20, &12 —3-5 二7d 二2・ & <7-0.4 a?o — ai2 8d — 3. 1 3. 2 = 6. 3…&(8 a (9 a?o a?i a?2 二5a?o 二6. 3 5 一31. 53. 解:原式二(&玄・・・a n) -(1 2 •…-n)则 Ss 与S3亠Se 二2S 9矛盾 91 -q二(a 『・・・V -)3)2a(l ——a a ) n(n 1)(a.=1)1 -a 23 6 由 S3 S6=2S F —q) M —qi/ —q)1-q 1 -q 2q _q —0 =o, 2 (q 3)3 —q 3 一 1 二0,得 cf 或 cf 二1,3. 两个等華数加{a n l£n [ —「一二一二一,则旦小二 “八也+・・・+(1)n +3b 5 -------------------- 4. 在等比数列 位}中,若厂3,厂75,则印。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(时间120分钟 满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.等比数列{a n }的公比q =-1
4,a 1=2,则数列{a n }是( )
A .递增数列
B .递减数列
C .常数数列
D .摆动数列
2.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )
A .1
B .-1
C .-3
D .-4
3.等差数列{a n }中,a 3=2,a 5=7,则a 7=( ) A .10 B .20 C .16
D .12
4.已知等比数列的各项都为正数,且当n ≥3时,a 4a 2n -4=102n ,则数列lg a 1,2lg a 2,22lg a 3,23lg a 4,…,2n -
1lg a n ,…的前n 项和S n 等于( )
A .n ·2n
B .(n -1)·2n -
1-1 C .(n -1)·2n +1
D .2n +1
5.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5=( ) A .3∶4 B .2∶3 C .1∶2
D .1∶3
6.数列{a n }满足a 1=1,a 2=1,a n +2=⎝⎛⎭⎫1+sin 2n π2a n +4cos 2n π
2,则a 9,a 10的大小关系为( ) A .a 9>a 10 B .a 9=a 10
C .a 9<a 10
D .大小关系不确定
7.已知数列{a n }满足a 1=1,a n +1=⎩
⎪⎨⎪⎧
2a n ,n 为正奇数,
a n +1,n 为正偶数,则254是该数列的( )
A .第8项
B .第10项
C .第12项
D .第14项
8.数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1
a 2 019=( )
A.4 038
2 020 B.4 0362 019 C.4 0322 017
D.4 0342 018
9.如果数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1、公比为1
3的等比数列,那么a n
=( )
A.3
2⎝⎛⎭⎫1-13n B.3
2⎝⎛⎭⎫1-13n -1 C.2
3⎝⎛⎭
⎫1-13n D.2
3⎝⎛⎭
⎫1-13n -1 10.等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A .-24 B .-3 C .3
D .8
11.数列{a n }满足a 1=2,a 2=1,并且a n ·a n -1a n -1-a n =a n ·a n +1
a n -a n +1(n ≥2),则数列{a n }的第100项为( )
A.12100
B.1
250 C.1100
D.150
12.已知数列{a n }的通项公式为a n =
1
(n +1)n +n n +1
(n ∈N *),其前n 项和为S n ,则在数列S 1,
S 2,…,S 2 018中,有理数项的项数为( )
A .42
B .43
C .44
D .45
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________. 14.已知数列{a n }的通项公式为a n =2 018-3n ,则使a n >0成立的最大正整数n 的值为________. 15.一件家用电器,现价2 000元,实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为0.8%,并按复利计息,那么每期应付款________元(参考数据:1.00811≈1.092,1.00812≈1.100,1.0811≈2.332, 1.0812≈2.518).
16.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则
a 2
b 2
=________. 三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)
17.(10分)已知函数f (x )=3x
x +3
,数列{x n }的通项由x n =f (x n -1)(n ≥2且x ∈N *)确定.
(1)求证:⎩
⎨⎧⎭
⎬⎫
1x n 是等差数列;
(2)当x 1=1
2时,求x 2 018.
18.(12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;
(2)记S n 为{a n }的前n 项和,若S m =63,求m .
19.(12分)张先生2018年年底购买了一辆1.6 L 排量的小轿车,为积极响应政府发展森林碳汇(指森林植物吸收大气中的二氧化碳并将其固定在植被或土壤中)的号召,买车的同时出资1万元向中国绿色碳汇基金会购买了2亩荒山用于植树造林.科学研究表明:轿车每行驶3 000公里就要排放1吨二氧化碳,林木每生长1立方米,平均可吸收1.8吨二氧化碳.
(1)张先生估计第一年(即2019年)会用车1.2万公里,以后逐年会增加1 000公里,则该轿车使用10年共要排放二氧化碳多少吨?
(2)若种植的林木第一年(即2019年)生长了1立方米,以后每年以10%的生长速度递增,问林木至少生长多少年,吸收的二氧化碳的量超过轿车10年排出的二氧化碳的量(参考数据:1.114≈3.797 5,1.115≈4.177 2,1.116≈4.595 0)?
20.(12分)在等差数列{a n }中,S n 为其前n 项和(n ∈N *),且a 2=3,S 4=16. (1)求数列{a n }的通项公式; (2)设b n =1
a n a n +1
,求数列{b n }的前n 项和T n .
21.(12分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.
(1)求q的值;
(2)求数列{b n}的通项公式.
22.(12分)已知等差数列{a n}的前n项和为S n,且S10=55,S20=210.
(1)求数列{a n}的通项公式.
(2)设b n=
a n
a n+1
,是否存在m,k(k>m≥2,m,k∈N*)使得b1,b m,b k成等比数列?若存在,请说
明理由.。