2019年新乡市中考数学模拟试题与答案

合集下载

河南省新乡市2019-2020学年中考数学三模考试卷含解析

河南省新乡市2019-2020学年中考数学三模考试卷含解析

河南省新乡市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,位于第二象限的点是()A.(﹣1,0)B.(﹣2,﹣3)C.(2,﹣1)D.(﹣3,1)3.函数2(0)y xx=->的图像位于()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =()A.13B.22C.12D.325.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣37.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13 14 15 25 28 30 35 其他人数 30 533 17 12 20 9 23A .平均数B .众数C .方差D .标准差8.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .4848944x x +=+- B .4848944+=+-x x C .48x+4=9D .9696944+=+-x x 9.四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根.首尾顺次相接都能组成一个三角形,则( ).A .组成的三角形中周长最小为9B .组成的三角形中周长最小为10C .组成的三角形中周长最大为19D .组成的三角形中周长最大为1610.下列各式中,正确的是( )A .t 5·t 5 = 2t 5B .t 4+t 2 = t 6C .t 3·t 4 = t 12D .t 2·t 3 = t 5 11.函数y kx 1=+与ky x=-在同一坐标系中的大致图象是( ) A 、 B 、 C 、 D 、12.若关于 x 的一元一次不等式组312(1)x x x a -+⎧⎨-⎩p f 无解,则 a 的取值范围是( )A .a≥3B .a >3C .a≤3D .a <3二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .14.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.15.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.16.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =_____.17.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用_____秒钟.18.函数12y x=,当x <0时,y 随x 的增大而_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O .画出△AOB 平移后的三角形,其平移后的方向为射线AD 的方向,平移的距离为AD 的长.观察平移后的图形,除了矩形ABCD 外,还有一种特殊的平行四边形?请证明你的结论.20.(6分)如图,在Rt ⊿ABC 中,90ACB ∠=o ,CD AB ⊥于D ,,AC 20BC 15== . ⑴.求AB 的长; ⑵.求CD 的长.21.(6分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD . 求证:PD =AB .如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BECE的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.22.(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.23.(8分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围.24.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.25.(10分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.26.(12分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.27.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据中心对称图形的概念求解.【详解】解:A.不是中心对称图形,本选项错误;B.不是中心对称图形,本选项错误;C.不是中心对称图形,本选项错误;D.是中心对称图形,本选项正确.故选D.【点睛】本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.D 【解析】 【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可. 【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C (﹣3,1)符合,故选:D . 【点睛】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质. 3.D 【解析】 【分析】根据反比例函数中ky x=,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大,进而得出答案. 【详解】 解:函数2(0)y x x=->的图象位于第四象限. 故选:D . 【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键. 4.D 【解析】 【分析】根据圆心角,弧,弦的关系定理可以得出»AC =»CD=»BD =°°1180603⨯=,根据圆心角和圆周角的关键即可求出CAD ∠的度数,进而求出它的余弦值. 【详解】解:AC CD DB ==Q»AC =»CD =»BD =°°1180603⨯=, °°160302CAD ∠=⨯=°cos cos30CAD ∠==故选D .【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.5.C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.6.B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.7.B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.故选B.点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.A【解析】【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:484x+,逆流航行时间为:484x-,∴可得出方程:4848944x x+=+-,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.9.D【解析】【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3<x<7,即x=4或5或1.①当三边为3、4、1时,其周长为3+4+1=13;②当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;③当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;④若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D.【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想.掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键.10.D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.11.D.【解析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.12.A【解析】【分析】先求出各不等式的解集,再与已知解集相比较求出a 的取值范围.【详解】由x﹣a>0 得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5【解析】【分析】【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.14.2 5【解析】【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【详解】解:列表如下:所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)=82. 205=故答案为2 5 .【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.15.12 x≤【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x,x=12,此时无输出值当x>12时,数值越来越大,会有输出值;当x<12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12,故答案为x≤12.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.16.36°【解析】【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.17.2.5秒.【解析】【分析】把此正方体的点A 所在的面展开,然后在平面内,利用勾股定理求点A 和B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得.【详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB =cm ;(2)展开底面右面由勾股定理得AB 5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒. 【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.18.减小【解析】【分析】先根据反比例函数的性质判断出函数12y x =的图象所在的象限,再根据反比例函数的性质进行解答即可. 【详解】 解:∵反比例函数12y x =中,102k =>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小.故答案为减小.【点睛】考查反比例函数的图象与性质,反比例函数()0,k y k x=≠ 当0k >时,图象在第一、三象限.在每个象限,y 随着x 的增大而减小,当k 0<时,图象在第二、四象限.在每个象限,y 随着x 的增大而增大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)如图所示见解析;(2)四边形OCED 是菱形.理由见解析.【解析】【分析】(1)根据图形平移的性质画出平移后的△DEC 即可;(2)根据图形平移的性质得出AC ∥DE ,OA=DE ,故四边形OCED 是平行四边形,再由矩形的性质可知OA=OB ,故DE=CE ,由此可得出结论.【详解】(1)如图所示;(2)四边形OCED 是菱形.理由:∵△DEC 由△AOB 平移而成,∴AC ∥DE ,BD ∥CE ,OA=DE ,OB=CE ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OA=OB ,∴DE=CE ,∴四边形OCED 是菱形.【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.20.(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB 的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).∵在Rt ⊿ABC 中,90ACB ∠=o ,20,15AC BC ==. ∴2222201525AB AC BC +=+=,(2).∵S ⊿1122ABC AC BC AB CD =⋅=⋅, ∴AC BC AB CD ⋅=⋅即201525CD ⨯=,∴20×15=25CD.∴12CD =.21.(1)证明见解析(2)222- (32 【解析】【分析】(1)根据题中“完美矩形”的定义设出AD 与AB ,根据AP=AD ,利用勾股定理表示出PD ,即可得证; (2)如图,作点P 关于BC 的对称点P′,连接DP′交BC 于点E ,此时△PDE 的周长最小,设AD=PA=BC=a ,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2a,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴22222BE BP aCE CD a===;(3)2由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD ,∴BF=AQ ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×【点睛】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.22.10【解析】试题分析:根据相似的性质可得:1:1.2=x :9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用23. (1)点A 在直线l 上,理由见解析;(2)43≤t≤4. 【解析】【分析】(1)由题意得点B 、A 坐标,把点A 的横坐标x =-1代入解析式y =2x +4得出y 的值,即可得出点A 在直线l 上;(2)当直线l 经过点D 时,设l 的解析式代入数值解出即可【详解】(1)此时点A 在直线l 上.∵BC =AB =2,点O 为BC 中点,∴点B(-1,0),A(-1,2).把点A 的横坐标x =-1代入解析式y =2x +4,得y =2,等于点A 的纵坐标2,∴此时点A 在直线l 上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l 经过点D 时,设l 的解析式为y =kx +t(k≠0), ∴解得由(1)知,当直线l 经过点A 时,t =4.∴当直线l 与AD 边有公共点时,t 的取值范围是≤t≤4.【点睛】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.24.(1)见详解;(2)x=18;(3) 416 m 2.【解析】【分析】(1)根据“垂直于墙的长度=2-÷总费用平行于墙的总费用垂直于可得函数解析式; (2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x 的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【详解】(1)根据题意知,y =100002002150x -⨯=-23x +1003; (2)根据题意,得(-23x +1003)x =384, 解得x =18或x =32.∵墙的长度为24 m ,∴x =18.(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23 (x -25)2+12503. ∵-23<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,∴当x =24时,S 取得最大值,最大值为416.答:菜园的最大面积为416 m 2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.25.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(22+,32-,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-,∴23232x x --=-,解得:x=22±,∴当EF 最短时,点P 的坐标是:,32-)或(,32-).26.【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD ,再由∠AOB=60°可得△AOB 是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt △ABD 中,由勾股定理可解得AD 的长.试题解析:∵四边形ABCD 是矩形,∴OA=OB=OD ,∠BAD=90°,∵∠AOB=60°,∴△AOB 是等边三角形,∴OB=OA=2,∴BD=2OB=4,在Rt △ABD 中∴=27.(1)2400个, 10天;(2)1人.【解析】【分析】(1)设原计划每天生产零件x 个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程240002400030030x x +=+,解出x 即为原计划每天生产的零件个数,再代入24000x即可求得规定天数;(2)设原计划安排的工人人数为y 人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×2400y+2400] ×(10-2)=24000,解得y 的值即为原计划安排的工人人数. 【详解】解:(1)解:设原计划每天生产零件x 个,由题意得, 240002400030030x x +=+, 解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天. (2)设原计划安排的工人人数为y 人,由题意得,[5×20×(1+20%)×2400y+2400] ×(10-2)=24000, 解得,y=1.经检验,y=1是原方程的根,且符合题意.答:原计划安排的工人人数为1人.【点睛】本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.。

河南省新乡市2019届九年级第二次全真模拟考试数学试题(解析版)

河南省新乡市2019届九年级第二次全真模拟考试数学试题(解析版)

河南省新乡市2019届九年级第二次全真模拟考试数学试题一.选择题(共10小题,满分30分)1.﹣2的绝对值是()A.﹣2 B.﹣C.D.22.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.从上面看如图中的几何体,得到的平面图形正确的是()A.B.C.D.4.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°5.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为()A.6,5 B.6,6 C.5,5 D.5,66.不等式组的解在数轴上表示为()A.B.C.D.7.如图,菱形ABCD中∠ABC=60°,对角线AC,BD相交于点O,点E是AB中点,且AC=4,则△BOE的面积为()A.B.2C.3D.28.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.B.C.D.9.如图,等边三角形ABC,B点在坐标原点,C点的坐标为(4,0),则点A的坐标为()A.(2,3)B.(2,2)C.(2,2)D.(2,2)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG 的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2 D.二.填空题(满分15分,每小题3分)11.计算: +(﹣1)0=.12.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AC的长等于;(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明).13.在直角坐标系中,已知直线y=﹣x+经过点M(﹣1,m)和点N(2,n),抛物线y =ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是.14.如图,在△ABC中,AB=AC,∠C=72°,△ABC绕点B逆时针旋转,当点C的对应点C 1落在边AC上时,设AC的对应边A1C1与AB的交点为E,则∠BEC1=°.第14题第15题15.如图,点D、E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=,∠A′DB=,且<,则∠A等于(用含、的式子表示).三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:,其中x=﹣1.17.(9分)为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?18.(9分)如图,过半径为2的⊙O外一点P,作⊙O的切线PA,切点为A,连接PO,交⊙O 于点C,过点A作⊙O的弦AB,使AB∥PO,连接PB、BC.(1)当点C是PO的中点时,①求证:四边形PABC是平行四边形;②求△PAB的面积.(2)当AB=2时,请直接写出PC的长度.19.(9分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)20.(9分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B (8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.21.(10分)学校准备购进一批A、B两型号节能灯,已知2只A型节能灯和3只B型节能灯共需31元;1只A型节能灯和2只B型节能灯共需19元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共100只,并且A型节能灯的数量不多于B型节能灯数量的2倍,请设计出最省钱的购买方案.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD =AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)在平面直角坐标系中,抛物线y=x2沿x轴正方向平移后经过点A(x1,y2),B(x2,y2),其中x1,x2是方程x2﹣2x=0的两根,且x1>x2,(1)如图1.求A,B两点的坐标及平移后抛物线的解析式;(2)平移直线AB交抛物线于M,交x轴于N,且=,求△MNO的面积;(3)如图2,点C为抛物线对称轴上顶点下方的一点,过点C作直线交抛物线于E、F,交x轴于点D,探究的值是否为定值?如果是,求出其值;如果不是,请说明理由.河南省新乡市2019届九年级第二次全真模拟考试数学试题参考答案一.选择题1.解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选:D.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:从上边看是,故选:B.4.解:∵∠CFN=110°,∴∠DFE=∠CFN=110°,∵FG平分∠EFD,∴∠EFG=∠EFD=55°,又EG⊥FG,即∠G=90°,∴∠GEF=35°,∵AB∥CD、∠EFD=110°,∴∠BEF=70°,∴∠BEG=∠BEF﹣∠GEF=35°,故选:C.5.解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.6.解:,解得,不等式组的解集是﹣1<x≤1,7.解:∵菱形ABCD中∠ABC=60°,∴AB=BC,OA=OC,∴△ABC是等边三角形,∵AC=4,∴OA=2,OB=2,∴△ABC的面积=,∵点E是AB中点,OA=OC,∴OE是△ABC的中位线,∴△BOE的面积=△ABC的面积=,故选:A.8.解:画树状图如下:由树状图知共有6种等可能结果,其中和为偶数的有2种结果,所以两个球上的数字之和为偶数的概率为=,故选:C.9.解:如图,作AH⊥OC于H.∴C(4,0),∴OC=4,∵△ABC是等边三角形,∴AB=AC=BC=4,∴OH=HC=2,∴AH==2,∴A(2,2),故选:B.10.由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.二.填空题(共5小题,满分15分,每小题3分)11.解:原式=3+1=4.故答案为:4.12.解:(Ⅰ)AC=,故答案为:5,(Ⅱ)要满足AB2=AD•AC,即AD=,以点A为圆心,AD长为半径作圆交AC于点D,连接BD,此时△ABD∽△ACB,故答案为:以点A为圆心,AD长为半径作圆交AC于点D.13.解:∵直线y=﹣x+经过点M(﹣1,m)和点N(2,n),∴m=﹣×(﹣1)+=2,n=﹣×2+=1∴M(﹣1,2),N(2,1)∵抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,∴﹣x+=ax2﹣x+2∴△=﹣>0∴a<当a<0时,解得:a≤﹣1∴a≤﹣1当a>0时,解得:a≥∴≤a<综上所述:a≤﹣1或≤a∠故答案为:a≤﹣1或≤a∠14.解:∵AB=AC,∠C=72°,∴∠ABC=∠C=72°,∴∠CBC1=180°﹣72°﹣72°=36°,∴∠ABC1=72°﹣36°=36°,∵△ABC绕点B逆时针旋转得到△A1BC1,∴A1C1B=∠C=72°,∴∠BEC1=72°,故答案为:72.15.解:由折叠的性质可知,∠ADE =∠A ′DE =(180°﹣β)=90°﹣β, ∠AED =∠A ′ED ,设∠DEC =x ,则180°﹣x =α+x ,解得,x =90°﹣α,∴∠A =∠DEC ﹣∠ADE =β﹣α,故答案为:β﹣α.三.解答题(共8小题,满分75分)16.解:原式=÷=•=﹣, 当x =﹣1时,原式=﹣1.17.解:(1)观察统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(4分)(2)(3)(人).答:该校125名九年级男生约有90人体能达标.…18.(1)①证明:连接OA 、OB ,则有OA =OB =OC ,∵PA 是⊙O 的切线,∴OA ⊥PA ,∵点C 是PO 的中点,∴PC =OC =PO ,∴OA =PO ,∴在Rt △OAP 中,sin ∠APO ==, ∴∠APO =30°,∴∠POA =60°,∵AB ∥PO ,∴∠BAO =∠POA =60°,∴△OAB 是等边三角形,∴AB =OA ,∴AB =PC ,∴四边形PABC 是平行四边形;②解:过点O 作OE ⊥AB ,垂足为E ,∵△OAB 是等边三角形,∴OA =AB =2,∴OE =OA •sin60°=2×=,∴S △OAB =AB •OE =×2×=, ∵AB ∥PO ,∴S △PAB =S △OAB =;(2)PC =2﹣2,理由为:∵OA =OB =2,AB =2, ∴OA 2+OB 2=AB 2,∴根据勾股定理逆定理可得,△OAB 是直角三角形,即∠AOB =90°,∴OB ∥PA ,∴四边形PABO 是平行四边形,∴PO =AB ,∴PC =2﹣2.19.解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.20.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△PAD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.21.解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意得:,解得:.答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元.(2)设购进A型节能灯m只,总费用为w元,则购进B型节能灯(100﹣m)只,根据题意得:w=5m+7(100﹣m)=﹣2m+700.又∵m≤2(100﹣m),解得:m≤,∵m为正整数,∴当m=66时,w取最小值,此时100﹣m=100﹣66=34.∴当购买A型灯66只、B型灯34只时,最省钱.22.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.23.解:(1)解方程x2﹣2x=0得x1=2,x2=0.∴点A坐标为(2,0),抛物线解析式为.把x=0代入抛物线解析式得y=1.∴点B坐标为(0,1).(2)如图,过M作MH⊥x轴,垂足为H∵AB∥MN∴△ABO∽△MHN∴==∴MH=4,HN=8将y=4代入抛物线可得x1=﹣2,x2=6∴M1(﹣2,4),N1(6,0),M2(6,4),N2(14,0)S==12S==28(3)设C(2,m),设直线CD为y=kx+b将C(2,m)代入上式,m=2k+b,即b=m﹣2k.∴CD解析式为y=kx+m﹣2k,令y=0得kx+m﹣2k=0,∴点D为(,0)联立,消去y得,kx+m﹣2k=(x﹣2)2.化简得,x2﹣4(k+1)x+4﹣4m+8k=0由根与系数关系得,x1+x2=4k+4,x1•x2=4﹣4m+8k.过E、F分别作EP⊥CA于P,FQ⊥CA于Q,∴AD∥EP,AD∥FQ,∴===(﹣2)×==1∴为定值,定值为1.。

河南省新乡市2019-2020学年中考数学考前模拟卷(2)含解析

河南省新乡市2019-2020学年中考数学考前模拟卷(2)含解析

河南省新乡市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.关于x 的方程=无解,则k 的值为( )A .0或B .﹣1C .﹣2D .﹣32.下列命题是真命题的个数有( ) ①菱形的对角线互相垂直; ②平分弦的直径垂直于弦; ③若点(5,﹣5)是反比例函数y=kx图象上的一点,则k=﹣25; ④方程2x ﹣1=3x ﹣2的解,可看作直线y=2x ﹣1与直线y=3x ﹣2交点的横坐标. A .1个B .2个C .3个D .4个3.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图34. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为( ) A .70.1810⨯B .51.810⨯C .61.810⨯D .51810⨯5.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<<B .42m -<<C .24m -≤≤D .42m -≤≤6.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A 、B 、C 在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm ,则这块圆形纸片的直径为( )A.12cm B.20cm C.24cm D.28cm7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191乙55 135 151 110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③8.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20199.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.节约用水量(单位:吨) 1 1.1 1.4 1 1.5家庭数 4 6 5 3 1这组数据的中位数和众数分别是()A.1.1,1.1;B.1.4,1.1;C.1.3,1.4;D.1.3,1.1.10.如图,函数y1=x3与y2=1x在同一坐标系中的图象如图所示,则当y1<y2时()A .﹣1<x <lB .0<x <1或x <﹣1C .﹣1<x <I 且x≠0D .﹣1<x <0或x >111.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ) A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠12.如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( )A .310B .103C .9D .92二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,已知A (﹣2,1),B (1,0),将线段AB 绕着点B 顺时针旋转90°得到线段BA′,则A′的坐标为_____.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.15.因式分解:-3x 2+3x=________.16.在Rt △ABC 内有边长分别为2,x ,3的三个正方形如图摆放,则中间的正方形的边长x 的值为_____.17.已知关于x的方程有两个不相等的实数根,则m的最大整数值是.18.因式分解:2x-=____________.312三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为___________.图①(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.图②20.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.21.(6分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)12200 1150 12500 1340015894.0917490.92 19545.22 20768.73森林覆盖率12.7% 12% 12.98% 13.92% 16.55% 18.21% 20.36% 21.63% 表2北京森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.74 37.88 52.05 58.81森林覆盖率11.2% 8.1% 12.08% 14.99% 18.93% 21.26% 31.72% 35.84%(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a ,全国森林覆盖率21.63%记为b ,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到 万公顷(用含a 和b 的式子表示).22.(8分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表: 地铁站 A B C D E X(千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.23.(8分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值. 24.(10分)某经销商从市场得知如下信息:A 品牌手表B 品牌手表 进价(元/块) 700 100 售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得利润为y 元.试写出y 与x 之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.25.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?26.(12分)“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O 的切线,BF交AC的延长线于F.(1)求证:∠CBF=12∠CAB.(2)若AB=5,sin∠5,求BC和BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程无解,∴当整式方程无解时,2k-1=0,k=,当分式方程无解时,①x=0时,k无解,②x=-3时,k=0,∴k=0或时,方程无解,故选A.2.C【解析】【分析】根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.【详解】解:①菱形的对角线互相垂直是真命题;②平分弦(非直径)的直径垂直于弦,是假命题;③若点(5,-5)是反比例函数y=kx图象上的一点,则k=-25,是真命题;④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.3.C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD 平分∠BAC , 故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键. 4.C 【解析】分析:一个绝对值大于10的数可以表示为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,整数位数减去1即可.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1800000这个数用科学记数法可以表示为61.810⨯, 故选C .点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 5.B 【解析】试题解析:把点(,2)A a a -代入一次函数2y x m =+得,22a a m -=+ 23m a =-.∵点A 在第一象限上, ∴0{20a a >->,可得02a <<,因此4232a -<-<,即42m -<<, 故选B . 6.C 【解析】 【分析】设这块圆形纸片的半径为R ,圆锥的底面圆的半径为r ,利用等腰直径三角形的性质得到2R ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=90π180⋅,解得r=4R R )2=(2+(4R )2,再解方程求出R 即可得到这块圆形纸片的直径. 【详解】设这块圆形纸片的半径为R ,圆锥的底面圆的半径为r ,则R ,根据题意得:,解得:R )2=(2+R )2,解得:R=12,所以这块圆形纸片的直径为24cm . 故选C . 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 7.D 【解析】分析:根据平均数、中位数、方差的定义即可判断; 详解:由表格可知,甲、乙两班学生的成绩平均成绩相同; 根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数; 根据方差可知,甲班成绩的波动比乙班大. 故①②③正确, 故选D .点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.C 【解析】 【分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5; ∴x 1+x 2+…+x 7=﹣1∵x 1+x 2+x 3+x 4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故选C.【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律9.D【解析】分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:这组数据的中位数是1.2 1.41.32+=;这组数据的众数是1.1.故选D.点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.10.B【解析】【分析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【详解】根据图象知,一次函数y1=x3与反比例函数y2=1x的交点是(1,1),(-1,−1),∴当y1<y2时,, 0<x<1或x<-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.11.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.12.A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=13CD=3,∴BE=2293=310.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2,3)【解析】【分析】作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵点A、B的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.14.11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.15.-3x(x-1)【解析】【分析】原式提取公因式即可得到结果.【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.1【解析】解:如图.∵在Rt△ABC中(∠C=90°),放置边长分别2,3,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合题意,舍去),x=1.故答案为1.点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键.17.1.【解析】试题分析:∵关于x的方程有两个不相等的实数根,∴.∴m的最大整数值为1.考点:1.一元二次方程根的判别式;2.解一元一次不等式.18.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)弦AB长度的最大值为4,最小值为3(2)面积最大值为(3)平方米,周长最大值为340米.【解析】【分析】(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC 的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD 的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.【详解】(1)(1)当AB是过P点的直径时,AB最长=2×2=4;当AB⊥OP时,AB最短,AP=2222213OA OP-=-=∴AB=23(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,当D与E重合时,S△ADC最大故此时四边形ABCD的面积最大,∵∠ABC=90°,AB=80,BC=60∴AC=22100AB BC+=∴周长为AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=1110050325003 22AC h⨯=⨯⨯=S△ABC=1180602400 22AB BC⨯=⨯⨯=∴四边形ABCD面积最大值为(25003+2400)平方米.【点睛】此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.20.(1)13;(2)59.【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120360︒︒=13;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为13,所有可能性如下表所示:第一次第二次1 -2 31 (1,1) (1,-2) (1,3)-2 (-2,1) (-2,-2) (-2,3)3 (3,1) (3,-2) (3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为9.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.21.(1)四;(2)见解析;(3)0.2715ab.【解析】【分析】(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;故答案为四;(2)补全折线统计图,如图所示:(3)根据题意得:ab×27.15%=0.2715ab,则全国森林面积可以达到0.2715ab万公顷,故答案为0.2715ab.【点睛】此题考查了折线统计图,弄清题中的数据是解本题的关键.22.(1) y1=2x+2;(2) 选择在B站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=12x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y1=kx+b,将(8,18),(9,20),代入y1=kx+b,得:818, 920. k bk b+=⎧⎨+=⎩解得2,2. kb=⎧⎨=⎩所以y1关于x的函数解析式为y1=2x+2. (2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+12x2-11x+78=12x2-9x+80=12(x-9)2+39.5.所以当x=9时,y取得最小值,最小值为39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点睛】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.23.2.【解析】【分析】将原式化简整理,整体代入即可解题.【详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.24.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:(3)∵140>0,∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.25.(1)10,30;(2)y=15(02)3030(211)x xx x≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30,当y=30x﹣30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=()()1502 3030211x xx x⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,当30x﹣30﹣(10x+100)=50时,解得:x=9,当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.26.A、B两种型号的空调购买价分别为2120元、2320元【解析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A 型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:200 2311200y xx y-=⎧⎨+=⎩解得:21202320x y =⎧⎨=⎩答:A 、B 两种型号的空调购买价分别为2120元、2320元 27.(1)证明略;(2)BC=52,BF=320. 【解析】试题分析:(1)连结AE.有AB 是⊙O 的直径可得∠AEB=90°再有BF 是⊙O 的切线可得BF ⊥AB ,利用同角的余角相等即可证明;(2)在Rt △ABE 中有三角函数可以求出BE ,又有等腰三角形的三线合一可得BC=2BE,过点C 作CG ⊥AB 于点G .可求出AE,再在Rt △ABE 中,求出sin ∠2,cos ∠2.然后再在Rt △CGB 中求出CG ,最后证出△AGC ∽△ABF 有相似的性质求出BF 即可. 试题解析:(1)证明:连结AE.∵AB 是⊙O 的直径, ∴∠AEB=90°,∴∠1+∠2=90°. ∵BF 是⊙O 的切线,∴BF ⊥AB , ∴∠CBF +∠2=90°.∴∠CBF =∠1. ∵AB=AC ,∠AEB=90°, ∴∠1=21∠CAB. ∴∠CBF=21∠CAB.(2)解:过点C 作CG ⊥AB 于点G .∵sin ∠CBF=55,∠1=∠CBF , ∴sin ∠1=55. ∵∠AEB=90°,AB=5. ∴BE=AB·sin ∠1=5. ∵AB=AC ,∠AEB=90°, ∴BC=2BE=52.在Rt △ABE 中,由勾股定理得5222=-=BE AB AE . ∴sin ∠2=552,cos ∠2=55.在Rt △CBG 中,可求得GC=4,GB=2. ∴AG=3.∵GC ∥BF , ∴△AGC ∽△ABF. ∴ABAG BF GC =, ∴320=⋅=AG AB GC BF . 考点:切线的性质,相似的性质,勾股定理.。

