2013备考高考数学模拟题
2013年高考数学模拟试题(理科)答案
2013年高考数学模拟试题(理科)答案命题人:卧龙寺中学 吴亮 李丰明一、选择题:本大题共10小题,每小题5分,共50分二、填空题:本大题共5小题,每小题5分,共25分11.[1,3] 12. -8 13. 96 14.511[2,2],66k k k Z ++∈ 15. A. 8(,)(2,)3-∞-+∞ B.C. 4三.解答题:本大题共6小题,满分75分.解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)解:(1)---------------------6分(2)由(1)知bc=5,而c=1,所以b=5, -----------12分17.(本题满分12分)解:(1)当n=1时,a 1=S 1=k+1,当n≥2时,a n =S n -S n-1=kn 2+n-[k(n-1)2+(n-1)]=2kn-k+1(*),经检验,n=1,(*)式成立,∴a n =2kn-k+1(n∈N *). -----------------6分(2)∵a m ,a 2m ,a 4m 成等比数列,∴a 22m =a m ·a 4m ,即(4km-k+1)2=(2km-k+1)(8km-k+1),整理得mk(k-1)=0,对任意的m∈N *成立,∴k=0或k=1. ------------------12分18.(本题满分12分)223121,25453||||3,51:2145 2.2cosA 2cos A (0,),sinA ,bc 5,ABC bcs 5inA a A AB AC AB AC cosA bc π-=-=⎝⎭==⨯======∈==⨯⨯= 又所以而所以所以的面积为所以-------------12分19.(本小题满分12分)解:(1)设事件A 表示甲运动员射击一次,恰好击中9环以上(含9环),则P (A )=0.35+0.45=0.8. 甲运动员射击3次均击中9环以下的概率为P 0=(1-0.8)3=0.008.所以甲运动员射击3次,至少有1次击中9环以上的概率为P =1-0.008=0.992.------------------6分(2)记乙运动员射击1次,击中9环以上为事件B ,则P (B )=1-0.1-0.15=0.75.由已知ξ的可能取值是0,1,2.P (ξ=2)=0.8×0.75=0.6;P (ξ=0)=(1-0.8)×(1-0.75)=0.05;P (ξ=1)=1-0.05-0.6=0.35.ξ的分布列为所以E ξ=0×0.05+1×0.35+2×0.6故所求数学期望为1.55. --------------------12分20. (本小题满分13分)解:(1)设A (x 1,y 1),因为A 为MN 的中点,且M 的纵坐标为3,N 的纵坐标为0,所以y 1=32,又因为点A (x 1,y 1)在椭圆C 上,所以x 21+y 214=1,即x 21+916=1,解得x 1=±74,则点A 的坐标为⎝ ⎛⎭⎪⎫74,32或⎝ ⎛⎭⎪⎫-74,32, 所以直线l 的方程为67x -7y +21=0或67x +7y -21=0. ---------6分(2)设直线AB 的方程为y =kx +3或x =0,A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),当AB 的方程为x =0时,|AB |=4>3,与题意不符. 当AB 的方程为y =kx +3时,由题设可得A 、B 的坐标是方程组⎩⎪⎨⎪⎧y =kx +3,x 2+y 24=1的解, 消去y 得(4+k 2)x 2+6kx +5=0,所以Δ=(6k )2-20(4+k 2)>0,即k 2>5,则x 1+x 2=-6k 4+k 2,x 1·x 2=54+k 2, y 1+y 2=(kx 1+3)+(kx 2,3)=244+k 2, 因为|AB |=(x 1-x 2)2+(y 1-y 2)2<3,所以1+k 2·⎝ ⎛⎭⎪⎫-6k 4+k 22-204+k2<3, -------------12分解得-163<k 2<8,所以5<k 2<8.因为OA →+OB →=λOP →,即(x 1,y 1)+(x 2,y 2)=λ(x 3,y 3),所以当λ=0时,由OA→+OB →=0, 得x 1+x 2=-6k 4+k 2=0,y 1+y 2=244+k 2=0, 上述方程无解,所以此时符合条件的直线l 不存在;当λ≠0时,x 3=x 1+x 2λ=-6k λ(4+k 2), y 3=y 1+y 2λ=24λ(4+k 2), 因为点P (x 3,y 3)在椭圆上,所以⎣⎢⎡⎦⎥⎤-6k λ(4+k 2)2+14⎣⎢⎡⎦⎥⎤24λ(4+k 2)2=1, 化简得λ2=364+k 2, 因为5<k 2<8,所以3<λ2<4,则λ∈(-2,-3)∪(3,2).综上,实数λ的取值范围为(-2,-3)∪(3,2). ---------------13分21.(本小题满分14分)解:(1)f ′(x )=3x 2-6,令f ′(x )=0,解得x 1=-2,x 2= 2. 因为当x >2或x <-2时,f ′(x )>0;当-2<x <2时,f ′(x )<0. 所以f (x )的单调递增区间为(-∞,-2)和(2,+∞);单调减区间为(-2,2). -------------2分当x =-2时,f (x )有极大值5+42;当x =2时,f (x )有极小值5-4 2. -------------4分(2)由(1)的分析知y =f (x )的图象的大致形状及走向如图所示,当5-42<a <5+42时,直线y =a 与y =f (x )的图象有三个不同交点, 即方程f (x )=a 有三个不同的解.--------------9分(3)f (x )≥k (x -1),即(x -1)(x 2+x -5)≥k (x -1).因为x >1,所以k ≤x 2+x -5在(1,+∞)上恒成立.令g (x )=x 2+x -5,此函数在(1,+∞)上是增函数.所以g (x )>g (1)=-3.所以k 的取值范围是k ≤-3.---------------14分。
2013年高考数学模拟试题
2013年高考数学模拟试题2014年高考数学模拟试题一、选择题:(本大题共12个小题,共计60分,每小题只有一个选项是符合题意的)1.(理科)求值:A. B. C. D.(文科).已知,且,则的取值范围是A. B.C. D.2、(理科)甲,乙两人分别独立参加某高校自主招生考试,若甲,乙能通过面试的概率都为23,则面试结束后通过的人数ξ的数学期望Eξ是( )A.43 B.119C.1D.89(文科)条件“函数在其定义域内单调”是条件“函数具有反函数”的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不对称6.在正方体中,点分别为的中点,则7.对向量( ) A.2 B. C.4 D.8.在0,1,2,3,5中任取4个数字组成没有重复数字的四位数,且使得该四位数能被剩下的那个数字除尽,则这样的四位数的个数共有( )A.30B.36C.60D.1209.如图,点A、B都在半径为2的球上,圆Q是过A 、B 两点的截面,若A 、B 的球面距离为,则三棱锥的体积等于( )A 、. B.CD. 3 10.已知,x y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数96z x y =+最大值的变化范围[]20,22,则t 的取值范围( )A.[]2,4 B.[]4,6 C.[]5,8 D. []6,7 11.定义在R 上的偶函数满足,且当时,则( )A.1B.2C.3D.412.设A 、B 为椭圆的左、右顶点,若椭圆上存在异于A 、B 的点P ,使得,其中O 为原点,则该椭圆离心率的取值范围是( ) A.B.CD第二部分(非选择题,共90分)二、填空题:(本大题共4个小题,共计20分) 13.的展开式中,各项的系数之和等于 .14.将矩形ABCD 沿AC 折叠为直二面角B-AC-D ,若15.函数的最大值等于 .16. 已知奇函数()f x 是定义在R 上的增函数,数列{}nx 是一个公差为2的等差数列满足891011()()()()0f x f x f xf x +++=,则2011x 的值 ____________三、填空题:(本大题共6个小题,共计70分,解答需写出必要的演算步骤和过程) 17.在中,角A 、B 、C 所对应的边为a 、b 、c ,且有,的外接圆半径为1.(I )求证:B=C ; (II )若,求角A 的大小.19、如图,在ABC ∆中,60,90,ABC BAC AD ∠=∠=是BC 上的高,沿AD 把ABC ∆折起,使(Ⅰ)证明:平面ADB ⊥平面BDC ;(Ⅱ)设E 为BC 的中点,求AE 与DB 夹角的余弦值.20、(文科)已知数列{}na 的前n 项和是nS (*n N ∈),11a=且112n n n S S a -⋅+=(1)求数列{}na 的通项公式;231111(2):*,1111n n N n S S S +∈⋅⋅>+---求证对任意的不等式成立.(理科)已知数列}{na 满足).2(22,111≥-+==-n n a a a n n(I ) 求数列}{na 的通项公式; (II )若数列}{nb 中24b=,前n 项和为nS ,且4()(*).n n S n b n a n n N -=+∈证明:1215(1).3n b n b +<21.在平面直角坐标系xoy 中,过定点(,0)C p 作直线m 与抛物线22(0)ypx p =>相交于A 、B 两点.(I )设(,0)N p -,求NA NB 的最小值;(II )是否存在垂直于x 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.参考答案一、选择题:(本大题共12个小题,共计60分)1.B( C)2.A (B)3.B (A)4.A5.C6.C7.D 8.A 9.C 10.B 11.A 12.D二、填空题:(本大题共4个小题,共计16分)13.16 14.15.16.4003三、填空题:(本大题共6个小题,共计74分)17.(本小题满分12分)证明:等价于等价于.(5分)解:等价于等价于又∴∴. (12分)19.(本小题满分12分)解(Ⅰ)∵折起前AD是BC边上的高,∴当ΔABD折起后,AD⊥DC,AD⊥DB,又DB⋂DC=D,∴AD⊥平面BDC,∵AD 平面平面BDC.∴平面ABD⊥平面BDC.(5分)(Ⅱ)由∠ BDC =90︒及(Ⅰ)知DA ,DB ,DC 两两垂直,不防设DB =1,以D 为坐标原点,以,,DB DC DA所在直线,,x y z 轴建立如图所示的空间直角坐标系,易得D (0,0,0),B (1,0,0),C (0,3,0),A (0,0,3),E (12,32,0), AE ∴=13,,322⎛⎫-⎪⎝⎭,DB =(1,0,0,),AE∴与DB 夹角的余弦值为cos<AE ,DB >=1222.22||||2214AE DBAE DB ⋅==⋅⨯.(12分)20文科. (本小题14分)11(1)2nn n nS SS S --=-1112214212(2)(21)(23)61(1)n n n n S S S n n n n a n -=-=--⎧≥⎪--=⎨⎪=⎩…………分…………分…………分(2)21n s n =-23112112211135722=11124621n n n s n n P S S S n +-∴=---∴⋅⋅=----…………7分令……3572246821246213572n n n n-+>-……………………11分46821=3572n Q n+令……2231111111111n P PQ n P n n S S S +∴>=+∴>+∴⋅⋅>+---…………13分…………14分理科 (12分) .解:(I )解法一、)2(221≥-+=-n n a an n………………①121-+=+n a a n n ………………………②②-①得12211+-=--+n n n n a a a a)1(2111+-=+-∴-+n n n n a a a a }1{1+-∴-n na a为公比为2,首项为2的等比数列.)2(,1211≥-=-∴--n a a n n n 递推叠加得 )1(,2≥-=∴n n an n解法二、)2(221≥-+=-n n a a n n………………①设))1((21y n x a y xn an n+-+=++-即xy xn a an n221-++=-与①式比较系数得:x =1,y =0)1(21-+=+∴-n a n a n n∴数列{nan+}是以首项a 1+1,公比为2的等比数列,即n n nn a2221=⨯=+- )1(,2≥-=∴n n an n(II )nn nn nb n S b n n S n a 24)(4=∴+=--nn nb n S =-∴22 ………………………②由②可得:11)1()1(22+++=+-∴n n b n n S…………③③-②,得nn n nb b n b -+=-++11)1()1(2 即2)1(1=+--+n n nb b n …………④又由④可得02)1(12=++-++n n b n nb…………⑤⑤-④得0212=+-++n n n nb nb nb即}{*)(0211212n n n n n nn n b N n b b b b b b b ∴∈-=-∴=+-+++++是等差数列.n b b b n2,4,221=∴==nn n r r n n n n n b n nC n C n C n C C n b n )21()21()21(21)211()11(221021++++++=+=+12322101242121211)21()21()21(21),2,1(211222121!)1()1(2121)21(--++++<++++++∴==⨯⨯⨯⨯⋅<⋅+--⋅=⋅=n nn n r r n n n n r r r r r n r r r nn C n C n C n C C n r r n r n n n n C n C2151(1)343n =+-<121515(1)(1)233n b n n n b ∴+<+<即(21.(本小题15分) 解:(I )依题意,可设11(,)A x y , 22(,)B x y ,直线AB 的方程为: x my p =+由22x my p y px=+⎧⎨=⎩22220y pmy p ⇒--=…………2分 1221222y y pm y y p+=⎧∴⎨⋅=-⎩112212122212121212222(,)(,)()()(2)(2)(1)2()422NA NB x p y x p y x p x p y y my p my p y y m y y pm y y p p m p ∴⋅=+⋅+=+++=+++=++++=+当m=0时NA NB ⋅的最小值为22p .…………7分(II )假设满足条件的直线l 存在,其方程为x=a,AC 的中点为'o ,l 与以AC 为直径的圆相交于P,Q,PQ 中点为H,则'o H PQ ⊥,'o 的坐标为11(,)22x p y+.'2222111111()222o P AC x p y x p ==-+=+9分222''22211111()(2)441()()2PH o P o H x p a x p a p x a p a ∴=-=+---=-+-2211(2)4()()2PQ PH a p x a p a ⎡⎤∴==-+-⎢⎥⎣⎦…………13分令12a p -=0得12a p =.此时PQ p =为定值.故满足条件的直线l存在,其方程为x=12p …………。
2013年高考数学文科模拟试卷(含答案详解版)
开始 0k =k =k +131n n =+150?n >输出k ,n结束是 否输入n2013年高考数学模拟试卷(文)第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.1.已知集合{}0 1 2A =,,,集合{}2B xx =>,则A B =A .B .{}0 1 2,,C .{}2x x >D .∅ 2.已知i 为虚数单位,则212ii-++的值等于 ( )A. i -B.12i -C. 1-D.2.定义{|,,}x A B z z x y x A y B y⊗==+∈∈.设集合{0,2}A =,{1,2}B =3.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5 4.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( ) A .21 B .33 C .23 D .35.阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56.函数tan()42y x ππ=-的部分图象如图所示,则()O AO BA B +⋅=( )A.6B.4C.4-D.6-7.在纪念中国人民抗日战争胜利六十周年的集会上,两校各派3名代表,校际间轮流发言,对日本侵略者所犯下的滔天罪行进行控诉,对中国人民抗日斗争中的英勇事迹进行赞颂,那么不同的发言顺序共有( ) A.72种 B.36种 C.144种 D.108种O xyAB第6题图图18.已知函数()y f x =的定义域为2(43,32)a a --, 且(23)y f x =-为偶函数,则实数a 的值为( )A .3或-1B .-3或1C .1D .-19.农民收入由工资性收入和其它收入两部分构成。
