Evaluation of thermal comfort using combined CFD and experimentation用CFD与实验方法的热舒适性评估

合集下载

数值人体模型的建立方法及其研究发展综述

数值人体模型的建立方法及其研究发展综述

数值人体模型的建立方法及其研究发展综述作者:赵阳, 端木琳, 李祥立, 张腾飞, ZHAO Yang, DUANMU Lin, LI Xiang-li, ZHANG Teng-fei作者单位:大连理工大学土木水利工程学院刊名:建筑热能通风空调英文刊名:BUILDING ENERGY & ENVIRONMENT年,卷(期):2010,29(1)1.Hagino M;J Hara Development of a method for predicting comfortable airflow in the passenger compartment 1992(Series 922131)2.Matsunaga K;F Sudo Evaluation and measurement of thermal comfort in the vehicles with a new thermal manikin 1993(Series 931958)3.袁修干人体热调节系统的数学模拟 20054.A P Avolio Multi-branched model of the human arterial system 19805.Shitzer A;Eberhart R C Heat Transfer in Medicine and Biology Analysis and Applications 19856.Shin-ichi Tanabe;Kozo Kobayashi;Junta Nakano Evaluation of thermal comfort using combined multi-node thermoregulation and radiation models and computational fluid dynamics 20027.Gagge A P A standard predictive index of human response to the thermal environment 1986(02)8.Gagge A P;Stolwijk J A J;Nishi Y An effective temperature scale based on a simple model of human physiological regulatory response 1971(01)9.Kerslake D M;Waddle J L The Heat Exchange of Wet Skin 195810.Givoni B;Goldman R F Predicting rectal temperature response to work,environment,and clothing 197211.Wissler E H Mathematical simulation of human behavior using whole-body models 198512.P O Fanger Thermal comfort 197013.Fiala D Dynamic Simulation of Human Heat Transfer and Thermal Comfort 199814.Hui Zhang Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments 200315.Guan Yazheng;Bron W J;Mohammad H H Literature review of the advances in thermal comfort modeling 2003(02)16.王良海突变热环境下人体热反应的研究 199217.Naiping Gao;Jianlei Niu;Hui Zhang Coupling CFD and human body thermoregulation model for the assessment of personalized ventilation[外文期刊] 2006(03)18.Shengwei Zhu;Shinsuke Kato;Ryozo Ooka Development of a computational thermal manikin applicablein a nonuniform thermal environment[外文期刊] 2007(04)19.B W Jones;Y Ogawa Transient interaction between the human and the thermal environment 199320.朱颖心建筑环境学 200521.Zheng Lou;Wenjei Yang Whole body heat balance during the human thoracic hyperthermia 199022.Werner J Mathematical treatment of structure and function of the human thermoregulatory system 197723.Wissler E H Mathematical simulation of human thermal behavior using whole body models 198524.Konz S;Hwang C;Dhiman B An experimental validation of mathematical simulation of human thermoregulation 1977(01)25.Gordon R G The Response of Human Thermoregulatory System in the Cold 197426.Hillel Arkin;Avraham Shitzer Model of Thermoregulation in the Human Body[EEC-148] 198427.Hemmel H T Regulation of interaal body temperature 196828.甘声华生理学 200629.Xu L X;Chen M M;Holmes K R Theoretical analysis of the large blood vessel influence on the local tissue temperature decay after pulse heating 1993(02)30.王补宣;王艳民生物传热基本方程的研究 1993(02)31.Shitzer A;Stroschein L A;Vital P Numerical analysis of an extremity in a cold environment including countereurrent arterial-venous heat exchange 199732.Weinbaum S;Jiji L M;Lemons D E Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer-part I:Anatomical foundation and model conceptualization 198633.Chato J C Fundamentals of Bioheat Transfer 198934.Pennes H H Analysis of tissue and arterial blood temperature in the resting forearm 194835.Fu G A Transient 3-D Mathematical Thermal Model for the Clothed Human 199536.Wissler E H A review of human thermal models 198837.Charlie Huizenga;Zhang Hui;Edward Arens A model of human physiology and comfort for assessing complex thermal environments[外文期刊] 2001(6)38.Dusan Fiala;Kevin J Lomas;Martin Stohrer Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions 200139.Dusan Fiala;Kevin J Lomas;Martin Stohrer A computer model of human thermoregulation for a wide range of environmental conditions:the passive system 199940.M Salloum;N Ghaddar;K Ghali A new transient bioheat model of the human body and its integration to clothing models[外文期刊] 2007(4)41.P O Fanger Thermal Comfort 198242.Dhiman D B Simulation of a Human Thermoregulatory System with Dry Ice Cooling 197443.Konz S A Computerized prediction of physiological responses to work environments 197944.Gordon R G;Roemer R B;Horvath S M A mathematical model of the human temperature regulatory system-transient cold exposure response 197645.Gordon R G The Response of a Human Temperature Regulatory System Model in the Cold 197446.Werner J;Buse M Three-dimensional simulation of cold and warm defense in man 1986(05)47.Kuznetz L H A two-dimensional transient mathematical model of human thermoregulation 1979(05)48.J A J Stolwijk A Mathematical Model of Physiological Temperature Regulation in Man[NASA,CR-1855] 197149.J A J Stolwijk Mathematical model of thermoregulation 197051.Smith C A Transient Three-dimensional Model of the Human Thermal System 199152.Hsu S A Thermoregulatory Model for Heat Acclimation and Some of Its Applications 197753.Sprague C H;Jai B Y;Nevins R G The prediction of thermal sensation for man in moderate thermal environments via a simple thermoregulatory model 1974(01)54.Jai B Y Prediction of Thermal Sensation from a Simple Thermoreguiatory Model 197355.Gagge A P A Two-Node Model of Human Temperature Regulation in FORTRAN 197356.Frank S M;S N Raja Relative contribution of core and autonomic responses in human[外文期刊]1999(05)57.Wang X Thermal Comfort and Sensation under Transient Conditions 19941.李健.于清华.黎明和.LI Jian.YU Qing-hua.LI Ming-he三维人体模型的个性化调节及平滑处理研究[期刊论文]-工程图学学报2008,29(5)2.陈君.陈永强.Chen Jun.Chen Yong-qiang一种构建三维人体模型的方法[期刊论文]-武汉科技学院学报2009,22(1)3.张星数字化人体模型的建立及其在电动自行车人机分析中的应用[学位论文]2006本文链接:/Periodical_jzrntfkt201001006.aspx。

病房室内热环境与人体热舒适研究.pdf

病房室内热环境与人体热舒适研究.pdf

病房室内热环境与人体热舒适研究重庆大学硕士学位论文(学术学位)学生姓名:刘*指导教师:张华玲副教授专业:供热、供燃气、通风与空调工程学科门类:工学重庆大学城市建设与环境工程学院二O一四年五月The Study On Indoor Thermal Environment and Comfort In Hospital WardsA Thesis Submitted to Chongqing Universityin Partial Fulfillment of the Requirement for theMaster’s Degree of EngineeringbyLiu XiangSupervisor: Prof. Zhang HualingMajor: Heating, Gassing, Ventilation andAir-conditioning EngineeringCollege of faculty of Urban Construction and Environmental Engi-neering of Chongqing University ,Chongqing, ChinaMay, 2014中文摘要摘要医院是维护人类自身健康、恢复人体机能、保障人体舒适的场所。

当前医院建筑空调系统设计大多仍采用舒适性空调的设计理念,不同医疗功能区热湿环境参数设定的目的性与针对性不强,导致设计与运行效果不能充分满足医疗服务过程的特殊要求,这些问题已引起业内人士广泛关注。

本文依托国家自然科学基金项目《医疗建筑热湿环境对人体健康影响研究》(No.51278506),对普通病房热环境现状及病人的热舒适进行了调研,探讨影响病人热感觉的因素,提出适用于普通病房空调环境下的热舒适统计学模型。

首先,对普通病房室内热环境和病人主观热感觉进行了现场调查研究和分析,得到病房室内热环境及病人的热舒适现状。

在此基础上,采用Bin法,通过主观热感觉与ET*线性拟合得到冬夏季主观中性温度;对ET*和每温度间隔内病人热期望投票进行概率单位回归分析,得到冬夏季病人的期望温度,并以20%不满意率做为响应曲线,得到冬夏季80%病人感觉舒适的温度区间。

住宅建筑论文参考文献范例

住宅建筑论文参考文献范例

住宅建筑论文参考文献一、住宅建筑论文期刊参考文献[1].中国住宅建筑使用阶段碳排放的因素分解实证.《同济大学学报(自然科学版)》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2012年6期.胡文发.郭淑婷.[2].中庭式住宅建筑热压通风的预测模型研究.《湖南大学学报《防灾减灾工程学报》.被中信所《中国科技期刊引证报告》收录ISTIC.2010年z1期.蔡向荣.王敏权.傅柏权.[4].高层住宅建筑南立面太阳能热水系统水量配比特性研究.《太阳能学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2012年4期.魏生贤.李明.林文贤.季旭.余琼粉.罗熙.龙星.[5].住宅建筑内火灾高温烟气流动数学模型.《土木建筑与环境工程》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.2013年2期.郭震.袁迎曙.[6].住宅建筑内火灾高温烟气流动规律试验研究.《土木建筑与环境工程》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.2012年4期.郭震.袁迎曙.[7].空调运行模式对住宅建筑采暖空调能耗的影响.《重庆建筑大学学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI 收录EI.2006年5期.朱光俊.张晓亮.燕达.[8].北京市多层住宅建筑的物化环境影响研究.《清华大学学报(自然科学版)》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2005年6期.吴星.张智慧.肖厚忠.[9].基于综合降荷的住宅建筑窗水平遮阳方式优化设计.《太阳能学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2008年11期.张甫仁.[10].绿色住宅建筑与普通住宅建筑适用性对比研究基于武汉城区的调查. 《价值工程》.被中信所《中国科技期刊引证报告》收录ISTIC.2015年26期.何一慧.孙兆谦.二、住宅建筑论文参考文献学位论文类[1].住宅建筑被动式节能设计研究.被引次数:14作者:赵夏.建筑技术科学太原理工大学2013(学位年度)[2].住宅建筑保障室内(热)环境质量的低能耗策略研究.被引次数:15作者:喻伟.供热、供燃气、通风及空调工程重庆大学2011(学位年度)[3].住宅建筑全寿命周期生态效率度量方法研究.作者:昂双龙.管理科学与工程东南大学2012(学位年度)[4].商品住宅建筑设计方案评价研究.被引次数:10作者:罗玉轩.土木工程管理大连理工大学2013(学位年度)[5].基于统计学理论的城市住宅建筑能耗特征分析与节能评价.被引次数:24作者:陈淑琴.供热、供燃气、通风及空调工程湖南大学2008(学位年度)[6].住宅建筑估价中广义成新度的综合评价研究.被引次数:2作者:赵磊.技术经济及管理长安大学2012(学位年度)[7].太阳能热水系统在住宅建筑中应用的经济效果评价及政策建议.被引次数:2作者:顾亮杰.工程经济与管理西安建筑科技大学2014(学位年度)[8].夏热冬冷地区住宅建筑采暖空调负荷特性研究.被引次数:4作者:夏如杰.供热;供燃气;通风及空调工程西安建筑科技大学2013(学位年度)[9].钢结构住宅建筑在邯郸地区的推广应用研究.被引次数:1作者:王乐.建筑技术科学河北工程大学2013(学位年度)[10].住宅建筑施工项目管理绩效评价研究.被引次数:25作者:白云龙.项目管理哈尔滨工程大学2007(学位年度)三、相关住宅建筑论文外文参考文献[1]Amethodologyforestimatingthelifecyclecarbonefficiencyofareside ntialbuilding.D.Z.LiH.X.ChenEddieC.M.HuiJ.B.ZhangQ.M.Li《Buildingandenvironment》,被EI收录EI.被SCI收录SCI.2013Jan.[2]EvaluationofthethermalperformanceofaThermallyActivatedBuilding Systemaccordingtothethermalloadinaresidentialbuilding. SangHoonParkWoongJuneChungMyoungSoukYeoKwangWooKim 《Energyandbuildings》,被EI收录EI.被SCI收录SCI.2014Apr.[3]Useofreferencebuildingstoassesstheenergysavingpotentialsofther esidentialbuildingstock:TheexperienceofTABULAproject. IlariaBallariniStefanoPaoloCorgnatiVincenzoCorrado《Energypolicy》,被EI收录EI.被SCI收录SCI.2014May[4]ApplicationresearchofECOTECTinresidentialestateplanning. LiYangBaoJieHeMiaoYe《Energyandbuildings》,被EI收录EI.被SCI收录SCI.2014Apr.[5]Anewcalculationmethodforshapecoefficientofresidentialbuildingu singGoogleEarth.FengQiYixiangWang《Energyandbuildings》,被EI收录EI.被SCI收录SCI.2014Jun.[6]Effectofbuildingregulationonenergyconsumptioninresidentialbuil dingsinKorea.DoosamSongYoungJinChoi《Renewable&sustainableenergyreviews》,被EI收录EI.被SCI收录SCI.20121[7]Impactofusingcoolpaintsonenergydemandandthermalcomfortofaresid entialbuilding.DianaDiasJoaoMachadoVitorLealAdelioMendes 《Appliedthermalengineering:Design,processes,equipment,economics》,被EI收录EI.被SCI收录SCI.20141/2[8]Astudyondifferentnaturalventilationapproachesataresidentialcol legebuildingwiththeinternalcourtyardarrangement. AdiAinurzamanJamaludinHazreenaHusseinAtiRosemaryMohdAriffinNilaKeumal a《Energyandbuildings》,被EI收录EI.被SCI收录SCI.2014Apr.[9]Correlatingenergyconsumptionwithmultiunitresidentialbuildingch aracteristicsinthecityofToronto.MarianneF.TouchieClarissaBinkleyKimD.Pressnail《Energyandbuildings》,被EI收录EI.被SCI收录SCI.2013Nov.[10]Effectofadjacentshadingonthethermalperformanceofresidentialbu ildingsinasubtropicalregion.A.LS.Chan《Appliedenergy》,被EI收录EI.被SCI收录SCI.2012四、住宅建筑论文专著参考文献[1]浅谈民用住宅建筑防雷设计.赵成磊.王颖.李晶晶,2013第30届中国气象学会年会[2]天普太阳能空气热水器在住宅建筑相结合中的应用.郭玉兴,20132013年中国太阳能热利用行业年会暨高峰论坛[3]非幕墙式住宅建筑外保温系统的优化与选择.李先立.李小荷.徐欣,2014第十届国际绿色建筑与建筑节能大会[4]住宅建筑能量信息系统综合评价模型研究.陈淑琴.沈恒根.李念平.关军,2010全国暖通空调制冷2010年学术年会[5]平板太阳能在住宅建筑中的应用与结合.袁家普,20122012年中国太阳能热利用行业年会暨太阳能光热产业发展二十年纪念会[6]现代住宅建筑给排水设计中的几个关键问题.刘志明,20122012全国水泥企业节煤节电新技术交流大会[7]工业化预制装配式(PC)住宅建筑在中国的探索之路及未来可能性.凌佩雯,2011《中国的设计与创新》2011年学术会议[8]沈阳某住宅建筑方案优化及恒温恒湿设计.郭庆娜.张永宁.薛志锋,2012北京制冷学会第十一届学术年会[9]分散式水源热泵空调在住宅建筑中的应用.刘军,2012四联智能·2012第四届中国地源热泵行业高层论坛[10]美国垂直保温夹心墙板在非住宅建筑中的应用.宗德林,2012第二届建筑工业化技术论坛。