2019年河南省新乡市中考一模数学试卷含参考答案

2019年河南省新乡市中考一模数学试卷含参考答案

2019年河南省新乡市中考一模数学试卷一、选择题(每小题3分, 共30分)下列各小题均有四个选项, 其中只有一个是正确的, 将正确选项的代号字母填在答题卡指定位置1.(3分)的绝对值等于()A.﹣2B.2C.D.2.(3分)据海关统计, 今年1月份, 我国货物贸易进出口总值2.73万亿元人民币, 比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013 3.(3分)将一个正方体沿图1所示切开, 形成如图2的图形, 则图2的左视图为()A.B.C.D.4.(3分)如图, 直线CE∥AB, 直线CD交CE于C, 交AB于O, 过点O作OT⊥AB 于O, 已知∠ECO=30°, 则∠DOT的度数为()A.30°B.45°C.60°D.120°5.(3分)上篮球课时, 某小组8位男生的各10次投篮的成绩如下所示, 则这组数据的众数和中位数分别是()12345678成绩(m)396651087A.5, 6B.6, 6.5C.7, 6D.8, 6.56.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图, 菱形ABCD中, 对角线AC、BD交于点O, 点E为AB的中点, 连接OE, 若OE=3, ∠ADC=60°, 则BD的长度为()A.6B.6C.3D.38.(3分)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球, 7个小球除标号外其余均相同, 随机从两个袋子中抽取一个小球, 则其标号数字和大于6的概率为()A.B.C.D.9.(3分)如图, 在平面直角坐标系中, 等边△OBC的边OC在x轴正半轴上, 点O为原点, 点C坐标为(12, 0), D是OB上的动点, 过D作DE⊥x轴于点E, 过E作EF ⊥BC于点F, 过F作FG⊥OB于点G.当G与D重合时, 点D的坐标为()A.(1, )B.(2, 2)C.(4, 4)D.(8, 8)10.(3分)如图1.已知正△ABC中, E, F, G分别是AB, BC, CA上的点, 且AE=BF=CG, 设△EFG的面积为y, AE的长为x, y关于x的函数图象如图2, 则△EFG 的最小面积为()A.B.C.2D.二、填空题(每小题3分, 共15分)11.(3分)计算:(﹣π)0﹣=.12.(3分)如图, △ABC中, 以点B为圆心, 任意长为半径作弧, 分别交AB, BC于E、F点, 分别以点E、F为圆心, 以大于EF的长为半径作弧, 两弧交于点G, 做射线BG, 交AC于点D, 过点D作DH∥BC交AB于点H.已知HD=3, BC=7, 则AH 的长为.13.(3分)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点, 则实数a的取值范围是.14.(3分)如图, 等腰三角形ABC中, AB=AC=2, ∠B=75°, 以C为旋转中心将△ABC顺时针旋转, 当点B落在AB上点D处时, 点A的对应点为E, 则阴影部分面积为.15.(3分)如图, 在Rt△ABC中, ∠C=90°, 点D、E分别是BC、AB上一个动点, 连接DE.将点B沿直线DE折叠, 点B的对应点为F, 若AC=3, BC=4, 当点F落在AC的三等分点上时, BD的长为.三、解答题(本大题共8个小题, 满分75分)16.(8分)先化简, 再求值:+÷, 其中a =.17.(9分)为了了解大气污染情况, 某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数, 绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣5024m良51﹣100a40%轻度污染101﹣1501815%中度污染151﹣2001512.5%重度污染201﹣30097.5%严重污染大于30065%合计120100%请根据图表中提供的信息, 解答下面的问题:(1)空气质量指数统计表中的a=, m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”, 级别为“优”所对应扇形的圆心角是度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.(9分)如图, ⊙O中, AB为直径, 点P为⊙O外一点, 且P A=AB, P A、PB交⊙O 于D、E两点, ∠P AB为锐角, 连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时, 四边形OBED为菱形.19.(9分)如图, 某小区有甲、乙两座楼房, 楼间距BC为50米, 在乙楼顶部A点测得甲楼顶部D点的仰角为37°, 在乙楼底部B点测得甲楼顶部D点的仰角为60°, 则甲、乙两楼的高度为多少?(结果精确到1米, sin37°≈0.60, cos37°≈0.80, tan37°≈0.75, ≈1.73)20.(9分)如图, 直线AB经过A(, 0)和B(0, 1), 点C在反比例函数y=的图象上, 且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2, 0)过点D作PD⊥x轴, 当△P AD与△OAB相似时, P点是否在(1)中反比例函数图象上?如果在, 求出P点坐标;如果不在, 请说明理由.21.(10分)开学前夕, 某文具店准备购进A、B两种品牌的文具袋进行销售, 若购进A 品牌文具袋和B品牌文具袋各5个共花费125元, 购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A, B两种品牌的文具袋共100个, 其中A品牌文具袋售价为12元, B品牌文具袋售价为23元, 设购进A品牌文具袋x个, 获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大, 且所获利润不超过进货价格的40%, 请你帮该文具店设计一个进货方案, 并求出其所获利润的最大值.22.(10分)等腰直角三角形ABC和等腰直角三角形ADE中, ∠BAC=∠DAE=90°, AB =4, AE=2, 其中△ABC固定, △ADE绕点A作360°旋转, 点F、M、N分别为线段BE、BC、CD的中点, 连接MN、NF.问题提出:(1)如图1, 当AD在线段AC上时, 则∠MNF的度数为, 线段MN 和线段NF的数量关系为;深入讨论:(2)如图2, 当AD不在线段AC上时, 请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3, △ADE持续旋转过程中, 若CE与BD交点为P, 则△BCP面积的最小值为.23.(11分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3, 0), 交y轴于点C, 直线y=﹣x+m经过点C, 交x轴于E(4, 0).(1)求出抛物线的解析式;(2)如图1, 点M为线段BD上不与B、D重合的一个动点, 过点M作x轴的垂线, 垂足为N, 设点M的横坐标为x, 四边形OCMN的面积为S, 求S与x之间的函数关系式, 并求S的最大值;(3)点P为x轴的正半轴上一个动点, 过P作x轴的垂线, 交直线y=﹣x+m于G, 交抛物线于H, 连接CH, 将△CGH沿CH翻折, 若点G的对应点F恰好落在y轴上时, 请直接写出点P的坐标.2019年河南省新乡市中考一模数学试卷参考答案与试题解析一、选择题(每小题3分, 共30分)下列各小题均有四个选项, 其中只有一个是正确的, 将正确选项的代号字母填在答题卡指定位置1.(3分)的绝对值等于()A.﹣2B.2C.D.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选:D.2.(3分)据海关统计, 今年1月份, 我国货物贸易进出口总值2.73万亿元人民币, 比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013【解答】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.3.(3分)将一个正方体沿图1所示切开, 形成如图2的图形, 则图2的左视图为()A.B.C.D.【解答】解:如图所示:图2的左视图为:.故选:C.4.(3分)如图, 直线CE∥AB, 直线CD交CE于C, 交AB于O, 过点O作OT⊥AB于O, 已知∠ECO=30°, 则∠DOT的度数为()A.30°B.45°C.60°D.120°【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.5.(3分)上篮球课时, 某小组8位男生的各10次投篮的成绩如下所示, 则这组数据的众数和中位数分别是()12345678成绩(m)396651087A.5, 6B.6, 6.5C.7, 6D.8, 6.5【解答】解:将数据重新排列为3, 5, 6, 6, 7, 8, 9, 10,所以这组数据的众数为6, 中位数为=6.5(分),故选:B.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解3x﹣2<1, 得x<1;解x+1≥0, 得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.7.(3分)如图, 菱形ABCD中, 对角线AC、BD交于点O, 点E为AB的中点, 连接OE, 若OE=3, ∠ADC=60°, 则BD的长度为()A.6B.6C.3D.3【解答】解:∵四边形ABCD是菱形, ∠ADC=60°,∴AC⊥BD, OA=OC, OB=OD, ∠ADO=∠CDO=30°,∵AE=EB, BO=OD,∴AD=2OE=6,在Rt△AOD中, ∵AD=6, ∠AOD=90°, ∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.8.(3分)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球, 7个小球除标号外其余均相同, 随机从两个袋子中抽取一个小球, 则其标号数字和大于6的概率为()A.B.C.D.【解答】解:画树状图如下:由树状图可知, 共有12种等可能结果, 其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.9.(3分)如图, 在平面直角坐标系中, 等边△OBC的边OC在x轴正半轴上, 点O为原点, 点C坐标为(12, 0), D是OB上的动点, 过D作DE⊥x轴于点E, 过E作EF ⊥BC于点F, 过F作FG⊥OB于点G.当G与D重合时, 点D的坐标为()A.(1, )B.(2, 2)C.(4, 4)D.(8, 8)【解答】解:如图, 设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E, EF⊥BC于点F, FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时, OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4, DE=4,∴D(4, 4).故选:C.10.(3分)如图1.已知正△ABC中, E, F, G分别是AB, BC, CA上的点, 且AE=BF=CG, 设△EFG的面积为y, AE的长为x, y关于x的函数图象如图2, 则△EFG 的最小面积为()A.B.C.2D.【解答】由图2可知, x=2时△EFG的面积y最大, 此时E与B重合, 所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知, x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.二、填空题(每小题3分, 共15分)11.(3分)计算:(﹣π)0﹣=4.【解答】解:(﹣π)0﹣=1+3=4.故答案为:4.12.(3分)如图, △ABC中, 以点B为圆心, 任意长为半径作弧, 分别交AB, BC于E、F点, 分别以点E、F为圆心, 以大于EF的长为半径作弧, 两弧交于点G, 做射线BG, 交AC于点D, 过点D作DH∥BC交AB于点H.已知HD=3, BC=7, 则AH 的长为.【解答】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.13.(3分)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点, 则实数a的取值范围是a<1.【解答】解:当a=0时, 两直线y=﹣2x和y=1只有一个交点,当a≠0时, , 由题意得, 方程ax2+1=﹣2x有两个不同的实数根,∴△=4﹣4a>0,解得:a<1.故答案为:a<1.14.(3分)如图, 等腰三角形ABC中, AB=AC=2, ∠B=75°, 以C为旋转中心将△ABC顺时针旋转, 当点B落在AB上点D处时, 点A的对应点为E, 则阴影部分面积为﹣2+.【解答】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°﹣75°﹣75°=30°,在Rt△ACK中, CK=AC=1, AK=,∴BK=2﹣,∵CB=CD, CK⊥BD,∴BD=2BK=4﹣2, ∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC=﹣•(4﹣2)•1=﹣2+,故答案为﹣2+.15.(3分)如图, 在Rt△ABC中, ∠C=90°, 点D、E分别是BC、AB上一个动点, 连接DE.将点B沿直线DE折叠, 点B的对应点为F, 若AC=3, BC=4, 当点F落在AC的三等分点上时, BD的长为或.【解答】解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中, DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中, DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或三、解答题(本大题共8个小题, 满分75分)16.(8分)先化简, 再求值:+÷, 其中a=.【解答】解:+÷=+•=+=,当a=时, 原式==.17.(9分)为了了解大气污染情况, 某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数, 绘制了如下不完整的统计图表:空气质量指数统计表级别指数天数百分比优0﹣5024m良51﹣100a40%轻度污染101﹣1501815%中度污染151﹣2001512.5%重度污染201﹣30097.5%严重污染大于30065%合计120100%请根据图表中提供的信息, 解答下面的问题:(1)空气质量指数统计表中的a=48, m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”, 级别为“优”所对应扇形的圆心角是72度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.【解答】解:(1)a=120×40%=48, m=24÷120=20%.故答案为:48, 20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.18.(9分)如图, ⊙O中, AB为直径, 点P为⊙O外一点, 且P A=AB, P A、PB交⊙O 于D、E两点, ∠P AB为锐角, 连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为8;②当DE=4时, 四边形OBED为菱形.【解答】证明:(1)如图1, 连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵P A=AB,∴E为PB的中点,∵AO=OB,∴OE∥P A,∴∠ADO=∠DOE, ∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时, △AOD的面积最大(如图2), 此时点D是的中点, ∴OD⊥AB,∴;②如图3, 当DE=4时, 四边形OBED为菱形, 理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.19.(9分)如图, 某小区有甲、乙两座楼房, 楼间距BC为50米, 在乙楼顶部A点测得甲楼顶部D点的仰角为37°, 在乙楼底部B点测得甲楼顶部D点的仰角为60°, 则甲、乙两楼的高度为多少?(结果精确到1米, sin37°≈0.60, cos37°≈0.80, tan37°≈0.75, ≈1.73)【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中, CD=BC•tan60°=50×≈87(米),在Rt△ADE中, ∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米, 38米.20.(9分)如图, 直线AB经过A(, 0)和B(0, 1), 点C在反比例函数y=的图象上, 且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2, 0)过点D作PD⊥x轴, 当△P AD与△OAB相似时, P点是否在(1)中反比例函数图象上?如果在, 求出P点坐标;如果不在, 请说明理由.【解答】解:(1)设直线AB的解析式为y=k'x+b,将点A(, 0)和B(0, 1)代入y=k'x+b中, 得,解得, ,∴直线AB的解析式为y=﹣x+1,∵A(, 0)和B(0, 1),∴OA=, OB=1, AB==2,∵AC=AB=2,在Rt△AOB中, tan∠OAB==,∴∠OAB=30°,∵AC=BC=AB,∴△ABC是等边三角形,∴∠BAC=60°,∴∠OAC=∠OAB+∠BAC=90°,∴AC⊥x轴,∴C(, 2),将点C坐标代入y=中, 得k=2×=2,∴反比例函数解析式为y=;(2)由(1)知, OA=, OB=1,∵点D坐标为(2, 0),∴OD=2,∴AD=OD﹣OA=,∵PD⊥x轴,∴∠ADP=90°=∠AOB,∵当△P AD与△OAB相似时,∴①当△ADP∽△AOB时, ∴,∴,∴DP=1,∴P(2, 1),当x=2时, y=1,∴点P(2, 1), 在反比例函数解析式为y=上;②当△ADP∽△BOA时, ∴,∴,∴DP=3,∴P(2, 3),当x=2时, y=1≠3,∴点P(2, 3), 不在反比例函数解析式为y=上.21.(10分)开学前夕, 某文具店准备购进A、B两种品牌的文具袋进行销售, 若购进A 品牌文具袋和B品牌文具袋各5个共花费125元, 购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A, B两种品牌的文具袋共100个, 其中A品牌文具袋售价为12元, B品牌文具袋售价为23元, 设购进A品牌文具袋x个, 获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大, 且所获利润不超过进货价格的40%, 请你帮该文具店设计一个进货方案, 并求出其所获利润的最大值.【解答】解:(1)设购进A品牌文具袋的单价为x元, 购进B品牌文具袋的单价为y元, 根据题意得,,解得,所以购进A品牌文具袋的单价为10元, 购进B品牌文具袋的单价为15元;(2)①由题意可得,y=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15(100﹣x)],解得:x≥50,又由(1)得:w=﹣6x+800, k=﹣6<0,∴w随x的增大而减小,∴当x=50时, w达到最大值, 即最大利润w=﹣50×6+800=500元,此时100﹣x=100﹣50=50个,答:购进A品牌文具袋50个, B品牌文具袋50个时所获利润最大, 利润最大为500元.22.(10分)等腰直角三角形ABC和等腰直角三角形ADE中, ∠BAC=∠DAE=90°, AB =4, AE=2, 其中△ABC固定, △ADE绕点A作360°旋转, 点F、M、N分别为线段BE、BC、CD的中点, 连接MN、NF.问题提出:(1)如图1, 当AD在线段AC上时, 则∠MNF的度数为45°, 线段MN和线段NF的数量关系为NF=MN;深入讨论:(2)如图2, 当AD不在线段AC上时, 请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3, △ADE持续旋转过程中, 若CE与BD交点为P, 则△BCP面积的最小值为4.【解答】解:(1)如图1中, 连接DB, MF, CE, 延长BD交EC于H.∵AC=AB, AE=AD, ∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC, ∠ACE=∠ABD,∵∠ABD+∠ADB=90°, ∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC, BF=FE,∴MF∥EC, MF=EC,∵CM=MB, CN=ND,∴MN∥BD, MN=BD,∴MN=MF, MN⊥MF,∴∠NMF=90°,∴∠MNF=45°, NF=MN.故答案为:45°(2):如图2中, 连接MF, EC, BD.设EC交AB于O, BD交EC于H.∵AC=AB, AE=AD, ∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC, ∠ACE=∠ABD,∵∠AOC+∠ACO=90°, ∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC, BF=FE,∴MF∥EC, MF=EC,∵CM=MB, CN=ND,∴MN∥BD, MN=BD,∴MN=MF, MN⊥MF,∴∠NMF=90°,∴∠MNF=45°, NF=MN.(3):如图3中, 如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时, △BCP的面积最小,∵AD=AE, AB=AC, ∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD, BD=EC,∵∠ABD+∠AOB=90°, ∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2, BD=EC==2,∴PC=2﹣2, PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.23.(11分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3, 0), 交y轴于点C, 直线y=﹣x+m经过点C, 交x轴于E(4, 0).(1)求出抛物线的解析式;(2)如图1, 点M为线段BD上不与B、D重合的一个动点, 过点M作x轴的垂线, 垂足为N, 设点M的横坐标为x, 四边形OCMN的面积为S, 求S与x之间的函数关系式, 并求S的最大值;(3)点P为x轴的正半轴上一个动点, 过P作x轴的垂线, 交直线y=﹣x+m于G, 交抛物线于H, 连接CH, 将△CGH沿CH翻折, 若点G的对应点F恰好落在y轴上时, 请直接写出点P的坐标.【解答】解:(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0, 3),∵B(3, 0),则有解得∴抛物线的解析式为:y=﹣x2+2x+3.(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1, 4),设直线BD的解析式为y=kx+b, 代入点B、D,解得∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x, ﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时, S有最大值, 最大值为.(3)存在如图所示,设点P的坐标为(t, 0),则点G(t, ﹣t+3), H(t, ﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折, G的对应点为点F, F落在y轴上, 而HG∥y轴,∴HG∥CF, HG=HF, CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍), t2=4,此时点P(4, 0).当t2﹣t=﹣t时,解得t1=0(舍), t2=,此时点P(, 0).综上, 点P的坐标为(4, 0)或(, 0).注意事项.1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上。