2013年高考数学模拟试题及答案和解析和评分要点(1)
理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数111-++-=iiz ,在复平面内z 所对应的点在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是 (A(B )(C(D ) 833.下列命题错误的是(A )命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠” (B )若命题2:,10p x R x x ∃∈++=,则2:,10p x R x x ⌝∀∈++≠ (C )若p q ∧为假命题,则p 、q 均为假命题(D ) “2x >”是“2320x x -+>”的充分不必要条件4.如图,该程序运行后输出的结果为(A )1 (B )2 (C )4 (D )165.设γβα,,为两两不重合的平面,,,l m n 为两两不重合的直线,给出下列四个命题:①若γβγα⊥⊥,,则βα//;②若ββαα//,//,,n m n m ⊂⊂,则βα//; ③若βα//,α⊂l ,则β//l ;④若γαγγββα//,,,l n m l === ,则n m //. 其中真命题的个数为(A )1(B )2(C )3(D )46.已知n S 是等差数列}{n a 的前n 项和,若12852=++a a a ,则9S 等于(A )18 (B )36 (C )72 (D )无法确定俯视图7. P 是ABC ∆所在平面内一点,若+=λ,其中R ∈λ,则P 点一定在(A )ABC ∆内部 (B )AC 边所在直线上 (C )AB 边所在直线上 (D )BC 边所在直线上8. 抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于(A ) (B ) (C )2 (D 9. 定义行列式运算12212121b a b a b b a a -=,将函数xx x f cos 1sin 3)(=的图象向左平移)0(>t t 个单位,所得图象对应的函数为偶函数,则t 的最小值为 (A )6π (B )3π (C )65π (D )32π10. 设方程|)lg(|3x x-=的两个根为21,x x ,则(A ) 021<x x (B )021=x x (C ) 121>x x (D ) 1021<<x x 11. 王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(A )300秒 (B )400秒 (C )500秒 (D )600秒12. 两个三口之家,共4个大人,2个小孩,约定星期日乘“奥迪”、“捷达”两辆轿车结伴郊游,每辆车最多只能乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是(A )40 (B )48 (C )60 (D )68第Ⅱ卷二.填空题:本大题共4小题,每小题4分,共16分.13.在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于a 的概率为 . 14.若等比数列}{n a 的首项为32,且⎰+=4 1 4)21(dx x a ,则公比q 等于 .15. 已知)(x f 为奇函数,且当x >0时, 0)('>x f ,0)3(=f ,则不等式0)(<x xf 的解集为____________. 16. 数列 ,,,,,,,,,,1423324113223112211,则98是该数列的第 项. 三.解答题:本大题共6小题,共74分.17. (本小题满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A m , ⎪⎭⎫ ⎝⎛-=2cos ,85B A n ,且89=⋅n m .(Ⅰ)求B A tan tan ⋅的值; (Ⅱ)求222sin cb a Cab -+的最大值.18. (本小题满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.19. (本小题满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a nn n ,273=a . (Ⅰ)求21,a a 的值; 21. (本小题满分12分)已知A 为椭圆)0(12222>>=+b a b y a x 上的一个动点,弦AB 、AC 分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=AF AF . (Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F AF 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.22. (本小题满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线. (Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)附:答案及评分标准:一.选择题: BCCCB BBACD BB1.解析:B. 21(1)1111(1)(1)i i z i i i i -+--=-=-=-++-,故选B.2. 解析:C.该几何体为正四棱锥,底面边长为22=,其体积1223V =⨯⨯=.3. 解析:C .由“且”命题的真假性知,p 、q 中至少有一个为假命题,则p q ∧为假,故选项C 错误.4. 解析:D.每次循环对应的b a ,的值依次为11,1,2,112a b b a ====+=;22,24,213a b a ====+=;43,4,216,314a b b a =====+=. 5. 解析:B.根据面面平行的判定可知①是假命题;②是假命题; ③是真命题;④是真命题.6. 解析:B. 2585312a a a a ++==,∴54a =,19592993622a a aS +=⨯=⨯=. 7. 解析:B. CB PA PB CB BP PA λλ=+⇒+= CP PA λ⇒=,∴C 、P 、A 三点共线.8. 解析:A. 抛物线212y x =-的准线方程为3x =,双曲线22193x y -=的渐近线为3y x =±,如图,它们相交得OAB ∆,则(3,A B ,∴132OAB S ∆=⨯=.9. 解析:C. 1sin ()sin cos sin )22cos x f x x x x x x==-=-2cos()6x π=+. 函数()f x 向左平移65π后为55()2cos()2cos()2cos 666f x x x x ππππ+=++=+=-,所以5()2c o s 6f x x π+=-为偶函数. 10. 解析:D. 如图,易知231x x =,3120x x x <<<,∴1201x x <<.11. 解析:B. 设王先生每月拨打长途x 秒,拨打本地电话5x 秒,根据题意应满足50.3650.60120.060.076060x x x x ⋅⋅++≤+,解得400x ≥. 12. 解析:B. 只需选出乘坐奥迪车的人员,剩余的可乘坐捷达.若奥迪车上没有小孩,则有2344C C +=10种;若有一个小孩,则有11232444()C C C C ++=28种;若有两个小孩,则有1244C C +=10种.故不同的乘车方法种数为10+28+10=48种. 二.填空题13.6π;14.3;15. {|033x 0}x x <<-<<或;16.128. 13. 解析:6π.易知,在正方体内到点A 的距离小于a 的点分布在以A 为球心,以a 为半径的球的18部分内.故所求概率即为体积之比3341386a P a ππ⋅==.14. 解析:3. 42224 14(12)()44(11)181a x dx x x =+=+=+-+=⎰;123a =,341a a q =⋅得公比3q =.15. 解析:{|033x 0}x x <<-<<或.根据题意,函数()f x 的图象如图,可得0)(<x xf 的解集为{|033x 0}x x <<-<<或.16. 解析:128.分子、分母之和为2的有1项,为3的有2项,…,为16的有15项.而98是分子、分母之和为17的第8项.故共有1511581282+⨯+=项. 三.解答题17. (本题小满分12分)已知角C B A 、、是ABC ∆的三个内角,c b a 、、是各角的对边,若向量⎪⎭⎫⎝⎛-+-=2cos),cos(1B A B A,⎪⎭⎫ ⎝⎛-=2cos ,85B A ,且89=⋅.(Ⅰ)求B A tan tan ⋅的值;(Ⅱ)求222sin c b a Cab -+的最大值.解:(Ⅰ)由(1cos(),cos )2A B m A B -=-+ ,5(,cos )82A Bn -= ,且98m n ⋅= ,即259[1cos()]cos 828A B A B --++=.---------------------------------------------------------------------------2分 ∴4cos()5cos()A B A B -=+,-------------------------------------------------------------------------------------4分即cos cos 9sin sin A B A B =,∴1tan tan 9A B =.--------------------------------------------------------------6分 (Ⅱ)由余弦定理得222sin sin 1tan 2cos 2ab C ab C C a b c ab C ==+-,-------------------------------------------------8分而∵tan tan 9tan()(tan tan )1tan tan 8A B A B A B A B ++==+-9384≥⨯=,即tan()A B +有最小值34.-----------------------------------------------------------------------------------------10分又tan tan()C A B =-+,∴tan C 有最大值34-(当且仅当1tan tan 3A B ==时取等号),所以222sin ab C a b c+-的最大值为38-.-------------------------------------------------------------------------------12分18. (本题小满分12分)正ABC ∆的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 的中点(如图(1)).现将ABC ∆沿CD 翻折成直二面角A -DC -B (如图(2)). 在图形(2)中:(Ⅰ)试判断直线AB 与平面DEF 的位置关系,并说明理由; (Ⅱ)求二面角E -DF -C 的余弦值;(Ⅲ)在线段BC 上是否存在一点P ,使DE AP ⊥?证明你的结论.解法一:(Ⅰ)如图(2):在ABC ∆中,由EF 分别是AC 、BC 的中点,得EF//AB ,又⊄AB 平面DEF ,⊂EF 平面DEF . ∴//AB 平面DEF.-----------------------------------------------------------------------3分(Ⅱ)CD BD CD AD ⊥⊥,,∴ADB ∠是二面角A -CD -B 的平面角.-------------------------------------------------------------------------------------4分∴BD AD ⊥,∴⊥AD 平面BCD .取CD 的中点M ,则EM //AD ,∴EM ⊥平面BCD .过M 作MN ⊥DF 于点N ,连结EN ,则EN ⊥DF ,MNE ∠是二面角E -DF -C 的平面角.----------------------------------------------------6分在EMN Rt ∆中,EM =1,MN =23,∴721cos =∠MNE .----------------------------------8分 (Ⅲ)在线段BC 上取点P ,使BP =BC 31,过P 作PQ ⊥CD 于点Q ,∴⊥PQ 平面ACD .-----------------11分 ∵,33231==DC DQ ∴ADQ Rt ∆中,33tan =∠DAQ .在等边ADE ∆中, ,30 =∠DAQ ∴DE AP DE AQ ⊥⊥,.------------------------------------------------------12分解法二:(Ⅱ)以点D 为坐标原点,以直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则)0,3,1(),1,3,0(),0,32,0(002(),2,0,0(F E C B A ),,,------------------------------------------4分平面CDF 的法向量)2,0,0(=.设平面EDF 的法向量为n=(x ,y ,z ).则⎪⎩⎪⎨⎧=⋅=⋅00DE n DF ,即⎩⎨⎧=+=+0303z y y x ,取)3,3,3(-=------------------------------------------6分 721||||cos =⋅>=⋅<n DA .二面角E -DF -C 的平面角的余弦值为721.------------------------------------8分 (Ⅲ)在平面坐标系x D y 中,直线BC 的方程为323+-=x y ,设)0,332,(x x P -,则)2,332,(--=x x .--------------------------------------------------------------------------------------------------------10分∵BC BP x DE AP DE AP 31340=⇒=⇒=⋅⇒⊥. ∴在线段BC 上存在点P ,使AP ⊥DE .---------------------------------------------------------------12分.19. (本题小满分12分)张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则则被淘汰.已知张明答对每一道题的概率都为21. (Ⅰ)求张明进入下一轮的概率;(Ⅱ)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.解法一:(Ⅰ)张明答4道题进入下一轮的概率为161)21(4=;----------------------------------------------------1分 答5道题进入下一轮的概率为812121)21(334=⋅⋅C ;--------------------------------------------------------------------2分答6道题进入下一轮的概率为32521)21()21(2335=⋅⋅C ;--------------------------------------------------------------3分 答7道题进入下一轮的概率为32521)21()21(3336=⋅⋅C ;-------------------------------------------------------------5分 张明进入下一轮的概率为1155116832322P =+++=.