英国暖通专业(采暖 通风 空调)申请条件及6所名校推荐

英国暖通专业(采暖 通风 空调)申请条件及6所名校推荐

英国暖通专业(采暖/通风/空调)申请条件及6所名校推荐留学英国之专业详解:暖通专业(采暖/通风/空调)介绍。

"暖通"是建筑设备中工种的一个分类的名称。

暖通包括:采暖、通风、空气调节这三个方面,缩写HVAC(Heating,Ventilating and Air Conditioning),这三个方面简称暖通空调。

采暖(Heating)--又称供暖,按需要给建筑物供给负荷,保证室内温度按人们要求持续高于外界环境。

通常用散热器等。

通风(Ventilating)--向房间送入,或由房间排出空气的过程。

利用室外空气(称新鲜空气或新风)来置换建筑物内的空气(称室内空气),通常分自然通风和机械通风。

空气调节(Air Conditioning)--简称空调用来对房间或空间内的温度、湿度、洁净度和空气流动速度进行调节,并提供足够量的新鲜空气的建筑环境控制系统。

附暖通专业的主要课程:传热学、流体力学、工程热力学、热质交换原理与设备、电工学、机械设计基础、供热工程、锅炉房工艺与设备、制冷技术、空气调节、工业通风、流体输配管网、燃气输配、建筑设备自动化等。

>>申请英国暖通专业在中国,有的大学会直接开设“暖通“这一专业,设置在<建筑与工程学院>下;也有的大学会称之为”能源与环境系统工程“,设置在<机械与工程学院>下。

虽然专业名称有所不同,但是我们仍然可以通过课程设置来进行它们与机械自动化和环境工程之间的区别。

在英国,该专业通常设置在建筑环境与工程学院或者土木工程学院下,也有部分开设在能源与环境学院下,是集机械+建筑+能源的综合学科,专业名称通常称之为“能源与建筑环境工程“,培养的也是当今社会所需求的跨学科人才。

下面我们聊聊英国开设暖通专业方向的六所大学(即:能源与建筑环境工程方向):1拉夫堡大学Loughborough University (拉夫堡/1966年) TIMES2018:TOP7【所属学院】Architecture, Building and Civil Engineering建筑学,建筑和土木工程【专业名称】Low Energy Building Services Engineering MSc低能源建筑服务工程【专业简介】该专业的课程解释了人体热舒适和室内空气品质的必要性,低能耗建筑设计原理,建筑空调系统的设计,建筑能源供应系统,包括电子和地区能源系统,低能耗建筑的控制的理论和使用计算机建模和仿真预测建筑性能设计知识,使用3D建筑信息建模的研究方法和数据分析。

校园供水系统维修问题探究

校园供水系统维修问题探究

科学技术创新2021.12模型预测结果。

参考文献[1]Fanger P.O.Thermal comfort,Analysis and application in environmental engineering,McGraw Hill.1970.[2]De Dear RJ.The adaptive model of thermal comfort and energy conversation in the built Environment Intl J Biomaterial,45,2001;p.100-108.[3]王海英,胡松涛.对PMV 热舒适模型适用性的分析[J].建筑科学,2009,25(006):108-114.[4]黑赏罡,姜曙光,杨骏,等.Fanger PMV 热舒适模型发展过程及适用性分析[J].低温建筑技术,2017(10).[5]丁勇花,狄育慧,王智鹏.热舒适模型与热适应模型的对比分析[J].低温建筑技术,2015,37(4):149-152.[6]ASHRAE.Standard 55.Thermal Environmental Conditions for Human Occupancy.Atlanta:ASHRAE;2004.[7]ISO 7730,Thermal comfort using calculation of the PMV and PPD indices and local thermal consideration,International Organization Standardization (2005).[8].au/rp -884/ashrae_rp884.html [Accessed on dated 21-04-2014].[9]de Dear R,Brager G,Cooper D.Developing an adaptive model of thermal comfort and preference:Final Report ASHRAE RP -884.Sydney,Australia:Macquarie University;1997.基金项目:2019年国家级大学生创新创业训练计划项目,课题编号201910205005。

热舒适度评价与城市热环境研究_现状_特点与展望_吴志丰

热舒适度评价与城市热环境研究_现状_特点与展望_吴志丰
35 ( 5 ) : 1364 - 1371 生态学杂志 Chinese Journal of Ecology 2016 ,
DOI: 10. 13292 / j. 1000 - 4890. 201605. 036
热舒适度评价与城市热环境研究 : 现状 、 特点与展望
吴志丰
1, 2
陈利顶
1*
( 1 中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京 100085 ; 2 中国科学院大学,北京 100049 )
上热量交换并非平衡。随着人们对热舒适机理理解 相信对处于复杂环境中的人体热舒适状 逐渐深入, 况会有更加准确的描述。 2 热舒适度评价指数 构建热舒适度评价指数是判断热环境优劣的主 可以将 要方式。从发展阶段和科学基础两个方面, 热舒适 度 评 价 指 数 分 为 经 验 指 数 和 机 理 指 数 两 大类。 2. 1 经验性热舒适评价指数 经验性热舒适评价指数多形成于热舒适研究早 期, 那时人们对人体热交换机理缺乏了解 , 主要依靠 人体在不同环境下感受的统计分析来构建评价指 数。舒适与否是人体对空气温度、 空气湿度、 风速、 辐射等多项环境因子综合作用下的反应 。基于这种 认识, 研究人员开发了大量表征环境热状况的经验 1979 ) 、 指数, 如热量指数( heat index) ( Steadman, 湿 1957 ) 、 球黑球温度 ( WGBT ) ( Yaglou et al. , 风冷指 1994 ) 、 数( wind chill index ) ( Kunst et al. , 平均辐射 温 度 ( mean radiant temperature ) ( Thorsson et al. , 2007 ) 等。 截至 目 前, 经 验 热 舒 适 评 价 指 数 有 100 余 种 ( AliToudert, 2005 ) , 它们计算简单, 易于理解, 目前 仍有很多指数应用于日常生产生活中 。但是其缺点 有以下几个方面: ( 1 ) 没有考虑环境因子的综合作 导致经验指数只能评价热环境的某个特征; ( 2 ) 用, 多针对某个特定区域人群开发, 对其他气候类型区 和人群适用性不高; ( 3 ) 缺乏对人体热调节机制的 1976 ) ; ( 4 ) 不同 考虑, 科学性依据不充分 ( Givoni, 1993 ; Jendritzky 指数评价结果缺乏可比性 ( Hppe, et al. , 2012 ) 。 2. 2 机理性热舒适度评价指数 随着热生理学 ( thermal physiology ) 和生物气象 学( biometeorology) 等学科的发展, 人们对外界环境 因子对人体的影响方式以及人体肌体各部分对外界 环境变化的响应机制有了更加深入的认识 , 由此从 热交换机理上建立了热舒适度评价的指数 。 2. 2. 1 室内热舒适度评价指数 室内热舒适度评 价指数是基于人体热量平衡而建立, 通过分析室内 环境人体热储量变化, 判断环境的舒适程度, 其表达 式为: S = M + W + Q * + Q H + Q L + Q SW + Q RE ( 1)

耐热、耐寒测试 英语

耐热、耐寒测试 英语

耐热、耐寒测试英语Thermal Resilience: Pushing the Boundaries of Material EnduranceImagine a world where materials could withstand the harshest of environments, from the scorching heat of the desert to the bone-chilling cold of the Arctic. This is the realm of thermal resilience, a field of study that explores the remarkable ability of materials to maintain their structural integrity and functionality under extreme temperature conditions. As technology continues to push the boundaries of what's possible, the need for materials that can endure these extreme environments has become increasingly crucial.One of the primary applications of thermal resilience research is in the aerospace industry. As spacecraft and satellites venture deeper into the unknown, they must be equipped with components that can withstand the rigors of launch, the vacuum of space, and the dramatic temperature fluctuations encountered during orbit and re-entry. Engineers and materials scientists work tirelessly to develop alloys, ceramics, and composites that can withstand the intense heat and cold without compromising their performance.Consider the heat shield of a spacecraft, for example. During re-entry,the vehicle experiences temperatures that can reach thousands of degrees Celsius as it plunges through the Earth's atmosphere. The heat shield must be able to dissipate this energy and protect the delicate components and crew inside. Materials like ablative heat shields, which gradually erode to absorb the heat, or thermal protection systems made of high-temperature ceramics, are critical to ensuring the safety and success of these missions.But the need for thermal resilience extends far beyond the aerospace industry. In the automotive sector, materials that can withstand high temperatures are essential for components like engine blocks, turbochargers, and exhaust systems. These parts must be able to operate reliably in the harsh conditions of an internal combustion engine, where temperatures can reach hundreds of degrees Celsius.Similarly, in the energy industry, materials used in power generation equipment, such as turbines and nuclear reactors, must be able to withstand extreme temperatures and thermal cycling without compromising their structural integrity or performance. The development of advanced ceramics, superalloys, and composite materials has been instrumental in improving the efficiency and reliability of these critical systems.The challenge of thermal resilience is not limited to high-temperature environments. Materials that can withstand cryogenictemperatures, such as those encountered in liquid natural gas (LNG) storage and transportation, or in the superconducting magnets used in medical imaging equipment, are also in high demand. These materials must be able to maintain their strength, ductility, and insulating properties at temperatures as low as -200 degrees Celsius.Researchers and engineers have developed a range of techniques to assess the thermal resilience of materials, including thermal shock testing, thermal cycling, and high-temperature exposure experiments. These tests simulate the extreme conditions that materials may face in real-world applications, allowing for the evaluation of their performance and the development of new, more resilient materials.One such technique is the use of high-heat flux testing, where materials are exposed to intense, localized heat sources to simulate the extreme conditions encountered in applications like rocket nozzles or hypersonic vehicle leading edges. By understanding how materials respond to these intense thermal loads, engineers can design more robust and reliable systems.Another approach is the use of cryogenic testing, where materials are subjected to extreme cold temperatures to assess their low-temperature properties. This is particularly important for materials used in aerospace, energy, and medical applications, where the ability to maintain performance at cryogenic temperatures is critical.Beyond the development of new materials, the field of thermal resilience also encompasses the optimization of existing materials and the design of innovative thermal management systems. This can involve the use of advanced cooling technologies, insulation materials, and heat dissipation strategies to mitigate the effects of extreme temperatures and protect sensitive components.As the world continues to push the boundaries of what's possible, the importance of thermal resilience will only grow. From the exploration of distant planets to the development of next-generation energy systems, the ability of materials to withstand the harshest of environments will be a key driver of innovation and progress. By continuing to advance the science of thermal resilience, we can unlock new possibilities and push the limits of what we can achieve.。

工业设备及管道绝热工程质量检验评定标准

工业设备及管道绝热工程质量检验评定标准

中华人民共和国国家标准工业设备及管道绝热工程质量检验评定标准GB50185-93Standard for inspection and evaluation of thermalinsulationWork of industrial equipment and pipeline主编部门:中华人民共和国化学工业部批准部门:中华人民共和国建设部施行日期:1994年8月1日1993北京关于发布国家标准《工业设备及管道绝热工程质量检验评定标准》的通知建标〔1993〕630号根据国家计委计综合〔1989〕30号文的要求,由化学工业部会同有关部门共同制订的《工业设备及管道绝热工程质量检验评定标准》已经有关部门会审,现批准《工业设备及管道绝热工程质量检验评定标准》GB50185—93为强制性国家标准,自一九九四年八月一日起施行。

本标准由化学工业部负责管理,具体解释等工作由化学工业部施工技术研究所负责,出版发生由建设部标准定额研究所负责组织。

中华人民共和国建设部一九九三年八月二十八日目次1 总则2 术语3 质量检验评定的工程划分、等级、程序及组织3.1 工程划分3.2 等级3.3 程序及组织4 绝热层的质量检验4.1 一般规定4.2 固定件和支承件4.3 捆扎、拼砌式绝热层4.4 缠绕式绝热层4.5 充填绝热层4.6 粘贴绝热层4.7 浇注、喷涂绝热层4.8 可拆卸式绝热层4.9 伸缩缝及膨胀间隙4.10 检查数量5 防潮层的质量检验6 保护层的质量检验6.1 金属保护层6.2 毡、箔、布类保护层6.3 抹面保护层6.4 检查数量附录A 分项工程质量检验表附录B 分项工程质量评定表附录C 分部工程质量评定表附录D 单位工程质量评定表附录E 质量保证资料核查表附录F 本标准用词说明附加说明1 总则1.0.1为统一工业设备及管道绝热工程质量的检验评定方法,加强企业技术管理,确保工程质量,制定本标准。