河南省新乡市2019-2020学年中考数学一模考试卷含解析

河南省新乡市2019-2020学年中考数学一模考试卷含解析

河南省新乡市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107B.4.67×106C.46.7×105D.0.467×1072.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°3.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指()A.80 B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重4.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90A∠=o,∠=,45C oE∠=o,90∠+∠等于()∠=o,则1230DA.150o B.180o C.210o D.270o5.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m6.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是47.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个B.3个C.4个D.5个8.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.80709.(﹣1)0+|﹣1|=()A.2 B.1 C.0 D.﹣110.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a1011.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④12.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.14.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.15.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为__________.17.如图,在△ACB中,∠ACB=90°,点D为AB的中点,将△ACB绕点C按顺时针方向旋转,当CB 经过点D时得到△A1CB1.若AC=6,BC=8,则DB1的长为________.18.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线21y x bx 2c =-++与x 轴交于A ,B ,与y 轴交于点C (0,2),直线1x 22y =-+经过点A ,C.(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上一动点;①连接PO ,交AC 于点E ,求PE EO的最大值; ②过点P 作PF ⊥AC ,垂足为点F ,连接PC ,是否存在点P ,使△PFC 中的一个角等于∠CAB 的2倍?若存在,请直接写出点P 的坐标;若不存在,请说明理由.20.(6分)如图所示:△ABC 是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB 的垂直平分线l ,垂足为H .(保留作图痕迹,不写作法);(2)垂直平分线l 交AC 于点D ,求证:AB=2DH .21.(6分)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.22.(8分)先化简,再求值:()()()2111x x x x +-+-,其中2x =-.23.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.24.(10分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.25.(10分)A 、B 两辆汽车同时从相距330千米的甲、乙两地相向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时间,如图,L 1,L 2分别表示两辆汽车的s 与t 的关系.(1)L 1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B 的速度是多少?(3)求L 1,L 2分别表示的两辆汽车的s 与t 的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A 、B 两车相遇?26.(12分)有这样一个问题:探究函数1x y x =+的图象与性质.小怀根据学习函数的经验,对函数1x y x =+的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:(1)函数1x y x =+的自变量x 的取值范围是 ; (2)列出y 与x 的几组对应值.请直接写出m 的值,m= ;(3)请在平面直角坐标系xOy 中,描出表中各对对应值为坐标的点,并画出该函数的图象; (4)结合函数的图象,写出函数1x y x =+的一条性质.27.(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.2.A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.3.C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,故选C .【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+Q ,2E EPB ∠∠∠=+,DOA COP ∠∠=Q ,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-o=309018090210++-=o o o o o ,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.5.D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm , ∴200.30.4BC =, ∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.6.D【解析】试题分析:A 、选举中,人们通常最关心的数据为出现次数最多的数,所以A 选项的说法正确; B 、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B 选项的说法正确;C 、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,所以C 选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法7.B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a =1,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 1)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.8.A【解析】【分析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1;第2个图案中涂有阴影的小正方形个数为:9=4×2+1;第3个图案中涂有阴影的小正方形个数为:13=4×3+1;…发现规律:第n个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A.【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.9.A【解析】【分析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.10.B【解析】【分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【详解】A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B.【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.11.B【解析】【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.12.C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.14.2:1.【解析】【分析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得AB OECD OF,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB OECD OF==23,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键. 15.2.4cm【解析】分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sin∠B的值,可求出PD.详解:由图2可得,AC=3,BC=4,∴AB=22345+=.当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B=ACAB=35,∴PD=BP·sin∠B=2×35=65=1.2(cm).故答案是:1.2 cm.点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般.16.1 42π-.【解析】【分析】连接CD,根据题意可得△DCE≌△BDF,阴影部分的面积等于扇形的面积减去△BCD的面积.【详解】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=2.则扇形FDE的面积是:2901= 3604ππ⨯.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,则在△DMG和△DNH中,DMG DNHGDM HDN DM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=12.则阴影部分的面积是:1 42π-.故答案为:1 42π-.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.17.2【解析】【分析】根据勾股定理可以得出AB的长度,从而得知CD的长度,再根据旋转的性质可知BC=B1C,从而可以得出答案.【详解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴10AB=,∵点D为AB的中点,∴152CD AB==,∵将△ACB 绕点C 按顺时针方向旋转,当CB 经过点D 时得到△A 1CB 1.∴CB 1=BC =8,∴DB 1=CB 1-CD=8﹣5=2,故答案为:2.【点睛】本题考查的是勾股定理、直角三角形斜边中点的性质和旋转的性质,能够根据勾股定理求出AB 的长是解题的关键.18.14. 【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为14. 考点:列表法与树状图法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)213222y x x =-++;(2)①PE EO 有最大值1;②(2,3)或(2911,300121) 【解析】【分析】(1)根据自变量与函数值的对应关系,可得A ,C 点坐标,根据代定系数法,可得函数解析式;(2)①根据相似三角形的判定与性质,可得PE PM OE OC=,根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案; ②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点D ,求得D (32,0),得到DA=DC=DB=52,过P 作x 轴的平行线交y 轴于R ,交AC 于G ,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG ,情况二,∠FPC=2∠BAC ,解直角三角形即可得到结论.【详解】(1)当x=0时,y=2,即C (0,2),当y=0时,x=4,即A (4,0),将A ,C 点坐标代入函数解析式,得2412402b c c -⨯⎧⎪⎩++⎪⎨==, 解得232b c ⎧⎪⎨⎪⎩==,抛物线的解析是为213222y x x =-++; (2)过点P 向x 轴做垂线,交直线AC 于点M ,交x 轴于点N,∵直线PN ∥y 轴,∴△PEM ~△OEC , ∴PE PM OE OC = 把x=0代入y=-12x+2,得y=2,即OC=2, 设点P (x ,-12x 2+32x+2),则点M (x ,-12x+2), ∴PM=(-12x 2+32x+2)-(-12x+2)=-12x 2+2x=-12(x-2)2+2, ∴PE PM OE OC ==()221222 x --+, ∵0<x <4,∴当x=2时,PE PM OE OC ==()221222 x --+有最大值1. ②∵A (4,0),B (-1,0),C (0,2),∴55AB=5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点D ,∴D (32,0),∴DA=DC=DB=52,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=43,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=12,即12 RCRP=,令P(a,-12a2+32a+2),∴PR=a,RC=-12a2+32a,∴2131 222a aa-+=,∴a1=0(舍去),a2=2,∴x P=2,-12a2+32a+2=3,P(2,3)情况二,∴∠FPC=2∠BAC,∴tan∠FPC=43,设FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=312 kFG=,∴FG=6k,∴CG=2k,PG=35k,∴RC=25k,RG=455k,PR=35k-455k=115k,∴211551325225kPR aRC a ak==-+,∴a1=0(舍去),a2=2911,x P=2911,-12a2+32a+2=300121,即P(2911,300121),综上所述:P点坐标是(2,3)或(2911,300121).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出PE PMOE OC=,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.20.(1)见解析;(2)证明见解析.【解析】【分析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于12AB为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【详解】解:(1)如图所示:直线l即为所求;(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵12DH BC BC AB==,,∴AB=2DH.【点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.21.(1)3y x =-;(2)P 在第二象限,Q 在第三象限. 【解析】试题分析:(1)求出点B 坐标即可解决问题;(2)结论:P 在第二象限,Q 在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B (﹣2,32),把B (﹣2,32)代入k y x=中,得到k=﹣3,∴反比例函数的解析式为3y x=-. (2)结论:P 在第二象限,Q 在第三象限.理由:∵k=﹣3<0,∴反比例函数y 在每个象限y 随x 的增大而增大,∵P (x 1,y 1)、Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,∴P 、Q 在不同的象限,∴P 在第二象限,Q 在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.3x -1, -9.【解析】【分析】先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=323211x x x x --=-+,当x=-2时,原式=-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.23.(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°. 【解析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,⨯o即可求出对应的扇形圆心角的度数.试题解析:()15025%200÷=(人).()2学生学习兴趣为“高”的人数为:20050602070---=(人). 补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.200⨯= 学生学习兴趣为“中”对应扇形的圆心角为:30%360108.⨯=o o 24.(1)150,(2)36°,(3)1.【解析】【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可; (3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150, (2)“足球“的人数=150×20%=30人, 补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°; (4)1200×20%=1人, 答:估计该校约有1名学生最喜爱足球活动. 故答案为150,36°,1.本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.25.(1)L 1表示汽车B 到甲地的距离与行驶时间的关系;(2)汽车B 的速度是1.5千米/分;(3)s 1=﹣1.5t+330,s 2=t ;(4)2小时后,两车相距30千米;(5)行驶132分钟,A 、B 两车相遇.【解析】试题分析:(1)直接根据函数图象的走向和题意可知L 1表示汽车B 到甲地的距离与行驶时间的关系; (2)由L 1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得120t =时s 的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.试题解析:(1)函数图形可知汽车B 是由乙地开往甲地,故L 1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L 1为1s kt b =+, 把点(0,330),(60,240)代入得1.5330.k b =-=, 所以1 1.5330s t ;=-+ 设L 2为2s k t =',把点(60,60)代入得 1.k '=所以2.s t =(4)当120t =时,12150120.s s ==,330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当12s s =时, 1.5330,t t -+=解得132.t =即行驶132分钟,A 、B 两车相遇.26.(1)x≠﹣1;(2)2;(2)见解析;(4)在x <﹣1和x >﹣1上均单调递增;【解析】【分析】(1)根据分母非零即可得出x+1≠0,解之即可得出自变量x 的取值范围;(2)将y=34代入函数解析式中求出x 值即可; (2)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可.解:(1)∵x+1≠0,∴x≠﹣1.故答案为x≠﹣1.(2)当y=1x x +=34时,解得:x=2. 故答案为2.(2)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数1x y x =+在x <﹣1和x >﹣1上均单调递增.【点睛】本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键. 27.(1)10,30;(2)y=15(02)3030(211)x x x x ≤≤⎧⎨-≤≤⎩;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A 地时距地面的高度b 的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y 关于x 的函数关系;(3)当乙未到终点时,找出甲登山全程中y 关于x 的函数关系式,令二者做差等于50即可得出关于x 的一元一次方程,解之即可求出x 值;当乙到达终点时,用终点的高度﹣甲登山全程中y 关于x 的函数关系式=50,即可得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.【详解】(1)(300﹣100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30,当y=30x﹣30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=()()1502 3030211x xx x⎧≤≤⎪⎨-≤≤⎪⎩;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=50时,解得:x=4,当30x﹣30﹣(10x+100)=50时,解得:x=9,当300﹣(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.。

河南省新乡市2019-2020学年中考数学一月模拟试卷含解析

河南省新乡市2019-2020学年中考数学一月模拟试卷含解析

河南省新乡市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A .110B .19C .16D .152.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( )A .0.21×108B .21×106C .2.1×107D .2.1×1063.如果a ﹣b=5,那么代数式(22a b ab +﹣2)•ab a b -的值是( ) A .﹣15 B .15 C .﹣5 D .54.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米5.在△ABC 中,点D 、E 分别在AB 、AC 上,如果AD =2,BD =3,那么由下列条件能够判定DE ∥BC 的是( )A .DE BC =23B .DE BC =25 C .AE AC =23D .AE AC =256.若代数式22x x -有意义,则实数x 的取值范围是( ) A .x =0B .x =2C .x≠0D .x≠2 7.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e → B .3a =r C .a r 与e →方向相同 D .a r 与e →方向相反 8.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A .2003503x x =-B .2003503x x =+C .2003503x x =+D .2003503x x=-9.如图,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC 相似,则点F 应是G ,H ,M ,N 四点中的( )A .H 或NB .G 或HC .M 或ND .G 或M10.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒11.计算3()a a •- 的结果是( )A .a 2B .-a 2C .a 4D .-a 4 12.要使式子1x +有意义,x 的取值范围是( ) A .x≠1 B .x≠0 C .x >﹣1且≠0 D .x≥﹣1且x≠0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.14.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.15.方程3211x x x---=1的解是___. 16.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为 .17.因式分解:2xy 4x -= .18.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:|3﹣1|+(﹣1)2018﹣tan60°20.(6分)如图,在△ABC 中,AB >AC ,点D 在边AC 上.(1)作∠ADE ,使∠ADE =∠ACB ,DE 交AB 于点E ;(尺规作图,保留作图痕迹,不写作法) (2)若BC =5,点D 是AC 的中点,求DE 的长.21.(6分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A .减少杨树新增面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数. 22.(8分)某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?23.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-aS 四边形ADCB =21122ADC ABC S S b ab +=-+V V S 四边形ADCB =211()22ADB BCDS S c a b a +=+-V V ∴221111()2222b abc a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a 2+b 2=c 2 24.(10分)如图,在△ABC 中,AB=AC ,∠BAC=120°,EF 为AB 的垂直平分线,交BC 于点F ,交AB 于点E .求证:FC=2BF .25.(10分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)26.(12分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.27.(12分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x 轴的直线与该抛物线交于M 、N 两点(其中点M 在点N 的右侧),在x 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.2.D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.3.D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可. 【详解】(22a b ab+﹣2)•ab a b - =222·a b ab ab ab a b+-- =()2·a b ab ab a b--=a-b,当a-b=5时,原式=5,故选D.4.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.5.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.6.D【解析】【分析】根据分式的分母不等于0即可解题.【详解】 解:∵代数式22x x -有意义, ∴x-2≠0,即x≠2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.7.C【解析】【分析】由向量的方向直接判断即可.【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.8.B【解析】试题分析:设每个笔记本的价格为x 元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程9.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC 的各边分别为3,只能F 是M 或N 时,其各边是6、△ABC 各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键10.B【解析】试题分析:作点P 关于OA 对称的点P 3,作点P 关于OB 对称的点P 3,连接P 3P 3,与OA 交于点M,与OB 交于点N,此时△PMN 的周长最小.由线段垂直平分线性质可得出△PMN 的周长就是P 3P 3的长,∵OP=3,∴OP 3=OP 3=OP=3.又∵P 3P 3=3,,∴OP 3=OP 3=P 3P 3,∴△OP 3P 3是等边三角形, ∴∠P 3OP 3=60°,即3(∠AOP+∠BOP )=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B .考点:3.线段垂直平分线性质;3.轴对称作图.11.D【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:34()=a a a •--,故选D .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.12.D【解析】【分析】根据二次根式由意义的条件是:被开方数大于或等于1,和分母不等于1,即可求解.【详解】根据题意得:10{0x x +≥≠,解得:x≥-1且x≠1.故选:D .【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】试题分析:设该商品每件的进价为x 元,则150×80%-10-x =x×10%,解得 x =1.即该商品每件的进价为1元.故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.14.甲.【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.【详解】∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,∴甲的方差大于乙的方差.故答案为:甲.【点睛】本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.15.x=﹣4【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16.1或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=1,BC=4,∴AC=2243+=5,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=5-1=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得3x 2=, ∴BE=32; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=1.综上所述,BE 的长为32或1. 故答案为:32或1. 17.. 【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 18.90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1【解析】【分析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】1|+(﹣1)2118﹣tan61°=1+1=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.20.(1)作图见解析;(2)5 2【解析】【分析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.【详解】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵点D是AC的中点,∴DE为△ABC的中位线,∴DE=12BC=52.21.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x = 26 x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.23.见解析.【解析】【分析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b1+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c1+12a(b-a),∴12ab+12b1+12ab=12ab+12c1+12a(b-a),∴a1+b1=c1.【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.24.见解析【解析】【分析】连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF,可证得结论.【详解】证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.25.建筑物AB 的高度约为5.9米【解析】【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度;【详解】在Rt △CED 中,∠CED=58°,∵tan58°=CD DE, ∴DE=2tan 58tan 58o o CD = , 在Rt △CFD 中,∠CFD=22°,∵tan22°=CD DF, ∴DF=2tan 22tan 22o oCD = , ∴EF=DF ﹣DE=2tan 22o -2tan 58o , 同理:EF=BE ﹣BF=tan 4570o oAB AB tam - , ∴tan 4570o o AB AB tam -=2tan 22o -2tan 58o , 解得:AB≈5.9(米),答:建筑物AB 的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.26.(1)y =−1x有反向值,反向距离为2;y =x 2有反向值,反向距离是1;(2)①b =±1;②0≤n≤8;(3)当m >2或m≤﹣2时,n =2,当﹣2<m≤2时,n =2.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b 的值;②根据题意和b 的取值范围可以求得相应的n 的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m =﹣m+1时,该方程无解,故函数y =﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.27.(1)y=﹣x2+2x+1;(2)P(2,135+55-;(1)存在,且Q1(1,0),Q2(25,0),Q1(50),Q450),Q550). 【解析】【分析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.【详解】解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依题意有:203a a bb++=⎧⎨=⎩,解得13ab=-⎧⎨=⎩;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=2<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,D P22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x2+2x+1代入可得:352x=,∴55y -= ;∴P 2.综上所述,P (2,1.(1)存在,且Q 1(1,0),Q 2(20),Q 1(0),Q 4,0),Q 5,0); ①若Q 是直角顶点,由对称性可直接得Q 1(1,0);②若N 是直角顶点,且M 、N 在x 轴上方时;设Q 2(x ,0)(x <1),∴MN=2Q 1O 2=2(1﹣x ),∵△Q 2MN 为等腰直角三角形;∴y=2(1﹣x )即﹣x 2+2x+1=2(1﹣x );∵x <1,∴Q 2(2-,0);由对称性可得Q 10);③若N 是直角顶点,且M 、N 在x 轴下方时;同理设Q 4(x ,y ),(x <1)∴Q 1Q 4=1﹣x ,而Q 4N=2(Q 1Q 4),∵y 为负,∴﹣y=2(1﹣x ),∴﹣(﹣x 2+2x+1)=2(1﹣x ),∵x <1,∴x=∴Q 4(0);由对称性可得Q 5,0).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.。