---------------------------------------------------------------6分(Ⅱ)依题意,ξ的可能取值为4,5,6,7.当ξ=4时可能答对4道题进入下一轮,也可能打错4道题被淘汰.81)21()21()4(44=+==ξP ;类似有4121)21()21(21)21()21()5(334334=⋅⋅+⋅⋅==C C P ξ;)6(=ξP =+⋅⋅21)21()21(2335C 16521)21()21(2335=⋅⋅C ; )7(=ξP =+⋅⋅21)21()21(3336C 16521)21()21(3336=⋅⋅C .----------------------------------------------10分于是ξ的分布列为161671664584=⨯+⨯+⨯+⨯=ξE ---------------------------------------------------------------------12分解法二:(Ⅱ)设张明进入下一轮的概率为1P ,被淘汰的概率为2P ,则121=+P P ,又因为张明答对每一道题的概率都为21,答错的概率也都为21.所以张明答对4题进入下一轮与答错4题被淘汰的概率是相等的.即21P P =. 所以张明进入下一轮的概率为21.--------------------------------------------------------------------------------------6分20.(本小题满分12分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a nn n ,273=a . (Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n n n ∈+=,若数列}{n b 成等差数列,求实数t ;(Ⅲ)求数列}{n a 的前n 项和n S .解法一:(Ⅰ)由)2,(122*1≥∈++=-n N n a a nn n ,得33222127a a =++=29a ⇒=.2212219a a =++=12a ⇒=.--------------------------------------------------------------3分(Ⅱ)*11221(,2)(1)2(1)2nnn n n n a a n N n a a --=++∈≥⇒+=++*(,2)n N n ∈≥1111122n n n n a a --++⇒=+*(,2)n N n ∈≥---------------------------------------------------------5分 1111122n n n n a a --++⇒-=*(,2)n N n ∈≥,令*1(1)()2n n nb a n N =+∈,则数列}{n b 成等差数列,所以1t =. ---------------------------------------------------------------------------------------------7分(Ⅲ))}{n b 成等差数列,1(1)n b b n d =+-321(1)22n n +=+-=.121(1)22n n n n b a +=+=; 得1(21)21n n a n -=+⋅-*()n N ∈.--------------------------------------------------------------8分n S =21315272(21)2n n n -⋅+⋅+⋅+++⋅- -----------①2n S =23325272(21)22nn n ⋅+⋅+⋅+++⋅- --------------------② ① - ② 得213222222(21)2n n n S n n --=+⋅+⋅++⋅-+⋅+233222(21)2nnn n =++++-+⋅+ 14(12)3(21)212n n n n --=+-+⋅+-=(21)21nn n -+⋅+-.所以(21)21nn S n n =-⋅-+*()n N ∈-------------------------------------------------------------12分.解法二:(Ⅱ)))((21*N n t a b n nn ∈+=且数列}{n b 成等差数列,所以有1()n n b b +-*()n N ∈为常数. 11111()()22n n n n n n b b a t a t +++-=+-+*()n N ∈1111(221)()22n n n n n a t a t ++=+++-+*()n N ∈111112222n n n n n n t ta a ++=++--*()n N ∈ 1112n t+-=+*()n N ∈,要使1()n n b b +-*()n N ∈为常数.需1t =.---------------------------------7分21. (本题小满分12分)已知A 为椭圆)0(12222>>=+b a b y a x 上的一个动点,弦AB 、AC分别过焦点F 1、F 2,当AC 垂直于x 轴时,恰好有13||||21::=. (Ⅰ)求椭圆离心率;(Ⅱ)设F AF B F AF 222111λλ==,试判断21λλ+是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.解:(Ⅰ)当AC 垂直于x 轴时,a b 22||=,13||||21::=,∴ab 213||=∴a ab 242=,∴222b a =,∴22c b =,故22=e .-----------------------------------------3分 (Ⅱ)由(Ⅰ)得椭圆的方程为22222b y x =+,焦点坐标为)0,(),0,(21b F b F -.①当弦AC 、AB 的斜率都存在时,设),(),,(),,(221100y x C y x B y x A ,则AC 所在的直线方程为)(00b x bx y y --=, 代入椭圆方程得0)(2)23(20200202=--+-y b y b x by y bx b .∴02222023bx b y b y y --=,--------------------------------------------------------------5分F AF 222λ=,bx b y y 020223-=-=λ.--------------------------------------------------7分 同理bx b 0123+=λ,∴621=+λλ------------------------------------------------------9分 ②当AC 垂直于x 轴时,则bbb 23,112+==λλ,这时621=+λλ; 当AB 垂直于x 轴时,则5,121==λλ,这时621=+λλ.综上可知21λλ+是定值 6.---------------------------------------------------------------12分22. (本题小满分14分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线.(Ⅰ)求l 的方程;(Ⅱ)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值;(Ⅲ)证明对任意的n a =)(*N n ∈,函数)(x f y =总有单调递减区间,并求出)(x f 单调递减区间的长度的取值范围.(区间],[21x x 的长度=12x x -)解:(Ⅰ)1)0(),1ln(12)(2=+++-=f x x ax x f ,11)22(21122)(2'+--+=++-=x x a ax x ax x f , 1)0('=f ,切点)1,0(P ,l 斜率为1-.∴切线l 的方程:1+-=x y ------------------------------------------------------3分(Ⅱ)切线l 与曲线)(x f y =有且只有一个公共点等价于方程1)1ln(122+-=+++-x x x ax 有且只有一个实数解.令)1ln()(2++-=x x ax x h ,则0)(=x h 有且只有一个实数解.---------------------------4分 ∵0)0(=h ,∴0)(=x h 有一解0=x .------------------------------------------------------5分1)]121([21)12(21112)(2'+--=+-+=++-=x a x ax x xa ax x ax x h --------------------------------6分 ①)(),1(01)(,212'x h x x x x h a ->≥+==在),1(+∞-上单调递增, ∴0=x 是方程0)(=x h 的唯一解;------------------------------------------------------7分 ②0)(,210'=<<x h a ,0121,021>-==ax x∴0)11ln(11)1(,0)0()121(2>++-⨯==<-a a aa a h h a h , ∴方程0)(=x h 在),121(+∞-a上还有一解.故方程0)(=x h 的解不唯一;--------------------8分③当0)(,21'=>x h a ,)0,1(121,021-∈-==ax x∴0)0()121(=>-h ah ,而当1->x 且x 趋向-1时,)1ln(,12++<-x a x ax 趋向∞-,)(x h 趋向∞-. ∴方程0)(=x h 在)1211(--a,上还有一解.故方程0)(=x h 的解不唯一.综上,当l 与曲线)(x f y =有且只有一个公共点时,21=a .-------------------------10分(Ⅲ)11)22(2)(2'+--+=x x a ax x f ;∵,1->x ∴0)('<x f 等价于01)22(2)(2<--+=x a ax x k .∵0)1(48)22(22>+=+-=∆a a a ,对称轴12121422->+-=--=aa a x ,011202(2)1(>=---=-a a k ,∴0)(=x k 有解21,x x ,其中211x x <<-.∴当),(21x x x ∈时,0)('<x f .所以)(x f y =的减区间为],[21x x22122121211214)222(4)(aa a a x x x x x x +=⨯+--=-+=---------------------------12分 当)(*N n n a ∈=时,区间长度21211n x x +=-21112=+≤ ∴减区间长度12x x -的取值范围为)2,1(--------------------------------------------------14分。
2013年高考模拟系列试卷(2)—数学(理)含答案
2013年高考模拟系列试卷(二)数学试题【新课标版】(理科)注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的 1、设集合{}21,M x x x =-≤∈R ,{}21,02N y y xx ==-+≤≤,则()RM N ⋂等于 ( )A .RB .{}|1x x R x ∈≠且C .{}1D .∅ 2、在复平面内,复数2013i i 1iz =+-表示的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3、若sin 601233,log cos 60,log tan 30a b c ===,则( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>4、设数列{}na 是公差不为零的等差数列,它的前n 项和为nS ,且1S 、2S 、4S 成等比数列,则41aa 等于( )A .6B .7C .4D .35、已知点()1,0A -和圆222x y +=上一动点P ,动点M 满足2MA AP =,则点M 的轨迹方程是( )A .()2231x y -+=B .223()12x y -+=C .2231()22x y -+= D .223122x y ⎛⎫+-= ⎪⎝⎭ 6、命题“存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥-”的否定为( ) A .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≥- B .任意,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- C .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-<- D .存在,αβ∈R ,使22sin()sin()sin sin αβαβαβ+-≤-7、设a b <,函数()()2y x a x b =--的图象可能是( )8、程序框图如下:如果上述程序运行的结果S 的值比2013小,若使输出的S 最大,那么判断框中应填入( ) A .10k ≤ B .10k ≥ C .9k ≤ D .9k ≥9、图为一个空间几何体的三视图,其中俯视图是下边一个等边三角形,其内切圆的半径是1,正视图和侧视图是上边两个图形,数据如图,则此几何体的体积是( )A .1533πB .233πC .33πD .433π10、在9212x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .5376-B .5376C .84-D .8411、如果点P 在平面区域220140x y x x y -+≤⎧⎪≥-⎨⎪+-≤⎩上,点Q 在曲线(x -1)2+(y-1)2=1上,那么|PQ |的最小值为( ) A .5-1B .355C .3515-D .523-112、已知椭圆C :22221(0)x y a b a b+=>>的左右焦点为12,F F ,过2F 的直线与圆222()()x a y b b -+-=相切于点A,并与椭圆C 交与不同的两点P,Q,如图,若A 为线段PQ 的靠近P 的三等分点,则椭圆的离心率为 ( )A .23B .33C .53D .73第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上13、由曲线23y x =-和直线2y x =所围成的面积为 。
2013年高考数学模拟试卷含答案