1.0.2本标准适用于工业设备及管道内介质温度大于等于-196℃、小于等于+850℃的外部绝热工程质量的检验和评定。

高温测试仪 英文翻译

高温测试仪 英文翻译

高温测试仪英文翻译High temperature tester, as the name suggests, is a device used to test and evaluate the performance of various materials and products under high temperature conditions. It plays a crucial role in industries such as aerospace, automotive, electronics, and materials research. With the increasing demand for high-quality products and the need to ensure their reliable performance under extreme conditions, high temperature testers have become essential tools in many industries.The primary purpose of a high temperature tester is to simulate and replicate the extreme temperature conditions that materials and products may encounter during their use or manufacturing process. This allows manufacturers and researchers to evaluate the performance and durability of their products, identify any potential weaknesses, and make necessary improvements before the actual production or implementation.One of the key features of a high temperature tester is its ability to accurately control and maintain temperature within a specific range. This is achieved through advanced temperature control systems, which often include precise sensors, heating elements, and cooling systems. The temperature control system ensures that the desired temperature is reached and maintainedthroughout the testing process, allowing for accurate and reliable results.In addition to temperature control, high temperature testers also offer a range of other functionalities and features to meet different testing requirements. For example, some testers provide the option to vary temperature cycles, allowing for the simulation of cyclic thermal conditions. Others offer the ability to control other environmental factors such as humidity or pressure, enabling the testing of materials and products under more realistic conditions.High temperature testers come in various designs and configurations to accommodate different testing needs and sample sizes. Some testers are designed for small-scale laboratory testing, while others are capable of handling large-scale industrial testing. They can be equipped with different types of chambers or compartments, such as vertical or horizontal configurations, to accommodate different types and sizes of samples.The testing process using a high temperature tester typically involves placing the sample inside the test chamber and subjecting it to the desired temperatures and other environmental conditions. Data on various performance parameters, such as mechanical strength, electrical conductivity, thermal expansion, and chemical stability, can be measured and analyzed during the testing process. This data provides valuableinsights into the behavior and properties of materials and products under high temperature conditions.The results obtained from high temperature testing can be used for various purposes. For manufacturers, the data can help in product development and improvement, ensuring that the final products meet the required performance standards. Researchers can use the data to investigate the fundamental behavior of materials and gain a deeper understanding of their properties. High temperature testing also helps in quality control and risk assessment, ensuring that products are safe and reliable for consumers.In conclusion, the high temperature tester is a vital tool in many industries that deal with materials and products exposed to extreme temperature conditions. Its ability to accurately control and simulate high temperature environments allows for the evaluation of product performance, identification of weaknesses, and improvement of design and manufacturing processes. With the increasing demand for high-quality and reliable products, the importance of high temperature testing is likely to continue to grow.。