河南省新乡市2019-2020学年中考数学模拟试题(1)含解析

河南省新乡市2019-2020学年中考数学模拟试题(1)含解析

河南省新乡市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A .2B .3C .4D .52.下面几何的主视图是( )A .B .C .D .3.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A .43πB .43π﹣3C .23+3πD .23﹣23π 5.把不等式组24030x x -≥⎧⎨->⎩的解集表示在数轴上,正确的是( ) A .B .C .D .6.6的相反数为( )A .-6B .6C .16-D .16 7.若()292m m --=1,则符合条件的m 有( ) A .1个 B .2个 C .3个 D .4个8.对于函数y=21x,下列说法正确的是( ) A .y 是x 的反比例函数 B .它的图象过原点C .它的图象不经过第三象限D .y 随x 的增大而减小 9.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 210.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC= ( )A .3B .2C .3D .3+211.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( )A .m <nB .m≤nC .m >nD .m≥n12.不等式2x ﹣1<1的解集在数轴上表示正确的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为_____.14.如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.15.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).16.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .17.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A 、B 、C 、D 都是格点,AB 与CD 相交于M ,则AM :BM=__.18.如图,在△ABC 中,AB =AC ,∠A =36°, BD 平分∠ABC 交AC 于点D ,DE 平分∠BDC 交BC 于点E ,则= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .求证:△AFE ≌△CDF ;若AB=4,BC=8,求图中阴影部分的面积.20.(6分)如图,二次函数y =﹣212x +mx+4﹣m 的图象与x 轴交于A 、B 两点(A 在B 的左侧),与),轴交于点C .抛物线的对称轴是直线x =﹣2,D 是抛物线的顶点.(1)求二次函数的表达式;(2)当﹣12<x <1时,请求出y 的取值范围; (3)连接AD ,线段OC 上有一点E ,点E 关于直线x =﹣2的对称点E'恰好在线段AD 上,求点E 的坐标.21.(6分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)22.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×32723.(8分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.(1)求tan∠ADF的值;(2)证明:DE是⊙O的切线;(3)若⊙O的半径R=5,求EF的长.24.(10分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D 均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.25.(10分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?26.(12分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)27.(12分)计算:﹣16+(﹣12)﹣2﹣32|+2tan60°参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.2.B【解析】【分析】主视图是从物体正面看所得到的图形.【详解】解:从几何体正面看故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.4.D【解析】【分析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=12OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OC ⊥MN ,且OP=PC=1,在Rt △MOP 中,∵OM=2,OP=1,∴cos ∠POM=OP OM =12,AC=22OM OP -=3, ∴∠POM=60°,MN=2MP=23,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S 半圆-2S 弓形MCN=12×π×22-2×(21202360π⨯-12×23×1) =23-23π, 故选D. 【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.5.A【解析】【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【详解】2x 4030x -≥⎧⎨-⎩①>② 由①,得x≥2,由②,得x <1,所以不等式组的解集是:2≤x <1.不等式组的解集在数轴上表示为:.故选A .【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.A【解析】【分析】根据相反数的定义进行求解.【详解】1的相反数为:﹣1.故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.7.C【解析】【分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m 的等式,即可得出.【详解】Q ()29 2m m --=1∴m 2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m 有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.8.C【解析】【分析】直接利用反比例函数的性质结合图象分布得出答案.【详解】对于函数y=21x,y 是x 2的反比例函数,故选项A 错误; 它的图象不经过原点,故选项B 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C 正确;第一象限,y 随x 的增大而减小,第二象限,y 随x 的增大而增大,故选C .【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.9.B【解析】【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC 中截取矩形ABFE ,则矩形ABDC ∽矩形FDCE ,则 AB BD DF DC= 设DF=xcm ,得到:68=x 6 解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm 1. 【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.10.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt △ADE 可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE 为AB 的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.11.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,,∴1222x x ,->-∴m n >,故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大, 12.D【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,2x <1+1,合并同类项得,2x <2,x 的系数化为1得,x <1. 在数轴上表示为:.故选D .【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(52,0) 【解析】试题解析:过点B 作BD ⊥x 轴于点D ,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD ,在△ACO 与△BCD 中,OAC BCD AOC BDC AC BC ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ACO ≌△BCD (AAS )∴OC=BD ,OA=CD ,∵A (0,2),C (1,0)∴OD=3,BD=1,∴B (3,1),∴设反比例函数的解析式为y=k x , 将B (3,1)代入y=k x , ∴k=3,∴y=3x, ∴把y=2代入y=3x , ∴x=32, 当顶点A 恰好落在该双曲线上时, 此时点A 移动了32个单位长度, ∴C 也移动了32个单位长度, 此时点C 的对应点C′的坐标为(52,0) 故答案为(52,0). 14.3:2【解析】 因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 15.0.50【解析】【分析】 直接使用科学计算器计算即可,结果需保留二位有效数字.【详解】用科学计算器计算得0.5,故填0.50,【点睛】此题主要考查科学计算器的使用,注意结果保留二位有效数字. 16.:k<1.【解析】【详解】∵一元二次方程220x x k-+=有两个不相等的实数根,∴△=24b ac-=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.17.5:1【解析】【分析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴EFCN=DFDN=13,∴EF=13 a,∵AF=2a,∴AE=53 a,∵△AME∽△BMC,∴AMBM=AEBC=534aa=512,故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.【解析】试题分析:因为△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因为BD平分∠ABC交AC于点D所以∠ABD=∠CBD=36°=∠A因为DE平分∠BDC交BC于点E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B 落在点E 处,∴∠E=∠B ,AB=AE ,∴AE=CD ,∠E=∠D ,在△AEF 与△CDF 中,∵∠E=∠D ,∠AFE=∠CFD ,AE=CD ,∴△AEF ≌△CDF ;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF ≌△CDF ,∴AF=CF ,EF=DF ,∴DF 2+CD 2=CF 2,即DF 2+42=(8﹣DF )2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S △ACE ﹣S △AEF =12×4×8﹣12×4×3=1. 点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.20.(1)y=﹣12x 1﹣1x+6;(1)72<y <558;(3)(0,4). 【解析】【分析】(1)利用对称轴公式求出m 的值,即可确定出解析式;(1)根据x 的范围,利用二次函数的增减性确定出y 的范围即可;(3)根据题意确定出D 与A 坐标,进而求出直线AD 解析式,设出E 坐标,利用对称性确定出E 坐标即可.【详解】(1)∵抛物线对称轴为直线x=﹣1,∴﹣122m ⨯-()=﹣1,即m=﹣1,则二次函数解析式为y=﹣12x 1﹣1x+6;(1)当x=﹣12时,y=558;当x=1时,y=72. ∵﹣12<x <1位于对称轴右侧,y 随x 的增大而减小,∴72<y <558; (3)当x=﹣1时,y=8,∴顶点D 的坐标是(﹣1,8),令y=0,得到:﹣12x 1﹣1x+6=0,解得:x=﹣6或x=1.∵点A 在点B 的左侧,∴点A 坐标为(﹣6,0).设直线AD 解析式为y=kx+b ,可得:2860k b k b -+=⎧⎨-+=⎩,解得:212k b =⎧⎨=⎩,即直线AD 解析式为y=1x+11. 设E (0,n ),则有E′(﹣4,n ),代入y=1x+11中得:n=4,则点E 坐标为(0,4).【点睛】本题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键. 21.水坝原来的高度为12米【解析】试题分析:设BC=x 米,用x 表示出AB 的长,利用坡度的定义得到BD=BE ,进而列出x 的方程,求出x的值即可.试题解析:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水坝原来的高度为12米..考点:解直角三角形的应用,坡度.22.﹣1【解析】【分析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=﹣1+3﹣1×3=﹣1.【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.23.(1)12;(2)见解析;(3)83【解析】【分析】(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==12;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=83.【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.24.(1)画图见解析;(2)画图见解析;(35【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得5【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.25.(1)一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①y =﹣200x+50000;②购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【解析】【分析】(1)根据3台A 型无人机和4台B 型无人机共需6400元,4台A 型无人机和3台B 型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)①根据题意可以得到y 与x 的函数关系式;②根据①中的函数关系式和B 型无人机的数量不少于A 型无人机的数量的2倍,可以求得购进A 型、B 型无人机各多少台,才能使总费用最少.【详解】解:(1)设一台A 型无人机售价x 元,一台B 型无人机的售价y 元,346400436200x y x y +=⎧⎨+=⎩, 解得,8001000x y =⎧⎨=⎩, 答:一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①由题意可得,y 800x 100050x 200x 50000++=(﹣)=﹣,即y 与x 的函数关系式为y 200x 50000+=﹣; ②∵B 型无人机的数量不少于A 型无人机的数量的2倍,50x 2x ﹣∴≥, 解得,2163x ≤, y 200x 50000+Q =﹣,∴当x 16=时,y 取得最小值,此时y 20016500004680050x 34⨯+=﹣=,﹣=, 答:购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.26.(1)此人所在P 的铅直高度约为14.3米;(2)从P 到点B 的路程约为17.1米【解析】分析:(1)过P 作PF ⊥BD 于F ,作PE ⊥AB 于E ,设PF =5x ,在Rt △ABC 中求出AB ,用含x 的式子表示出AE ,EP ,由tan ∠APE ,求得x 即可;(2)在Rt △CPF 中,求出CP 的长.详解:过P 作PF ⊥BD 于F ,作PE ⊥AB 于E ,∵斜坡的坡度i =5:1,设PF =5x ,CF =1x ,∵四边形BFPE 为矩形,∴BF =PEPF =BE.在RT △ABC 中,BC =90,tan ∠ACB =AB BC, ∴AB =tan63.4°×BC≈2×90=180,∴AE =AB -BE =AB -PF =180-5x ,EP =BC +CF≈90+10x.在RT △AEP 中,tan ∠APE =1805490123AE x EP x -≈=+, ∴x =207, ∴PF =5x =10014.37≈. 答:此人所在P 的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×20737.1,BC+CP=90+37.1=17.1.答:从P到点B的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长. 27.3【解析】【分析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.【详解】﹣16+(﹣12)﹣2﹣3﹣2|+2tan60°=﹣1+4﹣(233,=﹣1+4﹣333【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.。

2019年河南省新乡市中考数学模拟试卷

2019年河南省新乡市中考数学模拟试卷

2019年河南省新乡市中考数学模拟试卷一、选择题(每小题3分,共24分)下列各小题均有四个选项,其中只有一个是正确的1.12-的倒数是A .12-B .12 C . 2- D .22A .1与2B . 2 与3C .3与4D .4与5 3.有10位同学参加数学竞赛,成绩如下表:则上列数据中的中位数是 A . 80 B . 82.5 C . 85 D . 87.54.我国计划在2020年左右发射火星探测卫星,据科学研究测量,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法表示为 A .5.5×106 B . 5.5×107 C .55×107 D .0.55×108 5.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在n ,m 上, 且∠C = 90°,若∠1= 40° ,则∠2的度数为A . 130°B .120°C .110°D .100°6.如图所示是某个几何体的三视图,该几何体是 A . 圆锥 B .三棱锥 C .圆柱 D .三棱柱 7.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根,则m 的取值范围是 A .m ≥ 54-B .m ≤ 54-C .m < 54-D .m > 54- 8.在矩形ABCD 中,AD = 2AB = 4,E 为AD 的中点,一块432190858075分数人数第5题图C Am n21第6题图M ED Aα足够大的三角板的直角顶点与E重合,将三角板绕点E旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点M、N,设∠AEM = α(0°<α<90°),给出四个结论:①AM =CN②∠AME =∠BNE③BN-AM =2 ④上述结论中正确的个数是A.1 B.2 C.3 D.4二、填空题(每小题3分,共21分)9.的平方根是.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.12.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.13.写一个你喜欢的实数m的值,使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.14.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.15.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=.三、解答题(本大题有8个小题,共75分)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.17.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程有一个实数根是最大的负整数,求实数m的值及另一根.18.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?19.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB 的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为(请直接写出答案)20.如图.有一艘渔船P在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A,B上的观测点进行观测,从观测站A测得渔船P在北偏西60°的方向,同时测得搜救船C也在北偏西60°的方向,从观测站B测得渔船P在北偏东32°的方向,测得搜救船C在北偏西45°方向,已知观测站A在观测站B东40里处,问搜救船C与渔船P的距离是多少?(结果保留整数,参考数据:sin32°≈0.53,cos32°≈0.85;tan32°≈0.62,sin58°≈0.85;cos58°≈0.53;tan58°≈1.60;≈1.41,≈1.73).21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.22.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a=,b=.如图2,当∠ABE=30°,c=4时,a=,b=.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.23.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.2019年河南省新乡市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个选项,其中只有一个二、填空题(每小题3分,共21分)9.的平方根是±\sqrt{2}.【考点】平方根;算术平方根.【分析】的平方根就是2的平方根,只需求出2的平方根即可.【解答】解:∵=2,2的平方根是±,∴的平方根是±.故答案为是±.10.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.【考点】平移的性质;同位角、内错角、同旁内角.【分析】由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【解答】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.11.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.【考点】中位数;算术平均数.【分析】首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.【解答】解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.12.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【考点】整式的混合运算;解一元一次方程.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.13.写一个你喜欢的实数m的值﹣4(答案不唯一),使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.【考点】随机事件;二次函数的性质.【分析】直接利用公式得出二次函数的对称轴,再利用二次函数的增减性结合随机事件的定义得出答案.【解答】解:y=x2﹣(m﹣1)x+3x=﹣=m﹣1,∵当x<﹣3时,y随x的增大而减小,∴m﹣1<﹣3,解得:m<﹣2,∴x<﹣2的任意实数即可.故答案为:﹣4(答案不唯一).14.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=﹣5.【考点】切线的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【分析】作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,根据切线的性质和切线长定理得到PD=PE=r,AD=AE,再利用勾股定理计算出OB=6,则可判断△OBC为等腰直角三角形,从而得到△PCD为等腰直角三角形,则PD=CD=r,AE=AD=2+r,通过证明△ACH∽△ABO,利用相似比计算出CH=,接着利用勾股定理计算出AH=,所以BH=10﹣=,然后证明△BEP∽△BHC,利用相似比得到即=,解得r=1,从而易得P点坐标,再利用反比例函数图象上点的坐标特征求出k的值.【解答】解:作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P 的半径为r,∵⊙P与边AB,AO都相切,∴PD=PE=r,AD=AE,在Rt△OAB中,∵OA=8,AB=10,∴OB==6,∵AC=2,∴OC=6,∴△OBC为等腰直角三角形,∴△PCD为等腰直角三角形,∴PD=CD=r,∴AE=AD=2+r,∵∠CAH=∠BAO,∴△ACH∽△ABO,∴=,即=,解得CH=,∴AH===,∴BH=10﹣=,∵PE∥CH,∴△BEP∽△BHC,∴=,即=,解得r=1,∴OD=OC﹣CD=6﹣1=5,∴P(5,﹣1),∴k=5×(﹣1)=﹣5.故答案为﹣5.15.如图,在矩形ABCD中,AB=4,BC=3,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B′的对应点落在矩形ABCD的对角线上时,BP=\frac{3}{2}或\frac{9}{4}.【考点】翻折变换(折叠问题);矩形的性质.【分析】分两种情况探讨:①点B落在矩形对角线BD上,②点B落在矩形对角线AC上,由三角形相似得出比例式,即可得出结果.【解答】解①点A落在矩形对角线BD上,如图1所示.∵矩形ABCD中,AB=4,BC=3∴∠ABC=90°,AC=BD,∴AC=BD==5.根据折叠的性质得:PC⊥BB′,∴∠PBD=∠BCP,∴△BCP∽△ABD,∴,即=,解得:BP=.②点A落在矩形对角线AC上,如图2所示.根据折叠的性质得:BP=B′P,∠B=∠PB′C=90°,∴∠AB′A=90°,∴△APB′∽△ACB,∴,即,解得:BP=.故答案为:或.三、解答题(本大题有8个小题,共75分)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.【解答】解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===17.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程有一个实数根是最大的负整数,求实数m的值及另一根.【考点】根与系数的关系;根的判别式.【分析】(1)利用方程根与判别式的关系,得出根的判别式符号直接解不等式得出即可;(2)将x=﹣1代入,进而求出m的值,进而得出方程的解.【解答】解:(1)∵方程有实数根,∴b2﹣4ac=(﹣4)2﹣4m≥0,∴m≤4;(2)∵最大的负整数是﹣1,∴把x=﹣1代入原方程中,得:(﹣1)2﹣4×(﹣1)+m=0,解得:m=﹣1﹣4=﹣5,∴x2﹣4x﹣5=0,解得:x1=5,x2=﹣1,答:m的值为﹣5,另一个实数根是5.18.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.19.如图1,△ABC是边长为6的等边三角形,点D、E分别是边AB、AC的中点,将△ADE绕点A旋转,BD与CE所在的直线交于点F.(1)如图(2)所示,将△ADE绕点A逆时针旋转,且旋转角小于60°,∠CFB 的度数是多少?说明你的理由?(2)当△ADE绕点A旋转时,若△BCF为直角三角形,线段BF的长为\frac{4\sqrt{3}}{3}(请直接写出答案)【考点】旋转的性质.【分析】(1)根据等边三角形的性质得到AC=AB,∠EAD=∠CAB=60°,由点D、E分别是边AB、AC的中点,得到AE=AD,根据旋转的性质得到∠EAC=∠BAD,根据全等三角形的性质得到∠ACE=∠ABD,推出A,B,C,F四点共圆,根据圆周角定理即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)∠CFB=60°,理由:∵△ABC是等边三角形,∴AC=AB,∠EAD=∠CAB=60°,∵点D、E分别是边AB、AC的中点,∴AE=AD,∵将△ADE绕点A旋转,BD与CE所在的直线交于点F,∴∠EAC=∠BAD,在△ACE与△ABD中,,∴△ACE≌△ABD,∴∠ACE=∠ABD,∴A,B,C,F四点共圆,∴∠CFB=∠CAB=60°;(2)∵∠CFB=60°,∠BCF=90°,∴∠CBF=30°,∴BF===.故答案为:.20.如图.有一艘渔船P在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A,B上的观测点进行观测,从观测站A测得渔船P在北偏西60°的方向,同时测得搜救船C也在北偏西60°的方向,从观测站B测得渔船P在北偏东32°的方向,测得搜救船C在北偏西45°方向,已知观测站A在观测站B东40里处,问搜救船C与渔船P的距离是多少?(结果保留整数,参考数据:sin32°≈0.53,cos32°≈0.85;tan32°≈0.62,sin58°≈0.85;cos58°≈0.53;tan58°≈1.60;≈1.41,≈1.73).【考点】解直角三角形的应用-方向角问题.【分析】过C作CD⊥AB于D,PE⊥AB于E,连接PB,根据已知条件得到BD=CD,AD=CD,求得CD=20(+1)里,AD=40+20(+1)里,解直角三角形得到PE≈12,即可得到结论.【解答】解:过C作CD⊥AB于D,PE⊥AB于E,连接PB,∴∠CBD=45°,∠CAD=30°,∠PBE=58°,∴BD=CD,AD=CD,∵AB=40里,∴=,∴CD=20(+1),∴AD=40+20(+1)里,在Rt△PBE中,BE==,在Rt△APE中,AE=PE,∴+PE=40,∴PE≈12,∴AP=2PE=24,AC=2CD=40(+1),∴CP=AC﹣PC=109﹣24=85(里).答:搜救船C与渔船P的距离是85里.21.我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x 人.如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a 元;人数超过100人时,每张门票降价2a 元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a 的值.【考点】一次函数的应用;一元二次方程的应用;一元一次不等式的应用.【分析】(1)根据甲团队人数为x 人,乙团队人数不超过50人,得到x ≥70,分两种情况:①当70≤x ≤100时,W=70x+80=﹣10x+9600,②当100<x <120时,W=60x+80=﹣20x+9600,即可解答;(2)根据甲团队人数不超过100人,所以x ≤100,由W=﹣10x+9600,根据70≤x ≤100,利用一次函数的性质,当x=70时,W 最大=8900(元),两团联合购票需120×60=7200(元),即可解答;(3)根据每张门票降价a 元,可得W=(70﹣a )x+80=﹣(a+10)x+9600,利用一次函数的性质,x=70时,W 最大=﹣70a+8900(元),而两团联合购票需120(60﹣2a )=7200﹣240a (元),所以﹣70a+8900﹣=3400,即可解答.【解答】解:(1)∵甲团队人数为x 人,乙团队人数不超过50人,∴120﹣x ≤50,∴x ≥70,①当70≤x ≤100时,W=70x+80=﹣10x+9600,②当100<x <120时,W=60x+80=﹣20x+9600,综上所述,W=(2)∵甲团队人数不超过100人,∴x ≤100,∴W=﹣10x+9600,∵70≤x ≤100,∴x=70时,W 最大=8900(元),两团联合购票需120×60=7200(元),∴最多可节约8900﹣7200=1700(元).(3)∵x ≤100,∴W=(70﹣a )x+80=﹣(a+10)x+9600,∴x=70时,W 最大=﹣70a+8900(元),两团联合购票需120(60﹣2a )=7200﹣240a (元),∵﹣70a+8900﹣=3400,解得:a=10.22.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均称为“中垂三角形”,设BC=a ,AC=b ,AB=c .特例探索(1)如图1,当∠ABE=45°,c=2时,a= 2\sqrt{5} ,b= 2\sqrt{5} . 如图2,当∠ABE=30°,c=4时,a= 2\sqrt{13} ,b= 2\sqrt{7} . 归纳证明(2)请你观察(1)中的计算结果,猜想a 2,b 2,c 2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD 中,点E 、F 、G 分别是AD ,BC ,CD 的中点,BE ⊥EG ,AD=2,AB=3,求AF 的长.【考点】相似形综合题.【分析】(1)由等腰直角三角形的性质得到AP=BP=AB=2,根据三角形中位线的性质,得到EF ∥AB ,EF=AB=,再由勾股定理得到结果;(2)连接EF ,设∠ABP=α,类比着(1)即可证得结论.(3)连接AC 交EF 于H ,设BE 与AF 的交点为P ,由点E 、G 分别是AD ,CD 的中点,得到EG 是△ACD 的中位线于是证出BE ⊥AC ,由四边形ABCD 是平行四边形,得到AD ∥BC ,AD=BC=2,∠EAH=∠FCH 根据E ,F 分别是AD ,BC 的中点,得到AE=BF=CF=AD=,证出四边形ABFE 是平行四边形,证得EH=FH ,推出EH ,AH 分别是△AFE 的中线,由(2)的结论得即可得到结果.【解答】解:(1)∵AF ⊥BE ,∠ABE=45°,∴AP=BP=AB=2,∵AF ,BE 是△ABC 的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×4=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为:2,2,2,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=4.23.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△CAB的铅垂高CD及S△CAB;(3)抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)已知了顶点C坐标,可用顶点式的二次函数通式设出这个二次函数,然后根据A点的坐标可求出二次函数的解析式.然后根据求出的二次函数的解析式,求出B点的坐标,然后可用待定系数法用B、A的坐标求出AB所在直线的解析式;(2)要求三角形CAB的面积,根据题中给出的求三角形面积的求法,那么要先求出水平宽和铅垂高,求铅垂高就要求出C,D两点纵坐标,C点的坐标已知,可用(1)中的一次函数求出D点的纵坐标,那么C,D两点的纵坐标的差的绝对值就是三角形CAB的铅垂高,而水平宽是A点的横坐标,这样可根据题中给出的求三角形的面积的方法得出三角形CAB的面积;(3)可先根据(2)中三角形CAB的面积得出三角形PAB的面积,三角形PAB 中,水平宽是A的横坐标为定值,因此根据三角形PAB的面积可得出此时的铅垂高,然后用抛物线的解析式以及一次函数的解析式,先表示出铅垂高,然后根据由三角形PAB的面积求出的铅垂高可得出关于x的方程,即可得出x的值,然后代入二次函数式中即可得出此点的坐标.【解答】解:(1)设抛物线的解析式为:y1=a(x﹣1)2+4把A(3,0)代入解析式求得a=﹣1所以y1=﹣(x﹣1)2+4=﹣x2+2x+3设直线AB的解析式为:y2=kx+b由y1=﹣x2+2x+3求得B点的坐标为(0,3)把A(3,0),B(0,3)代入y2=kx+b中解得:k=﹣1,b=3所以y2=﹣x+3;(2)因为C点坐标为(1,4)所以当x=1时,y1=4,y2=2所以CD=4﹣2=2S△CAB=×3×2=3(平方单位);(3)假设存在符合条件的点P,设P点的横坐标为x,△PAB的铅垂高为h,则h=y1﹣y2=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x由S△PAB=S△CAB得:×3×(﹣x2+3x)=×3化简得:4x2﹣12x+9=0解得,x1=x2=,将x=代入y1=﹣x2+2x+3中,解得P点坐标为(,).第21页(共21页)。