绝密★启用前 试卷类型:A理科数学本试卷分选择题和非选择题两部分,共4页,20小题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kkkn n P k pp -=-第Ⅰ卷 (选择题 满分40分)一、选择题:(本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -12.设全集U 是实数集R ,M={x|x 2>4},N ={x|31≤<x },则图中阴影部分表示的集合是( ) A .{x|-2≤x <1} B .{x|-2≤x ≤2}C .{x|1<x ≤2}D .{x|x <2}3.下列函数中,最小值为2的是( ) A .21222+++=x x yB .xx y 12+=C .)220)(22(<<-=x x x yD .1222++=x x y 4.设a 为函数)(cos 3sin R x x x y ∈+=的最大值,则二项式6)1(xx a -的展开式中含2x项的系数是( )XYOA .192B .182C .-192D .-182 5.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .46.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y2.5t44.5根据上表提供的数据,求出y 关于x 的线性回归方程为 0.70.35y x =+,那么表中t 的值为( )A. 3B. 3.15C. 3.5D. 4.57.已知方程20ax bx c ++= ,其中a 、b 、c 是非零向量,且a 、b不共线,则该方程( )A .至多有一个解B .至少有一个解C .至多有两个解D .可能有无数个解8.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函 数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则11++a b 的取值范围是( )A .)31,51( B .),5()31,(+∞⋃-∞ C .)5,31(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共6小题,每小题5分,满分30分)9.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .10.在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q 为 .11.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“ONE”,“WORLD”,“ONE”,“DREAM”的四张卡片随机排成一排,若卡片按从左到右的顺序排成“ONE WORLD ONE DREAM”,则孩子会得到父母的奖励,那么孩子受奖励的概率为 .12.已知三棱锥P ABC -的四个顶点均在半径为3的球面上,且PA 、PB 、PC 两两互相垂直,则三棱锥P ABC -的侧面积的最大值为 .13.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则tan C = .14.设直角三角形的两条直角边的长分别为a ,b ,斜边长为c ,斜边上的高为h ,则有 ①2222h c b a +>+, ②3333h c b a +<+,③4444h c b a +>+,④5555h c b a +<+.其中正确结论的序号是 ;进一步类比得到的一般结论是 .三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.16.(本小题满分12分)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x 、y ,记y x +=ξ; (Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)设“函数1)(2--=x x x f ξ在区间)3,2(上有且只有一个零点”为事件A ,求事件A 发生的概率.17.(本小题满分14分)已知几何体BCDE A -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积; (Ⅱ)求异面直线DE 与AB 所成角的余弦值;(Ⅲ)探究在DE 上是否存在点Q ,使得BQ AQ ⊥,并说明理由.开始输入n11=a ,12=a ,1=ii i i a a a 6512-=++n i ≥1+=i i否是输出2+i a结束18.(本小题满分14分)某商场以100元/件的价格购进一批衬衣,以高于进货价的价格出售,销售期有淡季与旺季之分,通过市场调查发现:①销售量)(x r (件)与衬衣标价x (元/件)在销售旺季近似地符合函数关系:1)(b kx x r +=,在销售淡季近似地符合函数关系:2)(b kx x r +=,其中21210,0b b k b b k 、、且、><为常数; ②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中0)(=x r 时的标价x 为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题: (Ⅰ)填出表格中空格的内容:数量关系销售关系标价(元/件)销售量)(x r (件)(含k 、1b 或2b )销售总利润y (元)与标价x (元/件)的函数关系式旺季 x 1)(b kx x r +=淡季x(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元/件? 19.(本小题满分14分)已知数列}{n a 满足如图所示的程序框图. (Ⅰ)写出数列}{n a 的一个递推关系式; (Ⅱ)证明:}3{1n n a a -+是等比数列, 并求}{n a 的通项公式;(Ⅲ)求数列)}3({1-+n n a n 的前n 项和n T .20.(本小题满分14分)已知函数2()2ln .f x x x a x =++ (Ⅰ)若函数()(0,1)f x 在区间上是单调函数, 求实数a 的取值范围;(Ⅱ)当t ≥1时,不等式(21)2()3f t f t -≥- 恒成立,求实数a 的取值范围.正视图 侧视图俯视图55 3 4 34 绝密★启用前 试卷类型:A汕头市2010~2011学年度普通高中毕业班教学质量监测试题文科数学本试卷分选择题和非选择题两部分,共 4 页,20题,满分150分.考试时间120分钟. 注意事项:1.答选择题前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将非选择题的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将选择题的答题卡和非选择题的答题卷都收回,试卷由考生自己保管. 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷 (选择题 满分50分)一、选择题:(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( )A. 1B. 2C. 1或2D. -1 2.设{}{}(,),()()cos 2sin 2M a b N f x f x a x b x ==|=+平面内的点,给出M 到N 的映射:(,)()cos 2sin 2f a b f x a x b x →=+,则点(1,3)的象()f x 的最小正周期为( )A .2π B .4πC .πD .2π3.在等差数列{}n a 中,已知5710a a +=,n S 是数列{}n a 的前n 项和,则11S =( )A .45B .50C .55D .604.一个几何体的三视图如图所示,则这个几何体的表面积为( )A .72B .66C .60D .305.在边长为1的等边ABC ∆中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则 ,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则( )A .32-B .0C .32D .3XYO频率组距0.100.25 0.409 10 11 12 13 14时间6.已知函数1()x f x a =,2()a f x x =,3()log a f x x =(其中0a >且1a ≠),在同一坐标系中画出其中两个函数在x ≥0且y ≥0的范围内的大致图象,其中正确的是( )x y O1 Ax y O1 B 1xy O1 C 1xyO 1D17.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( ) A .6万元B .8万元C .10万元D .12万元8.若m 、n 为两条不重合的直线,α、β为两个 不重合的平面,则下列命题中的真命题个数是( )①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ; ④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.A .1B .2C .3D .49.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为第 三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 10.定义在R 上的函数)(x f 满足1)4(=f ,)('x f 为)(x f 的导函数,已知)('x f y =的图像如图所示,若两个正数a 、b 满足1)2(<+b a f ,则22++a b 的取值范围是( )A .)21,31(B .),3()21,(+∞⋃-∞C .)3,21(D .)3,(-∞第Ⅱ卷(非选择题 满分110分)二、填空题:(本大题共4小题,每小题5分,满分20分)11.高三(1)班共有56人,学生编号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知6,34,48的同学在样本中,那么还有一位同学的编号应为 .12.已知向量a =),2,1(-x b =),4(y ,若a ⊥b ,则yx 39+的最小值为 .13.曲线3141,33y x x ⎛⎫=+ ⎪⎝⎭在点处的切线与两坐标轴所围成的三角形面积是 .14.观察以下等式:11=123+= 1236++=123410+++= 1234515++++=311=33129+= 33312336++= 33331234100+++= 3333312345225++++=可以推测3333123...n ++++= (用含有n 的式子表示,其中n 为自然数).三、解答题:(本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤) 15.(本题满分12分)已知不等式()221,(0)x a a -≤>的解集为A ,函数22lg)(+-=x x x f 的定义域为B. (Ⅰ)若φ=⋂B A ,求a 的取值范围;(Ⅱ)证明函数22lg)(+-=x x x f 的图象关于原点对称.16.(本题满分12分)已知向量a )3cos 3,3(cos ),3cos ,3(sin x x b x x ==b )3cos 3,3(cos ),3cos ,3(sin xx b x x a ==,函数()f x a b = a ·b ,(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)如果△ABC 的三边a 、b 、c 满足ac b =2,且边b 所对的角为x ,试求x 的范围及函数)(x f 的值域.17.(本题满分14分)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀FG BDE AC后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (Ⅰ)设(,)i j 表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况;(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.18.(本题满分14分)如图,三角形ABC 中,AC=BC=AB 22,ABED 是边长为1 的正方形,平面ABED ⊥底面ABC ,若G 、F 分别是EC 、BD 的中点.(Ⅰ)求证:GF//底面ABC ; (Ⅱ)求证:AC ⊥平面EBC ; (Ⅲ)求几何体ADEBC 的体积V .19.(本题满分14分)某品牌电视生产厂家有A 、B 两种型号的电视机参加了家电下乡活动,若厂家A 、B 对两种型号的电视机的投放金额分别为p 、q 万元,农民购买电视机获得的补贴分别为101p 、52ln q万元,已知A 、B 两种型号的电视机的投放总额为10万元,且A 、B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:ln 4 1.4≈).20.(本题满分14分)已知二次函数2()f x ax bx =+的图像过点(4,0)n -,且'(0)2f n =,n N *∈.(Ⅰ)求()f x 的解析式;(Ⅱ)若数列{}n a 满足'111()n n f a a +='(0)f n ='111()n nf a a +=,且14a =,求数列{}n a 的通项公式;(Ⅲ)记1n n n b a a +=,数列{}n b 的前n 项和n T ,求证:423n T ≤< .汕头市2010——2011学年高中毕业班教学质量监测理科数学参考答案及评分意见一、选择题:本小题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案BCDCAAAC二、填空题(本大题共6小题,每小题5分,满分30分)9.20; 10.3; 11.121; 12.18; 13.1; 14.②④, *)(N n h c b a n n n n ∈+<+。
2013年高考数学模拟题(文)(附详细答案,打印版)
()图27 98 6 3 89 3 9 8 8 4 1 5 10 3 1 11 4侧视图(第4题图1)(第4题图2)(第8题图)≤≥12013年高考数学模拟题(文)一、选择题(本大题共10小题,每小题5分,共50分.1.已知命题:p 所有指数函数都是单调函数,则p ⌝为( )A .所有的指数函数都不是单调函数B .所有的单调函数都不是指数函数C .存在一个指数函数,它不是单调函数D .存在一个单调函数,它不是指数函数 2.已知{}2,M a a =≥{}2(2)(3)0,A a a a a M =--=∈则集合A 的子集共有( ) A .1个B .2个C .4个D .8 个3.“10<<a ”是“0122>++ax ax 的解集是实数集R ”的( ) A .充分而非必要条件 B .必要而非充分条件C .充要条件D .既非充分也非必要条件4.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为1214,,,.A A A 图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图。
那么算法流程图输出的结果是( ) A .7 B .8C .9D .105.已知,A B 是单位圆上的动点,且AB =O ,则OA AB ∙=( )A.B C .32-D .326.两个正数,a b 的等差中项是92,一个等比中项是a b >,则抛物线2b y x a=-的焦点坐标为( )A .5(,0)16-B .1(,0)5-C .1(,0)5D .2(,0)5-7.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天起每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A .12B .815C .1631D .16298.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为1V ,直径为4的球的体积为2V ,则12:V V =( ) A .1:2 B .2:1C .1:1D .1:49.定义:曲线C上的点到直线l 的距离的最小值称为 曲线C 到直线l 的距离;已知曲线1:C y a =到直线:20l x y -=a 的值为( )A . 3或-3B .23或-C .2D .-310.已知x ∈R ,用符号[]x 表示不超过x 的最大整数。
2013年高考数学全国优秀模拟题汇编
2013年高考数学全国优秀模拟题汇编:选择题(答案)1.对于下列命题:①在△ABC 中,若sin 2sin 2A B =,则△ABC 为等腰三角形;②已知a ,c 是△ABC 的三边长,若2a =,5b =,6A π=,则△ABC 有两组解;③设2012sin3aπ=,2012cos 3b π=,2012tan3c π=,则a b c >>;④将函数2s i n 36y x π⎛⎫=+ ⎪⎝⎭图象向左平移6π个单位,得到函数2c o s 36y x π⎛⎫=+ ⎪⎝⎭图象.其中正确命题的个数是( C )A . 0B . 1C . 2D . 3 1 【解析】①sin 2sin 2A B =,则22A B =,或22A B π+=,∴A B =,或2A Bπ+=,,所以△ABC为等腰三角形或直角三角形,故此命题错;②由正弦定理知sin sin ab AB=,∴15s i n 52s i n 124b A B a⨯===>,显然无解,故此命题错;③201223sinsin332a ππ===,201221cos cos332b ππ===-,20122tantan333c ππ===-,∴a b c>>;④2s i n 3+=2s i n 3++=2cos366626y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,正确. 2.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是( A )A . 403k ≤≤B . <0k 或4>3kC .3443k ≤≤D . 0k ≤或4>3k 2. 【解析】∵圆C 的方程可化为:()2241x y -+=,∴圆C 的圆心为(4,0),半径为1.∵由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;∴存在0x R ∈,使得11A C ≤+成立,即m in 2A C ≤. ∵m in A C 即为点C 到直线2y kx =-的距离2421k k -+,∴24221k k -≤+,解得403k ≤≤.3.C4.D5.C6.C7.D8.B9.A10.A 11.D 12.D 13.A 14.D 15.D16.在约束条件21010x x y m x y ⎧⎪-+⎨⎪+-⎩≤≥≥下,若目标函数2z x y =-+的最大值不超过4,则实数m 的取值范围 ( D )A )3,3(-B ]3,0[C ]0,3[-D ]3,3[- 【解析】作出可行域,即知目标函数2z x y =+在点2211(,)22m m -+处取得最大值.由222max 111324222m m mz -+-+=-⨯+=≤得33m -≤≤17.B. 18.D 19.D20.由题意可知当0c >时,x c x c +>-恒成立,若对x ∀∈R ,有()()f x c f x c +>-。