寒冷地区典型办公园区室外热舒适研究

寒冷地区典型办公园区室外热舒适研究

2024年第5期(总第52卷㊀第399期)No.5in2024(TotalVol.52ꎬNo.399)建筑节能(中英文)JournalofBEEʏ2024国际零碳城市乡村与零碳建筑大会专题专栏SpecialColumnof2024InternationalZeroCarbonCitiesandVillagesandZeroCarbonBuildingsConference㊀㊀㊀㊀㊀㊀引用本文:苗时雨ꎬ郭飞ꎬ王小妮ꎬ等.寒冷地区典型办公园区室外热舒适研究[J].建筑节能(中英文)ꎬ2024ꎬ52(5):67-73.doi:10.3969/j.issn.2096-9422.2024.05.011收稿日期:2024 ̄04 ̄12ꎻ㊀修回日期:2024 ̄05 ̄19寒冷地区典型办公园区室外热舒适研究苗时雨1ꎬ㊀郭㊀飞1әꎬ㊀王小妮1ꎬ㊀宋忻航1ꎬ㊀龚志品2(1.大连理工大学建筑与艺术学院ꎬ辽宁㊀大连㊀116000ꎻ2.中国建筑节能协会ꎬ北京㊀100831)摘要:㊀办公建筑作为城市中常见的建筑类型ꎬ是城市居民的重要活动场所ꎬ室外热环境的改善能够有效提升办公园区的空间品质ꎮ选取大连市典型办公园区作为研究对象ꎬ采用类型学研究方法ꎬ以通用热气候指数(UniversalThermalClimateIndexꎬUTCI)与热舒适预测平均投票数(PredictedMeanVoteꎬPMV)作为评价指标ꎬ通过软件模拟不同围合度条件下办公园区热舒适的分布情况ꎮ结果表明:①以平面围合程度作为划分依据ꎬ将研究样本按照围合程度从低到高分为点式㊁板式㊁L字型㊁U字型㊁庭院型㊁复合型六大类ꎮ②在建筑参数相近的条件下ꎬ随着建筑组团围合度的提高ꎬ办公园区建筑场地内的室外热舒适度越高ꎬ即场地热舒适度从高到低排序为:复合式>庭院式>U字型>L字型>板式>点式ꎮ在仅考虑室外热舒适度的情况下ꎬ寒冷地区办公建筑适合围合度高(复合型㊁庭院型㊁U字型)的建筑形式ꎮ关键词:㊀办公园区ꎻ㊀类型学ꎻ㊀建筑围合度ꎻ㊀室外热舒适ꎻ㊀热舒适模拟ꎻ㊀城市形态中图分类号:㊀TU119㊀㊀㊀文献标志码:㊀A㊀㊀㊀文章编号:㊀2096 ̄9422(2024)05 ̄0067 ̄07OutdoorThermalComfortofTypicalOfficeParksinColdRegionsMIAOShiyu1ꎬGUOFei1әꎬWANGXiaoni1ꎬSONGXinhang1ꎬGONGZhipin2(1.SchoolofArchitectureandArtꎬDalianUniversityofTechnologyꎬDalian116000ꎬLiaoningꎬChinaꎻ2.ChinaAssociationofBuildingEnergyEfficiencyꎬBeijing100831ꎬChina)㊀㊀Abstract:Officebuildingsꎬasacommonbuildingtypeincitiesꎬareimportantactivityplacesforurbanresidentsꎬandtheimprovementofoutdoorthermalenvironmentcaneffectivelyenhancethespatialqualityofofficeparks.ThestudyselectsatypicalofficeparkinDalianastheresearchobjectꎬadoptsthetypologyresearchmethodꎬtakesUniversalThermalClimateIndex(UTCI)andPredictedMeanVote(PMV)astheevaluationindexꎬandsimulatesthedistributionofthermalcomfortintheofficeparkunderdifferentenclosureconditions.Theresultsshowthat:1)thestudysamplesareclassifiedintosixcategoriesaccordingtothedegreeofenclosure:PointTowerOfficeBuildingꎬPanelOfficeBuildingꎬL ̄shapedOfficeBuildingꎬU ̄shapedOfficeBuildingꎬCourtyardOfficeBuildingꎬandHybridOfficeBuildingꎬfromlowtohigh.2)Underthesimilarbuildingparametersꎬwiththeincreasingofbuildingclusterenclosureꎬtheoutdoorthermalcomfortinthebuildingsitesofofficeparksbecomeshigher.Thatisꎬthethermalcomfortofthesiteindescendingorder:HybridOfficeBuilding>CourtyardOfficeBuilding>U ̄shapedOfficeBuilding>L ̄shapedOfficeBuilding>PanelOfficeBuilding>PointTowerOfficeBuilding.Whenonlyconsideringoutdoorthermalcomfortꎬofficebuildingsincoldregionsaresuitableforbuildingformswithhighdegreeofenclosure(HybridOfficeBuildingꎬCourtyardOfficeBuildingꎬU ̄shapedOfficeBuilding).㊀㊀Keywords:officeparkꎻtypologyꎻenclosuredegreeofbuildingꎻoutdoorthermalcomfortꎻthermalcomfortsimulationꎻurbanform0 引言办公建筑作为城市中常见的建筑类型是城市居民的重要活动场所ꎮ办公园区是指多个办公建筑组成的区域ꎬ多个办公建筑通常会相互配合ꎬ共同形成一个整体生态系统ꎮ受地理气候的影响ꎬ不同区域的办公园区的规模㊁空间布局方式㊁建筑朝向㊁建筑数量等参量都会有所不同ꎮ尤其是在寒冷地区ꎬ高纬度带76苗时雨ꎬ等:寒冷地区典型办公园区室外热舒适研究来的特殊物理环境及其人文环境使得寒冷地区与其他气候区的办公建筑形态有较大区别ꎮ因此ꎬ如何提取出研究区域内最具有代表性的办公建筑形态是研究室外热舒适与建筑能耗对建筑形态影响规律的重要前提[1ꎬ2]ꎮ1㊀大连市办公建筑形态提取方法概述本研究使用类型学方法ꎬ对大连市各区内的办公建筑组团进行分析[3]ꎬ按照体块围合程度划分类型ꎮ在模型数据的基础上对各种类型体块进行年均室外热舒适度模拟ꎮ归纳出建筑围合形式与室外热舒适度的分布规律ꎮ建模与模拟平台基于Rhino ̄Grasshopper[3-5]ꎮ1 1㊀研究区域大连市(东经121 61ʎꎬ北纬38 91ʎ)位于辽宁省南部ꎬ在辽东半岛的最南端ꎮ三面环海ꎬ海洋对气候的调节作用十分显著ꎮ大连气候四季分明:夏无酷暑ꎬ冬无严寒ꎬ日照充足ꎬ空气湿润ꎮ地处寒冷地区ꎬ冬季持续时间最长ꎬ约占半年之久ꎬ该地区建筑应满足冬季保温要求ꎬ部分地区兼顾夏季防热ꎻ春季㊁夏季㊁秋季持续时间短暂[6]ꎮ大连市区内山地丘陵多㊁平原少ꎬ整体地势北高南低㊁北宽南窄ꎬ地势由中央轴部向东南和西北两侧的黄海㊁渤海倾斜[7]ꎮ根据已有研究ꎬ结合室外热舒适影响范围和大连市中山区的街区尺度ꎬ确定本文街区形态研究中样本研究范围为400mˑ400m正交矩形区域ꎻ研究对象是以办公建筑为主要功能的建筑组团ꎮ依据相关研究ꎬ对各个区的城市建筑组团进行建模ꎬ并提取分析建筑的相关参数ꎬ进行室外热舒适度与热感觉投票分布模拟ꎮ1 2㊀研究方法建筑形态的影响因素众多ꎬ建筑形态是功能需求㊁技术条件㊁环境因素㊁经济因素㊁社会文化因素㊁法规与标准等因素共同作用下的结果ꎮ而现实项目中的建筑形式复杂多样ꎬ为研究提出了归纳建筑形态㊁创建典型模型的需要ꎮ创建典型模型能够概括具有特点的建筑形式ꎬ因此设计者在创建典型模型时ꎬ不仅要用统计数据作为形态设计的指导ꎬ还要具有一定的主观设计能力ꎬ更大程度地保留原始地块的形式特点ꎮ本研究将提出一种基于理性数据与感性设计经验的典型围合程度建筑组团提取方法ꎮ具体流程为:通过搜集大连市各区内办公建筑的信息并归纳总结ꎬ数据信息包括建筑层数㊁建筑面积㊁容积率等ꎻ通过正态分布筛选出常见平面形式ꎻ根据这些数值信息指导创建典型模型ꎮ2㊀办公建筑研究样本选取依据«民用建筑设计统一标准»(GB50352 2019)中将民用建筑按使用功能分为居住建筑和公共建筑ꎮ将公共建筑按照使用功能进一步细化ꎬ可以分为教育建筑㊁办公建筑㊁科研建筑㊁商业建筑㊁金融建筑㊁文娱建筑㊁医疗建筑等建筑类型ꎮ本研究以大连市公共建筑为研究样本ꎬ通过对建筑进行功能分类ꎬ统计分析出大连市办公建筑的典型样本[8]ꎮ2 1㊀办公建筑研究样本选取原则为保证模拟计算室外热舒适和建筑能耗的办公建筑形态具有大连市地域性特征[9]ꎬ所选取的原始样本应遵守以下原则:(1)办公建筑的整体轮廓清晰ꎬ有明显可识别的矢量边界ꎮ排除轮廓不清的建筑样本ꎮ整体建筑组团尺度和比例适中ꎬ方便后续进行模拟研究ꎮ(2)办公建筑组团内部建筑形态具有明显的围合特征ꎬ且排列方式合理ꎬ有明显设计依据ꎬ选取不同围合程度的建筑组合方式作为研究样本ꎮ建筑单体之间的尺寸应近似ꎬ避免出现建筑单体尺寸差距过大的情况ꎮ(3)办公建筑组团外部有清晰的道路ꎬ道路与建筑街区之间有明显边界ꎬ应充分反映大连市的丘陵地形特点ꎮ道路与建筑组团方式受地形影响出现不规则多边形ꎬ充分反映大连市地形特点ꎮ根据以上原则ꎬ本研究共选取大连市7个区内办公建筑组团70个ꎬ研究样本内部包含办公建筑单体超过200个ꎮ大连市各区样本详见表1ꎮ2 2㊀样本总体特征描述大连市作为辽宁省经济发达的城市ꎬ办公建筑形态多样ꎬ研究样本数量大ꎮ通过分析建筑基本信息可知ꎬ大连市中山区办公建筑形态地域特点明显ꎮ经过调研ꎬ对大连市常见的办公建筑类型与特点总结如下ꎮ2 2 1㊀建筑设计形式办公建筑按照建筑平面划分ꎬ可以分为点式㊁板式㊁L字型㊁U字型㊁庭院型㊁复合型6种平面类型(见表2)ꎮ不同的平面类型对应着不同的平面规模㊁长宽比㊁建筑层数㊁建筑层高等信息ꎮ此外ꎬ不同平面形式对应着建筑体块的不同围合程度ꎮ依据以上基本信息对建筑体块进行描述和分类ꎮ2 2 2㊀室外场地设计不规则地形和多种建筑体块的搭配ꎬ形成了多种多样的室外场地形式ꎮ场地设计是建筑设计的重要组成ꎮ场地与建筑之间关系紧密ꎬ在入口处建筑体块的退让ꎬ形成的入口场地空间是形成建筑流线的要素之一ꎻ在建筑围合起来的庭院部分ꎬ庭院中的场地空间是改善气候㊁创造交流空间的位置ꎮ因此重视室外86MIAOShiyuꎬetal.OutdoorThermalComfortofTypicalOfficeParksinColdRegions表1㊀大连市各区研究样本区域陆地区域面积/km2模型建筑体块数量/个模型平面图研究样本中山区47 410840汇邦中心㊁一方大厦㊁国际金融大厦㊁万达大厦(金城街)㊁大连远洋大厦㊁大连国际会议中心㊁绿地中心等西岗区26 69135森茂大厦㊁大工西岗科创产业园㊁逅库创意产业园㊁珠江国际大厦㊁金宸国际大厦(繁荣街)㊁365市民大楼㊁胜利花园写字楼等甘井子区505 1169350大连广告创意产业园㊁裕恒电商创业园㊁甘井博创科技创业园㊁大连高新园区创业大厦㊁大连理工大学校友创业园等旅顺口区508 266457大连皮尔蒙特服装文化创意产业园㊁西大院创意产业园㊁中建二局旅顺智能制造产业园项目部㊁佳成大厦等金州区(金普新区)1928 262408汽车广场金融中心㊁文化中心办公楼㊁杰源春楼㊁大连金州后石实业总公司滨海酒楼㊁金石工业园综合服务楼等普兰店区2677 323599强盛集贸大厦㊁移动皮口龙海大厦㊁松树集贸大厦等沙河口区38 1515466大连软件园㊁期货大厦㊁星海佳时科技园㊁星海大观㊁昌隆大厦㊁天兴罗斯福国际大厦㊁富鸿国际大厦等表2㊀办公建筑常见的6种围合形式围合形式点式平面板式平面L字型平面图例围合形式U字型平面庭院型平面复合型平面图例㊀㊀注:同色度色块区域空间功能相同ꎮ96苗时雨ꎬ等:寒冷地区典型办公园区室外热舒适研究场地设计ꎬ充分发挥当地舒适的室外环境ꎬ是提升城市品质从而进行节能设计的重要方式ꎮ2 3㊀办公建筑样本数据计量筛选出大连市典型办公建筑样本ꎬ通过开源数据与城市体块模型对样本进行初步了解ꎮ在各个区内的办公建筑集中区域抽取办公建筑组团研究样本ꎮ对所抽取的办公建筑样本进行数据分析ꎬ分析规模特征㊁规划形态和办公建筑类型3个基础参数ꎬ为后续大连市典型办公建筑生成提供数据支持ꎮ㊀㊀首先在大连市各区的办公建筑聚集区域内随机抽样约10~20个由道路㊁绿地㊁河流或行政边界围合而成的地块ꎬ所选取办公建筑在城市中均匀分布ꎮ研究样本涉及范围广ꎬ能够概括出大连市办公建筑组团的基本情况ꎮ汇总后的抽样结果为:中山区20个ꎬ西岗区10个ꎬ甘井子区10个ꎬ旅顺口区10个ꎬ金州区10个ꎬ普兰店区10个ꎮ3㊀典型办公建筑提取与热舒适模拟首先统计办公建筑数据ꎬ按照建筑单体的围合形式与建筑基本参数进行分类分析ꎮ汇总所有研究样本的参数信息ꎬ计算各类参数的频率ꎮ办公建筑的建筑形态复杂多样ꎬ依据前文研究ꎬ可以将建筑单体常见形态划分为点式㊁板式㊁L字型㊁U字型㊁庭院式㊁复合型这6大类ꎮ但实际案例中的平面形式与这6种平面分类方式并不是均匀分布的ꎮ高层办公建筑作为写字楼的常见形式ꎬ其平面多为点式布局ꎬ在实际案例中十分常见ꎮ而产业园与文化中心作为近年来办公建筑的常见形式ꎬ其平面往往呈现复合型ꎮ此外在实际项目中ꎬ由于地形复杂多样ꎬ地块会呈现多边形的形式ꎬ其平面形式无法用直观的几何图形概括ꎬ但这种情况出现的频率较小ꎮ因此ꎬ本研究将建筑平面概括为这6种几何形式(见图1㊁图2)ꎬ并通过容积率㊁建筑面积㊁建筑层数等信息进行分类分析ꎬ对每一种平面形式创建典型模型ꎮ㊀㊀遵循以上原则对各类围合程度的类型进行典型模型建模ꎬ即对典型形态进行还原设计ꎮ在此过程中ꎬ不仅需要设计者的主观把控ꎬ还需要对建筑形态微调ꎬ从而保证平面形式的特点ꎮ最后得出的典型形态作为典型模型ꎬ为后续的热舒适模拟提供模型支持ꎮ3 1㊀典型点式办公建筑创建研究模型如图3㊁图4所示ꎮ场地中心平均值9 49ħꎮ热感觉占比18 49%ꎻ中性占比35 70%ꎻ冷感觉占比45 