2019年河南省新乡市中考数学一模试卷

2019年河南省新乡市中考数学一模试卷

2019年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共24分)1.﹣2的倒数是()A.B.2 C.﹣D.﹣22.如图,正三棱柱的主视图为()A. B.C.D.3.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×1084.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.7.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5 D.68.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,)D.(2n+1,)二、填空题(每小题3分,共21分)9.计算: +|﹣1|=.10.如图,AD是△ABC的外角平分线,AD∥BC,若∠C=70°,则∠BAC的度数为.11.已知点A(1,y1),B(﹣2,y2),C(﹣,y2)都在反比例函数y=(k为常数)的图象上,则y1,y2,y3的大小关系是.12.不透明的袋子中装有2个红球,3个黄球,他们除颜色外,其它都相同,从中随机一次摸出两个球,颜色不同的概率是.13.如图,菱形ABCD的边长为5cm,cosB=0.6,则对角线AC的长为cm.14.如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.15.如图,正方形ABCD的边长是2,点E、F分别是AB、BC边上的动点(不与点A、B、C重合),且BE=BF,EG⊥AB,FG⊥BC,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为.三、解答题(本大题包括8个小题,共75分)16.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.17.2016年3月8日,国务院批复同意自2016年起,将每年4月24日作为“中国航天日”,某市针对中学生开展了航天知识普及活动,活动结束后进行了一次航天知识问卷调查,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表根据以上信息解答下列问题:(1)统计表中,a=,b=,c=;(2)扇形统计图中,m的值为,“B”所对应的圆心角的度数是;(3)若参加本次航天知识问卷调查的同学共有20000人,请你估计成绩在95分及以上的学生大约有多少人?18.如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC 于点E.(1)求证:△OBD≌△OED;(2)填空:①当∠BAC=度时,CA是⊙O的切线;②当∠BAC=度时,四边形OBDE是菱形.19.关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.20.如图所示,为了知道楼房CD外墙上一电子屏的高度DE是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作;在A处测得点E的仰角为31°,在B出测得点D的仰角为50°,A、B、H共线,且AH⊥CD于点H,AB为20米,测角仪的高度(AF、BG)为1.6米.已知楼房CD高为34.6米,根据测量数据,请求出DE的高度.(参考数据:tan31°≈0.6,tan50°≈1.2)21.甲、乙两家商店以同样价格销售相同的商品,某次促销活动中,它们的优惠方案分别为:甲店,所有商品一律八折优惠;乙店,一次性购物中超过200元后的价格部分打六折.设商品原价为x元(x>0),购物应付金额为y元.(1)求在乙商店购物时y2与x之间的函数关系;(2)两种购物方式对应的函数如图所示,求出交点B的坐标;(3)根据图象,请直接写出本次促销活动汇总选择哪家商店购物更优惠.22.(1)尝试探究如图1,Rt△ABC中,AB=AC,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F.若AE=2BE,则EF与EG的数量关系是.(2)类比延伸如图2,在(1)的条件下,若AE=nBE(n>0),则EF与EG的数量关系是(用含n的代数式表示),试写出解答过程.(3)拓展迁移如图3,Rt△ABC中,∠BAC=90°,AD是高,点E是AB边上一点,CE与AD 交于点G,过点E作EF⊥CE交BC于点F,若AE=aBE,AB=bAC(a>0,b>0),则EF与EG的数量关系是.23.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP 周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.2019年河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.﹣2的倒数是()A.B.2 C.﹣D.﹣2【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣2的倒数是,故选C.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,正三棱柱的主视图为()A. B.C.D.【考点】简单几何体的三视图.【分析】根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.3.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27 000 000用科学记数法表示为2.7×107.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°【考点】平行线的性质.【专题】计算题.【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.【解答】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC 的度数是解题的难点.5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元【考点】中位数.【分析】根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.【解答】解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.【点评】本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.6.不等式组的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解不等式,然后在数轴上表示出解集.【解答】解:解不等式1﹣x<2得,x>﹣1,解不等式3x≤6得:x≤2,则不等式的解集为:.故选B.【点评】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.7.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5 D.6【考点】菱形的性质;矩形的性质.【分析】连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.【点评】本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.8.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,)D.(2n+1,)【考点】坐标与图形变化-旋转.【专题】压轴题;规律型.【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.二、填空题(每小题3分,共21分)9.计算: +|﹣1|=4.【考点】实数的运算.【分析】根据立方根的定义和绝对值的性质进行计算即可.【解答】解:原式=3+1=4,故答案为4.【点评】本题考查了实数的运算,掌握立方根的定义和绝对值的性质是解题的关键.10.如图,AD是△ABC的外角平分线,AD∥BC,若∠C=70°,则∠BAC的度数为40°.【考点】平行线的性质;三角形内角和定理.【分析】根据平行线的性质得出∠DAC=∠C=70°,∠EAD=∠B,根据角平分线定义得出∠EAD=∠DAC=70°,求出∠B,即可求出∠BAC.【解答】解:∵AD∥BC,∠C=70°,∴∠DAC=∠C=70°,∠EAD=∠B,∵AD是△ABC的外角平分线,∴∠EAD=∠DAC=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=40°,故答案为:40°【点评】本题考查了平行线的性质,三角形内角和定理的应用,能求出∠B的度数是解此题的关键.11.已知点A(1,y1),B(﹣2,y2),C(﹣,y2)都在反比例函数y=(k为常数)的图象上,则y1,y2,y3的大小关系是y1<y2<y3.【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.【解答】解:∵反比例函数y=(k为常数)中,﹣k2﹣1<0,∴函数图象的两个分式分别位于二四象限,且在每一象限内y随x的增大而增大.∵﹣2<﹣<0,1>0,∴点B、C在第二象限,点A在第四象限,∴y1<y2<y3.故答案为:y1<y2<y3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.不透明的袋子中装有2个红球,3个黄球,他们除颜色外,其它都相同,从中随机一次摸出两个球,颜色不同的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与颜色不同的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,颜色不同的有12种情况,∴从中随机一次摸出两个球,颜色不同的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.13.如图,菱形ABCD的边长为5cm,cosB=0.6,则对角线AC的长为2cm.【考点】菱形的性质.【分析】过C作CE⊥AB于E,则∠CEB=∠CEA=90°,解直角三角形求出BE,根据勾股定理求出CE,求出AE,根据勾股定理求出AC即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC=5cm,过C作CE⊥AB于E,则∠CEB=∠CEA=90°,∵cosB==0.6,BC=5cm,∴BE=3cm,∴AE=5cm﹣3cm=2cm,在Rt△BEC中,由勾股定理得:CE==4(cm),在Rt△CEA中,由勾股定理得:AC===2(cm),故答案为:2.【点评】本题考查了菱形的性质,勾股定理,解直角三角形的应用,能构造直角三角形是解此题的关键,注意:菱形的四条边都相等.14.如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.【考点】扇形面积的计算;旋转的性质.【分析】根据题意得出AB=AB′=8,∠BAB′=60°,根据图形得出图中阴影部分的面积S=+π×102﹣π×102,求出即可.【解答】解:如图,∵AB=AB′=8,∠BAB′=60°∴图中阴影部分的面积是:S=S扇形B′AB+S半圆O′﹣S半圆O=+π×102﹣π×102=π.故答案为:.【点评】本题考查了旋转的性质,扇形的面积的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较好,难度适中.15.如图,正方形ABCD的边长是2,点E、F分别是AB、BC边上的动点(不与点A、B、C重合),且BE=BF,EG⊥AB,FG⊥BC,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为1或2﹣.【考点】正方形的性质;等腰三角形的性质.【分析】首先判断点G在对角线上,分两种情形讨论①DA=DG,②GA=GD.求出BG,再根据BE=BG即可解决问题.【解答】解:∵四边形ABCD是正方形,四边形BEGF是正方形,∴AB=BC=CD=AD=2,∠EBG=∠ABD=45°,∴B、G、D共线,BD=2,当DA=DG时,BG=2﹣2,∴BE=BG=2﹣,当GA=DG时,G是BD中点,∴BG=,∴BE=BG=1,故答案为1或2﹣【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是判断点G的位置,注意考虑问题要全面,学会分类讨论,属于中考常考题型.三、解答题(本大题包括8个小题,共75分)16.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式===,当a=+1,b=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.2016年3月8日,国务院批复同意自2016年起,将每年4月24日作为“中国航天日”,某市针对中学生开展了航天知识普及活动,活动结束后进行了一次航天知识问卷调查,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表根据以上信息解答下列问题:(1)统计表中,a=450,b=1000,c=0.3;(2)扇形统计图中,m的值为45,“B”所对应的圆心角的度数是54°;(3)若参加本次航天知识问卷调查的同学共有20000人,请你估计成绩在95分及以上的学生大约有多少人?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组频数及频率可得总数b,根据频数之和等于总数可得a,用C组频数除以总数可得其频率c;(2)用D组频数除以总数即可得m的值,用B组人数占总人数的比例乘以360°可得圆心角度数;(3)用成绩在95分及以上的学生数占被调查人数的比例,即D组频率乘以总人数20000即可得.【解答】解:(1)b=100÷0.1=1000,a=1000﹣100﹣150﹣300=450,c=300÷1000=0.3;故答案为:450,1000,0.3;(2)∵m%=×100%=45%,∴m=45,“B”所对应的圆心角的度数是×360°=54°,故答案为:45,54;(3)20000×0.45=9000,答:成绩在9分及以上的学生大约有9000人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.如图,△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC 于点E.(1)求证:△OBD≌△OED;(2)填空:①当∠BAC=90度时,CA是⊙O的切线;②当∠BAC=60度时,四边形OBDE是菱形.【考点】圆的综合题.【分析】(1)由AB是⊙O的直径,可证得AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,于是得到BD=ED,根据“SSS“定理即可证得结论;(2)①当∠BAC=90°时,由切线的判定定理即可证得CA是⊙O的切线,②当∠BAC=60度时,得到△OBD是等边三角形,即OB=OD=BD,由(1)得:BD=ED,于是有OB=BD=DE=OE,由菱形的定义得到四边形OBDE是菱形.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴∠BAD=∠CAD,∴=.∴BD=ED,在△OBD和△OED中,,∴△OBD≌△OED(SSS);(2)①当∠BAC=90°,∵AB为⊙O的直径,∴CA是⊙O的切线,故答案为:90;②当∠BAC=60度时,∵OB=OD,∴△OBD是等边三角形,即OB=OD=BD,由(1)得:BD=ED,∴OB=BD=DE,∵OE=OB,∴OB=BD=DE=OE,∴四边形OBDE是菱形,故答案为:60.【点评】本题主要考查了圆周角的性质和判定,等腰三角形的判定与性质,全等三角形的判定与性质,切线的判定定理,菱形的判定定理,正确作出辅助线,证得BD=ED是解题的关键.19.关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.【考点】根的判别式;一元二次方程的解.【分析】(1)根据一元二次方程的定义和根的判别式得到m﹣1≠0且△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,然后求出两不等式的公共部分即可;(2)先把x=1代入原方程得到m的一元一次方程,求出m的值,从而确定原一元二次方程,然后利用因式分解法解一元二次方程即可得到方程的另一个解.【解答】解:(1)由题意知,m﹣1≠0,所以m≠1.∵原方程有两个不相等的实数根,∴△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,解得:m>,综上所述,m的取值范围是m>且m≠1;(2)把x=1代入原方程,得:m﹣1+2﹣3=0.解得:m=2.把m=2代入原方程,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3.∴此时m的值为2,方程的另外一个根为是﹣3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义及解法.20.如图所示,为了知道楼房CD外墙上一电子屏的高度DE是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作;在A处测得点E的仰角为31°,在B出测得点D的仰角为50°,A、B、H共线,且AH⊥CD于点H,AB为20米,测角仪的高度(AF、BG)为1.6米.已知楼房CD高为34.6米,根据测量数据,请求出DE的高度.(参考数据:tan31°≈0.6,tan50°≈1.2)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先由题意知∠EAH=31°,∠DBH=50°,CH=AF=1.6,则可求得DH的长,然后由在Rt△DBH中,tan50°=,求得BH的长,继而求得AH的长,然后在Rt△EAH中,求得EH的长,则可求得答案.【解答】解:由题意知∠EAH=31°,∠DBH=50°,CH=AF=1.6,∴DH=DC﹣CH=34.6﹣1.6=33,在Rt△DBH中,∵tan50°==,∴BH=≈=27.5,∴AH=27.5+20=47.5.在Rt△EAH中,∵tan31°=,∴EH=47.5×tan31°≈28.5,∴DE=DH﹣EH≈33﹣28.5=4.5(米).答:DE的高度约为4.5米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.甲、乙两家商店以同样价格销售相同的商品,某次促销活动中,它们的优惠方案分别为:甲店,所有商品一律八折优惠;乙店,一次性购物中超过200元后的价格部分打六折.设商品原价为x元(x>0),购物应付金额为y元.(1)求在乙商店购物时y2与x之间的函数关系;(2)两种购物方式对应的函数如图所示,求出交点B的坐标;(3)根据图象,请直接写出本次促销活动汇总选择哪家商店购物更优惠.【考点】一次函数的应用.【分析】(1)分别利用当0<x≤200时,当x>200时,求出函数解析式;(2)将y=0.6x+80和y=0.8x联立求出函数交点进而求出答案;(3)利用(2)中所求得出选择哪家商店购物更优惠.【解答】解:(1)当0<x≤200时,y2=x;当x>200时,y2=200+0.6(x﹣200)=0.6x+80,综上所述:y2=;(2)由题意知,y1=0.8x,故,解得:,则点B的坐标(400,320).(3)当x=400件,选择甲、乙两店付费相同;当x<400件时,选择甲店购物更优惠;当x>400件时,选择乙店购物更优惠.【点评】此题主要考查了一次函数的应用,利用数形结合得出正确信息是解题关键.22.(1)尝试探究如图1,Rt△ABC中,AB=AC,AD是高,点E是AB边上一点,CE与AD交于点G,过点E作EF⊥CE交BC于点F.若AE=2BE,则EF与EG的数量关系是EG=2EF.(2)类比延伸如图2,在(1)的条件下,若AE=nBE(n>0),则EF与EG的数量关系是EG=nEF (用含n的代数式表示),试写出解答过程.(3)拓展迁移如图3,Rt△ABC中,∠BAC=90°,AD是高,点E是AB边上一点,CE与AD 交于点G,过点E作EF⊥CE交BC于点F,若AE=aBE,AB=bAC(a>0,b>0),则EF与EG的数量关系是EG=abEF.【考点】相似形综合题.【分析】(1)如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,先证明△BPE∽△AQE,再证明△EPF∽△EQG即可.(2)如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,证明方法类似(1).(3)如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,由△EPF ∽△EQG,得=①,由△AEQ∽△CBA,得=②,①×②得=ab,由此即可解决问题.【解答】解:(1)EG=2EF;理由:如图1中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°.∴△BPE∽△AQE,∴==,∴EQ=2EP,∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴△EPF∽△EQG,∴==,∴EG=2EF.故答案为EG=2EF.(2)EG=nEF;理由:如图2中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q.∴∠BPE=∠AQE=90°.∵AD是等腰直角三角形的高,∴∠B=∠EAQ=45°.∴△BPE∽△AQE,∴=,∵AE=nBE,∴EQ=nEP.∵∠FEP+∠PEG=90°,∠GEQ+∠PEG=90°,∴∠FEP=∠GEQ.又∵∠EPF=∠EQG=90°,∴△EPF∽△EQG,∴=,∴EG=nEF.故答案为EG=2EF.(3)EG=abEF,理由:如图3中,过点E分别作EP⊥BD于点P,作EQ⊥AD于点Q,∵△EPF∽△EQG,∴=①∵∠AQE=∠BAC,∠EAQ=∠ACB,∴△AEQ∽△CBA,∴=,∴=②①×②得==ab,∵△EPF∽△EQG,∴=,∴=ab,∴EG=abEF.故答案为EG=abEF.【点评】本题考查相似三角形的判定和性质,解题的关键是添加辅助线,构造相似三角形,本题需要用到多次相似,属于中考常考题型.23.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP 周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由抛物线的对称轴方程可求得b的值,然后把D(0,1)代入y= x2+c可求得c的值,从而可求得抛物线的解析式;(2)先依据两组对边分别平行的四边形是平行四边形证明四边形ABCP是平行四边形,设点P的坐标是(m,m2+1),则PC=m2+1.然后依据两点间的距离公式可求得PA的长,从而得到PC=PA,故此可判断出四边形ABCP的形状;(3)作点D关于x轴的对称点D′.连接PD′交x轴与点Q.由四边形APCB为正方形可知PA∥x轴,点B与点O重合.于是可求得点P的坐标,然后求得直线D′P的解析式,从而可求得点Q的坐标,最后由抛物线的对称性可求得点Q′的坐标.【解答】解:(1)∵抛物线的对称轴是y轴,∴b=0.把D(0,1)代入y=x2+c得c=1.∴抛物线的解析式为y=+1.(2)四边形ABCP是菱形.∵PC⊥x轴,AB⊥x轴,∴PC∥AB.又∵CB∥AP,∴四边形ABCP是平行四边形.设点P的坐标是(m,m2+1),则PC=m2+1.过点P作PE⊥y轴于点E,则∴PA2=PE2+AE2=|m|2+|(m2+1)﹣2|2=m4+m2+1=(m2+1)2.∴PA=m2+1.∴PC=PA.∴平行四边形ABCP是菱形.(3)如图所示:作点D关于x轴的对称点D′.连接PD′交x轴与点Q.∵四边形APCB为正方形,∴∠APC=∠PCB=90°.∴点PA∥x轴,点B与点O重合.∴点P的纵坐标为2.将y=2代入y=+1得: +1=2,解得:x=±2.∴点P(2,2)、P′(﹣2,2).∵点D′与点D关于x轴对称,∴DQ=D′Q,D′(﹣1,0).∴当点D′、Q、P在一条直线上时,PQ+QD有最小值.又∵DP的长度不变,∴当点D′、Q、P在一条直线上时,△PDQ的周长最小.设直线PD′的解析式为y=kx+b.∵将点P、D′的坐标代入得,解得:k=,b=﹣1,∴直线PD′的解析式为y=x﹣1.将y=0代入得;x﹣1=0,解得:x=,∴点Q的坐标为(,0).∵点Q′关于点Q对称,∴Q′(﹣,0).综上所述,点Q的坐标为(,0)或Q′(﹣,0).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、轴对称路径最短问题、平行四边形的判定、菱形的判定,明确当点D′、Q、P在一条直线上时,△PDQ的周长最小时解题的关键.。