2013届高考模拟卷试题卷(理科)
湖南省长沙市2013届高三模拟考试数学试卷(理科)时量:120分钟 满分:150分 命题: .选择题:本大题共 8小题,每小题5分,共40分. 是符合题目要求的.uuu向量BA 在向量 BC 方向上的 1投影的数量为( )B.込C.3D 142226.若随机变量X :N(1,2), Y2X 1,则DY( )A.2B.4C.8D.167.已知x 0, y 0,x 2y2xy 8 ,则x 2y 的最小值是( )A.3B.4C.3、2 D.^21•设A {x|x 24x 5 0}, B {x||x 1| 1},则 AI BA{x| 5}B.{x| 1 x5}C.{x| 0}D.{x|x 0或 x 2}2.已知i 为虚数单位,复数1 ai2 i为纯虚数,则实数a 等于 B.- 3 D.2 3.阅读右面程序框图,如果输出的函数值在区间则输入的实数x 的取值范围是 [丄,1]内, 4 2 ( ) 开始 输入xA[ 1,2] B.[ 2, 1] C.( , 2] D. [2,) 否xx [ 2,2是■f(x) 2f(x) 24.某几何体的三视图如图所示,则它的体积是 2输出f (x), |_结束D.825.已知 ABC 的外接圆的圆心为 O ,半径为1,uu u AB AC UULT2AO ,uuu uuur 且 |OA| | AC |,则 明德中学高三数学备课组在每小题给出的四个选项中 ,只有一项交双曲线右支于点 P ,若 T 为线段FP 的中点,则该双曲线的渐近线方程为 16.若一个二进制数中1的个数多于0的个数,则称此数为 好数” ⑴6位二进制数中 好数”的个数为8.已知函数f (x )-4 k2 21(x R ),若对于任意实数x 1,x 2,x 3 ,总存在以 1f (xj, f (X 2), f (X 3)为三边边长的三角形, 则实数k 的取值范围是1 A[齐]B.[1,4]C.[D.[1,)二•填空题:本大题共 8小题,考生作答中对应题号后的横线上.7小题,每小题5分,共35分把答案填在答题卡(一)选做题(请考生在第 9,10,11三题中任选两题作答,如果全做,则按前2题给分)9.已知直线l 的极坐标方程为:cos(寸2,则极点0到直线I 的距离为 ________ .10.如图,已知O O 的半径为2, PA 是O O 的切线,A 为切点,且PA 2. 2,过点P 的一条割线与O O 交于B,C 两点,圆心O 到割线的距离为,3,则PB11.若不等式|2x 1||2x 5| a 无解,则实数a 的取值范围是(二)必做题(12 —16题)1 6-)的展开式中的常数项为x212.二项式(X 13•给出下列命题: ①函数ysin 2x 在[0, —]上是增函数;②在 ABC 中,sin A sin B 4 的充要条件是A B ;③函数 f(x)sin 2 x, x (,0] 的最大周期为.其中真命题的个数为14.已知点P (x, y )的坐标满足: 2xy 2y0,则x 2 2—匕的取值范围为xy2x15.过双曲线—- a2=1(a>0,b>0)的左焦点 bF 引圆2 2y a 的切线,切点为T ,延长FT⑵6位二进制数中所有 好数”的和为 .(结果用十进制数表示)三•解答题:本大题共 6小题,共75分,解得应写出文字说明,证明过程或演算步骤 •17.(本小题满分12分)锐角 ABC 的三个内角A 、 B 、 C 所对边的长分别为a 、 b , c .设向量ur rur rm (c a,b a), n (a b, c),且m// n.⑴求角B 的大小;⑵若b 1,求a c 的取值范围.18.(本小题满分12分)某人将一颗粒 P 放于坐标原点 0,他通过掷一颗骰子来移动点 P :若掷出的点数大于2,则将点P 右移一个单位,否则,上移一个单位 .他一共抛掷了 5次.⑴求点P 移到了点Q(3,2)的概率;⑵若点P 移到了点Q(x, y),设 |x y |,求随机变量的分布列和数学期望19.(本小题满分12分)已知正四棱柱 ABCD A ,B 1C 1D 1 中,AB 1,AA 1 2.⑴求证:BQ //平面ABD ;⑵求直线AD 与平面ABD 所成角的正弦值; ⑶若点P 平面ABD , AP 平面ABD ,在如图所示 的空间直角坐标系中求点 P 的坐标.⑶求证:对任意n N*且n 2有1 1 cos — cos L cos 1L4 62n 2320.(本小题满分13分)1113 已知数列{a n }满足:a a( a 1),a n 1a ; a n (n 22 4 4N ).证明:⑴数列{a n }是递增数列;⑵ |印 1| |a ;1| L |a n 1| 2(n N ).21.(本小题满分13 分)已知焦点为F 1( 1,0), F 2(1,0)的椭圆经过点 A, B 两点,其中O 为坐标原点.uuu uuu⑴求椭圆的方程;⑵求 OAgOB 的范围.22.(本小题满分13 分)已知函数f(x) Sin ^,x0 x2⑴求证:f (x)为单调递减函数;⑵当 0 x 时,4k 的最小值;1一 1 sin sin L sin . n 46 2n,直线I 过点F 2与椭圆交于 f(x)湖南省长沙市2013届高三模拟考试数学试卷(理科)参考答案时量:120分钟 满分:150分 命题:明德中学高三数学备课组.选择题:本大题共 8小题,每小题5分,共40分•在每小题给出的四个选项中 ,只有一项 是符合题目要求的•7•解:x 2y 2xy 8 9 (1 x)(1 2y) [(1 x) (1 2y)'2(二)必做题(12 —16题)512.答案:15 13.答案:214 •答案:[2,-]215.答案:2x y 016.答案:⑴16;⑵85316•解:⑴后5位中,1的个数至少有3个,所求个数为C ; C ; C? 16 ⑵所求和为 16 25(C : C : C :)(24 23 22 2 1) 853.三、解答题:本大题共 6小题,共75分,解得应写出文字说明,证明过程或演算步骤 17.(本小题满分 解:⑴m // n , 12分) • (c a)c(b a)(a b) 0, • 2 2 …a cb 2 ac ,2 2 .2a c b1 1即,cosB,B . 6分2ac2 2 3• B ,二 2 AC —3, 3ABC 为锐角三角形,•••0 A -,0 C2 ,…—A, 7分23262高三数学(理科)第5页共9页2y 4当且仅当x 8•解:2,y 1时取等号,所以(x 2y )min , k t k2x,则函数化为f (x ) g (t ) 1(0,1时, k 2f (x )的值域为(1 --- ],问题,3解得1时, f (x )的值域为{1},符合;1时, k 2f (x )的值域为[亠上1),问题2〉3解得综上,实数一 1k 的取值范围是[—,4]2本大题共 8小题,考生作答7小题,每小题5分,二、填空题:中对应题号后的横线上(一)选做题(请考生在第 9,10,11三题中任选两题作答,如果全做, 9•答案:2 10答案:211.答案: 共35分把答案填在答题卡 则按前 2题给分) (,6]2sin Asin B —,且 b 1,sin Cbsin A bsinCsin Bsin A sin(2A)32 3...3(2sinA、.、3 sin A cos A 2sin( A10分c (.3,2].12分18.(本小题满分 解:⑴点P 由原点移到点Q(3,2),需向右移 3 2 3 1 2 80 p c ;(n 3(:)23 3 24312 分) 3次,向上移2次, 故所求概率为⑵点Q 所有可能的位置为(0,5),(1,4),(2,3),(3,2),(4,1),(5,0),于是随机变量 的取值为: 的所有可能P( 1) P(3) P( 5) 1,3,5. C 3(2)3_(1)2 c 2(2)2g (1)3 120 C 5( ) a :)C 5( ) a ;)3 3 3 243 g 1 C 12g ^1)490 「C 5 c(_) 3 3 3 2432 1 33 c 5(-)5 c 0(-)53 3 2433 2、33 c ;(|)4 3 ”2 - i八3' 随机变量的分布列为: 1 3 5 P 120 90 33243 243 243120 90 33 185 E 1 3 5243 243 243 81 19. (本小题满分 12分) 解:⑴证明:••• A 1B 1 P AB P cD , •••四边形 A ,BQD 为平行四边形, EC // A 1D , 又BC 平面ABD , A ,D 平面A ,BD , 所以B 1C //平面A ,BD 4分 uuu BD ( 1,1,0),r设平面ABD 的一个法向量为nruur r uuu nBD n gBD 0 x r UULT r uuirn BA , ngBAj 0 uuu r x cos UULT r AD, n ADgn 2uuu L |ADgn|3⑵在如图所示的空间直角坐标系中, uur uiu BA 「WAD (O,1,。
2013高三数学理科模拟试题及参考答案
2013高三数学理科模拟试题及参考答案以下是为大家整理的关于《2013高三数学理科模拟试题及参考答案》的文章,希望大家能够喜欢!第一部分选择题(共40分)一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合≤ ≤ , ≤ ≤ ,则()2. 计算:()A.B.- C. 2 D. -23. 已知是奇函数,当时,,则()A. 2B. 1C.D.4. 已知向量,则的充要条件是()A.B.C.D.5. 若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为,则该几何体的俯视图可以是()6. 已知函数,则下列结论正确的是()A. 此函数的图象关于直线对称B. 此函数的值为1C. 此函数在区间上是增函数D. 此函数的最小正周期为7. 某程序框图如图所示,该程序运行后,输出的值为31,则等于()A. 0B. 1C. 2D. 38. 已知、满足约束条件,若,则的取值范围为()A. [0,1]B. [1,10]C. [1,3]D. [2,3]第二部分非选择题(共100分)二、填空题(本大题共7小题,分为必做题和选做题两部分,每小题5分,满分30分)。
(一)必做题:第9至13题为必做题,每道试题考生都必须作答。
9. 已知等比数列的公比为正数,且,则= .10. 计算.11. 已知双曲线的一个焦点是(),则其渐近线方程为.12. 若n的展开式中所有二项式系数之和为64,则展开式的常数项为.13. 已知依此类推,第个等式为.(二)选做题:第14、15题为选做题,考生只选做其中一题,两题全答的只算前一题得分。
14. (坐标系与参数方程选做题)已知曲线C的参数方程为(θ为参数),则曲线C上的点到直线3 -4 +4=0的距离的值为15.(几何证明选讲选做题)如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=_____________三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤。
2013届高考数学理科模拟试题(有答案)
2013届高考数学理科模拟试题(有答案)安徽省阜阳市第一中学2013届高三上学期第二次模拟考试数学(理)试题一、选择题(共10小题,每小题5分,每小题只有一个正确答案)1、复数的共轭复数为()。
ABCD2、实数x,条件P:xA充分不必要B必要不充分C充要条件D既不充分也不必要3、某几何体的三视图如下,则几何体的表面积为()。
ABCD4、对任意x都有则()。
AB0C3D5、为锐角三角形,则则与的大小关系为()。
ABCD6、动点在区域上运动,则的范围()。
ABCD7、四面体的五条棱长都是2,另一条棱长为1,则四面体的体积为()。
ABCD8、已知:在上为减函数,则的取值范围为()。
ABCD9、为x的整数部分。
当时,则的值为()。
A0B1C2D310、数列、、、、、、、、、……依次排列到第项属于的范围是()。
ABCD二、填空题:(共5小题,每小题5分)。
11、等比数列中,若则¬¬_____________。
12、过点P(1,2)的直线,在x轴、y轴正半轴截距分别为、,则最小值为____________。
13、如图:矩形ABCD中,AB=BC=2点E为BC的中点,点F在CD上。
若则_____________。
14、函数,则不等式的解集_________。
15、,为x的整数部分,当时,的解集为___________。
三、解答题:解答应写出文字说明,证明过程或演算步骤。
16、(12分)已知向量(1)求并求的单调递增区间。
(2)若,且与共线,为第二象限角,求的值。
17、(12分)函数为奇函数,且在上为增函数,,若对所有都成立,求的取值范围。
18、(12分)直三棱柱中,点M、N分别为线段的中点,平面侧面(1)求证:MN//平面(2)证明:BC平面19、(12分)若,证明:20、(13分)设(1)讨论函数的单调性。
(2)求证:21、(14分)数列中,(1)求证:时,是等比数列,并求通项公式。
(2)设求:数列的前n项的和。
2013年高考数学模拟题(文)(打印版附详细答案)
2013年高考数学模拟题(文)(二)一、选择题:本大题12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2320A x x x =-+=,{}log 42x B x ==,则A B =A .{}2,1,2-B .{}1,2C .{}2,2-D .{}22.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是 A .1 B .3-或1 C .3 或1- D .3-3.下列有关命题的说法正确的是 A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .若q p ∨为真命题,则p 、q 均为真命题; .C .命题“存在x ∈R ,使得210x x ++<”的否定是:“对任意x ∈R ,均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.4.设,a b 是平面α内两条不同的直线,l 是平面α外的一条直线,则“l a ⊥,l b ⊥”是“l α⊥”的 A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件5.如果不共线向量,a b满足2a b = ,那么向量22a b a b +- 与的夹角为A .6πB .3πC .2πD .23π6.若函数))(12()(a x x xx f -+=为奇函数,则a 的值为A .21B .32 C .43 D .17.若函数321(02)3xy x x =-+<<的图象上任意点处切线的倾斜角为α,则α的最小值是A .4πB .6πC .34π D .56π8.若利用计算机在区间(0,1)上产生两个不等的随机数a 和b,则方程2b x x=有不等实数根的概率为A .14B .12C .34D .259.执行如右图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是A .(42,56]B .(56,72]C .(72,90]D .(42,90)10.若函数21()log ()f x x a x=+-在区间1(,2)2内有零点,则实数a 的取值范围是 A . 25(log ,1]2-- B .25(1,log )2C .25(0,log )2D .25[1,log )211.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB 的中点M在其准线上的射影为M ',则ABM M '的最大值为A .22 B .23 C .1 D .312.已知函数1)(-=x e x f ,34)(2-+-=x x x g .