84%ꎮ此类典型模型的建筑参考了超高层点式写字楼ꎬ分析样本切片特征后ꎬ确定点式典型模型含有底层商业裙房以及高层办公楼主体ꎮ通过对容积率㊁建筑面积㊁建筑层数进行正态分析ꎬ确定了大多数点式办公建筑的参数数值[10]ꎮ图1㊀300mˑ300m模拟场地图2㊀400mˑ400m周围环境的模型预处理图3㊀点式年均通用热气候指数(UTCI)分布图图4㊀点式年均热感觉投票(PMV)分布图07MIAOShiyuꎬetal.OutdoorThermalComfortofTypicalOfficeParksinColdRegions㊀㊀首先对平面形状优化ꎬ减优化平面不规则的形状ꎬ用几何矩形对平面进行概括ꎮ简化模拟计算的用时ꎬ同时保留了点式建筑形态特征ꎬ让室外热舒适分布规律更加明显ꎮ考虑到周围建筑对室外热舒适的影响ꎬ确定了400mˑ400m周围建筑作为周围环境ꎬ参与模拟计算ꎬ核心规模300mˑ300m作为研究地块的大小ꎮ周围的建筑会影响到性能模拟的准确度ꎬ因此在照顾到计算机性能的前提下适当保留周边建筑组团ꎮ该模型朝向主要为东南方向ꎬ且建筑高度的设计充分考虑了阳光ꎬ因此整体体块南向高度较高ꎬ在北侧不被遮挡的位置布置低层办公建筑ꎮ南侧高层写字楼建筑高度约80mꎬ北侧低层办公建筑高度约为20mꎮ场地内包括建筑主体㊁周边道路㊁绿植范围ꎬ其中绿植范围为灰色填充的地块ꎮ实际案例中该位置为常见观赏植被ꎮ由于大连属丘陵地形ꎬ建筑地块常常为不规则形状ꎬ该典型模型地块呈梯形ꎬ东侧和南侧有道路穿过ꎮ因此保留了原始场地中的道路关系ꎮ3 2㊀典型板式模型创建典型板式办公建筑组团如图5㊁图6所示ꎮ场地中心平均值9 82ħꎮ热感觉占比18 63%ꎻ热中性占比35 59%ꎻ冷感觉占比45 78%ꎮ板式办公建筑在实际案例中较为常见ꎬ常常通过多个建筑单体组合形成复杂的建筑组团形式ꎮ根据观察样本建筑组团特征后综合考虑ꎬ将板式建筑单体布置于研究场地的南面㊁东面和北面ꎮ使得整体建筑组团呈三面围合的围合方式ꎮ建筑单体与椭圆形场地相适应ꎮ周围的板式建筑单体以场地中心为圆心ꎬ向周围发散ꎮ周围建筑单体的主立面向圆心汇聚ꎮ3 3㊀典型L字型模型创建典型L字型办公建筑形态如图7㊁图8所示ꎮ场地中心平均值10 05ħꎮ热感觉占比19 96%ꎻ热中性占比34 76%ꎻ冷感觉占比45 28%ꎮL字型建筑单体有两面围合ꎬ两面开放的特点ꎮL字型建筑单体在办公建筑中较为常见ꎬ这种平面形式能够适应复杂的地形ꎮ根据观察样本建筑组团整体特征综合分析后ꎬ简化了建筑体块ꎮ建筑单体为L字型ꎬ两面围合ꎬ场地里其余空间为建筑的庭院ꎬ是场地的开放空间ꎮ建筑组团包含两个L字型的建筑单体ꎬ且庭院朝向东南方向ꎮ计算建筑组团容量指标ꎬ符合L字型模型特点ꎮ3 4㊀典型U字型模型创建典型U字型办公建筑形态如图9㊁图10所示ꎮ场地中心平均值10 10ħꎮ热感觉占比19 54%ꎻ热中性占比35 07%ꎻ冷感觉占比45 39%ꎮU字型建筑单体有三面围合㊁一面开口的特点ꎮU字型的建筑体量通常较大ꎬ对场地的规模要求较高ꎮ因此在实际图5㊀板式年均通用热气候指数(UTCI)分布图图6㊀板式年均热感觉投票(PMV)分布图图7㊀L字型年均通用热气候指数(UTCI)分布图图8㊀L字型年均热感觉投票(PMV)分布图17苗时雨ꎬ等:寒冷地区典型办公园区室外热舒适研究研究样本中的数量较少ꎮ根据观察样本建筑组团整体特征综合分析后ꎬ简化了建筑体块ꎮ场地中心的庭院被三面建筑包裹ꎬ向外开口的方向让建筑庭院具有了方向感ꎮ因此ꎬ庭院成为U字型办公建筑的特点之一ꎮ本研究模型常出现在产业园㊁办公建筑群等建筑类型中ꎮ通过统计研究样本ꎬ计算建筑组团容量指标ꎬ符合U字型模型特点ꎮ图9㊀U字型年均通用热气候指数(UTCI)分布图图10㊀U字型年均热感觉投票(PMV)分布图3 5㊀典型庭院式模型创建典型庭院式办公建筑形态如图11㊁图12所示ꎮ场地中心平均值9 98ħꎮ热感觉占比18 66%ꎻ热中性占比35 58%ꎻ冷感觉占比45 76%ꎮ庭院式办公建筑的特点为建筑单体四面围合ꎬ中间空间为庭院ꎮ相比U字型的围合方式ꎬ庭院式办公建筑较为 内向 且没有明显的方向感ꎮ由于周围建筑对庭院的围合ꎬ使得中央庭院的微气候较为稳定ꎬ受风速㊁热辐射等影响较小ꎮ庭院式办公建筑常出现在办公园区内ꎬ建筑规模通常较大ꎮ在总体研究样本中的数量较少ꎮ通过统计研究样本ꎬ计算建筑组团容量指标ꎬ符合庭院型模型特点ꎮ3 6㊀典型复合型模型创建典型复合型办公建筑形态如图13㊁图14所示ꎮ场地中心平均值9 78ħꎮ热感觉占比20 05%ꎻ热中性占比34 72%ꎻ冷感觉占比45 22%ꎮ复合型办公建筑形式同时具有上述5种形式的特点ꎬ是前文描图11㊀庭院型年均通用热气候指数(UTCI)分布图图12㊀庭院型年均热感觉投票(PMV)分布图图13㊀复合式年均通用热气候指数(UTCI)分布图图14㊀复合式年均热感觉投票(PMV)分布图27MIAOShiyuꎬetal.OutdoorThermalComfortofTypicalOfficeParksinColdRegions述5种形式的组合ꎬ因此该形式特点较为复杂ꎮ该场地内有多种围合形式的建筑单体ꎬ单体具有不同的性质ꎬ因此应当因地制宜地对建筑体块位置进行设计ꎮ复合型办公建筑包含形式多样ꎬ整体形式变化丰富ꎮ该种类型办公建筑常出现在办公园区或文化创意园中ꎮ样本数量占整体数量较少ꎮ通过统计研究样本ꎬ计算建筑组团容量指标ꎬ符合复合型模型特点ꎮ3 7㊀形态参数统计依托3 6节所统计的样本基础数据ꎬ依据建筑形态参数对70个研究样本进行数据分析ꎬ并绘制形态分布箱线图ꎮ统计的形态学信息如图15~18所示ꎮ样本围合度与建筑类型箱线图如图15所示ꎮ办公建筑依据平面划分有显著的围合度差异ꎬ随着办公建筑组团围合度的上升ꎬ平面形式从开放的点式向封闭的庭院式过渡ꎬ而复合式建筑组团包含了多种围合方式ꎬ因此复合式建筑组团的围合程度范围较广ꎮ数值涵盖了0 35~0 92ꎮ点式办公建筑由于独立存在并且种类多样ꎬ因此该建筑的围合度变化范围较广ꎬ涵盖了0 2~0 8ꎮ样本容积率与建筑类型箱线图如图16所示ꎮ样本容积率与建筑类型之间存在显著联系ꎮ随着容积率上升ꎬ建筑形式从点式向围合式发展ꎮ但是由于研究样本选取的点式办公建筑案例多为点式高层办公楼ꎬ因此点式与其他办公建筑类型的容积率有明显的数值差异ꎮ点式办公建筑的容积率范围为3 8~15 6ꎻ板式办公建筑的容积率范围为0 4~2 9ꎻL字型办公建筑的容积率范围为0 5~1 5ꎻU型办公建筑容积率范围为0 8~2 3ꎻ庭院式办公建筑容积率范围为1 2~6 3ꎻ6ꎮ图15㊀样本围合度箱线图㊀㊀样本建筑面积与建筑类型箱线图如图17所示ꎮ点式办公建筑建筑面积的区间为19000~48000m2ꎬ但也存在少量样本的建筑面积远远超出该区间ꎬ规模超过了100000m2ꎬ这是因为点式办公建筑含有点式高层写字楼ꎬ建筑层数远远超出其他5种办公建筑ꎻ板式办公建筑多数样本面积的范围为32000~65000m2ꎬ中位数为43000m2ꎻL字型办公建筑多数样本面积的范围为8000~23000m2ꎬ中位数为9000m2ꎻU字型办公建筑多数样本面积的范围为17000~48000m2ꎬ中位数为23000m2ꎻ庭院型办公建筑多数样本面积的范围为9000~23000m2ꎬ中位数为10000m2ꎻ复合型办公建筑多数样本面积的范围为15000~35000m2ꎬ中位数为9000m2ꎬ这是因为复合式建筑组团包含了多种围合形式的建筑单体ꎬ因此建筑面积变化的范围较大ꎮ图16㊀样本容积率箱线图图17㊀样本建筑面积箱线图㊀㊀样本建筑层数与建筑类型箱线图如图18所示ꎮ点式办公建筑的层数大致分布在13~32层区间内ꎬ中位数为22层ꎻ板式办公建筑的层数大致分布在14~29层区间内ꎬ中位数为21层ꎻL字式办公建筑的层数大致分布在7~12层区间内ꎬ中位数为9层ꎻU字型办公建筑的层数大致分布在7~13层区间内ꎬ中位数为8层ꎻ庭院型办公建筑层数大致分布在10~17层ꎬ中位数为12层ꎻ复合型办公建筑层数大致分布在10~18层ꎬ中位数为16层ꎮ图18㊀样本建筑层数箱线图(下转第106页)37ZHANGZiyuꎬetal.CarbonReductionofRoofGreeningParametersofTypicalUrbanCommercialBuildingsinShaanxiTypeofGreenRoofSystem[J].EnergyProcediaꎬ2018ꎬ152:384-389. [11]ZhouLWꎬWangQꎬLiYꎬetal.GreenRoofSimulationwithaSeasonallyVariableLeafAreaIndex[J].EnergyandBuildingsꎬ2018ꎬ174:156-167.[12]WongNHꎬChenYꎬOngCLꎬetal.InvestigationofThermalBenefitsofRooftopGardenintheTropicalEnvironment[J].BuildingandEnvironmentꎬ2003ꎬ38(2):261-270.[13]RaySDꎬGlicksmanL.EnergySavingPotentialofVariousRoofTechnologies[D].Cambridge:MassachusettsInstituteofTechnologyꎬ2010.[14]范乐ꎬ王燕语ꎬ崔剑锋ꎬ等.西南地区公共建筑立体绿化设计及实践研究 以成都市屋顶绿化为例[J].四川建筑ꎬ2019ꎬ39(2):17-20. [15]任婧ꎬ闫春辉ꎬ赵莹莹ꎬ等.屋顶绿化对建筑围护结构节能的模拟研究[J].建筑节能ꎬ2020ꎬ48(4):33-38.[16]YazdaniHꎬBaneshiM.BuildingEnergyComparisonforDynamicCoolRoofsandGreenRoofsunderVariousClimates[J].SolarEnergyꎬ2021ꎬ230:764-778.[17]刘瑞江ꎬ张业旺ꎬ闻崇炜ꎬ等.正交试验设计和分析方法研究[J].实验技术与管理ꎬ2010ꎬ27(9):52-55.[18]蔡毅ꎬ邢岩ꎬ胡丹.敏感性分析综述[J].北京师范大学学报:自然科学版ꎬ2008(1):9-16.[19]刘俊杰ꎬ刘洋ꎬ朱能.EnergyPlus建筑能耗分析软件汉化用户应用界面的开发[J].暖通空调ꎬ2005ꎬ35(9):114-118.[20]Sailor.DJ.AGreenRoofModelforBuildingEnergySimulationPrograms[J].EnergyandBuildingsꎬ2008ꎬ40(8):1466-1478.[21]杨真静ꎬ熊珂ꎬ唐鸣放.室内气温对绿化屋顶当量热阻的影响[J].土木建筑与环境工程ꎬ2015ꎬ37(2):109-114.[22]白雷.种植屋面的热工性能评价指标研究[D].重庆:重庆大学ꎬ2016.[23]雷汀.寒冷地区大型商业综合体围护结构参数节能设计研究[D].天津:天津大学ꎬ2018.[24]ZhangJJꎬYanZFꎬBiWBꎬetal.PredictionandScenarioSimulationoftheCarbonEmissionsofPublicBuildingsintheOperationStageBasedonanEnergyAuditinXi anꎬChina[J].EnergyPolicyꎬ2023ꎬ173:113396.[25]潘晓ꎬ陈毅兴ꎬ邓章ꎬ等.典型建筑能耗模型搭建 以长沙商场建筑为例[J].西安建筑科技大学学报:自然科学版ꎬ2021ꎬ53(6):947-954.[26]TangYꎬRPꎬVanWKꎬetal.AdvancingtheIdentificationandEvaluationofDistributedRainfall‐RunoffModelsusingGlobalSensitivityAnalysis[J].WaterResourcesResearchꎬ2007ꎬ43(6):6415-1-6415-14.ә作者简介(通讯作者):张梓钰(1998)ꎬ女ꎬ四川南充人ꎬ毕业于西安建筑科技大学ꎬ建筑技术科学专业ꎬ硕士研究生ꎬ主要从事建筑节能与碳排放方面的研究(zhangziyu@xauat.edu.cn)ꎮ指导教师:闫增峰(1969)ꎬ男ꎬ陕西耀县人ꎬ毕业于西安建筑科技大学ꎬ供热㊁供燃气㊁通风及空调工程专业ꎬ博士ꎬ教授ꎬ研究方向:建筑节能与碳排放㊁遗址保护环境技术(xazfyan@126.com)ꎮ(上接第73页)4 结论本研究基于形态类型学的方法ꎬ归纳总结出大连市典型办公建筑组团的典型模型ꎮ实现了对大连市大部分办公建筑组团的典型概括ꎮ首先提取大连市多个区内诸多办公建筑组团作为研究原始样本ꎬ记录其形态参数ꎮ随后采用形态类型学的研究方法ꎬ以平面围合程度作为划分依据ꎬ将研究样本按照围合程度从低到高分为:点式㊁板式㊁L字型㊁U字型㊁庭院型㊁复合型这六大类ꎮ将诸多研究样本按照上述分类标准进行分类ꎮ在热舒适研究中ꎬ建筑围合度分类下的建筑形式与室外热舒适度的热中性区域面积排序为:复合式>庭院式>U字型>L字型>板式>点式ꎬ即在建筑参数相近的条件下ꎬ随着建筑组团围合度的提高ꎬ办公园区建筑场地内的室外热舒适度越高ꎮ因此ꎬ在仅考虑室外热舒适度的情况下ꎬ寒冷地区办公建筑适合围合度高(复合型㊁庭院型㊁U字型)的建筑围合形式ꎮ参考文献:[1]马玉洁.江风对夏热地区滨江典型居住区热环境的影响研究[D].武汉:华中科技大学ꎬ2023.[2]孙澄ꎬ韩昀松.光热性能考虑下的严寒地区办公建筑形态节能设计研究[J].建筑学报ꎬ2016ꎬ(2):38-42.[3]马智超.基于多性能优化的活动式折叠表皮设计研究 以广州地区办公建筑为例[J].建筑节能(中英文)ꎬ2023ꎬ51(11):26-31. [4]SalmaLahmarꎬMostafaMaalmiꎬRachidaIdchabani.MultiobjectivebuildingdesignoptimizationusinganefficientadaptiveKrigingmetamodel[J].Simulation:TransactionsoftheSocietyforModelingandSimulationInternationalꎬ2023.DOI:10.1177/00375497231168630.[5]HongTꎬKimJꎬLeeM.Amulti ̄objectiveoptimizationmodelfordeterminingthebuildingdesignandoccupantbehaviorsbasedonenergyꎬeconomicꎬandenvironmentalperformance[J].Energyꎬ2019ꎬ174:823-834.DOI:10.1016/j.energy.2019.02.035.[6]韩帮忠.基于GIS的大连压载水外来生物风险评估系统的研究[D].大连:大连海事大学ꎬ2009.[7]刘雷雷.大连市水资源承载力分析及优化配置研究[D].大连:辽宁师范大学ꎬ2012.[8]韩广ꎬ马良栋ꎬ陈永攀.大连市典型机关办公建筑能耗统计分析[J].制冷空调与电力机械ꎬ2009ꎬ30(4):77-80.[9]丁沃沃ꎬ胡友培ꎬ窦平平.城市形态与城市微气候的关联性研究[J].建筑学报ꎬ2012ꎬ(7):16-21.[10]韦舒懿.基于日常性的办公建筑组团公共开放空间设计策略研究[D].南京:东南大学ꎬ2024.作者简介:苗时雨(1996)ꎬ男ꎬ山东淄博人ꎬ硕士研究生ꎬ研究方向:建筑组团性能化模拟与城市设计(MiaoShiyu@mail.dlut.edu.cn)ꎮә通讯作者:郭飞(1980)ꎬ男ꎬ湖南桂东人ꎬ教授㊁博士生导师ꎬ研究方向:城市气候规划(guofei@dlut.edu.cn)ꎮ601。