河南省新乡市2019-2020学年第五次中考模拟考试数学试卷含解析

河南省新乡市2019-2020学年第五次中考模拟考试数学试卷含解析

河南省新乡市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若函数y=kx ﹣b 的图象如图所示,则关于x 的不等式k (x ﹣3)﹣b >0的解集为( )A .x <2B .x >2C .x <5D .x >52.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+3.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )A .B .C .D .4.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、405.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .6.如图,正方形ABCD 的边长为4,点M 是CD 的中点,动点E 从点B 出发,沿BC 运动,到点C 时停止运动,速度为每秒1个长度单位;动点F 从点M 出发,沿M→D→A 远动,速度也为每秒1个长度单位:动点G 从点D 出发,沿DA 运动,速度为每秒2个长度单位,到点A 后沿AD 返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E 的运动时间为x ,△EFG 的面积为y ,下列能表示y 与x 的函数关系的图象是( )A.B.C.D.7.已知反比例函数y=8kx的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<88.不等式4-2x>0的解集在数轴上表示为()A.B.C.D.9.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.610.若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,311.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=6 12.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130°D.120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =V ,则图中阴影部分面积是 .14.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________.15.若反比例函数ky x=的图象与一次函数y=ax+b 的图象交于点A (﹣2,m )、B (5,n ),则3a+b 的值等于_____.16.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为_____.17.以矩形ABCD 两条对角线的交点O 为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE ⊥AC ,垂足为E .若双曲线y=(x >0)经过点D ,则OB•BE 的值为_____.18.如图,某水库大坝的横断面是梯形ABCD ,坝顶宽6AD =米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1∶2,那么坝底BC 的长度等于________米(结果保留根号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ABC=90°,BD 为AC 边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C 作直线CE ,使CE ⊥BC 于点C ,交BD 的延长线于点E ,连接AE ; (2)求证:四边形ABCE 是矩形.20.(6分)先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 21.(6分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.22.(8分)如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次∆的面积;函数值的x的取值范围;若直线BD与y轴的交点为E点,连结AD、AE,求ADE23.(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.24.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 25.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.26.(12分)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数2kyx图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.27.(12分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【详解】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>1k;两边同时除以k,因为k<0,因而解集是x<1.故选C.【点睛】本题考查一次函数与一元一次不等式.2.B【解析】【分析】根据图示,可得:b<0<a,|b|>|a|,据此判断即可.【详解】∵b<0<a,|b|>|a|,∴a+b<0,∴|a+b|= -a-b.故选B.【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.3.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形. 4.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40, 故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.5.B 【解析】 【分析】根据俯视图可确定主视图的列数和每列小正方体的个数. 【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成. 故答案选B. 【点睛】由几何体的俯视图可确定该几何体的主视图和左视图. 6.A 【解析】 【分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可. 【详解】解:当点F 在MD 上运动时,0≤x <2,则: y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A. 【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键. 7.A 【解析】 【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8.D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.B【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=BC=1.故选B.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用. 10.C 【解析】试题分析:解分式方程得:等式的两边都乘以(x ﹣2),得x=2(x ﹣2)+m ,解得x=4﹣m ,且x=4﹣m≠2, 已知关于x 的分式方的解为正数,得m=1,m=3,故选C .考点:分式方程的解. 11.D 【解析】 【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题. 【详解】 x 2-5x-6=1 (x-6)(x+1)=1 x 1=-1,x 2=6 故选D . 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法. 12.A 【解析】 【分析】直接根据圆周角定理即可得出结论. 【详解】∵A 、B 、C 是⊙O 上的三点,∠B=75°, ∴∠AOC=2∠B=150°. 故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.4 【解析】试题分析:由中线性质,可得AG=2GD ,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=V V V V V ,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.14.-10【解析】【分析】根据根与系数的关系得出-2+4=-m ,-2×4=n ,求出即可. 【详解】∵关于x 的一元二次方程20x mx n ++=的两个实数根分别为x 1 =-2,x 2 =4,∴−2+4=−m ,−2×4=n ,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键15.0【解析】分析:本题直接把点的坐标代入解析式求得m n a b ,,,之间的关系式,通过等量代换可得到3a b +的值.详解:分别把A(−2,m)、B(5,n), 代入反比例函数k y x=的图象与一次函数y=ax+b 得 −2m=5n ,−2a+b=m ,5a+b=n ,综合可知5(5a+b)=−2(−2a+b),25a+5b=4a−2b ,21a+7b=0,即3a+b=0.故答案为:0.点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础. 16.﹣2【解析】【分析】要求函数的解析式只要求出B 点的坐标就可以,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .根据条件得到△ACO ∽△ODB ,得到:BD OD OB OC AC OA===1,然后用待定系数法即可. 【详解】过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴BD OD OB OC AC OA==,∵OB=1OA,∴BD=1m,OD=1n.因为点A在反比例函数y=2x的图象上,∴mn=1.∵点B在反比例函数y=kx的图象上,∴B点的坐标是(-1n,1m).∴k=-1n•1m=-4mn=-2.故答案为-2.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B 的坐标(用含n的式子表示)是解题的关键.17.1【解析】【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.【详解】如图,∵双曲线y=(x >0)经过点D ,∴S △ODF =k=,则S △AOB =2S △ODF =,即OA •BE=,∴OA•BE=1,∵四边形ABCD 是矩形,∴OA=OB ,∴OB•BE=1,故答案为:1.【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k 的几何意义及矩形的性质.18.(46203)+【解析】【分析】过梯形上底的两个顶点向下底引垂线AE 、DF ,得到两个直角三角形和一个矩形,分别解Rt ABE ∆、Rt DCF ∆求得线段BE 、CF 的长,然后与EF 相加即可求得BC 的长.【详解】如图,作AE BC ⊥,DF BC ⊥,垂足分别为点E ,F ,则四边形ADFE 是矩形.由题意得,6EF AD ==米,20AE DF ==米,30B°?,斜坡CD 的坡度为1∶2, 在Rt ABE ∆中,∵30B°?, ∴3203BE AE ==米.在Rt △DCF 中,∵斜坡CD 的坡度为1∶2,∴12=DF CF , ∴240CF DF ==米,∴20364046203BC BE EF FC =++=++=+(米).∴坝底BC 的长度等于(46203)+米.故答案为(46203)+.【点睛】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)见解析;(2)见解析.【解析】【分析】(1)根据题意作图即可;(2)先根据BD 为AC 边上的中线,AD=DC ,再证明△ABD ≌△CED (AAS )得AB=EC ,已知∠ABC=90°即可得四边形ABCE 是矩形.【详解】(1)解:如图所示:E 点即为所求;(2)证明:∵CE ⊥BC ,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB ∥CE ,∴∠ABE=∠CEB ,∠BAC=∠ECA ,∵BD 为AC 边上的中线,∴AD=DC ,在△ABD 和△CED 中,∴△ABD ≌△CED (AAS ),∴AB=EC ,∴四边形ABCE 是平行四边形,∵∠ABC=90°,∴平行四边形ABCE 是矩形.【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.20.-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.21.(1)抽样调查;12;3;(2)60;(3)25. 【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C 在扇形图中的角度求出所占的份数,再根据C 的人数是5,列式进行计算即可求出作品的件数,然后减去A 、C 、D 的件数即为B 的件数; (2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷150360oo =12件,B 作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品x =12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P (一男一女)=1220=35,即恰好抽中一男一女的概率是35. 考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型. 22.(1)()()31y x x =-+-;(2)2x <-或1x >;(3)1.【解析】【分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【详解】(1)∵二次函数与x 轴的交点为()30A -,和()10B , ∴设二次函数的解析式为:()()31y a x x =+-∵()0,3C 在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x =-+-;(2)()()31y x x =-+-=−x 2−2x +3,∴二次函数的对称轴为直线1x =-;∵点C 、D 是二次函数图象上的一对对称点;()0,3C∴()2,3D -;∴使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n ,代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=, 解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1,把x =0代入()()31y x x =-+-得,y=3,所以E (0,1),∴OE =1,又∵AB =1,∴S △ADE =12×1×3−12×1×1=1. 【点睛】 此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.23.(1)y 1=﹣15t (t ﹣30)(0≤t≤30);(2)∴y 2=2(020)4120(2030)t t t t ≤<⎧⎨-+≤≤⎩;(3)上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.【解析】【分析】(1)根据题意得出y 1与t 之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0≤t <20、t=20和20≤t≤30三种情况根据y=y 1+y 2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.【详解】解:(1)由图表数据观察可知y 1与t 之间是二次函数关系,设y 1=a (t ﹣0)(t ﹣30)再代入t=5,y 1=25可得a=﹣15 ∴y 1=﹣15t (t ﹣30)(0≤t≤30) (2)由函数图象可知y 2与t 之间是分段的一次函数由图象可知:0≤t <20时,y 2=2t ,当20≤t≤30时,y 2=﹣4t+120,∴y 2=()2(020)41202030t t t t ≤<⎧⎨-+≤≤⎩, (3)当0≤t <20时,y=y 1+y 2=﹣15t (t ﹣30)+2t=80﹣15(t ﹣20)2 , 可知抛物线开口向下,t 的取值范围在对称轴左侧,y 随t 的增大而增大,所以最大值小于当t=20时的值80,当20≤t≤30时,y=y 1+y 2=﹣15t (t ﹣30)﹣4t+120=125﹣15(t ﹣5)2 , 可知抛物线开口向下,t 的取值范围在对称轴右侧,y 随t 的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.24.(1)0.3,45;(2)108︒;(3)16【解析】【分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【详解】(1)a=0.3,b=45(2)360°×0.3=108° (3)列关系表格为:由表格可知,满足题意的概率为:16. 考点:1、频数分布表,2、扇形统计图,3、概率25.(1)y =-12(x -3)2+5(2)5 【解析】【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-,∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.26.(1)22y x =-(2255【解析】【分析】(1)根据一次函数解析式求出M 点的坐标,再把M 点的坐标代入反比例函数解析式即可;(2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C ,根据一次函数解析式表示出B 点坐标,利用△OMB 的面积=12×BO×MC 算出面积,利用勾股定理算出MO 的长,再次利用三角形的面积公式可得12OM•h ,根据前面算的三角形面积可算出h 的值. 【详解】解:(1)∵一次函数y 1=﹣x ﹣1过M (﹣2,m ),∴m=1.∴M (﹣2,1).把M (﹣2,1)代入2k y x =得:k=﹣2. ∴反比列函数为22y x=-. (2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C .∵一次函数y 1=﹣x ﹣1与y 轴交于点B ,∴点B 的坐标是(0,﹣1).∴OMB 1S 1212∆=⨯⨯=. 在Rt △OMC 中,2222OM=OC +CM 1+25==∵OMB 15S OM h 2∆=⋅⋅=,∴2555=. ∴点B 到直线OM 的距离为255 27.(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解析】【分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【点睛】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.。

河南省新乡市2019-2020学年中考第三次模拟数学试题含解析

河南省新乡市2019-2020学年中考第三次模拟数学试题含解析

河南省新乡市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知抛物线y =x 2+(2a+1)x+a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( ) A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 13.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米4.一元一次不等式2(1+x )>1+3x 的解集在数轴上表示为( ) A .B .C .D .5.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .46.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件7.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .8.如图,Rt △AOB 中,∠AOB=90°,OA 在x 轴上,OB 在y 轴上,点A 、B 的坐标分别为30),A.35 22(,)B.332(,)C.2352(,)D.4332(,)9.如图,已知直线PQ⊥MN 于点O,点A,B 分别在MN,PQ 上,OA=1,OB=2,在直线MN 或直线PQ 上找一点C,使△ABC是等腰三角形,则这样的 C 点有()A.3 个B.4 个C.7 个D.8 个10.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°11.计算(-18)÷9的值是( )A.-9 B.-27 C.-2 D.212.已知a m=2,a n=3,则a3m+2n的值是()A.24 B.36 C.72 D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)14.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.15.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.16.如图,在平面直角坐标系中,函数y=kx(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.17.直线y=2x+1经过点(0,a),则a=________.18.(题文)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:22111()211xx x x x--÷-+-,其中x=﹣1.20.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.21.(6分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.22.(8分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 10 9.5 9.5 10篮球9.5 9 8.5 8.5 10 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.75 9.5 10篮球8.81 9.25 9.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)24.(10分)“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.25.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.26.(12分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;PC ,求⊙O的半径.(2)若2527.(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.2.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.解:∵反比例函数y=﹣1x中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.3.A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.B【解析】【分析】按照解一元一次不等式的步骤求解即可.【详解】去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.【点睛】数形结合思想是初中常用的方法之一.5.A【解析】【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.【详解】解:∵原式=223 x yy x y-•+=()()3 x y x yy x y +-•+=33 x yy-∵3x-4y=0,∴3x=4y原式=43y yy-=1故选:A.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.6.C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.7.C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断. 8.B【解析】【分析】连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.【详解】连接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO=OBOA=3∴∠BAO=30°,由翻折可知,∠BAO′=30°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H⊥OA,∴OH=3,∴OH′=3OH=32,∴O′(3,32),故选B.【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.9.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.10.D【解析】【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D.【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.11.C【解析】【分析】直接利用有理数的除法运算法则计算得出答案.【详解】解:(-18)÷9=-1.故选:C.【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.12.C【解析】试题解析:∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=8×9=1.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.>【解析】【分析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定m+n以及m−n的符号,可得结果.【详解】解:根据题意得:m<1<n,且|m|>|n|,∴m+n<1,m−n<1,∴(m+n)(m−n)>1.故答案为>.【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.14.(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.15.(32,258)【解析】【分析】连接AC,根据题意易证△AOC∽△COB,则AO OCOC OB=,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可. 【详解】解:连接AC,∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴AO OC OC OB=,即1OC=4OC,解得OC=2,∴点C的坐标为(0,2),∵A、B两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入得,a(0+1)(0﹣4)=2,解得a=﹣12,∴y=﹣12(x+1)(x ﹣4)=﹣12(x 2﹣3x ﹣4)=﹣12(x ﹣32)2+258, ∴此抛物线顶点的坐标为(32 ,258).故答案为:(32 ,258).【点睛】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标. 16.(4,12). 【解析】 【分析】 由于函数y=kx(x >0常数k >0)的图象经过点A (1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B 点的横坐标是m ,则AC 边上的高是(m-1),根据三角形的面积公式得到关于m 的方程,从而求出,然后把m 的值代入y=2x,即可求得B 的纵坐标,最后就求出了点B 的坐标. 【详解】 ∵函数y=kx(x >0、常数k >0)的图象经过点A (1,1), ∴把(1,1)代入解析式得到1=1k , ∴k=1,设B 点的横坐标是m , 则AC 边上的高是(m-1), ∵AC=1∴根据三角形的面积公式得到12×1•(m-1)=3, ∴m=4,把m=4代入y=2x, ∴B 的纵坐标是12, ∴点B 的坐标是(4,12).故答案为(4,12).【点睛】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.17.1【解析】【分析】根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.【详解】∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为1.18.12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BP AC时,BP有最小值,观察图象可得,BP的最小值为4,即BP AC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-2.【解析】【分析】根据分式的运算法化解即可求出答案.【详解】解:原式=2111 ()?(1)1x xxx x x++--=-,当x=﹣1时,原式=2(1)121-+=--.【点睛】熟练运用分式的运算法则.20.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.考点:作图—应用与设计作图.21.(1)1;(2)这两次测试的平均增长率为20%;(3)55%.【解析】【分析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.【详解】解:(1)将四次测试结果排序,得:30,40,50,60,∴测试不合格人数的中位数是(40+50)÷2=1.故答案为1;(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),∴第四次测试合格人数为1×2﹣18=72(人).设这两次测试的平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),∴这两次测试的平均增长率为20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.补全条形统计图与扇形统计图如解图所示.【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.22.130 小明平均数接近,而排球成绩的中位数和众数都较高.【解析】【分析】()1根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;()2根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:人数项目4.0x 5.5≤< 5.5x7.0≤<7.0x8.5≤<8.5x10≤<10排球 1 1 2 7 5篮球0 2 1 10 3()1达到优秀的人数约为16013016⨯=(人);故答案为130;()2同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需支持判断结论)故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.【点睛】本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体. 23.1-2a =或 【解析】 分析:该分式方程311x a x x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x (x-a )-1(x-1)=x (x-1), 去括号得:x 2-ax-1x+1=x 2-x , 移项合并得:(a+2)x=1. (1)把x=0代入(a+2)x=1, ∴a 无解;把x=1代入(a+2)x=1, 解得a=1; (2)(a+2)x=1,当a+2=0时,0×x=1,x 无解 即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解. 故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形. 24.(1)60,1°.(2)补图见解析;(3)35【解析】 【分析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案. 【详解】(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×1560=1°, 故答案为60,1.(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为1220=35.【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.25.(1)P(两个小孩都是女孩)=14;(2)P(三个小孩中恰好是2女1男)=38.【解析】【分析】(1)画出树状图即可解题,(2)画出树状图即可解题.【详解】(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,∴P(两个小孩都是女孩)=1 4 .(2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,∴P(三个小孩中恰好是2女1男)=3 8 .【点睛】本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.26.(1)证明见解析;(2)1.【解析】【分析】(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(25)2﹣(5﹣r)2,求出r的值即可.【详解】解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(25)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(25)2﹣(5﹣r)2,解得:r=1,则⊙O的半径为1.【点睛】本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.27.(1)见解析13【解析】【分析】(1)四边形ABCD是平行四边形,由平行四边形的性质,可得AB=DE,AB//DE ,则四边形ABDE是平行四边形;(2)因为AD=DE=1,则AD=AB=1,四边形ABCD是菱形,由菱形的性质及解直角三角形可得AO=AB ⋅sin ∠ABO=2,BO=AB ⋅cos ∠, ,则AE=BD ,利用勾股定理可得OE . 【详解】(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD . ∵DE =CD , ∴AB =DE .∴四边形ABDE 是平行四边形; (2)∵AD =DE =1, ∴AD =AB =1. ∴▱ABCD 是菱形,∴AB =BC ,AC ⊥BD ,12BO BD =,12ABO ABC ∠=∠.又∵∠ABC =60°, ∴∠ABO =30°.在Rt △ABO 中,sin 2AO AB ABO =⋅∠=,cos BO AB ABO =⋅∠=∴BD =∵四边形ABDE 是平行四边形,∴AE ∥BD ,AE BD == 又∵AC ⊥BD , ∴AC ⊥AE .在Rt △AOE 中,OE ==【点睛】此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.。

河南省新乡市2019-2020学年中考数学三月模拟试卷含解析

河南省新乡市2019-2020学年中考数学三月模拟试卷含解析

河南省新乡市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >02.方程x 2﹣3x+2=0的解是( )A .x 1=1,x 2=2B .x 1=﹣1,x 2=﹣2C .x 1=1,x 2=﹣2D .x 1=﹣1,x 2=23.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 4.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A .12B .11C .10D .95.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数的图象与x 轴有两个不同交点的概率是( ).A .B .C .D .6.在△ABC 中,点D 、E 分别在AB 、AC 上,如果AD =2,BD =3,那么由下列条件能够判定DE ∥BC 的是( )A .DE BC =23B .DE BC =25 C .AE AC =23D .AE AC =257.如图,在等腰直角三角形ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .35B .34C .23D .578.近似数25.010⨯精确到( )A .十分位B .个位C .十位D .百位9.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长10.如果向北走6km 记作+6km ,那么向南走8km 记作( )A .+8kmB .﹣8kmC .+14kmD .﹣2km11.如图是抛物线y=ax 2+bx+c (a≠0)的图象的一部分,抛物线的顶点坐标是A (1,4),与x 轴的一个交点是B (3,0),下列结论:①abc >0;②2a+b=0;③方程ax 2+bx+c=4有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣2.0);⑤x (ax+b )≤a+b ,其中正确结论的个数是( )A .4个B .3个C .2个D .1个12.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 的长为( )A .2B .23C .3D .43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =23,则CE 的长为_______14.用换元法解方程2231512x x x x -+=-,设y=21x x -,那么原方程化为关于y 的整式方程是_____. 15.如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD=_______°.16.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC 于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.17.如图,点A(m,2),B(5,n)在函数kyx(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.18.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC内接于Oe,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B= 时,四边形OCAD是菱形;②当∠B= 时,AD与Oe相切.20.(6分)先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中x 的值从不等式组1214x x -⎧⎨-<⎩…的整数解中选取.21.(6分)已知PA 与⊙O 相切于点A ,B 、C 是⊙O 上的两点(1)如图①,PB 与⊙O 相切于点B ,AC 是⊙O 的直径若∠BAC =25°;求∠P 的大小(2)如图②,PB 与⊙O 相交于点D ,且PD =DB ,若∠ACB =90°,求∠P 的大小22.(8分)如图,在△ABC 中,∠ACB=90°,O 是边AC 上一点,以O 为圆心,以OA 为半径的圆分别交AB 、AC 于点E 、D ,在BC 的延长线上取点F ,使得BF=EF .(1)判断直线EF 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,求证:DG=12DA ; (3)若∠A=30°,且图中阴影部分的面积等于2233p -,求⊙O 的半径的长.23.(8分)如图,矩形ABCD 绕点C 顺时针旋转90°后得到矩形CEFG ,连接DG 交EF 于H ,连接AF 交DG 于M ;(1)求证:AM=FM ;(2)若∠AMD=a .求证:DG AF=cosα.24.(10分)如图1,BAC ∠的余切值为2,25AB =,点D 是线段AB 上的一动点(点D 不与点A 、B 重合),以点D 为顶点的正方形DEFG 的另两个顶点E 、F 都在射线AC 上,且点F 在点E 的右侧,联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,________是始终保持不变的量(填序号);①AF ;②FP ;③BP ;④BDG ∠;⑤GAC ∠;⑥BPA ∠;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域; (3)如果PFG ∆与AFG ∆相似,但面积不相等,求此时正方形的边长.25.(10分)如图,在平面直角坐标系中,直线y=x +4与x 轴、y 轴分别交于A 、B 两点,抛物线y=-x 2+bx +c 经过A 、B 两点,并与x 轴交于另一点C (点C 点A 的右侧),点P 是抛物线上一动点. (1)求抛物线的解析式及点C 的坐标;(2)若点P 在第二象限内,过点P 作PD ⊥轴于D ,交AB 于点E .当点P 运动到什么位置时,线段PE 最长?此时PE 等于多少?(3)如果平行于x 轴的动直线l 与抛物线交于点Q ,与直线AB 交于点N ,点M 为OA 的中点,那么是否存在这样的直线l ,使得△MON 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.26.(12分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?。

河南省新乡市2019-2020学年中考数学五模考试卷含解析

河南省新乡市2019-2020学年中考数学五模考试卷含解析

河南省新乡市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.平面直角坐标系中,若点A (a ,﹣b )在第三象限内,则点B (b ,a )所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.12233499100++++++++L 的整数部分是( )A .3B .5C .9D .63.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A .9人B .10人C .11人D .12人4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O 为圆心,任意长为半径所画的弧;弧②是以P 为圆心,任意长为半径所画的弧;弧③是以A 为圆心,任意长为半径所画的弧;弧④是以P 为圆心,任意长为半径所画的弧; 其中正确说法的个数为( ) A .4B .3C .2D .15.如图,BD 是∠ABC 的角平分线,DC ∥AB ,下列说法正确的是( )A .BC=CDB .AD ∥BCC .AD=BCD .点A 与点C 关于BD 对称6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根D .没有实数根7.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩8.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.主视图既是中心对称图形又是轴对称图形D.俯视图既是中心对称图形又是轴对称图形9.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.10.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D 为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()A.r<5 B.r>5 C.r<10 D.5<r<1011.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)7 8 9 10次数 1 4 3 2A.8、8 B.8、8.5 C.8、9 D.8、1012.下列计算或化简正确的是()A.234265=B842C.2÷=(3)3-=-D.2733二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,A、B是反比例函数y=(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB 的延长线交x轴于点C,若S△AOC=1.则k=_______.14.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)15.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.18.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF 的长.如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.连结AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,求相应的t 的值. 20.(6分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D ,与的另一个交点为点,连接、,求证:.21.(6分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.22.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”23x x +=的解;应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.23.(8分)先化简,再求值:(m+2﹣52m-)•243mm--,其中m=﹣12.24.(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC 的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.25.(10分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为»BC的中点,作DE⊥AC,交AB 的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=63,求阴影区域的面积.(结果保留根号和π)26.(12分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.27.(12分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限.详解:∵点A在第三象限,∴a<0,-b<0,即a<0,b>0,∴点B在第四象限,故选D.点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.2.C【解析】21 +2﹣123+3299100+=99100,∴原式2﹣3299100=﹣1+10=1.故选C.3.C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:12x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 4.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.5.A【解析】【分析】由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.6.A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.C【解析】【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.8.D【解析】【分析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;D、俯视图既是中心对称图形又是轴对称图形,故D正确.故选:D.【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.9.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,∵=2,∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB 的最小值为4,故选D . 【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键. 10.D 【解析】延长CD 交⊙D 于点E ,∵∠ACB=90°,AC=12,BC=9,∴AB=22AC BC +=15,∵D 是AB 中点,∴CD=115AB=22, ∵G 是△ABC 的重心,∴CG=2CD 3=5,DG=2.5,∴CE=CD+DE=CD+DF=10, ∵⊙C 与⊙D 相交,⊙C 的半径为r , ∴ 510r <<, 故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG 的长是解题的关键. 11.B 【解析】 【分析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892+=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.则AD∥BE,AD=2BE=ka,∴B、E分别是AC、DC的中点.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,ka),B(2a,2ka),∴S△AOC=12AD×CO=12×3a×ka=32k=1,解得:k=2.14.(3a﹣b)【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.15.(a+b )2=a 2+2ab+b 2【解析】【分析】完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:,a b Q 从整体来看,大正方形的边长是+()2,a b ∴+大正方形的面积为2Q 从部分来看,该图形面积为两个小正方形的面积加上个矩形的面积和,222a ab b 该图形面积为,∴++ ,Q 同一图形()2222.a b a ab b ∴+=++()2222.a b a ab b +=++故答案是【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键. 16.. 【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.考点:列表法与树状图法.17.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO 、OM 、AM 即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC=+=,∵AO=OC,∴152BO AC==,∵AO=OC,AM=MD=4,∴132OM CD==,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.18.4【解析】∵AE=ED,AE+ED=AD,∴ED=AD,∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案为4.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】【详解】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34 DFDMDE DN==,∵∠EDF=90°,∴tan∠DEF=34DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t,13t),代入直线AD的解析式y=﹣34x+6得:t=7517;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为7541或7517.考点:四边形综合题.20.(1)详见解析;(2)详见解析.【解析】【分析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【详解】解:(1)如图,及为所求.(2)连接.∵是的切线,∴,∴,即,∵是直径,∴,∴,∵,∴,∴,又∴∽∴∴.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.21.(1)证明见解析;(2)阴影部分面积为43 3π【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:3△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.22.(1)-2,1;(2)x=3;(3)4m.【解析】【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=,()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(2x =,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-11==≠-,所以1-不是原方程的解.x =的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,BP =CP∴ 10=∴ 10=两边平方,得()22891009x x -+=-+整理,得49x =+两边平方并整理,得28160x x -+=即()240x -=所以4x =.经检验,4x =是方程的解.答:AP 的长为4m .【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.23.-2(m+3),-1.【解析】【分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【详解】解:(m+2-5m-2)•243m m --, =()22245•23m m m m-----, =-()22(3)(3)•23m m m m m -+---, =-2(m+3).把m=-12代入,得, 原式=-2×(-12+3)=-1. 24.(1)y=﹣x 2+x+2;(2)y=2x+2;(3)①线段BP 与线段AE 的关系是相互垂直;②点P 的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【解析】【分析】(1)将A (5,0)和点B (﹣3,﹣4)代入y=ax 2+bx+2,即可求解;(2)C 点坐标为(0,2),把点B 、C 的坐标代入直线方程y=kx+b 即可求解;(3)①AE 直线的斜率k AE =2,而直线BC 斜率的k AE =2即可求解;②考虑当P 点在线段BC 上时和在线段BE 上时两种情况,利用PM′=PM 即可求解.【详解】(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函数的表达式为y=﹣x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),则AE直线的斜率k AE=2,而直线BC斜率的k AE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴线段BP与线段AE的关系是相互垂直;②设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MM′⊥BC,∴k MM′=﹣,直线MM′的方程为:y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),由题意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故点P的坐标为(﹣4±2,﹣8±4);当P点在线段BE上时,点P坐标为(m,﹣4),点M坐标为(m,2),则PM=6,直线MM′的方程不变,为y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,无解;故点P的坐标为(0,﹣4)或(﹣,﹣4);综上所述:点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.25.(1)证明见解析(2)32﹣6π【解析】【分析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC =60°,∠COB =120°,∵OD ⊥EF ,∠F =30°,∴∠DOF =60°,在Rt △ODF 中,DF =63, ∴OD =DF•tan30°=6,在Rt △AED 中,DA =63,∠CAD =30°,∴DE =DA•sin30°=33,EA =DA•cos30°=9,∵∠COD =180°﹣∠AOC ﹣∠DOF =60°,由CO =DO ,∴△COD 是等边三角形,∴∠OCD =60°,∴∠DCO =∠AOC =60°,∴CD ∥AB ,故S △ACD =S △COD ,∴S 阴影=S △AED ﹣S 扇形COD =216093362360π⨯⨯-⨯=2736π-.【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S △ACD =S △COD 是解题关键.26.(1)52﹣2×4=42+1;(2)(n+1)2﹣2n =n 2+1,证明详见解析.【解析】【分析】(1)根据①②③的规律即可得出第④个等式;(2)第n 个等式为(n+1)2﹣2n =n 2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1① 32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.27.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.。