若有)()(b g a f =,则b 的取值范围为 A .]3,1[ B .]22,22[+- C .)3,1( D .)22,22(+-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在横线上. 13.已知α是第二象限角,)5,(x P 为其终边上一点,且x 42cos =α,则x 的值是 .14.一个体积为123的正三棱柱的三视图如右图所示,则该三棱柱的侧视图的面积为 .15.设F 是抛物线C 1:y 2=2px (p >0)的焦点,点A 是抛物线与双曲线C 2:22221x y ab-= (a >0,b >0)的一条渐近线的一个公共点, 且AF ⊥x 轴,则双曲线的离心率为 .16.若c b a ,,是A B C ∆三个内角的对边,且1sin sin sin 2a Ab Bc C +=,则圆22:9M x y +=被直线:0l ax by c -+=所截得的弦长为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数23cos sin sin3)(2-+=x x x x f ()R x ∈.(Ⅰ)若)2,0(π∈x ,求)(x f 的最大值;(Ⅱ)在ABC ∆中,若B A <,21)()(==B f A f ,求ABBC 的值.18.(本小题满分12分)在等差数列{}n a 中,满足8553a a =,n S 是数列{}n a 的前n 项和. (Ⅰ)若01>a ,当n S 取得最大值时,求n 的值; (Ⅱ)若461-=a ,记na Sb nn n -=,求n b 的最小值.19.(本小题满分12分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样. (Ⅰ)若第1组抽出的号码为2,写出所有被抽出职工的号码;(Ⅱ)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(Ⅲ)在(Ⅱ)的条件下,从体重不轻于73公斤(≥73公斤)的职工中抽取2人,求体重为76公斤的职工被抽取到的概率. 20.(本题满分12分)如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABC D .四边形ABC D 为正方形,且P 为AD的中点,Q 为SB 的中点. (Ⅰ)求证:CD ⊥平面SAD ; (Ⅱ)求证://PQ 平面SCD ;(Ⅲ)若SA SD =,M 为B C 中点,在棱S C 上是否存在点N,使得平面D M N ⊥平面A B C D ,并证明你的结论.21.(本小题满分12分)已知函数x ax x f ln 1)(--=()a ∈R .(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立, 求实数b 的取值范围. 22.(本小题满分14分)已知曲线)0()0,0(1:222222221≥=+≥>>=+x r y x C x b a by ax C :和曲线都过点A )1,0(-,且曲线1C 所在的圆锥曲线的离心率为23.(Ⅰ)求曲线1C 和曲线2C 的方程;(Ⅱ)设点B,C 分别在曲线1C ,2C 上,21,k k 分别为 直线AB,AC 的斜率,当124k k =时,问直线BC 是否过定点? 若过定点,求出定点坐标;若不过定点,请说明理由.MSD CA P Q·2013年高考数学模拟题(文)(二)参考答案及评分标准一、选择题(每小题5分,共60分) BADCC ACBBD AD二、填空题(每小题4分,共16分) 13.3-14.6 3 1516.三、解答题:17. 解:(Ⅰ)2)2cos 1(3)(x x f -=+232sin 21-xx x 2cos 232sin 21-=)32sin(π-=x . ……………3分 20π<<x , 32323πππ<-<-∴x .∴当232x ππ-=时,即125π=x 时,)(x f 的最大值为1. …………6分(Ⅱ) )32sin()(π-=x x f ,若x 是三角形的内角,则π<<x 0,∴35323π<π-<π-x .令21)(=x f ,得21)32sin(=π-x ,∴632π=π-x 或6532π=π-x ,解得4π=x 或127π=x . ……………8分由已知,B A ,是△ABC 的内角,B A <且21)()(==B f A f ,∴4π=A ,127π=B ,∴6π=--π=B A C . ……………10分 又由正弦定理,得221226sin4sin sin sin ==ππ==CA ABBC . ……………12分18.解:(Ⅰ)设{a n }的公差为d ,则由3a 5=5a 8,得3(a 1+4d )=5(a 1+7d ),∴d -=223a 1.…………2分∴S n =na 1+n (n -1)2×(-223a 1) -=123a 1n 2+2423a 1n -=123a 1(n -12)2+14423a 1.…………4分∵a 1>0,∴当n =12时,S n 取得最大值.……………………6分 (Ⅱ)由(Ⅰ)及a 1=-46,得d =-223-46)=4, ∴a n =-46+(n -1)×4=4n -50, S n =-46n +n (n -1)2×4=2n 2-48n .……………8分 ∴b n =S n -a n n =2n 2-52n +50n =2n +50n-52≥22n ×50n-52-=32,……………10分当且仅当2n =50n,即n =5时,等号成立. 故b n 的最小值为32-.……………………………………12分19.(本小题满分12分)解:(Ⅰ)抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.……4分 (Ⅱ)因为10名职工的平均体重为=x 110(81+70+73+76+78+79+62+65+67+59)=71, ……………6分 所以样本方差为:=2S110(102+12+22+52+72+82+92+62+42+122)=52.…8分 (Ⅲ)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).…………10分 故所求概率为P (A )=410=25.……12分20.证明:(Ⅰ)因为四边形A B C D 为正方形,则CDAD⊥. …………………1分又平面SAD⊥平面ABC D ,且面SA D 面ABCD AD=,所以CD⊥平面SAD . …………………3分(Ⅱ)取SC 的中点R ,连QR, DR .由题意知:PD ∥BC 且PD =12BC .……………4分MSDCAPQ· R (N ) O在SBC ∆中,Q 为SB 的中点,R 为SC 的中点, 所以QR ∥BC 且QR =12BC . 所以QR ∥PD 且QR=PD ,则四边形PDRQ 为平行四边形. ……………………………7分所以PQ ∥DR .又PQ ⊄平面SCD ,DR ⊂平面SCD ,所以PQ ∥平面SCD . ………………………………………9分(Ⅲ)存在点N 为S C 中点,使得平面D M N ⊥平面A B C D . ……………10分连接P C D M 、交于点O ,连接PM 、SP , 因为//P D C M ,并且P D C M =,所以四边形P M C D 为平行四边形,所以P O C O =. 又因为N 为S C 中点,所以//N O SP .……………………………………………11分因为平面S A D ⊥平面A B C D ,平面S A D 平面A B C D =A D ,并且SP A D ⊥, 可得SP ⊥平面A B C D ,所以N O ⊥平面A B C D .又因为⊂NO 平面OMN ,所以平面D M N ⊥平面A B C D .……………………12分 21.(本小题满分12分)解:(Ⅰ)xax x a x f 11)(-=-=',…………1分当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞单调递减, ∴)(x f 在),0(+∞上没有极值点;……………2分 当0>a 时,()0f x '<得10x a<<,()0f x '>得1x a>,∴)(x f 在(10,)a 上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值.………4分∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点.………………5分(Ⅱ)∵函数)(x f 在1=x 处取得极值,∴1=a , ∴bxx xbx x f ≥-+⇔-≥ln 112)(,………………6分令xx xx g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增,…………10分 ∴22min 11)()(ee g x g -==,即211b e≤-.………………12分22.(本小题满分14分) 解:(Ⅰ)由已知得21b =,24a =,21r =. ……2分所以曲线1C 的方程为2214xy +=(0x ≥). ……3分 曲线2C 的方程为221x y +=(0x ≥). ……4分 (Ⅱ)将11y k x =-代入2214x y +=,得()22111480k xk x +-=.……5分设()11,A x y ,()22,B x y ,则10x =,1221841k x k =+,212122141141k y k x k -=-=+.所以2112211841,4141k k B k k ⎛⎫- ⎪++⎝⎭. ……7分 将21y k x =-代入221x y +=,得()2222120k x k x +-=. 设()33,C x y ,则232221k x k =+,2232322111k y k x k -=-=+,所以)11,12(2222222+-+kk kk C . ……8分因为214k k =,所以21122118161,161161k k C k k ⎛⎫- ⎪++⎝⎭, ……9分 则直线B C 的斜率2211221111122111614116141188416141BC k k k k k k k k k k ---++==--++, ……11分所以直线B C 的方程为:21122111418141441k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,即1114y x k =-+.…13分 故B C 过定点()0,1. ……14分。
数学_2013年湖北省某校高考数学模拟试卷(理科)(含答案)
2013年湖北省某校高考数学模拟试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 设集合M ={−1, 0, 1},N ={a, a 2}则使M ∩N =N 成立的a 的值是( ) A 1 B 0 C −1 D 1或−12. 复数i 20132i−1(i 为虚数单位)的虚部是( ) A 15i B 15 C −15i D −153. “α∈(π2, π)”是“方程x 2+y 2cosα=1表示焦点在x 轴上的双曲线”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分也不必要条件 4. 设非零向量a →,b →,c →,满足|a|→=|b →|=|c|→,|a →+b →|=|c →|,则sin <a →,b →>=( ) A −12 B 12 C √32 D −√325. 已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为( )A √34B √32C 34D 16. 如图,是把二进制数1111(2)化成十进制数的一个程序框图,判断框内可以填入的条件是( )A i >3B i ≤3C i >4D i ≤47.已知函数f(x)=sin(ωx +φ)(ω>0, |φ|<π2)的部分图象如图,则∑f 2013n=1(nπ6)=( )A −1B 1C 12D 08. 一个底面为正三角形且侧棱垂直于底面的三棱柱内接于半径为√3的球,则该棱柱体积的最大值为( ) A2√33 B 3√32C 3√3D 6√3 9. 宜昌市科协将12个参加青少年科技创新大赛的名额分配给3个学校,要求每个学校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为( ) A 36 B 42 C 48 D 5410. 定义域是一切实数的函数y =f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x +λ)+λf(x)=0对任意实数x 都成立,则称f(x)是一个“λ的相关函数”.有下列关于“λ的相关函数”的结论:①f(x)=0是常数函数中唯一一个“λ的相关函数”; ②f(x)=x 2是一个“λ的相关函数”; ③“12的相关函数”至少有一个零点.其中正确结论的个数是( ) A 1 B 2 C 3 D 0二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分(一)必考题 11. (x 2−1x )6展开式中的常数项为________.(用数字作答)12. 在长为10cm 的线段AB 上任取一点C ,并以线段AC 为边作正方形,这个正方形的面积介于25cm 2与49cm 2之间的概率为________.13. 对某小区100户居民的月均用水量进行统计,得到样本的频率分布直方图,则估计此样本的众数是________;中位数是________.14. 某种平面分形图如下图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120∘;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120∘;依此规律得到n 级分形图.(1)n 级分形图中共有________条线段;(2)n 级分形图中所有线段长度之和为________.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分)【选修4-1:几何证明选讲】15. 如图,PA 与圆O 相切于A ,PCB 为圆O 的割线,并且不过圆心O ,已知∠BPA =30∘,PA =2√3,PC =1,则圆O 的半径等于________.【选修4-4:坐标系与参数方程】16. A ,B 分别为直线l:{x =−10+3ty =√3t (t 为参数)和曲线C ::ρ=4cosθ上的点,则AB 的最小值为________.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤 17. 已知函数f(x)=2−sin(2x +π6)−2sin 2x ,x ∈[0,π2] (1)求函数f(x)的值域;(2)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若f(B2)=1,b =1,c =√3,求a的值.18. 已知公差不为0的等差数列{a n }的前3项和S 3=9,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式和前n 项和S n (2)设T n 为数列{1a n a n+1}的前n 项和,若T n ≤λa n+1对一切n ∈N ∗恒成立,求实数λ的最小值.19. 如图,在底面是正方形的四棱锥P −ABCD 中,PA ⊥面ABCD ,BD 交AC于点E ,F 是PC 中点,G 为AC 上一点.(1)确定点G 在线段AC 上的位置,使FG // 平面PBD ,并说明理由;(2)当二面角B −PC −D 的大小为2π3时,求PC 与底面ABCD 所成角的正切值.20. 某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:(1)从50名学生中任选两人,求两人答对题目个数之和为4或5的概率;(2)从50名学生中任选两人,用X 表示这两名学生答对题目个数之差的绝对值,求随机变量X 的分布列及数学期望EX .21. 我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.如图,“盾圆C”是由椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=4x 中两段曲线弧合成,F 1、F 2为椭圆的左、右焦点,F 2(1, 0).A 为椭圆与抛物线的一个公共点,|AF 2|=52.(1)求椭圆的方程;(2)求定积分时,可以使用下面的换元法公式:函数y =f(x)中,令x =φ(t),则∫f b a (x)dx =∫f t 2t 1[φ(t)]dφ(t)=∫f t2t 1[φ(t)]φ′(t)dt(其中a =φ(t 1)、b =φ(t 2)).