热舒适评价指标SET_的再研究

热舒适评价指标SET_的再研究

摘要随着生活水平的提高,人们对于所处的热环境也有了更高的要求。

良好的热环境不仅可以令人感到身心舒适,对人体身体健康有益,也有助于提高工作的效率。

人体对环境的热舒适感觉是由热环境的参数(空气温度、湿度、风速、平均辐射温度等)与人体侧的参数(代谢率、服装热阻)对人体综合作用的结果,其对人体热舒适综合的效果可以用热舒适评价指标来评价。

标准有效温度SET*是由Gagge在上个世纪70年代提出的热舒适评价指标,收录于ASHRAE标准,在长时间以来得到了较为广泛的应用。

常用的人体热舒适评价指标还有Fanger提出的预测平均温度PMV指标。

PMV是基于接近中性、稳态环境的热平衡方程推导得出,因此对于偏离热中性的环境评价会不适用;另一方面,PMV指标内部使用较多回归方程,而缺少人体对环境热响应的方程。

相较于PMV指标,SET*指标是基于人体对环境的响应的二节点模型,考虑了较多的人体热响应参数,且计算过程较为复杂,有着更大的应用潜力。

现有对热环境的研究中,较多直接应用热舒适评价指标对热环境进行评价、分析,但相对缺乏对指标应用范围,内部运算机理的细化研究。

而如果指标的应用范围或内部运算机理存在问题,也会影响最终的评价和分析结果。

SET*指标里有大量中间变量以及逻辑关系式,对其内部机理进行研究,可以找出其存在的问题,并根据最新的研究成果或实验数据进行修正。

本文主要研究内容包括:利用正交实验,研究影响各个参数对SET*的敏感性。

将SET*指标与其它常用的热舒适评价指标在特性方面做出对比分析。

对SET*的定义与运算机理进行分析,发现了其假设条件与内部运算过程存在一些问题:(1)SET*指标计算方法中认为人体在实际环境和标准环境中达到相同的皮肤散热量,而如果人在实际环境的代谢率较高时,人体难以达到与标准环境相同的皮肤散热量;(2)原假设条件中认为人体在实际环境与标准环境中达到相同的平均皮肤温度和皮肤湿润度,而实际上人体在不同热环境中很难使平均皮肤温度与皮肤湿润度分别精确相等,且在人体代谢率较高时差距较大。

暖通空调相关论文纯英文版

暖通空调相关论文纯英文版
0378-7788/$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.enbuild.2011.04.024
The traditional models of buildings energy simulation, such as the monozones and multizones models, are used to estimate the exploitation systems costs for heating, ventilation and air conditioning [3]. However, these models can normally not predict the local air flow and heat transfer [4–6] within the buildings, which makes it difficult to study certain scenarios such as natural ventilation and the ventilation by displacement. Moreover, these models do not allow for thermal comfort analysis.
Three dimensional study for evaluating of air flow movements and thermal comfort in a model room: Experimental validatiphane Hallé
Energy and Buildings 43 (2011) 2156–2166

提高油气田加热炉热效率技术研究

提高油气田加热炉热效率技术研究

加热炉是油田勘探油气开发中的重要能耗设备之一,随着油田大面积进入高含水期及稠油和天然气的开发,加热炉显得更为重要。

油气田勘探开发面积增大、开发难度增大,油田使用加热炉数量越提高油气田加热炉热效率技术研究郭亮(中国石油天然气股份有限公司吐哈油田分公司)摘要:加热炉作为油田的主要节能对象,其热效率的高低直接影响着油田的节能评价。

油气田加热炉节能测试过程中通过测试设备得出的实时数据,并对数据进行现场分析后,找出其节能点,通过对加热炉的技术改造,重点放在燃烧不充分、辐射段散热损失大、排烟温度过高等关键环节,从系统和技术方面对加热炉相关关键部件进行优化,提高现有加热炉的运行效率,使用单位对设备运行参数进行现场调整,提高加热炉运行管理水平,以达到设备效率最大化的方法,实施后平均热效率提高至90%,年节约天然气229.98×104Nm 3。