河南省新乡市2019-2020学年中考一诊数学试题含解析

河南省新乡市2019-2020学年中考一诊数学试题含解析

河南省新乡市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则»AB的长等于()A.πB.2πC.3πD.4π2.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=3;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④3.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个4.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤75.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A.19B.29C.23D.138.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤9.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5sinαB.5sinαC.5cosαD.5cosα10.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A .90°-12α B .90°+12α C .2α D .360°-α11.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内12.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数:__________.14.如图,PC 是⊙O 的直径,PA 切⊙O 于点P ,AO 交⊙O 于点B ;连接BC ,若32C ∠=︒,则A ∠=______.15.和平中学自行车停车棚顶部的剖面如图所示,已知AB =16m ,半径OA =10m ,高度CD 为____m .16.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=_.17.若a ﹣3有平方根,则实数a 的取值范围是_____. 18.如图所示,点C 在反比例函数ky (x 0)x=>的图象上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB BC =,已知AOB V 的面积为1,则k 的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(本题满分8分)如图,四边形ABCD 中,,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 是平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.20.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.(6分)已知OA ,OB 是⊙O 的半径,且OA ⊥OB ,垂足为O ,P 是射线OA 上的一点(点A 除外),直线BP 交⊙O 于点Q ,过Q 作⊙O 的切线交射线OA 于点E .(1)如图①,点P 在线段OA 上,若∠OBQ=15°,求∠AQE 的大小; (2)如图②,点P 在OA 的延长线上,若∠OBQ=65°,求∠AQE 的大小. 22.(8分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n (n >10,且n 为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)23.(8分)已知抛物线y =ax 2+(3b+1)x+b ﹣3(a >0),若存在实数m ,使得点P (m ,m )在该抛物线上,我们称点P (m ,m )是这个抛物线上的一个“和谐点”. (1)当a =2,b =1时,求该抛物线的“和谐点”;(2)若对于任意实数b ,抛物线上恒有两个不同的“和谐点”A 、B . ①求实数a 的取值范围; ②若点A ,B 关于直线y =﹣x ﹣(21a +1)对称,求实数b 的最小值.24.(10分)解方程组:220 7441x yx y++=⎧⎨-=-⎩.25.(10分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?26.(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.27.(12分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77整理、描述数据将成绩按如下分段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.【详解】解:∵∠ACB=30°,∴∠AOB=60°,∴»AB 的长=606180π⨯=2π, 故选B . 【点睛】此题考查弧长的计算,关键是根据圆周角得出∠AOB =60°. 2.B 【解析】 【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可. 【详解】 如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B 在C 处的北偏西50°,故①正确; ∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A 在B 处的北偏西120°,故②错误; ∵∠1=∠2=60°, ∴∠BAC=30°, ∴cos ∠BAC=3,故③正确; ∵∠6=90°﹣∠5=40°,即公路AC 和BC 的夹角是40°,故④错误. 故选B .【点睛】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解. 3.C 【解析】 【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误; ②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴-2ba=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0), ∴a-b+c=3a+c=0, ∴a=-3c. 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点), ∴2≤c≤3, ∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ), ∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确; ④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点, 又∵a <0, ∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.4.A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解:解不等式3x﹣m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.5.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.6.D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.7.D【解析】【分析】连接OC 、OD 、BD ,根据点C ,D 是半圆O 的三等分点,推导出OC ∥BD 且△BOD 是等边三角形,阴影部分面积转化为扇形BOD 的面积,分别计算出扇形BOD 的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点,∴»»»==AC CDDB , ∴∠AOC=∠COD=∠DOB=60°,∵OC=OD ,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC ∥BD ,∴=V V BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD , 飞镖落在阴影区域的概率21233ππ=÷=, 故选:D .【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.8.D【解析】【分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似由已知,PQ=22﹣t ∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似分别将数值代入822 610t-=或810 622t =-,解得t=13214(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.9.D【解析】【分析】利用所给的角的余弦值求解即可.【详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【点睛】本题主要考查学生对坡度、坡角的理解及运用.10.C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.11.C【解析】【分析】利用图中信息一一判断即可.【详解】解: A 、正确.不符合题意.B 、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m 3的持续时间达到了11min ,正确,不符合题意;C 、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D 、正确.不符合题意,故选C.【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型. 12.B【解析】【详解】解方程212350x x -+=得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=-x+2(答案不唯一)【解析】①图象经过(1,1)点;②当x >1时.y 随x 的增大而减小,这个函数解析式为 y=-x+2,故答案为y=-x+2(答案不唯一).14.26°【解析】【分析】根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.【详解】由圆周角定理得:∠AOP=2∠C=64°.∵PC 是⊙O 的直径,PA 切⊙O 于点P ,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.故答案为:26°.【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.15.1.【解析】【分析】由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD =OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD2222OA AD108-=-=6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.16.5【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解.设点C的坐标为(1,15),则点B的坐标为(515),点D的坐标为(1,1),点E51),则5,51,则DEAB=55.考点:二次函数的性质17.a≥1.【解析】【分析】根据平方根的定义列出不等式计算即可. 【详解】根据题意,得30.a-≥解得: 3.a≥故答案为 3.a≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.18.1【解析】【分析】根据题意可以设出点A 的坐标,从而以得到点C 和点B 的坐标,再根据AOB V 的面积为1,即可求得k 的值.【详解】解:设点A 的坐标为()a,0-,Q 过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB BC =,AOB V 的面积为1,∴点k C a,a ⎛⎫ ⎪⎝⎭, ∴点B 的坐标为k 0,2a ⎛⎫ ⎪⎝⎭, 1k a 122a∴⋅⋅=, 解得,k 4=,故答案为:1.【点睛】本题考查了反比例函数系数k 的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)6或【解析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.试题解析:(1)证明:∵∠A=∠ABC=90°∴AF ∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E 是边CD 的中点∴CE=DE∴△BCE ≌△FDE (AAS )∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=∴四边形BDFC的面积为S=×3=6;②若BD=DC过D作BC的垂线,则垂足为BC得中点,不可能;③若BC=DC过D作DG⊥BC,垂足为G在Rt△CDG中,DG=∴四边形BDFC的面积为S=.考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积20.(1)15人;(2)补图见解析.(3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21.(1)30°;(2)20°;【解析】【分析】(1)利用圆切线的性质求解;(2) 连接OQ,利用圆的切线性质及角之间的关系求解。

2019年河南省新乡市中考数学一模试卷(带解析)

2019年河南省新乡市中考数学一模试卷(带解析)

2019年河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填在答题卡指定位置1.(3分)(2019•新乡一模)的绝对值等于()A.﹣2B.2C.D.2.(3分)(2019•新乡一模)据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013 3.(3分)(2019•新乡一模)将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.(3分)(2019•新乡一模)如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A.30°B.45°C.60°D.120°5.(3分)(2019•新乡一模)上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()A.5,6B.6,6.5C.7,6D.8,6.56.(3分)(2019•新乡一模)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)(2019•新乡一模)如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB 的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A.6B.6C.3D.38.(3分)(2019•新乡一模)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.(3分)(2019•新乡一模)如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.(3分)(2019•新乡一模)如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2D.二、填空题(每小题3分,共15分)11.(3分)(2019•新乡一模)计算:(﹣π)0﹣=.12.(3分)(2019•新乡一模)如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC =7,则AH的长为.13.(3分)(2019•新乡一模)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.(3分)(2019•新乡一模)如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C 为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为.15.(3分)(2019•新乡一模)如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB 上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)(2019•新乡一模)先化简,再求值:+÷,其中a =.17.(9分)(2019•新乡一模)为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=,m=;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.18.(9分)(2019•新乡一模)如图,⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A、PB交⊙O于D、E两点,∠P AB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)(2019•新乡一模)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)20.(9分)(2019•新乡一模)如图,直线AB经过A(,0)和B(0,1),点C在反比例函数y=的图象上,且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2,0)过点D作PD⊥x轴,当△P AD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.21.(10分)(2019•新乡一模)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)(2019•新乡一模)等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为,线段MN 和线段NF的数量关系为;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为.23.(11分)(2019•新乡一模)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.2019年河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填在答题卡指定位置1.(3分)(2019•新乡一模)的绝对值等于()A.﹣2B.2C.D.【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值是.故选:D.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3分)(2019•新乡一模)据海关统计,今年1月份,我国货物贸易进出口总值2.73万亿元人民币,比去年同期增长8.7%.数据2.73万亿元用科学记数法表示为()A.2.73×1011B.2.73×1012C.2.73×1013D.0.273×1013【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据2.73万亿元用科学记数法表示为2.73×1012.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2019•新乡一模)将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】由几何体形状直接得出其左视图,正方形上面有一条斜线.【解答】解:如图所示:图2的左视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确注意观察角度是解题关键.4.(3分)(2019•新乡一模)如图,直线CE∥AB,直线CD交CE于C,交AB于O,过点O作OT⊥AB于O,已知∠ECO=30°,则∠DOT的度数为()A.30°B.45°C.60°D.120°【考点】J3:垂线;JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT ⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT﹣∠DOB,即可求得答案.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.【点评】此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.5.(3分)(2019•新乡一模)上篮球课时,某小组8位男生的各10次投篮的成绩如下所示,则这组数据的众数和中位数分别是()A.5,6B.6,6.5C.7,6D.8,6.5【考点】W4:中位数;W5:众数.【专题】542:统计的应用.【分析】根据众数和中位数的概念求解.【解答】解:将数据重新排列为3,5,6,6,7,8,9,10,所以这组数据的众数为6,中位数为=6.5(分),故选:B.【点评】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)(2019•新乡一模)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解3x﹣2<1,得x<1;解x+1≥0,得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.【点评】在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(3分)(2019•新乡一模)如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB 的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A.6B.6C.3D.3【考点】KM:等边三角形的判定与性质;KP:直角三角形斜边上的中线;KX:三角形中位线定理;L8:菱形的性质.【专题】555:多边形与平行四边形.【分析】利用三角形中位线定理求出AD,再在Rt△AOD中,解直角三角形求出OD即可解决问题.【解答】解:∵四边形ABCD是菱形,∠ADC=60°,∴AC⊥BD,OA=OC,OB=OD,∠ADO=∠CDO=30°,∵AE=EB,BO=OD,∴AD=2OE=6,在Rt△AOD中,∵AD=6,∠AOD=90°,∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.【点评】本题考查菱形的性质,三角形的中位线定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(3分)(2019•新乡一模)两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【专题】1:常规题型;543:概率及其应用.【分析】利用树状图法列举出所有可能,进而求出概率.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2019•新乡一模)如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)【考点】D5:坐标与图形性质;KK:等边三角形的性质.【专题】552:三角形.【分析】设BG=x,依据∠BFG=∠CEF=∠ODE=30°,可得BF=2x,CF=12﹣2x,CE=2CF=24﹣4x,OE=12﹣CE=4x﹣12,OD=2OE=8x﹣24,再根据当G与D重合时,OD+BG=OB列方程,即可得到x的值,进而得出点D的坐标.【解答】解:如图,设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E,EF⊥BC于点F,FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时,OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4,DE=4,∴D(4,4).故选:C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.10.(3分)(2019•新乡一模)如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2D.【考点】E7:动点问题的函数图象.【专题】15:综合题;31:数形结合.【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【解答】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BF=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.【点评】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二、填空题(每小题3分,共15分)11.(3分)(2019•新乡一模)计算:(﹣π)0﹣=4.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】本题涉及三次根式化简、零指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣π)0﹣=1+3=4.故答案为:4.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、零指数幂等考点的运算.12.(3分)(2019•新乡一模)如图,△ABC中,以点B为圆心,任意长为半径作弧,分别交AB,BC于E、F点,分别以点E、F为圆心,以大于EF的长为半径作弧,两弧交于点G,做射线BG,交AC于点D,过点D作DH∥BC交AB于点H.已知HD=3,BC=7,则AH的长为.【考点】KF:角平分线的性质;N3:作图—复杂作图;S9:相似三角形的判定与性质.【专题】11:计算题;55D:图形的相似.【分析】根据题意可知射线BG是∠ABC的平分线,从而可得△HBD是等腰三角形,且HD=HB,再根据相似三角形对应边成比例可求AH的长.【解答】解:由题意可知射线BG是∠ABC的平分线,∴∠ABD=∠CBD而DH∥BC∴∠HDB=∠CBD∴∠ABD=∠HDB∴HB=HD=3又∵DH∥BC∴△AHD∽△ABC∴即:得AH=故答案为.【点评】本题考查的是相似三角形的判定与性质,利用相似三角形对应边成比例进行解题是关键.13.(3分)(2019•新乡一模)如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是a<1且a≠0.【考点】F8:一次函数图象上点的坐标特征;H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征.【专题】535:二次函数图象及其性质.【分析】当a=0时,两直线y=﹣2x和y=1只有一个交点,则当a≠0时,先联立抛物线与直线的解析式得出关于x的方程,再由直线y=﹣2x和抛物线有两个不同交点可知△>0,求出a的取值范围.【解答】解:当a=0时,两直线y=﹣2x和y=1只有一个交点,当a≠0时,,由题意得,方程ax2+1=﹣2x有两个不同的实数根,∴△=4﹣4a>0,解得:a<1.故答案为:a<1且a≠0.【点评】主要考查的是函数图象的交点问题,两函数有两个不同的交点,则△>0.14.(3分)(2019•新乡一模)如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C 为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为﹣2+.【考点】KH:等腰三角形的性质;R2:旋转的性质.【专题】554:等腰三角形与直角三角形;558:平移、旋转与对称.【分析】作CK⊥BD于K.根据S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC计算即可.【解答】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°﹣75°﹣75°=30°,在Rt△ACK中,CK=AC=1,AK=,∴BK=2﹣,∵CB=CD,CK⊥BD,∴BD=2BK=4﹣2,∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC=﹣•(4﹣2)•1=﹣2+,故答案为﹣2+.【点评】本题考查旋转变换,扇形的面积,等腰三角形的性质,解直角三角形等知识,解题的关键是学会用分割法求阴影部分面积.15.(3分)(2019•新乡一模)如图,在Rt△ABC中,∠C=90°,点D、E分别是BC、AB 上一个动点,连接DE.将点B沿直线DE折叠,点B的对应点为F,若AC=3,BC=4,当点F落在AC的三等分点上时,BD的长为或.【考点】PB:翻折变换(折叠问题).【专题】558:平移、旋转与对称.【分析】由折叠的性质可得BD=DF,由勾股定理可求BD的长.【解答】解:∵折叠∴BD=DF,∵点F落在AC的三等分点上∴CF=1或CF=2,若CF=1时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+1∴BD=当CF=2时,在Rt△CDF中,DF2=CD2+CF2,∴BD2=(4﹣BD)2+4∴BD=故答案为:或【点评】本题考查了翻折变换,勾股定理,利用分类讨论思想解决问题是本题的关键.三、解答题(本大题共8个小题,满分75分)16.(8分)(2019•新乡一模)先化简,再求值:+÷,其中a=.【考点】6D:分式的化简求值.【专题】11:计算题;513:分式.【分析】根据分式的混合运算顺序和运算法则化简原式,再将a的值代入化简可得.【解答】解:+÷=+•=+=,当a=时,原式==.【点评】本题主要考查分式的混合运算﹣化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17.(9分)(2019•新乡一模)为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a=48,m=20%;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是72度;(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)用24÷120,即可得到m;120×40%即可得到a;(2)根据a的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数;(4)根据样本估计总体,即可解答.【解答】解:(1)a=120×40%=48,m=24÷120=20%.故答案为:48,20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2019•新乡一模)如图,⊙O中,AB为直径,点P为⊙O外一点,且P A=AB,P A、PB交⊙O于D、E两点,∠P AB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为8;②当DE=4时,四边形OBED为菱形.【考点】MR:圆的综合题.【专题】15:综合题;559:圆的有关概念及性质.【分析】(1)如图1,连AE,由等腰三角形的性质可知E为PB中点,则OE是△P AB 的中位线,OE∥P A,可证得∠DOE=∠EOB,则∠EDO=∠EBO可证;(2)如图2,由条件知OA=4,当OA边上的高最大时,△AOD的面积最大,可知点D 是的中点时满足题意,此时最大面积为8;(3)如图3,当DE=4时,四边形ODEB是菱形.只要证明△ODE是等边三角形即可解决问题.【解答】证明:(1)如图1,连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵P A=AB,∴E为PB的中点,∵AO=OB,∴OE∥P A,∴∠ADO=∠DOE,∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时,△AOD的面积最大(如图2),此时点D是的中点,∴OD⊥AB,∴;②如图3,当DE=4时,四边形OBED为菱形,理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.【点评】本题考查了圆周角定理、等腰三角形的性质、中位线定理、菱形的判定等知识,解题的关键是找准动点D在圆上的位置,灵活运用所学知识解决问题,19.(9分)(2019•新乡一模)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】55E:解直角三角形及其应用.【分析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC•tan60°=50×≈87(米),在Rt△ADE中,∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米,49米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(9分)(2019•新乡一模)如图,直线AB经过A(,0)和B(0,1),点C在反比例函数y=的图象上,且AC=BC=AB.(1)求直线AB和反比例函数的解析式;(2)点D坐标为(2,0)过点D作PD⊥x轴,当△P AD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请说明理由.【考点】GB:反比例函数综合题.【专题】15:综合题.【分析】(1)将点A,B坐标代入y=k'x+b中,求出k',b,得出直线AB解析式,再判断出∠AOC=90°,求出AC的长,得出点C坐标,即可得出结论;(2)分两种情况求出点P坐标,代入反比例函数解析式中,判断即可得出结论.【解答】解:(1)设直线AB的解析式为y=k'x+b,将点A(,0)和B(0,1)代入y=k'x+b中,得,解得,,∴直线AB的解析式为y=﹣x+1,∵A(,0)和B(0,1),∴OA=,OB=1,AB==2,∵AC=AB=2,在Rt△AOB中,tan∠OAB==,∴∠OAB=30°,∵AC=BC=AB,∴△ABC是等边三角形,∴∠BAC=60°,∴∠OAC=∠OAB+∠BAC=90°,∴AC⊥x轴,∴C(,2),将点C坐标代入y=中,得k=2×=2,∴反比例函数解析式为y=;(2)由(1)知,OA=,OB=1,∵点D坐标为(2,0),∴OD=2,∴AD=OD﹣OA=,∵PD⊥x轴,∴∠ADP=90°=∠AOB,∵当△P AD与△OAB相似时,∴①当△ADP∽△AOB时,∴,∴,∴DP=1,∴P(2,1),当x=2时,y=1,∴点P(2,1),在反比例函数解析式为y=上;②当△ADP∽△BOA时,∴,∴,∴DP=3,∴P(2,3),当x=2时,y=1≠3,∴点P(2,3),不在反比例函数解析式为y=上.【点评】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,等边三角形的性质,锐角三角函数,用分类讨论的思想解决问题是解本题的关键.21.(10分)(2019•新乡一模)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用;FH:一次函数的应用.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用;533:一次函数及其应用.【分析】(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,列出方程组求解即可;(2)①把(1)得出的数据代入即可解答;②根据题意可以得到x的取值范围,然后根据一次函数的性质即可求得w的最大值和相应的进货方案.【解答】解:(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,根据题意得,,解得,所以购进A品牌文具袋的单价为10元,购进B品牌文具袋的单价为15元;(2)①由题意可得,y=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15(100﹣x)],解得:x≥50,又由(1)得:w=﹣6x+800,k=﹣6<0,∴w随x的增大而减小,∴当x=50时,w达到最大值,即最大利润w=﹣50×6+800=500元,此时100﹣x=100﹣50=50个,答:购进A品牌文具袋50个,B品牌文具袋50个时所获利润最大,利润最大为500元.【点评】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.22.(10分)(2019•新乡一模)等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为45°,线段MN 和线段NF的数量关系为NF=MN;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为4.【考点】RB:几何变换综合题.【专题】152:几何综合题.【分析】(1)如图1,连接DB,MF,CE,延长BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再根据三角形中位线定理即可解决问题.(2)如图2,连接MF,EC,BD.设EC交AB于O,BD交EC于H.证明△BAD≌△CAE(SAS),推出BD=EC,∠ACE=∠ABD,再利用三角形中位线定理即可解决问题.(3)如图3中,如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,△BCP的面积最小.【解答】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,此时∠CBP的值最小,点P到BC的距离最小,即△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2﹣2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.【点评】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质和判定,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)(2019•新乡一模)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;34:方程思想;537:函数的综合应用.【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【解答】解:(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),。