如∫√1−x 210dx=∫√1−sin 2t π20d(sint)=∫cos π20t(sint)′dt =∫cos 2π20tdt =∫1+cos2t 2π2dt .阅读上述文字,求“盾圆C”的面积.(3)过F 2作一条与x 轴不垂直的直线,与“盾圆C”依次交于M 、N 、G 、H 四点,P 和P′分别为NG 、MH 的中点,问|MH||NG|⋅|PF 2||P′F 2|是否为定值?若是,求出该定值;若不是,说明理由.22. 已知函数f(x)=|x −a|−lnx ,(x >0),ℎ(x)=ax −1(a ∈R) (1)若a =1,求f(x)的单调区间及f(x)的最小值; (2)若a >0,求f(x)的单调区间; (3)若ln2222+ln3232+⋯+lnn 2n 2<ℎ(n)(2n+1)2(n+1),求a 的最小正整数值.2013年湖北省某校高考数学模拟试卷(理科)答案1. C2. D3. A4. C5. C6. A7. B8. C9. B10. A11. 1512. 1513. 2.25,2.0214. (1)3⋅2n−3;(2)9−9⋅(23)n.15. 716. 417. 解:(1)f(x)=2−(√32sin2x+12cos2x)−1+cos2x=1+cos2x−√32sin2x−1 2cos2x=12cos2x−√32sin2x+1=cos(2x+π3)+1,∵ x∈[0, π2],∴ 2x+π3∈[π3, 4π3],∴ cos(2x+π3)∈[−1, 12],则函数f(x)的值域是[0, 32];(2)由f(B2)=1得cos(B+π3)+1=1,即cos(B+π3)=0,∵ B为三角形内角,即0<B<π,∴ π3<B+π3<4π3,∴ B+π3=π2,即B=π6,∵ b=1,c=√3,∴ 由正弦定理bsinB =csinC得:sinC=csinBb=√32,∴ C=π3或2π3,当C=π3时,A=π2,从而利用勾股定理得a=√b2+c2=2;当C=2π3时,A=π6,由B=π6,得到a=b=1,则a的值为2或1.18. 解:(1)由S3=9,可得3a1+3d=9即a1+d=3①∵ a1,a2,a5成等比数列.∴ a1(a1+4d)=(a1+d)2②;联立①②得a1=1,d=2;…故a n =2n −1,S n =n 2… (2)∵ 1an a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1)…∴ T n =12(1−13+13−15+⋯+12n−1−12n+1)=n2n+1… 由T n ≤λa n+1得:n2n+1≤λ(2n +1) ∴ λ≥n (2n+1)2=14n+1n+4令f(n)=14n+1n+4,∵ f(n)单调递减, ∴ f(n)≤19即λ≥19…19. 解:(1)以A 为原点,AB 、AD 、PA 所在的直线分别为x 、y 、z 轴,建立空间直角坐标系A −xyz 如图所示,设正方形ABCD 的边长为1,PA =a ,则A(0, 0, 0),B(1, 0, 0),C(1, 1, 0),D(0, 1, 0),P(0, 0, a)(a >0), E(12, 12, 0),F(12, 12, a2),G(m, m, 0)(0<m <√2).要使FG // 平面PBD ,只需FG // EP , 而PE →=(12, 12, −a),由FG →=λPE →可得{m −12=12λ−a2=−aλ解得λ=12,m =34, ∴ G 点坐标为(34, 34, 0)∴ AG →=34AC →,故当AG =34AC 时,FG // 平面PBD .(2)设平面PBC 的一个法向量为u →=(x, y, z),则{u →⋅BC →=0˙而PC →=(1, 1, −a),BC →=(0, 1, 0), ∴ {x +y −az =0y =0取z =1,得u →=(a, 0, 1),同理可得平面PDC 的一个法向量v →=(0, a, 1), 设u ,v 所成的角为θ, 则|cosθ|=|cos 2π3|=12,即|u⋅v||u||v|=12, ∴√a2+1⋅√a2+1=12,∴ a =1,∵ PA ⊥面ABCD ,∴ ∠PCA 就是PC 与底面ABCD 所成的角, ∴ tan∠PCA =PA AC=√2=√22. 20. 解:(1)记“两人答对题目个数之和为4或5”为事件A ,则 P(A)=C 202+C 101C 151+C 201C 151C 502=190+150+30025×49=128245,… 即两人答对题目个数之和为4或5的概率为128245…(2)依题意可知X 的可能取值分别为0,1,2,3. 则P(X =0)=C 52+C 102+C 202+C 152C 502=3501225=27,…P(X =1)=C 51C 101+C 101C 201+C 201C 151C 502=5501225=2249,…P(X =2)=C 51C 201+C 101C 151C 502=2501225=1049,…P(X =3)=C 51C 151C 502=751225=349.…从而X 的分布列为:故X 的数学期望EX =0×27+1×2249+2×1049+3×349=5149.… 21. 解:(1)∵ |AF 2|=52,∴ x A +1=52,解得x A =32,∴ y A 2=4×32,解得y A =√6.∴ A(32,√6).代入椭圆方程可得:94a2+6b 2=1,又a 2=b 2+1.解得b 2=8,a 2=9. ∴ 椭圆的方程为:x 29+y 28=1.(2)由x 29+y 28=1可知:y =±√8−89x 2,令x =3sint(−π2≤t ≤π6),S 1=∫√8−89x 232−3dx =∫√8−8sin 2t π6−π2d(3sint)=6√2∫cos 2π6−π2tdt =3√2∫(π6−π21+cos2t)dt =(t +12sin2t)|−π2π6=2√2+3√64. S 2=∫√4x 320dx =(4x3)|032=√6.根据对称性,“盾圆C”的面积为2(S 1−S 2)=4√2π−√62. (3)设过F 2的直线为x =my +1(m ≠0),M(x M , y M ),N(x N , y M ),G(x G , y G ),H(x H , y H ),联立{x =my +1x 29+y 28=1,化为(8m 2+9)y 2+16my −64=0,则y M +y H =−16m 8m 2+9,y M ⋅y H =−648m 2+9.联立{x =my +1y 2=4x ,化为y 2−4my −4=0.∴ y N +y G =4m ,y N ⋅y G =−4. 由M 、N 、G 、H 、P 、P′共线, ∴|MH||NG|⋅|PF 2||P′F 2|=|y M −y H ||y N −y G |⋅|y N +y G2||y M +y H 2|=√(16m)2+4×64(8m 2+9)8m 2+9√16m 2+16×|4m||16m8m 2+9|=3.∴ |MH||NG|⋅|PF 2||P′F 2|为定值3. 22. 解:(1)当x ≥1时,f(x)=x −1−lnx ,∴ f ′(x)=x−1x≥0,∴ f(x)在[1, +∞)上递增;当0<x <1时,f(x)=1−x −lnx ,∴ f ′(x)=−1−1x <0,∴ f(x)在(0, 1)上递减; 因此f(x)min =f(1)=0(2 ) ①若a ≥1,当x ≥a 时,f(x)=x −a −lnx,f ′(x)=x−1x≥0,则f(x)在区间,[a, +∞)上递增;当0<x <a 时,f(x)=a −x −lnx ,f ′(x)=−1−1x <0,则f(x)在区间(0, a)上递减.②若0<a <1,当x ≥a 时,f(x)=x −a −lnx,f ′(x)=x−1x,则当x >1时,f′(x)>0;当a ≤x <1时,f′(x)<0,所以f(x)在[1, +∞)上递增,在[a, 1)上递减;当0<x <a 时f(x)=a −x −lnx ,f ′(x)=−1−1x <0则f(x)在(0, a)上递减,而f(x)在x =a 处连续,所以f(x)在[1, +∞)上递增,在(0, 1)上递减.综上:当a ≥1时,增区间[a, +∞),减区间(0, a).当0<a <1时,增区间[1, +∞),减区间(0, 1)(3)由(1)可知,当a =1,x >1时,有x −1−lnx >0,即lnxx <1−1x 所以ln2222+ln3233+⋯+lnn 2n 2<1−122+1−132+⋯+1−1n 2=n −1−(122+132+⋯+1n 2)<n −1−[12×3+13×4+⋯+1n(n+1)]=n −1−(12−13+13−14+⋯+1n−1n+1)=n −1−(12−1n+1)=(n−1)(2n+1)2(n+1)要使ln2222+ln3232+⋯+lnn 2n 2<(an−1)(2n+1)2(n+1),∵ a ∈N +,n ≥2只需a ≥1,所以a 的最小正整数值为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
俯视图侧视图正视图3342013备考高考数学模拟题(6)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合33{|0},{|||},""""122x P x Q x x m P m Q x =≤=-≤∈∈-那么是的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.公差不为0的等差数列{}n a 中,2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a =,则20062008b b =( )A .4B .8C .16D .363. 若纯虚数z 满足2(2i)4(1i)z b -=-+(其中i 是虚数单位,b 是实数),则b =( )A .2-B .2C .-4D .44.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 123B. 363C. 273D. 65.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则OM ·ON =( ) A .- 1 B .- 1 C . - 2 D .2 6.设0(sin cos )a x x dx π=+⎰,则二项式61()a x x-,展开式中含2x 项的系数是( )A. 192-B. 192C. -6D. 6 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )8.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x ,若12012x x <<<<,则ba的取值范围是( )A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--A B C D第Ⅱ卷(非选择题)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9. 右图是2008年北京奥运会上,七位评委为某奥运项目打出 的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为 ;方差为 .10.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为_______.11. 在如下程序框图中,已知:0()x f x xe =,则输出的是_________ _.12. 设椭圆()222210x y a b a b+=>>的两个焦点分别为12,F F ,点P 在椭圆上,且120PF PF ⋅= ,123tan 3PF F ∠=,则该椭圆的离心率为 .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.设R 为l 上任意一点,则RP 的最小值 .14. (不等式选讲选做题)若关于x 的不等式1x x a +-<(a ∈R )的解集为∅,则a 的取值范围是 .15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c ,若cos cos A bB a= 且sin cos C A = (Ⅰ)求角A 、B 、C 的大小;(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离.17. (本小题满分13分)在2008年北京奥运会某项目的选拔比赛中, A 、B 两个代表队进行对抗赛, 每队三名队员, A 队队员是123,A A A 、、B 队队员是123,B B B 、、按以往多次比赛的统计, 对阵队员之间胜负概率如下表, 现按表中对阵方式出场进行三场比赛, 每场胜队得1分,7 98 4 4 6 4 7 9 3否 是开始 输入f 0 (x ) 0=i )()(1'x f x f i i -= 结束1+=i i i =2009输出 f i (x )负队得0分, 设A 队、B 队最后所得总分分别为ξ、η, 且3ξη+=.(Ⅰ)求A 队得分为1分的概率;(Ⅱ)求ξ的分布列;并用统计学的知识说明哪个队实力较强.18. (本小题满分13分)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,左右顶点分别为A C 、,上顶点为B ,过C B F ,,三点作圆P ,其中圆心P 的坐标为()n m ,.(Ⅰ)当0m n +≤时,椭圆的离心率的取值范围. (Ⅱ)直线AB 能否和圆P 相切?证明你的结论.19. (本小题满分13分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (III )求二面角B -A 1P -F 的余弦值. 20. (本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4, 公差为2的等差数列.(Ⅰ)求证:数列{}n a 是等比数列;(Ⅱ) 若()n n n b a f a =⋅,当2k =时,求数列{}n b 的前n 项和n S ;(III )若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由. 21. (本小题满分14分)已知函数F (x )=|2x -t |-x 3+x +1(x ∈R ,t 为常数,t ∈R ). (Ⅰ)写出此函数F (x )在R 上的单调区间;(Ⅱ)若方程F (x )-k =0恰有两解,求实数k 的值.对阵队员A 队队员胜 A 队队员负 1A 对1B 23 132A 对2B 25 353A 对3B 37 35【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分. 文科共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【解析】A.0(1)0(1)011x x x x x x ≤⇔-≤≠⇔≤<-;33333||0322222x x x -≤⇔-≤-≤⇔≤≤, P Q ⊂.选A.【链接高考】本题主要考查集合的有关知识,解不等式,以及充要条件等知识.集合是学习其它知识的基础,在高考中时有出现,通常与函数、不等式的知识综合考查,难度不大,基本是送分题.2.【解析】D.解: 2200520072009330a a a -+=,即22007200760a a -=,20072007(6)0a a -=,由200720070a b =≠知, 200720076b a ==.20072220062008636b b b ===. 【链接高考】 本题主要考查了等差数列和等比数列的基本性质. 纵观近几年的高考,基本上是考查两个基本数列的通项公式和前n 项和公式的简单运用.这种趋势近几年还会保持. 两类基本数列问题,是高考的热点. 3.【解析】C .设(0)z ai a =≠,则有(2i)42i ai b -⋅=-,即242i a ai b +=-,即4,22a a b ==-,解得4b =-.【链接高考】有关复数的考查,最近五年只是一道选择题,主要考查复数的基本概念和复数的简单运算.4.【解析】B .棱柱的高是4,底面正三角形的高是33,设底面边长为a ,则3332a =, 6a ∴=,故三棱柱体积2136436322V =⋅⋅⋅=. 【链接高考】三视图是高考的新增考点,不时出现在高考试题中,应予以重视. 5.【解析】C .圆心O 到直线0=++C By Ax 的距离221C d A B ==+,所以23AOB π∠=,,所以OM ·ON =(·cos OA OB 222cos 23AOB π∠==- ,故选C .