通过这种技术服务的方法,既可以提高油田加热炉热效率,还可以有效发挥节能监测的意义,最终达到节能降耗的目的。

关键词:加热炉;热效率;监测;节能降耗DOI :10.3969/j.issn.2095-1493.2023.03.007Study on improving thermal efficiency technology of heating furnace for oil and gas field GUO LiangTuha Oilfield Company,CNPCAbstract:As the main object of energy conservation in oilfield,the heating furnace's thermal effi-ciency directly affects the evaluation of energy conservation in oilfield.In the process of energy conser-vation test of heating furnace for oil and gas field,real-time data is obtained by testing equipment,and after analyzing the data on site,energy conservation points are found out in the evaluation process of heating furnace.Through the technical transformation of heating furnace,key aspects are focused such as insufficient combustion,large heat loss in radiation section and excessively high smoke exhaust tem-perature.The relevant key components of heating furnace is optimized in terms of system and technol-ogy and operational efficiency of the existing heating furnace is improved.The operation parameters of equipment is adjusted on site by using the unit to improve the operation and management level of heat-ing furnace and maximise the efficiency of the equipment.After the implementation,the average ther-mal efficiency is up to 90%,saving natural gas of 229.98×104Nm 3.This kind of technical service method can not only improve the thermal efficiency of heating furnace in oilfield,but also effectively play the significance of energy conservation monitoring,which finally achieves the purpose of energy conservation and consumption reduction .Keywords:heating furnace;thermal efficiency;monitoring;energy conservation and consumption reduction作者简介:郭亮,工程师,2007年毕业于兰州交通大学(工程管理专业)新疆吐鲁番市鄯善县火车站镇吐哈油田公司技术监测中心,838202。

某重型货车空调系统对乘员舱热舒适性影响的分析与改进

某重型货车空调系统对乘员舱热舒适性影响的分析与改进

某重型货车空调系统对乘员舱热舒适性影响的分析与改进芦克龙;谷正气;贾新建;尹郁琦【摘要】应用计算流体力学软件Fluent对某重型货车空调系统和乘员舱中的气流进行数值仿真,其结果与试验对比,相差在5%以内.采用当量温度Teq,i作为评价指标,对乘员舱的热舒适性进行分析.结果表明,由于各风道风量分配不均匀,乘员舱内部气流组织不合理,致使热舒适性较差.对空调系统进行改进,增加前吹面风道风量比例后,乘员舱的热舒适性得到明显改善.%A numerical simulation on the air flow in air-conditioning system and passenger compartment of a heavy truck is conducted by applying CFD code Fluent and its result is compared to test result with a difference within 5%.Using equivalent temperature as evaluation indicator, the thermal comfort in passenger compartment is analyzed.The results show that, due to the uneven distribution of air flow in various ducts and the unreasonable organization of air flow in passenger compartment, the thermal comfort in passenger compartment is rather poor.The modification of air conditioning system is carried out to increase the airflow proportion of front air duct, and as a resuit, the thermal comfort of passenger compartment is obviously improved.【期刊名称】《汽车工程》【年(卷),期】2011(033)002【总页数】5页(P162-166)【关键词】重型货车;乘员舱;空调系统;计算流体动力学;热舒适性【作者】芦克龙;谷正气;贾新建;尹郁琦【作者单位】湖南大学,汽车车身先进设计制造国家重点实验室,长沙,410082;湖南工业大学,株洲,412007;湖南大学,汽车车身先进设计制造国家重点实验室,长沙,410082;湖南大学,汽车车身先进设计制造国家重点实验室,长沙,410082;奇瑞汽车股份有限公司,芜湖,241006;湖南大学,汽车车身先进设计制造国家重点实验室,长沙,410082【正文语种】中文前言汽车空调的送风风道是汽车空调系统中重要的部件之一,其设计水平直接影响车内气流组织的合理性,从而影响乘员舱的热舒适性。

热环境客观评价的一种简易方法

热环境客观评价的一种简易方法
Key words :thermal comfort ; heat balance number ; thermal sensation scale
1 引言 国家 质 量 技 术 监 督 局 2003 年 2 月 批 准 了
GB/ T 18977 - 2003 ,即《热环境人类工效学 使用 主观判定量表评价热环境的影响》,明确了对热环 境的主观评价方法 。在工程实践中 ,经常还要对 热环境进行客观评价 ,这时就要对热环境参数进 行测定并计算 。
热阻中扣除服装外表的空气层热阻 。同样 ,可以
写出 :
C + R = ( tsk - to) / It
= ( tsk - to) / ( Icl + Ia/ f cl)
(4)
图 1 皮肤 、服装与环境之间的传热示意
其中 , It 为服装的总热阻 , Icl为服装的基本热阻 , Ia 为服装外的空气层热阻 。关于 It 以及 Icl 、Icle 的详细计算可参看相关文献 ,它们之间关系如下 :
Ia/ f cl通过计算发现变化范围并不大 ,它随着风速
的增大而减小 ,实际上空调环境的风速一般限制
在很小的范围 ,故为了简化计算 ,按气温 24 ℃,风
速 0. 2m/ s ,服装热阻 0. 7clo 的典型情况计算得到
该项的值为 Ia/ f cl = 0. 1m2 ℃/ W ,代入式 (8) 得到 :
( tsk - to) / [ ( C + R) ( Icl + Ia/ f cl) ] = 1 (7) 这样 ,式 (7) 等号左侧就成为等于 1 的无因次数 。 若用新陈代谢率 M 取代式 (7) 中的 R + C ,则式 (7) 不再等于 1 ,但它仍然是无因次的 ,将此无因 次数记为 HB ,则

人体舒适度的温湿度指标

人体舒适度的温湿度指标

SHTxxHumidity & TemperatureSensmitterApplication NoteConditions of Thermal Comfort1 IntroductionThermal comfort is defined as that condition of mind which expresses satisfaction with the thermal environment. A lot of empirical data has been collected on how these conditions are defined. This application note gives a short introduction on thermal comfort especially in respect of humidity and temperature.The factors that have relevant influence on the thermal comfort of occupant’s spaces can be grouped in environmental and personal factors.Environmental factors:- temperature, thermal radiation, humidity, air speedAir velocity is not in the scope of this document. Generally, it can be said, that air draught should be avoided altogether for sedentary persons, since it is an unwanted local cooling of the body causing discomfort.Personal factors:- activity, clothingAcceptance of the thermal environment and the perception of comfort and temperature are related to metabolic heat production, its transfer to the environment, and the resulting physiological adjustments and body temperatures.Activity is measured as the rate of energy production of the body. Metabolism, which varies with activity, is usually expressed in met units. One met is defined as 58.2 W/m2, which is equal to the energy produced per unit surface area of a seated person at rest. The surface area of a person is about 1.8 m2 . Conditions for comfort given in this document refer to a person who is doing light sedentary activity (≤1.2 met).Clothing, through its insulative properties, is an important modifier of body heat loss and comfort. Clothing is changing to a great extent by the season and outdoor weather conditions. During the summer months, typical clothing in commercial establishments consists of light-weight dresses, lightweight trousers, short- or long-sleeved shirts and blouses, and occasionally a suit jacket or sweater.During winter season, people wear garments constructed of thicker, heavier (warmer) fabrics and often add more garment layers to an ensemble. Conditions for comfort given in this document refer to persons in such typical summer and winter clothings.Because of individual differences, it is impossible to specify a thermal environment that will satisfy everyone. Conditions stated in this document will ensure that 80% or more of the occupants will find the environment thermally acceptable. The conditions of comfort were found by studies of North American and European subjects. Recent studies with Japanese subjects led basically to the same results. Therefore, it can be assumed that these conditions of comfort can applied with good approximation in most parts of the world.2 Comfort zone according to ASHRAE1Figure 1Dew point/T diagram showing the comfort zone according to ASHRAE 55-1992An important point is, that the lower the humidity is the higher the temperature can be and the person still feels well. This is reflected by the diagram in the slanting boundaries of the comfort zone for the upper and lower temperature limits. This has an impact on HVAC control systems: energy can be saved when indoor spaces are monitored for both humidity and temperature, because e.g. when humidity is low, a higher temperature is acceptable and cooling is not necessary. In comparison a system, which is only controlled to reach a certain set point for temperature, will do unnecessary heating or cooling for RH/T combinations, which already lay in the comfort zone.The boundaries of the diagrams are defined through:Winter:temperature t = 19.5°C to 23.5°C ( 67.1°F to 74.3°F) at 18°C (64°F) wet bulb temperature and t = 20.5°C to 24.5°C (69°C to 76°C) at 2°C (36°F) dew point. The slanting side boundaries of the winter zone correspond to 20°C and 23.5°C (68°F and 74.3°F) effective temperature, meaning if the parameters move along this line, comfort or thermal sensations stay constant. Summer:temperature t = 22.5°C to 26°C (73°F to 79°F) at 20°C (68°F) wet bulb temperature and t = 23.5°C to 27°C (74°F to 81°F) at 2°C (36°F) dew point. The slanting side boundaries of the summer zone correspond to 23°C and 26° (73°Fto 79°F) effective temperature.1 American society of heating, refrigerating and air-conditioning engineers, IncGiven the coordinates of the “summer” and “winter” comfort zones, a translation can be made into an RH/T diagram, using an approximation by just calculating RH values for the corner points of the quadrangles given above:T24.5°C 76°F19.5°C 67.1°F27°C 81°F22.5°C 73 °FFigure 2 RH/T diagram based on comfort zone according to ASHRAE 55-19923 Comfort zone according to ISO7730Another approach for defining the comfort zone is taken by the standard ISO7730. It neglects the fact, that higher temperatures can be borne better if humidity is lower. Therefore its upper and lower temperature limits are vertical. This approach can be used in less demanding applications for simpler implementation of air-conditioning algorithms.3.1 TemperatureThe temperature in the occupant’s space should be: Season °C °F Winter 20 - 24 68 - 75.2 Summer 23 - 26 73.4 – 78.83.2 HumidityThe relative humidity shall be between 30% and 70% in winter as well as summer time. The limits are set to decrease the risk of unpleasantly wet or dry skin, eye irritation, static electricity, microbial growth and respiratory diseases.Figure 3RH/T diagram showing the comfort zone according to ISO77304 ConclusionThe use of a combined humidity and temperature sensor can greatly enhance the well being of persons in indoor environments, since it is scientifically approved, that there exists a comfort zone defined by various factors, but mainly determined by humidity and temperature. There’s also an environmental and financial aspect in using humidity sensors in HVAC applications, since power and money can be saved compared to simple temperature-only control systems. Sensirion’s SHTxx series of humidity and temperature sensors are an excellent choice to meet the requirements in HVAC applications in homes, commercial buildings or other indoor environments such as cars.5 Sources• ASHRAE Standard: Thermal Environmental Conditions for Human occupancy: ANSI/ASHRAE 55-1992• ISO Standard: Moderate thermal environments- Determination of the PMV and PPD indices and specification of the conditions for thermal comfort: ISO77306 Revision historyDate Revision ChangesMay 27, 2003 0.1 GenesisMay 25, 2005 1.0 Changed company addressAll datasheets and application notes can be found at:/humidityHeadquarters and Sales OfficeSENSIRION AG Phone: + 41 (0)44 306 40 00Laubisrütistr. 50 Fax: + 41 (0)44 306 40 30CH-8712 Stäfa ZH e-mail: info@Switzerland /。

基于动态热生理调控的奶牛标准有效温度模型构建及验证

基于动态热生理调控的奶牛标准有效温度模型构建及验证

基于动态热生理调控的奶牛标准有效温度模型构建及验证The development and validation of a comprehensive thermal comfort model based on dynamic physiological regulation in dairy cows is the focus of my research. This model aims to establish effective temperature standards for optimizing the well-being and productivity of dairy cows.我研究的重点是基于动态生理调节的综合热舒适模型在奶牛中的构建和验证。

该模型旨在建立有效的温度标准,以优化奶牛的福祉和生产力。

To begin with, it is essential to understand the importance of thermal comfort for dairy cows. Heat stress has adverse effects on their health, reproduction, and milk production. Therefore, establishing accurate temperature thresholdsthat consider the physiological responses of dairy cows is crucial.了解热舒适对于奶牛的重要性是必不可少的。

高温应激对奶牛的健康、生殖和乳制品产量都有不良影响。

因此,建立准确考虑奶牛生理反应因素的温度阈值至关重要。

The construction of the thermal comfort model involves collecting data on various parameters such as ambient temperature, relative humidity, wind speed, solar radiation, and cow-specific variables like body weight, coat thickness, and metabolic rate. These factors play a significant rolein assessing heat balance and determining the thermal adaptation capacity of dairy cows.热舒适模型的构建涉及收集各种参数数据,例如环境温度、相对湿度、风速、太阳辐射以及与奶牛有关的变量,如体重、毛皮厚度和代谢率。

含相变材料涤纶织物的蓄放热性能及机械性能

含相变材料涤纶织物的蓄放热性能及机械性能

含相变材料涤纶织物的蓄放热性能及机械性能Kyeyoun Choi and Gilsoo ChoDepartment of Clothing and Textiles,Yonsei University,Seoul 120-749,South KoreaPilsoo Kim and Changgi ChoDepartment of Polymer&Textile Engineering,Hanyang University,Seoul 133-791,South Korea摘要本文采用界面聚合法合成了含正十八烷的三聚氰胺-甲醛微胶囊,并采用傅里叶变换红外光谱、扫描电子显微镜及差示扫描量热法分析了该合成胶囊的尺寸、形状及蓄热/放热性能。