河南省新乡市2019届数学中考模试试卷

河南省新乡市2019届数学中考模试试卷

河南省新乡市2019届数学中考模试试卷一、选择题(每小题5分;共50分)1.下列各数中,绝对值最小的数是( )A. πB.C. -2D. -2.北京交通一卡通已经覆盖了全市的地面公交、轨道交通和部分出租车及停车场.据北京市交通委透露,北京市政交通一卡通卡发卡量目前已经超过280 000 000张,用科学记数法表示280 000 000正确是( )A. 2.8×107B. 2.8×108C. 2.8×109D. 0.28×1010 3.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A. 12π B. 24π C. 36π D. 48π第3题图 第4题图4.已知一次函数y=k x+b 中,x 取不同值时,y 对应的值列表如下: 则不等式k x+b >0(其中k ,b ,m ,n 为常数)的解集为( )A. x >2B. x >3C. x <2D. 无法确定5.某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是, 则参赛学生身高比较整齐的班级是( )A. 甲班B. 乙班C. 同样整齐D. 无法确定 6.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( ) A. ∠1=∠2 B. ∠3=∠5 C. ∠BAD=∠DCE D. ∠4=∠67.平面内有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少 是() A. 90° B. 180° C. 270° D. 360°第6题图 第8题图8.如图,将矩形ABCD 沿AE 折叠,点D 的对应点落在BC 上点F 处,过点F 作FG ∥CD ,连接EF ,DG ,下列结论中正确的有( )①∠ADG=∠AFG ;②四边形DEFG 是菱形;③DG 2=AE•EG ;④若AB=4,AD=5,则CE=1.A. ①②③④B. ①②③C. ①③④D. ①②9.将二次函数y=3x2的图象向右平移3个单位,再向下平移4个单位后,所得图象的函数表达式是()A. y=3(x-3)2-4B. y=3(x-3)2-4C. y=3(x+3)2-4D. y=3(x+3)2+410.在正方形ABCD中,对角线AC=BD=12cm,点P为AB边上的任一点,则点P到AC,BD的距离之和为()A. 6cmB. 7cmC. 6cmD. 12cm二、填空题(每小题4分;共20分)11.计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________.12.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.13.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y 轴于点E.若△BCE的面积为8,则k=________ .第13题图第15题图14.二次函数y=2x2﹣1,∵a=________,∴函数有最________值.15.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.三、解答题(16、17、18、19、20、22小题各10分;21小题8分;22小题12分;共80分)16.先化简,再求值:,其中,.17.课外阅读是提高学生素养的重要途径,亚光初中为了了解学校学生的阅读情况,组织调查组对全校三个年级共1500名学生进行了抽样调查,抽取的样本容量为300.已知该校有初一学生600名,初二学生500名,初三学生400名.(1)为使调查的结果更加准确地反映全校的总体情况,应分别在初一年级随机抽取________人;在初二年级随机抽取________人;在初三年级随机抽取________人.(请直接填空)(2)调查组对本校学生课外阅读量的统计结果分别用扇形统计图和频数分布直方图表示如下请根据上统计图,计算样本中各类阅读量的人数,并补全频数分布直方图.(3)根据(2)的调查结果,从该校中随机抽取一名学生,他最大可能的阅读量是多少本?为什么?18.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.19.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度.(结果精确到1m,参考数据:≈1.414,≈1.732)20.列方程(或方程组)解应用题:(1)某服装店到厂家选购甲、乙两种服装,若购进甲种服装9件、乙种服装10件,需1810元;购进甲种服装11件乙种服装8件,需1790元,求甲乙两种服装每件价格相差多少元?(2)某工厂现库存某种原料1200吨,用来生产A、B两种产品,每生产1吨A产品需这种原料2吨、生产费用1000元;每生产1吨B产品需这种原料2.5吨、生产费用900元,如果用来生产这两种产品的资金为53万元,那么A、B两种产品各生产多少吨才能使库存原料和资金恰好用完?21.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.22.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.23.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x 轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案一、选择题1. D2. B3. B4. A5. A6. D7. B8. B9. A 10. A二、填空题11.2 12.且13.16 14.2;小15.1.5三、解答题16.解:原式= = = ,当,时,原式= = .17.(1)120;100;80(2)解:根据扇形图得出:6~10本的有300× =60(人),300×(1﹣6%﹣22%﹣×100%)=156(人),0本的有300×6%=18(人),1~5本的有300×22%=66(人),补全频数分布直方图,如图所示:(3)解:根据扇形图可知10本以上所占比例最大,故从该校中随机抽取一名学生,他最大可能的阅读量是10本以上18.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF= BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME19.(1)解:由图形可得∠BCA=30°,∴CB=BA=400米,∴在Rt△CDB中又含30°角,得DB= CB=200米,可知,BD= AB,(2)解:由勾股定理DC== ,=200 米,∴点C的垂直深度CD是346米.20.(1)解:设甲服装的价格为x元,乙服装的价格为y元,根据题意得,2x﹣2y=﹣10,所以x﹣y=10.答:甲乙两种服装每件价格相差10元(2)解:解:设A种产品生产x吨、乙种产品生产y吨,才能使库存原料和资金恰好用完,根据题意得,解得.答:A种产品生产350吨、乙种产品生产200吨才能使库存原料和资金恰好用完21.(1)解:∵y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)解:列表得:描点,连线.(3)解:由图象可知,当y<0时,x的取值范围是x<0或x>422.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.23.(1)解:在y=-x+3中,令y=0,得x=3;令x=0,得y=3,∴B(3,0),C(0,3)∵抛物线y=-x2+bx+c经过B、C两点∴解得∴抛物线的函数表达式为y=-x2+2x+3(2)解:∵P(m,0),PD∥y轴交直线BC于D,交抛物线于E∴D(m,-m+3),E(m,-m2+2m+3)∴DE=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+∴当m=时,DE有最大值,由题意可知四边形DEFG为矩形∵OB=OC=3,∴∠DBP=∠BDP=∠EDF=∠EFD=45°∴DE=EF∴四边形DEFG为正方形∴S=DE2∴当m=时,S有最大值;(3)解:如图所示,有两种情况:①当点A′、C′落在抛物线上时由O′A′=OA=1,O′C′=OC=3设A′(a,-a2+2a+3),则C′(a-3,-a2+2a+4)∴-a2+2a+4=-(a-3)2+2(a-3)+3解得a=,∴A′(,)作QN⊥x轴于N,A′M⊥QN于M,连接QA、QA′则∠AQA′=90°,可证△QAN≌△A′QM设Q(x,y),则QM=AN=x+1A′M=QN=y=x+1+=-x解得x=,y=∴Q1(,)②当点O′、C′落在抛物线上时则O′、C′两点关于抛物线的对称轴对称,易知抛物线的对称轴为直线x=1,由O′C′=OC=3,可知C′(-,),作QN⊥O′C′于N,CM⊥QN于M,连接QC、QC′则∠CQC′=90°,可证△CQM≌△QC′N,设Q(x,y),则QM=C′N=x+CM=QN=y-=x=3-(x+)-解得x=,y=∴Q2(,)综上所述,存在符合条件的点Q,点Q的坐标为(,)或(,)。

河南省新乡市2019届数学中考模试试卷

河南省新乡市2019届数学中考模试试卷

河南省新乡市2019届数学中考模试试卷一、选择题(每小题5分;共50分)1.下列各数中,绝对值最小的数是( )A. πB.C. -2D. -2.北京交通一卡通已经覆盖了全市的地面公交、轨道交通和部分出租车及停车场.据北京市交通委透露,北京市政交通一卡通卡发卡量目前已经超过280 000 000张,用科学记数法表示280 000 000正确是( )A. 2.8×107B. 2.8×108C. 2.8×109D. 0.28×1010 3.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A. 12π B. 24π C. 36π D. 48π第3题图 第4题图4.已知一次函数y=k x+b 中,x 取不同值时,y 对应的值列表如下: 则不等式k x+b >0(其中k ,b ,m ,n 为常数)的解集为( )A. x >2B. x >3C. x <2D. 无法确定5.某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是, 则参赛学生身高比较整齐的班级是( )A. 甲班B. 乙班C. 同样整齐D. 无法确定 6.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,下列等式中不一定成立的是( ) A. ∠1=∠2 B. ∠3=∠5 C. ∠BAD=∠DCE D. ∠4=∠67.平面内有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少 是() A. 90° B. 180° C. 270° D. 360°第6题图 第8题图8.如图,将矩形ABCD 沿AE 折叠,点D 的对应点落在BC 上点F 处,过点F 作FG ∥CD ,连接EF ,DG ,下列结论中正确的有( )①∠ADG=∠AFG ;②四边形DEFG 是菱形;③DG 2=AE•EG ;④若AB=4,AD=5,则CE=1.A. ①②③④B. ①②③C. ①③④D. ①②9.将二次函数y=3x2的图象向右平移3个单位,再向下平移4个单位后,所得图象的函数表达式是()A. y=3(x-3)2-4B. y=3(x-3)2-4C. y=3(x+3)2-4D. y=3(x+3)2+410.在正方形ABCD中,对角线AC=BD=12cm,点P为AB边上的任一点,则点P到AC,BD的距离之和为()A. 6cmB. 7cmC. 6cmD. 12cm二、填空题(每小题4分;共20分)11.计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________.12.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是________.13.如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y 轴于点E.若△BCE的面积为8,则k=________ .第13题图第15题图14.二次函数y=2x2﹣1,∵a=________,∴函数有最________值.15.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.三、解答题(16、17、18、19、20、22小题各10分;21小题8分;22小题12分;共80分)16.先化简,再求值:,其中,.17.课外阅读是提高学生素养的重要途径,亚光初中为了了解学校学生的阅读情况,组织调查组对全校三个年级共1500名学生进行了抽样调查,抽取的样本容量为300.已知该校有初一学生600名,初二学生500名,初三学生400名.(1)为使调查的结果更加准确地反映全校的总体情况,应分别在初一年级随机抽取________人;在初二年级随机抽取________人;在初三年级随机抽取________人.(请直接填空)(2)调查组对本校学生课外阅读量的统计结果分别用扇形统计图和频数分布直方图表示如下请根据上统计图,计算样本中各类阅读量的人数,并补全频数分布直方图.(3)根据(2)的调查结果,从该校中随机抽取一名学生,他最大可能的阅读量是多少本?为什么?18.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.19.2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.(1)问BD与AB有什么数量关系,试说明理由;(2)求信号发射点的深度.(结果精确到1m,参考数据:≈1.414,≈1.732)20.列方程(或方程组)解应用题:(1)某服装店到厂家选购甲、乙两种服装,若购进甲种服装9件、乙种服装10件,需1810元;购进甲种服装11件乙种服装8件,需1790元,求甲乙两种服装每件价格相差多少元?(2)某工厂现库存某种原料1200吨,用来生产A、B两种产品,每生产1吨A产品需这种原料2吨、生产费用1000元;每生产1吨B产品需这种原料2.5吨、生产费用900元,如果用来生产这两种产品的资金为53万元,那么A、B两种产品各生产多少吨才能使库存原料和资金恰好用完?21.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.22.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.23.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x 轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案一、选择题1. D2. B3. B4. A5. A6. D7. B8. B9. A 10. A二、填空题11.2 12.且13.16 14.2;小15.1.5三、解答题16.解:原式= = = ,当,时,原式= = .17.(1)120;100;80(2)解:根据扇形图得出:6~10本的有300× =60(人),300×(1﹣6%﹣22%﹣×100%)=156(人),0本的有300×6%=18(人),1~5本的有300×22%=66(人),补全频数分布直方图,如图所示:(3)解:根据扇形图可知10本以上所占比例最大,故从该校中随机抽取一名学生,他最大可能的阅读量是10本以上18.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF= BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME19.(1)解:由图形可得∠BCA=30°,∴CB=BA=400米,∴在Rt△CDB中又含30°角,得DB= CB=200米,可知,BD= AB,(2)解:由勾股定理DC== ,=200 米,∴点C的垂直深度CD是346米.20.(1)解:设甲服装的价格为x元,乙服装的价格为y元,根据题意得,2x﹣2y=﹣10,所以x﹣y=10.答:甲乙两种服装每件价格相差10元(2)解:解:设A种产品生产x吨、乙种产品生产y吨,才能使库存原料和资金恰好用完,根据题意得,解得.答:A种产品生产350吨、乙种产品生产200吨才能使库存原料和资金恰好用完21.(1)解:∵y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)解:列表得:描点,连线.(3)解:由图象可知,当y<0时,x的取值范围是x<0或x>422.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.23.(1)解:在y=-x+3中,令y=0,得x=3;令x=0,得y=3,∴B(3,0),C(0,3)∵抛物线y=-x2+bx+c经过B、C两点∴解得∴抛物线的函数表达式为y=-x2+2x+3(2)解:∵P(m,0),PD∥y轴交直线BC于D,交抛物线于E∴D(m,-m+3),E(m,-m2+2m+3)∴DE=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+∴当m=时,DE有最大值,由题意可知四边形DEFG为矩形∵OB=OC=3,∴∠DBP=∠BDP=∠EDF=∠EFD=45°∴DE=EF∴四边形DEFG为正方形∴S=DE2∴当m=时,S有最大值;(3)解:如图所示,有两种情况:①当点A′、C′落在抛物线上时由O′A′=OA=1,O′C′=OC=3设A′(a,-a2+2a+3),则C′(a-3,-a2+2a+4)∴-a2+2a+4=-(a-3)2+2(a-3)+3解得a=,∴A′(,)作QN⊥x轴于N,A′M⊥QN于M,连接QA、QA′则∠AQA′=90°,可证△QAN≌△A′QM设Q(x,y),则QM=AN=x+1A′M=QN=y=x+1+=-x解得x=,y=∴Q1(,)②当点O′、C′落在抛物线上时则O′、C′两点关于抛物线的对称轴对称,易知抛物线的对称轴为直线x=1,由O′C′=OC=3,可知C′(-,),作QN⊥O′C′于N,CM⊥QN于M,连接QC、QC′则∠CQC′=90°,可证△CQM≌△QC′N,设Q(x,y),则QM=C′N=x+CM=QN=y-=x=3-(x+)-解得x=,y=∴Q2(,)综上所述,存在符合条件的点Q,点Q的坐标为(,)或(,)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年新乡市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

) 1.我国每年淡水为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500用科学记数法表示为A .275×102B .2.75×103C .2.75×104D .0.275×1052. 在下列交通标志图中,既是轴对称图形,又是中心对称图形的是3.下列各式运算中正确的是A.336)2-(y y -=B.0130= C.448a a a -=÷- D.13169±=4. 一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是 A .4 B .5 C .10 D .115.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是A .主视图B .左视图C .俯视图D .主视图和俯视图 6. 函数a ax y -=与)0(≠=a xay 在同一坐标系中的图象可能是7. 已知关于x 的不等式组有四个整数解,则实数a 的取值范围A. -3<a ≤ 2B. -3≤a ≤ 2C.-3<a ≤-2D. -3≤ a <-28.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是A .5B .6C .7D .8 9.对于二次函数y =-14x 2+x -4,下列说法正确的是A .当x >0时,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点10. 如图,已知∠AOB=30°,以O 为圆心、a 为半径画弧交OA 、OB 于A 1、B 1,再分别以A 1、B 1为圆心、a 为半径画弧交于点C 1,以上称为一次操作.再以C 1为圆心,a 为半径重新操作,得到C 2.重复以上步骤操作,记最后一个两弧的交点(离点O 最远)为C K ,则点C K 到射线OB 的距离为A.a 2B.32a C .a D.3a 第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11.多项式ab ab b a --222的次数是 .12.函数y=的自变量x 的取值范围为 .13. Rt△ABC 中,∠C =90°,AC =3,BC =4.把它沿边BC 所在的直线旋转一周,所得到的几何体 的全面积为 .14.实数a 在数轴上的位置如图所示,化简()__12=+-a a15. 已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =3cm ,则线段AC =__________.16.如图,直线l :y =-12x +1与坐标轴交于A ,B 两点,点M(m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M 与直线l 相切时,则m 的值为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:(cos --+-︒-0122601.18.(本题8分)先化简,再求值:(x 2-4x 2-4x +4 -2x -2 )÷ x 2+2xx-2 , 然后选取一个你喜欢的数代入求值.19.(本题10分)为了丰富同学们的课余生活,某学校将举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是”的问卷调查,要求学生只能从“A (绿博园),B (人民公园),C (湿地公园),D (森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.(1)本次共调查了多少名学生? (2)补全条形统计图;(3)若该学校共有3 600名学生,试估计该校最想去湿地公园的学生人数.20.(本题10分)定义:在△ABC 中,∠C =30°,我们把∠A 的对边与∠C 的对边的比叫做∠A 的邻弦,记作 thi A ,即thi A =∠A 的对边∠C 的对边=BCAB .请解答下列问题:已知:在△ABC 中,∠C =30°.(1)若∠A =45°,求thi A 的值; (2)若thi A =3,则∠A = °;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系 . 21.(本题12分)将△ABC绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′ C′ ,如图①所示,∠BAB′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n] .(1得到△AB′ C′ ,则'AB C S ''∆:ABC S ∆ =_______ ;直线BC 与直线B′C′所夹的锐角为_______度;(2)如图②,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换[θ,n]得到△AB′ C′ ,使 点B 、C 、C '在同一直线上,且四边形ABB′C′为矩形,求θ和n 的值;(3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,BC=1,对△ABC作变换[θ,n]得到△AB′C′ , 使点B 、C 、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n 的值.22.(本题12分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式。

当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?参考答案第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。

每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

)1.C2.C3.C4.B5.B6.D7.D8.C9.B 10.C第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分)11.3 12.35≥x 13. 24π 14. 1 15. 11或5cm 16. 2-25或2+2 5三、解答题(共7小题,计72分) 17.解:原式=2+﹣﹣1=118.(本小题满分8分)原式=(x +2x -2 -2x -2 )·x -2x (x +2)·······3分=x x -2 ·x -2x (x +2)······5分 =1x +2 ······3分 X ≠2,-2,0即可······8分19.(1)本次调查的学生人数为15÷25%=60(名).……3分 (2)选择的人数为60-15-10-12=23(人),……6分 (3) 380160036023=⨯(人)……9分20.解:(1)如图,作BH ⊥AC ,垂足为H .在Rt △BHC 中,sin C =BH BC =12,即BC =2BH .在Rt △BHA 中,sin A =BH AB =22,即AB =2BH .∴thi A =BC AB=2. ……3分(2)60或120. ……5分(3)在Rt △ABC 中,thi A =BC AB. 在Rt △BHA 中,sin A =BH AB.在Rt △BHC 中,sin C =BH BC =12,即BC =2BH .∴thi A =2sin A . ……8分21. (1) 3 ; 60°. ----------------------------------------------------2分 (2)∵四边形ABB′C′是矩形,∴∠BAC′=90°.∴θ=∠CAC′=∠BAC′-∠BAC=90°-30°=60°. --------------------4分 在Rt △ABB ′中,∠ABB′=90°, ∠BAB′=60°,∴n=AB AB=2. ------------6分 (3)∵四边形ABB′C′是平行四边形, ∴AC′∥BB′,又∵∠BAC=36° ∴θ=∠CAC′=∠ACB=72° --------------------8分 ∴∠C′AB′=∠ABB′=∠BAC=36°, 又∵∠B=∠B,BACH∴△ABC ∽△B′BA, --------------------------9分∴AB 2=CB·B′B=CB ·(BC+CB′), ---------------------------10分 ∵CB′=AC =AB =B′C′, BC=1, ∴AB 2=1·(1+AB)∵AB>0, ∴n=B C BC ''分 22.解:(1)设y 与x 之间的函数关系式y=kx+b ,把(10,40),(18,24)代入得,解得,∴y 与x 之间的函数关系式y=﹣2x+60(10≤x ≤18);(2)W=(x ﹣10)(﹣2x+60)=﹣2x 2+80x ﹣600,对称轴x=20,在对称轴的左侧y 随着x 的增大而增大,∵10≤x ≤18,∴当x=18时,W 最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.(3)由150=﹣2x 2+80x ﹣600,解得x 1=15,x 2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.23.(本题12分)设二次函数2(1)()y x x a a=-+-(a 为正常数)的图象与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于C 点.直线l 过M (0,m )(02m <<且1≠m )且与x 轴平行,并与直线AC 、BC 分别相交于点D 、E .二次函数2(1)()y x x a a=-+-的图象关于直线l 的对称图象与y 轴交于点P .设直线PD 与x 轴交点为Q ,则:⑴ 求A 、C 两点的坐标;⑵ 求AD 的值(用含m 的代数式表示);⑶ 是否存在实数m ,使C D A Q P Q D E ⋅=⋅?若能,则求出相应的m 的值;若不能,请说明理由.23.解:⑴ 点C 的坐标为(0,2).点A 坐标为(-1,0). --------------------- 3分⑵ AD=m 25. ------------------------------------------------------------ 6分 ⑶ 要使DE PQ AQ CD ⋅=⋅,由于∠PQA=∠PDE ,所以只须PQA ∆∽CDE ∆,即须PQA ∆∽PDE ∆.当0 <m<1时,点P 在x 轴下方,此时∠PQA 显然为钝角,而∠PDE 显然为锐角,故此时不能有PQA ∆∽CDE ∆. ----------- 8分○2 当1<m<2时, aa m 1+=,而此时1<m<2, 则应有211<+<aa ,由此知a >1. ---------------------------- 10分综上所述,当a >1时,才存在实数m 使得PQA ∆∽CDE ∆, 从而有DE PQ AQ CD ⋅=⋅,此时aa m 1+=;当0<≤a 1时, 不存在实数m 使得DE PQ AQ CD ⋅=⋅. ----------------------- 12分。

相关文档
最新文档