【链接高考】本题是考察平面几何、向量、解析几何有关知识,预测也是今年是高考考热点,要注意. 6.【解析】A . 00(sin cos )(cos sin )2a x x dx x x ππ=+=-+=⎰,二项式61(2)x x-的通项公式为6631661(2)()(1)2rrr r r r rr T C x C x x ---+=-=-,令32r -=,得1r =,故展开式中含2x 项的系数是11616(1)2192C --=-.【链接高考】本小题设计巧妙,综合考查定积分和二项式定理,是一道以小见大的中档题,不可小视.7.【解析】B. log (1),0(||1)log (||1)log [(1)],0.a a a x x f x x x x +≥⎧+=+=⎨--<⎩由函数()log a f x x =是增函数知, 1a >.故选B.【链接高考】本小题主要考查了对数函数的图象与性质,以及分析问题和解决问题的能力.这类试题经常出现,要高度重视.8.【解析】D.设2()(1)1f x x a x a b =+++++,则方程()0f x =的两实根12,x x 满足12012x x <<<<的充要条件是(0)10(1)230(2)370f a b f a b f a b =++>⎧⎪=++<⎨⎪=++>⎩,作出点(,)a b 满足的可行域为ΔABC 的内部,其中点(2,1)A -、(3,2)B -、(4,5)C -,ba的几何意义是ΔABC 内部任一点(,)a b 与原点O 连线的斜率,而12OA k =-,23OB k =-,54OC k =-作图,易知51(,)42b a ∈--.【链接高考】本小题是一道以二次方程的根的分布为载体的线性规划问题,考查化归转化和数形结合的思想,能力要求较高.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9.【解析】85;85. 由茎叶图知,去掉一个最高分93和一个最低分79后,所剩数据84,84,86,84,87的平均数为8484868487855++++=;方差为2222218[(8485)(8485)(8685)(8485)(8785)]55-+-+-+-+-=. 【链接高考】茎叶图、平均数和方差属于统计部分的基础知识,也是高考的新增内容,考生应引起足够的重视,确保稳拿这部分的分数. 10.【解析】32.当0x >时, ()(1)1f x f x =-+,故441()(1)1()1333f f f =-+=+ 1(1)113f =-++2()23f =-+213cos()22322π=-+=-+=.【链接高考】本题主要考查分段函数,函数的周期性,三角函数的求值等.有关函数方程问题时常出现在高考试题中,考生应该进行专题研究.11. 由1212009()()',()'()2,()2009x x x x x x x f x xe e xe f x f x e xe f x e xe ==+==+=+ .【链接高考】读懂流程图是高考对这部分内容的最基本的要求,也是最高考常见的题型.本题是把导数的运算与流程图结合在一起的综合题.12.【解析】31-.由120PF PF ⋅= 知,12PF PF ⊥.由123tan 3PF F ∠=知, 1230PF F ∠=.则122||||||(s30sin 30)(31)2PF PF FF co c a +=+=+=,即23131c e a ===-+.【链接高考】本题是有关椭圆的焦点三角形问题,却披上了平面向量的外衣,实质是解三角形知识的运用.(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)【解析】1.设(),P ρθ,4cos OM θ=,3cos ρθ=.故P 在圆: 2223x y +=上,而R 为直线l : 4x =.由图象知,min 1RP =.【链接高考】本小题主要考查直线与圆的极坐标方程的有关知识,以及转化与化归的思想方法.解决本题的关键是将它们转化为直角坐标系下的直线与圆的位置关系问题来处理. 14. (不等式选讲选做题)【解析】(,1]-∞.因为1(1)1x x x x +-≥--=,所以若不等 式1x x a +-<的解集为∅,则a 的取值范围是1a ≤.【链接高考】本小题主要考查含绝对值三角不等式的性质,这类问题是高考选做题中的常规题,解题方法要熟练掌握. 15. (几何证明选讲选做题)【解析】28.因为A ,M ,D ,N 四点共圆,所以AC CD MC CN ⋅=⋅.同理,有BC CE MC CN ⋅=⋅.所以AC CD BC CE ⋅=⋅,即()()AB BC CD BC CD CE +⋅=⋅+,所以 AB ·CD =BC ·DE .设CD =x,则AB =AD- BC-CD =19-4-x=15-x, DE =BE- BC-CD =16-4-x=12-x,则(15)4(12)x x x -=-,即219480x x -+=,解得3x =或16x =(舍).AE =AB+ DE- BD =19+16-7=28.【链接高考】本小题主要考查两圆的位置关系,以及相交弦定理的有关知识,分析问题和解决问题的能力,以及转化与化归的思想方法.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.【解析】(Ⅰ)由题设及正弦定理知:cos sin cos sin A BB A=,得sin 2sin 2A B = ∴22A B =或22A B π+= ,即A B =或2A B π+=当A B =时,有sin(2)cos A A π-=, 即1sin 2A =,得6A B π==,23C π=;当2A B π+=时,有sin()cos 2A ππ-=,即cos 1A = 不符题设∴6A B π==,23C π=…………………7分 (Ⅱ) 由(Ⅰ)及题设知:()sin(2)cos(2)2sin(2)636f x x x x πππ=++-=+ 当2[2,2]()622x k k k Z πππππ+∈-+∈时, ()2sin(2)6f x x π=+为增函数即()2sin(2)6f x x π=+的单调递增区间为[,]()36k k k Z ππππ-+∈. ………11分它的相邻两对称轴间的距离为2π. ………12分 【链接高考】 解决本题的关键是,利用正弦定理把三角形边角问题转化为三角函数问题是解题的关键,三角形与三角函数、向量与三角函数高考考察的热点.17.【解析】(Ⅰ)设A 队得分为1分的事件为0A ,∴023*********()357357357105P A =⨯⨯+⨯⨯+⨯⨯=. ………… 4分 (Ⅱ)ξ的可能取值为3 , 2 , 1 , 0 ;022312(3)()357105P P A ξ===⨯⨯=,22412323340(2)357357357105P ξ==⨯⨯+⨯⨯+⨯⨯=23412413341(1)357357357105P ξ==⨯⨯+⨯⨯+⨯⨯=,13412(0)357105P ξ==⨯⨯=,∴ξ的分布列为:ξ123………… 10分 于是 124140121570123105105105105105E ξ=⨯+⨯+⨯+⨯=, ……………… 11分 ∵ 3ξη+=,∴ 1583105E E ηξ=-+=. ……………………… 12分 由于E E ηξ>, 故B 队比A 队实力较强. ……………………… 13分 【链接高考】本题主要考查的是随机变量的分布列和数学期望问题.这是概率与统计大题考查的主阵地,预计还有可能与函数、导数、方程、数列以及不等式等知识综合考查.18. 【解析】(Ⅰ)由题意BC FC ,的中垂线方程分别为,222a c b a a x y x b -⎛⎫=-=- ⎪⎝⎭,于是圆心坐标为2,22a c b ac b ⎛⎫-- ⎪⎝⎭. …………………………………4分n m +=2022a c b acb--+≤,即 20ab bc b ac -+-≤, 即()()0a b b c +-≤,所以b c ≤,于是22b c ≤>2c 即222a c ≤,所以212e ≥,即 0<e <212e ≤<. ………………7分 (Ⅱ)假设相切, 则1-=∙PB AB k k , ………………………………………9分2222,,1()()02PB AB PB AB b ac b b ac b b ac b k k k k a c b c a a a c a --++===∴==----- ,……11分2222,2,0,2a c ac a ac c ac c c a ∴-+=-=>∴= 即这与0c a <<矛盾.故直线AB 不能与圆P 相切. ………………………………………………13分【链接高考】 本题主要考查直线与圆、椭圆的位置关系以及分析问题与解决问题的能力.圆锥曲线与圆的综合题经常出现在高考试题中,要引起足够的重视.19. 【解析】不妨设正三角形ABC 的边长为 3 .(解法一)(I)在图1中,取BE 的中点D ,连结DF .∵AE :EB=CF :FA=1:2,∴AF=AD=2,而∠A=600,∴△ADF 是正三角形, 又AE=DE=1,∴EF ⊥AD .…………2分P 12105 41105 40105 12105在图2中,A 1E ⊥EF ,BE ⊥EF ,∴∠A 1EB 为二面角A 1-EF-B 的平面角. 由题设条件知此二面角为直二面角,∴A 1E ⊥BE .又BE∩EF=E ,∴A 1E ⊥平面BEF ,即A 1E ⊥平面BEP .……….4分 (II)在图2中,∵A 1E 不垂直于A 1B ,∴A 1E 是平面A 1BP 的斜线. 又A 1E ⊥平面BEP, ∴A 1E ⊥BP,从而BP 垂直于A 1E 在平面A 1BP 内的射影(三垂线定理的逆定理). 设A 1E 在平面A 1BP 内的射影为A 1Q ,且A 1Q 交BP 于点Q ,则 ∠EA 1Q 就是A 1E 与平面A 1BP 所成的角,…………………6分 且BP ⊥A 1Q .在△EBP 中,∵BE=BP=2,∠EBP=600, ∴△EBP 是等边三角形,∴BE=EP .又A 1E ⊥平面BEP ,∴A 1B=A 1P ,∴Q 为BP 的中点,且EQ=3, 又A 1E=1,在Rt △A 1EQ ,tan ∠EA 1Q=31=EA EQ,∴∠EA 1Q=600. 所以直线A 1E 与平面A 1BP 所成的角为600.…………………8分 (III)在图3中,过F 作FM ⊥A 1P 于M ,连结QM ,QF . ∵CF=CP=1, ∠C=600. ∴△FCP 是正三角形,∴PF=1. 又PQ=21BP=1,∴PF=PQ . ① ∵A 1E ⊥平面BEP ,EQ=EF=3, ∴A 1F=A 1Q ,∴△A 1FP ≌△A 1QP, 从而∠A 1PF=∠A 1PQ. ② 由①②及MP 为公共边知,△FMP ≌△QMP , ∴∠QMP=∠FMP=900,且MF=MQ ,从而∠FMQ 为二面角B-A 1P-F 的平面角.……………10分 在Rt △A 1QP 中,A 1Q=A 1F=2,PQ=1,∴A 1P=5. ∵MQ ⊥A 1P, ∴MQ=55211=⋅P A PQ Q A ,∴MF=552.在△FCQ 中,FC=1,QC=2,∠C=600,由余弦定理得QF=3.在△FMQ 中,cos ∠FMQ=872222-=⋅-+MQ MF QF MQ MF . 所以二面角B-A 1P-F 的余弦值是78-..……………..13分 (解法二)(I)同解法一.(II)建立分别以ED 、EF 、EA 为x 轴、y 轴、z 轴的空间直角坐标系,则E(0,0,0),A(0,0,1),B(2,0,0),F(0,3,0), P (1,3,0),则(0,0,1)AE =- ,(2,0,1),(1,3,0)AB BP =-=-.设平面ABP 的法向量为1111(,,)n x y z =, 由1n ⊥ 平面ABP 知,11,n AB n BP ⊥⊥,即111120,30.x z x y -=⎧⎪⎨-+=⎪⎩令13x =,得111,23y z ==,1(3,1,23)n = . 112222221301023(1)3cos ,2||||(3)1(23)00(1)AE n AE n AE n ⋅⨯+⨯+⨯-<>===-⋅++⋅++-,1,120AE n <>=,所以直线A 1E 与平面A 1BP 所成的角为600.(II) (0,3,1),(1,0,0)AF PF =-=-,设平面AFP 的法向量为2222(,,)n x y z = . 由2n ⊥ 平面AFP 知,22,n AF n PF ⊥⊥,即22220,30.x y z -=⎧⎪⎨-=⎪⎩令21y =,得220,3x z ==,2(0,1,3)n = . 12112222221230112337cos ,8||||(3)1(23)01(3)n n n n n n ⋅⨯+⨯+⨯<>===⋅++⋅++,所以二面角B-A 1P-F 的余弦值是78-..……………..13分 【链接高考】本题主要考查四棱锥的有关知识,直线与平面垂直,直线于平面所成的角,二面角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥.20.【解析】(Ⅰ) 证:由题意()4(1)222n f a n n =+-⨯=+,即l o g 22k n a n =+, ……1分 ∴22n n a k+=∴2(1)22122n n n n a k k a k++++==. ……2分 ∵常数0k >且1k ≠,∴2k 为非零常数,∴数列{}n a 是以4k 为首项,2k 为公比的等比数列. ……3分 (II) 解:由(1)知,22()(22)n n n n b a f a kn +==⋅+,当2k =时,12(22)2(1)2n n n b n n ++=+⋅=+⋅. …………4分∴25432)1(242322+⋅+++⋅+⋅+⋅=n n n S , ①2n S = 452322322(1)2n n n n ++⋅+⋅++⋅++⋅ . ② ……5分②-①,得3452322222(1)2n n n S n ++=-⋅----++⋅3345232(2222)(1)2n n n ++=--++++++⋅∴3332(12)2(1)212n n n S n +-=--++⋅- 32n n +=⋅ . ……8分 (III) 解:由(1)知,22lg (22)lg n n n n c a a n kk +==+⋅,要使1n n c c +<对一切*n ∈N 成立, 即2(1)lg (2)lg n k n k k +<+⋅⋅对一切*n ∈N 成立. ……9分 ① 当1k >时,lg 0k >,21(2)n n k +<+对一切*n ∈N 恒成立;……10分② 当01k <<时,l g 0k <,21(2)n n k +>+对一切*n ∈N 恒成立,只需2min12n k n +⎛⎫< ⎪+⎝⎭,……11分∵11122n n n +=-++单调递增,∴当1n =时,min 1223n n +⎛⎫= ⎪+⎝⎭. ……12分 ∴223k <,且01k <<, ∴603k <<. ……13分综上所述,存在实数6(0,)(1,)3k ∈+∞ 满足条件. ……14分【链接高考】本题综合考查数列的基本知识、方法和运算能力,以及分类讨论和化归、转化的思想方法. 错位相减法是数列求和的一种重要方法,备考复习中要引起重视.21.【解析】(Ⅰ)⎪⎩⎪⎨⎧<++--≥-++-=++--=212,131|2|)(333tx t x x t x t x x x x t x x F ∴ ⎪⎩⎪⎨⎧<--≥+-=2,132,33)('22tx x t x x x F .……………..4分 由-3x 2+3=0 得x 1=-1,x 2=1,而-3x 2-1<0恒成立,∴ i) 当2t<-1时,F (x )在区间(-∞,-1)上是减函数,在区间(-1,1)上是增函数,在区间(1,+∞)上是减函数.ii) 当1>2t ≥-1时,F (x )在区间(-∞,2t)上是减函数,在区间(2t,1)上是增函数,在区间(1,+∞)上是减函数.iii) 当2t≥1时,F (x )在(-∞,+∞)上是减函数. .……………..8分(II)由1)可知i) 当2t<-1时,F(x)在x=-1处取得极小值-1-t ,在x =1处取得极大值3-t ,若方程F (x )-m =0恰有两解, 此时m =-1-t 或m =3-t .ii) 当-1≤2t <1,F (x )在x =2t 处取值为1283++-tt ,在x =1处取得极大值3-t ,若方程F (x )-m =0恰有两解,此时m =1283++-tt 或m =3-t .iii) 当2t≥1时,不存在这样的实数m ,使得F (x )-m =0恰有两解. (14)【链接高考】本题是一道含参数的函数、导数与方程的综合题,需要对参数进行分类讨论. 在新高考中每年有一道导数综合题,同学们应高度重视.。