在不同浓度、时/温条件下,采用罗拉刮刀(KOR)及筛网印花(SP)法对涤纶织物进行了微胶囊涂层处理。

通过测试处理前后织物热性能、机械性能及物理性能来确定最适合的粘合方法。

微胶囊的平均直径为1~1.5um,近乎球形。

在最适宜的浓度、温度、时间处理下,经五次洗涤的织物热性能迅速下降,而且采用KOR处理的织物抗弯及剪切刚度比经SP处理的织物要高。

也就是说,采用SP处理不如经KOR处理的织物硬挺,SP织物有较好的透气性,但吸湿性比KOR低。

当热量和水分能够有效地通过服装从人体转移到外界而使人们感到物理、生理及心理满意时,我们就说服装很舒适[2]。

因此包括能够在环境变化时,调节并保持舒适的可蓄放热织物在内的智能织物的发展是很重要和必要的。

关于含有相变微胶囊应用的研究目前正在进行。

由于碳原子数不同而具多种熔点和结晶度的石蜡是纺织业最常用的相变物质[4,15]。

由于正十八烷的熔点在28.2℃左右,更适合服装用。

它能够吸收大量的热量并在低于平均体温33.3℃的熔化状态下释放那些热量[7,8,15]。

微胶囊化使含相变材料的微胶囊在整理过程更耐用、安全[5,12]。

经含有相变微囊处理过的织物须在恶劣环境下保持其热性能,能够吸热、储存、释放热量,且耐摩擦及反复洗涤。

中国老年人的热舒适评价

中国老年人的热舒适评价

中国老年人的热舒适评价马婷;连之伟【摘要】Old people are more vulnerable to thermal-related comforts and health issues because of their weakening abilities to perceive and adapt to ambient thermal environment.It calls for building a healthy and comfortable indoor environment for the elderly,thus it's essential to accurately evaluate the thermal comfort of the older people.Some research on thermal comfort evaluation of the elderly was done based on thermoregulation model,literature review and the skin temperature difference between the thorax and foot.The result indicates not only the subjective evaluation but also the objective parameters are necessary to the evaluation of the indoor environment.According to our research,skin temperature difference between the thorax and foot of the Chinese elderly were generally between 1.0 to 1.5℃ when indoor temperature in the summer near the thermal neutral temperature range.%老年人由于感知和调节能力的衰退,更容易受到室内环境变化的影响,甚至健康和生命也会受到威胁.要为老年人提供一个健康舒适的室内环境的第一步就是准确评价老年人的热舒适状况.通过引入老年人热舒适模型,结合文献综述,并基于胸足温差生理参数,对中国老年人的热舒适评价进行了探索,结果表明:评价室内热环境时,不能仅局限于老年人的主观评价,还应结合生理等客观参数进行评价.基于该研究,夏季室温在热中性温度附近时,老年人的胸足温差一般处于1.0-1.5℃之间.【期刊名称】《制冷与空调(四川)》【年(卷),期】2017(031)004【总页数】5页(P341-345)【关键词】老年人;胸足温差;热感觉;体温调节;评价【作者】马婷;连之伟【作者单位】上海交通大学船舶海洋与建筑工程学院上海201100;上海交通大学船舶海洋与建筑工程学院上海201100【正文语种】中文【中图分类】TU111.19老龄化是指总人口中老年人的比例上升。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceilingTiberiu Catalina a ,*,Joseph Virgone b ,c ,Frederic Kuznik aaCETHIL,Thermal Science Research Center of Lyon,UMR5008,CNRS,INSA-Lyon,20Avenue Albert Einstein,69621Villeurbanne Cedex,FrancebUniversite´Lyon 1,IUT A ge ´nie Civil,43Bd.Du 11Novembre,69622Villeurbanne Cedex,France cDGCB,URA CNRS 1652,ENTPE,rue Maurice Audin,69518Vaulx-en-Velin Cedex,Francea r t i c l e i n f oArticle history:Received 25April 2008Received in revised form 17November 2008Accepted 20November 2008Keywords:Cooling ceilingFull-scale experimental study CFD simulations Thermal comforta b s t r a c tThis paper reports a full-scale experimental campaign and a computational fluid dynamics (CFD)study of a radiant cooling ceiling installed in a test room,under controlled conditions.This research aims to use the results obtained from the two studies to analyze the indoor thermal comfort using the predicted mean vote (PMV).During the whole experimental tests the indoor humidity was kept at a level where the condensation risk was minimized and no condensation was detected on the chilled surface of the ceiling.Detailed experimental measurements on the air temperature distribution,surface temperature and globe temperature were realized for different cases where the cooling ceiling temperature varied from 16.9to 18.9 C.The boundary conditions necessary for the CFD study were obtained from the experimental data measurements.The results of the simulations were first validated with the data from the experiments and then the air velocity fields were investigated.It was found that in the ankle/feet zone the air velocity could pass 0.2m/s but for the rest of the zones it took values less than 0.1m/s.The obtained experimental results for different chilled ceiling temperatures showed that with a cooling ceiling the vertical temperature gradient is less than 1 C/m,which corresponds to the standard recommendations.A comparison between globe temperature and the indoor air temperature showed a maximum difference of 0.8 C being noticed.This paper also presents the radiosity method that was used to calculate the mean radiant temperature for different positions along different axes.The method was based on the calculation of the view factors and on the surface temperatures obtained from the experiments.PMV plots showed that the thermal comfort is achieved and is uniformly distributed within the test room.Ó2008Elsevier Ltd.All rights reserved.1.IntroductionThe majority of air-conditioning devices function using the principle of pulsated air,where the hot air of the room is partly recycled,cooled and returned into the room.The increase of the thermal loads in the buildings,mainly due to the arrival of office computers and lighting requirements,causes the installation of air-conditioning systems necessary to neutralize these loads and to create a good indoor thermal comfort.Heating,ventilating and air-conditioning (HVAC)systems,which consume large quantities of energy,have become a necessity for almost all the buildings [1]to provide a comfortable indoor environment.Currently,the evacuation of these quantities of latent and sensible heats is done mainly with air treated,introduced by air diffusers.To maintain comfort under these conditions,a greatervolume of cooled air must be provided to the working area.Many complaints about air-conditioning systems have been claimed,especially in summer by female occupants [2].Disadvantages such as noise,cold-drafts,vertical air temperature gradient demand the research of other cooling systems which can create better indoor conditions and in the same time to be energy efficiently.The use of water to cool the surfaces of the buildings is conse-quently a tempting alternative solution.It is even more appealing as water cooling requires much lower flow rates and higher temperatures of the water,so an energy consumption reduction could be achieved [3,4].The chilled ceiling radiant panels are room cooling systems for placement in the ceiling zone,their cooling surfaces being connected with closed circuit heat conducting pipework containing flowing chilled water.The main difference between cooling ceilings and air-conditioning systems is the mechanism of heat transfer.Classic air-conditioning systems are based only on the convection,while cooled ceilings employ a combination of radiation and convection.*Corresponding author.Tel.:þ33472438468;fax:þ33472438522.E-mail address:tiberiu.catalina@insa-lyon.fr (T.Catalina).Contents lists available at ScienceDirectBuilding and Environmentjournal homepage: /locate /buildenv0360-1323/$–see front matter Ó2008Elsevier Ltd.All rights reserved.doi:10.1016/j.buildenv.2008.11.015Building and Environment 44(2009)1740–1750With cold ceilings,the transfer of radiant heat occurs by a clear emission of electromagnetic waves from the hot occupants and their environments to the radiant ceiling.The hot air arriving in contact with the cooled surface is cooled below the average temperature of the room and therefore falls down the zone of occupation[5].With a cooling ceiling the temperature of water or itsflow rate can be modified so that the surface temperature adapt to the desired conditions.Ceiling radiant cooling systems can be more comfortable than conventional air cooling systems due to small vertical temperature gradient,few air movements and reduced local discomfort for occupants during long stays in cooled room environments.Catalina and Virgone[6]found after a series of simulations that the cooling ceilings offer good thermal comfort,the mean radiant temperature being an important parameter in the comfort evaluation.Nagano and Mochida[7]analyzed the thermal comfort offive subjects in an experimental test room equipped with cooling ceil-ings.Their study aim was to clarify the control conditions of ceiling radiant cooling systems for human subjects in a supine position. They concluded that the mean radiant temperature for a supine human body should be used in the design of ceiling radiant cooling. It was also found that some of the subjects voted the strong radiant sensation even though the temperature difference between the ceiling and the room air was less than5 C in these experiments.Kulpmann[8]reported an investigation of the thermal comfort in a test room equipped with a cooled ceiling surface andsuppliedHORIZONTAL SECTIONFig.1.Test cell facility sections.(1)climatic chamber(2)thermal guard(3)thermal guard system(4)spotlights(5)lighting system ventilation(6)supply air(7)air extraction area (8)radiant cooling ceiling system(RCC)(9)air-water heat pump(10)air diffusser(11)insulated concrete(12)air pipe(13)mobile platform(14)climatic chamber air treatement system (15)double-skin facade(16)glazed area(17)RCC surface temperature probes(Pt100)(18)exterior door(19)electric system of spotlights(20)data acquisition system(21)computer.T.Catalina et al./Building and Environment44(2009)1740–17501741with upward displacement ventilation air.The results showed that a good value of thermal comfort was obtained and that the temperature of the room surfaces was lower or at least equal to the air temperature in the room.Hodder et al.[9]investigated and determined thermal comfort design conditions for combined chilled ceilings/displacement ventilation environments.A typical office room was reproduced in a laboratory test room in which the ceiling temperatures were varied.It was found that vertical radiant temperature asymmetry has an insignificant effect on the overall thermal comfort of the eight subjects who participated in this experimentation.Kulpmann [8]reported that the existing guidance [10]is valid with no modifica-tion,for thermal comfort design in such design environments.Imanari et al.[2]compared the radiant cooling systems with air-conditioning systems in terms of thermal comfort,energy consumption and costs.The thermal environment as well as human response was tested by using a small meeting room equipped with radiant ceiling panels.It was shown in their work that the radiant ceiling panel system is capable of creating smaller vertical variation of air temperature and a more comfortable environment than conventional systems.Simmonds [11]found that the traditional design criteria such as dry-bulb temperature and operative temperature were not always sufficient,mean radiant temperature having an important influ-ence on the comfort results.Kitagawa et al.[12]investigated the effect of humidity and small air movements on the thermal comfort of subjects in a climatic chamber equipped with radiant cooling panels.The results of their questionnaires showed that the most comfortable sensation vote was obtained in the conditions whose thermal sensation vote was not neutral but approximately À0.5.The thermal comfort is,by definition,a subjective sensation;different people will express different preferences and it is prefer-able to use real persons to evaluate this notion.However,this estimation method requires the use of a representative large number of subjects and hence can become expensive and time consuming.The approach used in this article study is based on experimental data and computational fluid dynamics simulations in order to obtain results on the parameters that influence the thermal comfort.Myhren and Holmberg [13]used computational fluid dynamics (CFD)simulations to investigate possible cold draught problems,the differences in vertical temperature gradients and air speed levels in two office rooms equipped with different spaceheatingTable 1Table 2Fig.3.Vertical distribution of air temperature for different ceiling temperatures at position (x 1,y 1).Fig.2.Analyzed planes and measurement positions.T.Catalina et al./Building and Environment 44(2009)1740–17501742and ventilation systems.CFD technique was also used by Rohdin and Moshfegh [14]research study on the prediction of indoor environment in large and complex industrial premises.Stamou et al.[15]have studied the thermal comfort in an Olympic Arena by using a CFD model.Calculated mean velocities and tempera-tures were used to determine the thermal comfort indices,predicted mean vote (PMV)and predicted percentage of dissatis-fied person (PPD)and to evaluate the thermal conditions in the various regions of the Arena.CFD simulations were also found to be a good solution to determine the indoor thermal comfort in different research studies [16,17]by using CFD simulations of virtual human manikins.For the present research article,CFD simulations were realized with the aim to analyze the airflow pattern and the velocity fields inside the test room.The thermal comfort was evaluated using the PMV index [18]that was calculated based on the data obtained from the experimental and CFD analysis.For the thermal comfort study,experimental results on the air temperature,mean radiant temperature and relative humidity were used,while the CFD study gave valuable results on the air velocity and air pattern.The particularities of this research study are related to a real-size controlled experimental set-up of using radiant ceiling panels equipped with capillary tubes.Another aspect of this article was theuse of CFD simulations to examine the airflow pattern and to obtain data results on the eventual local discomfort that could appear under a cooling ceiling.2.Experimentations 2.1.Test room presentationStudying the influence of certain indoor parameters on the thermal comfort when using a cooling ceiling could be a delicate issue,an experimental investigation being mandatory.The exper-imental cell MINIBAT (INSA de Lyon,France),presented in Fig.1,is composed of two identical enclosures (Cell 1and Cell 2),whose dimensions are 3.10, 3.10, 2.50m according to the coordinate directions (x ,y ,z ).A single glazed façade isolates the test cell 1from a climatic chamber where the air temperature is controlled by means of an air-treatment system.The climatic chamber temper-ature can vary between À10and 40 C as a function of ing a battery of 12spotlights,of 1000W each,it is possible to simulate an artificial sunning for the test Cell 1.The spectrum of the gas-discharge lamps with metal halide is similar to the sun one.For this study,only in the test cell 2the radiant ceiling panels were installed and measurements were taken.The cooling ceilingsurfaceFig.4.Experimental wall surface temperatures for differentheights.Fig.5.Experimental air and globe temperature measured at (x 1,y 1,z ¼1.2m)when T RCC ¼17.6 C.Fig.6.Evaluation of the diffuse view factor F o j .parison between experimental and calculated data of the MRT for T RCC ¼17.6 C.T.Catalina et al./Building and Environment 44(2009)1740–17501743temperature was varied during the experiments,but the rest of the five exterior walls of the MINIBAT were kept at a constant temperature of 26 C,by the mean of a thermal guard controlled with a precision of Æ0.5 C.The air distribution in the thermal guard was made by a ventilation network equipped with lateral diffusers and placed in the upper part of the controlled volumes.This distribution was chosen to avoid dead zones and to create a uniform airflow in the technical spaces.In Table 1the main elements of the MINIBAT envelope are presented and in Table 2the physical characteristics of the materials are summarized.For the data acquisition a multiplexer-multimeter with more than 100connections was used.The data acquisition central was linked using the software Labview with a computer,located outside the test facility.The time step chosen for the measurement was 45s and the total duration of the experiments was extended for several days.2.2.Radiant cooling system descriptionIn the test cell 2were installed 6radiant cooling panels (1.5Â0.9m –dimension for one panel),covering the entire ceiling area.The particularities of the installed system are the capillary tubes which are in contact with the interior part of the panels.With an exterior diameter of 3mm and spaced between them by 1.5cm,the capillary tubes offer good temperature uniformity along the panels’surfaces by comparison to similar systems.The very small thickness of the heat exchangers’capillary pipes allows them to be embedded onto the surface of the walls,ceilings or floors.Passive elements of construction are thus transformed into heating and/or cooling surfaces by the use of the energy transferred between two radiant bodies.Each mat element was connected in parallel to the overall cold water collector in order to induce a homogeneous distribution in the ceiling’s surface temperature.The water flowed through the mat at a temperature between 17and 20 C,lower values would have increased the risk of condensation.Such temperatures would not lead to condensation of moisture from air,but could offer opportunity for substantial energy savings since water at such temperatures could be provided without using refrigeration or active cooling.For our experimentan air-water heat pump was used to obtain the desired water temperature for the cooling ceiling,along with a pipework system and a water pump.2.3.MeasurementsThe test cell indoor air temperature was measured using 6K-type thermocouples (nickel–aluminum)at different heights start-ing from 0.4to 2.3m and placed in different positions of the room.The test facility walls and floor have been equipped with K-type thermocouples in order to measure the internal/external surface temperatures;nine measurements were taken for each face of the room,a total of 108surface temperatures being scrutinized.The radiant ceiling temperatures were measured using Pt100probes in nine different points.The measurement error for the thermocou-ples was Æ0.5 C and for the Pt100probes Æ0.3 C.The water temperature in the system was also measured at inlet/outlet posi-tion using Pt100probes.The indoor humidity was measured using a sensor with a precision of Æ2.5%for measurements of relative humidity between 10and 90%.The black globe temperature was analyzed using a thermocouple positioned in a black globe with a diameter of 15cm at a height of 1.2m.The test cell was divided in four symmetric spaces,the analyzed measurement area being one of these parts (see Fig.2).The thermal guard temperature was kept at 26 C during the whole experimental campaign,but the ceiling temperature varied from 16.9to 18.9 C.The airtemperature,Fig.8.Calculated MRT on yz -axis at (x 1,y 1)and (x 4,y 1)for T RCC ¼17.6C.Fig.9.Relative humidity variations inside the test facility.T.Catalina et al./Building and Environment 44(2009)1740–17501744relative humidity and globe temperature measured in different locations of the rectangular grid of 0.43Â0.43m are presented in Fig.2.The measurements were taken also on different heights,a total number of 96measurements (on x ,y ,z -axis)being realized.The experiments were conducted under natural convection conditions and no humidity sources were added.All the experi-ments were carried out under steady-state conditions.2.4.Experimental results2.4.1.Vertical air temperature profileThree experimental cases were carried out to investigate the effect of radiant cooling ceiling temperature (T RCC )on the indoor environment.Fig.3shows the vertical distribution of air temper-ature in the center of the test room.If the temperature difference between the head and the feet is sufficiently large,a person can have local warm discomfort and/or cold discomfort even though the overall average is thermally neutral.Nominal vertical air temperature gradients between 0.4and 2.1m heights were found to be around 0.71–0.77 C/m for the cooling ceiling at temperatures of 16.9,17.6and 18.9 C.The obtained experimental data are more than satisfied,in terms when the comfort standards call for a maximum temperature difference between head and feet of 3 C,regardless of the operative temperature.2.4.2.Surface temperatureThe MINIBAT test cell was equipped with 108thermocouples to measure the surface temperature in the interior and exterior part of the room.Any major wall temperature fluctuation due to air-treatment system of the thermal guard wasn’t noticed.The impact of surface’s temperature on the human thermal comfort is considerable and a particular attention has been paid to this aspect.A 0.5 C difference was observed between the lower and the upper part of the walls (see Fig.4).2.4.3.Mean radiant temperatureEven though they are not in direct contact with the body,cold surfaces (like radiant cooling ceiling)still greatly affect human perception of temperature.With radiant cooling,the energy balance on the human body is different from that without the cooled ceiling in several ways.First,the heat losses from the human body by radiation are increased from about 35%without radiant cooling to 50%with radiant cooling [8].Likewise,the heat losses due to convection decrease from about 40%without the chilled ceiling to 30%with radiant cooling.The globe temperature,which integrates the effect of air temperature,radiation and air movement,was measured at z ¼1.2m for different locations of the (x ,y )plane.It was found thatthe globe temperature had lower values than the air temperature with 0.6–0.9 C (see Fig.5).Mean radiant temperature (MRT)is the most important parameter governing human energy balance,with the strongest influence on thermo-physiological comfort indexes such as PMV,its meaningful scope being the thermal comfort.To evaluate the MRT for all the axes and heights we used a radiosity method.Considering a spherical point located at a spatial position in a room,the radiative balance equation can be written for this point.Taking into account the reciprocal relation of the view factor by using a linearization of the radiative exchanges between the spherical point and the walls and neglecting the internal reflections,the thermal balance of the point is obtained [19]:MRT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N j ¼1F 0j T 4Sj4v u u t (1)We suppose to have only rectangular surfaces for the differentenvelope components to consider.F 0j ,the diffuse view factor between a spherical point and a rectangular surface can be calcu-lated with Eq.(2)according to the notations of Fig.6.In Eq.(1)the surface temperatures (T S j )were obtained from the experimental campaigns.F 0j ¼1parctg "abc ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia 2þb 2þc 2q #!(2)A comparison between the measurements taken on the mean radiant temperature and the results obtained using the radiosity method is presented in Fig.7.The results correspond to the position (x 1,y 1,z 3)to (x 4,y 1,z 3)as presented previously in Section 2.3.The results obtained using the radiosity model were in good agreement with the data obtained from measurements,a maximum difference of 0.4 C being noticed,value which can be explained by the measurement errors from the thermocouple sensors.The results of MRT calculations are presented as twoTable 3Table 4T.Catalina et al./Building and Environment 44(2009)1740–17501745temperature fields at position x 1,y 1and x 4,y 1on the y -axis.The analyzed cases correspond to the position in the center of the test room and in the proximity of the wall.Fig.8shows the mean radiant temperature distribution calculated using Eq.(1)on the two analyzed cases.The effect of the radiant cooling ceiling on the radiant temperature is more noticeable for the x 1,y 1position and is reduced when approaching the walls,due to radiant effect of the walls’temperature.2.4.4.Indoor humidity levelsOne of the main inconveniences of the radiant cooling ceiling is that it is presenting a relatively high risk of condensation on thechilled area.Even if the indoor humidity has a small effect on the global thermal comfort,for the cooling ceiling systems it is a crucial design ually the dew point temperature is calculated for each zone by monitoring all the time the ambient air temper-ature and the relative humidity.The inlet water temperature is controlled individually with values higher than the dew point of the ambient air.Therefore,if a risk of condensation is present,the water temperature is raised.A good solution to reduce the risk of condensation is to dehumidify the air but this solution will increase considerably the price of the system and it cannot be used alone,a control system being necessary for perfect safety against the condensation.For our experiment the relative humidity was kept at values between 42and 43%(see Fig.9),so the risk of condensation on the ceiling was minimized.3.Mathematical model of airflowDuring the last years,computational fluid dynamics (CFD)technology has progressed and made it possible to analyze complex situations where HVAC systems were simulated and compared with real data obtained from experiments [20].The mean airflow modelling is divided into two parts:(a)mathematical model (governing equations,turbulence model,boundary conditions,etc.)and (b)numerical solution (discretiza-tion,numerical scheme,solution convergence,etc.).The CFD model was based on the description of the experi-mental test room.The airflow pattern and temperature distribution in the facility are governed by the conservation laws of mass,momentum and energy.The flow is assumed to be steady state,three-dimensional,incompressible and turbulent.The buoyancy effect is invoked in the momentum equation,k and 3.The Boussi-nesq approximation hypothesis is used for the buoyant force term.The radiation heat transfer is not integrated in the CFD model due to the constant temperature of surrounding surfaces.The numerical model is based on commercial CFD code called STAR-CCM þ[21].The Rayleigh-number has been calculated and its value of around 1010showed that the airflow isturbulent.Fig.10.Velocity comparison for two mesh models at position x 1,y 1.parison between measured and simulated air temperature at position x 1,y 1.T.Catalina et al./Building and Environment 44(2009)1740–175017463.1.Turbulence modellingFor this study the turbulence is modelled with the AKN Low-Re k–3model[22].This turbulence model was evaluated numerically stable with correct precision on the results[23].Hashimoto[23] indicated that the standard k–3turbulence model could be applied for a fully turbulentflow but it is inappropriate for a buoyantflow. In his research article he studied the airflow in an office room with displacement ventilation system using a low-Re number k–3 turbulence model with a damping function to reduce the turbulent viscosity near a wall(AKN model).The AKN model introduced Kolmogorov velocity scale,instead of the friction velocity,to account for the near-wall and low-Reynolds number effects in both attached and detachedflows.Thefluid is considered like an incompressible one with density computed via the ideal gas law considered as varying only with temperature.The model used in this study can be written in a general form as:r v fv t þr u jv fv x jÀvv x j"G f vfv x j#¼S f(3)where f is the variable,G f the effective coefficient and S f the source term of the equation.The expressions of the variables for the turbulence model used in this paper are summarized in Table3.3.2.Boundary conditionsThe CFD model boundary conditions were provided by the experimental measurements of the surface temperatures in the test room.Table4resumes the surface boundary conditions used for the CFD simulations based on the three experimental series where the cooling ceiling temperature was varied from16.9to18.9 C.The Fig.12.Velocityfields at position(x1,y1)and(x4,y1)on the yz-axis direction for T RCC¼17.6 C.Fig.13.Thermal comfort analysis.T.Catalina et al./Building and Environment44(2009)1740–17501747wall boundaries have been modelled using the no-slip condition with constant wall temperature.The low-y þwall treatment was applied for our model.The wall treatment assumes that the viscous sublayer is well resolved and thus wall laws are not needed.3.3.DiscretizationThe mesh is designed using the pre-processor STAR-DESIGN [21]and the discretization of the computational domain is achieved by means of an unstructured mesh.In the boundary layer next to a non-slip wall,there are high gradients within a small region,so to capture these gradients accurately it was necessary to have fine mesh spacing normal to the wall.The volume mesh process consisted of several steps,including surface improvement,subsurface genera-tion and then the actual interior volume meshing.The grid contains polyhedral elements,the final mesh being composed of 116,762cells.The volume range was between 3.386E À6to 1.5351E À3and the minimum distance between centroids of neighbour cells was of 3.374E À3.A grid dependency analysis was conducted to ensure that the resolution of the mesh was not influencing the results.3.4.Numerical schemeThe solution method is based on the following main hypothesis:the diffusion terms are second-order central-differenced,and the second-order upwind scheme for convective terms is used to reduce the numerical diffusion.The velocity–pressure coupling method is the SIMPLE algorithm.The multigrid scheme allows to accelerate the convergence as our model contains a very large number of control volumes [24].3.5.CFD simulations’results3.5.1.Grid independence analysisEven if a convergent solution was obtained an additional step was necessary to achieve good accuracy.Chen and Srebic [25]recommends a verification of the model results by systematically refining the grid size realized generally by doubling the grid number and compare the two solutions.A grid independence test was performed and the data results showed that the mesh densitychosen was sufficient for a grid independent solution of velocity fields,no noticeable error being observed.Fig.10shows the velocity results difference between the two analyzed grid mesh (1)116,762cells and (2)233,524cells.parison of the experimental data to CFD simulationsThe model validation is important to ensure adequate results and was a necessary step before analyzing the airflow pattern obtained from the CFD simulations.The validation was focused on the comparison of air temperature for the three experimental series.The simulated results were analyzed and compared with the experimental data on the position (x 1,y 1)along the z -axis accord-ing to the analyzed experimental configuration presented previ-ously in the article.The analyzed data points are the most relevant in terms of temperature distribution in the test room.In Fig.11the air temperature distribution is confronted with the experimental data.The comparisons between the experimental and the numerical data confirm the validity of the numerical model used in the CFD simulation;the differences between the CFD and experimental results could be explained by the measurement errors of Æ0.5 C.Furthermore the accuracy of the results was analyzed by a sensi-tivity study of the air velocity values and air pattern flow to a change in the cooling ceiling temperature.This temperature was modified according to the measurements errors of the Pt probes used in the experimental campaign (Æ0.3 C).The conclusions of this sensi-tivity analysis showed that the airflow pattern is not modified and the differences between the air velocities were insignificant.3.5.3.Air velocity fieldsThe air speed could be an important parameter for the human thermal comfort;an increased air speed will aid the evaporation of sweat thus leading to a cooling effect,particularly if loose clothing is worn.However,if the air velocity is too high it may cause discomfort and a sensation of draughtiness.The thermal comfort cannot be ameliorated by an increase of air velocity if the temperature or humidity is too high.Mean air speed should be less than 0.15m/s in the occupied zone to prevent a feeling of discomfort for the most sensitive.The CFD technique was found a valuable technique to complement the experimental results,allowing a detailed accesstoFig.14.PMV distribution at position (x 1,y 1)and (x 4,y 1)on the yz -axis direction for T RCC ¼17.6 C.T.Catalina et al./Building and Environment 44(2009)1740–17501748。

相关文档
最新文档