弦切角定理证明方法
圆的弦切角定理
圆的弦切角定理
弦切角定理又叫做斜接角定理,它是由现代先驱理论家、著名数学家笛卡尔所提出的
几何定理,它讲述了弦和圆在一起时所形成的夹角大小。
这个定理本质上是一个几何定理,在经典几何学中被广泛使用。
定理的具体内容如下:设弦切线在圆上的作用点分别是A、B,AB是弦切点,AB垂直
线与圆的圆心O相交得到点C,AB点分别延长到P和Q使OP与OQ延长,则OC、OP、OQ
三角形内角的大小依次为:π的一半(90°)OCA弧与APO角,AOC弧与POC角,BOC弧
与QOC角。
证明:AOC为OCB的补角,POC和QOC绕O旋转就变为AOC,而AOC与AB垂直线合成
了直角,故总之,证明弦切角定理的关键是正确建立AOC和AB垂直线,即点C是A、B垂
直线的交点。
由于圆的拉格朗日定义及圆的定义,可得知BOC的中点的P的投影到OA上必是OA的
中点O,故点P必等于点C,从而证明了AB垂直线的交点为点C.
于是,AOC是一个直角,而AOC弧与APO角、AOC弧与POC角、BOC弧与QOC角就是其对应角,因此就可以看出弦切角定理了。
以上就是弦切角定理的证明,弦切角定理一般应用于圆面内不存在直线或点的情况,
这时,计算机就可以采用其求得弦和圆之间的夹角大小。
弦切角定义
弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角弦切角的性质:弦切角等于其所对圆周角弦切角等于它所夹的弧所对的圆周角.弦切角定理:定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. (弦切角就是切线与弦所夹的角)弦切角定理证明证明:设圆心为O,连接OC,OB,OA。
过点A作TP的平行线交BC于D,则∠TCB=∠CDA∵∠TCB=90-∠OCD∵∠BOC=180-2∠OCD∴,∠BOC=2∠TCB证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:.证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,那么.(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么弦切角推论:若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在中,,,,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.解:连结OA,OB.∵在中, ∠C=Rt∠∴∠BAC=30°∵(弦切角定理)∴∠AOB=60°又∵AO=BO∴为等边三角形∴AO=AB=BO=2BC∴BC=1/2a例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC∠EFD=∠BAD∠EFD=∠DAC⊙O切BC于D ∠FDC=∠DAC∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB∴∠ACD=∠B,∵MN切⊙O于C∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.。
弦切角定理圆幂定理之割线相交弦切割线定理
弦切角定理及其应用极点在圆上,一边和圆订交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线 PT 切圆 O 于点 C,BC 、AC 为圆 O 的弦,∠TCB 、∠ TCA 、∠PCA 、∠PCB 都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠ PCA=1/2 ∠ COA= ∠ CBA弦切角定理证明:证明一:设圆心为O,连结 OC, OB, 。
∵∠ TCB=90 ° -∠ OCB∵∠ BOC=180 ° -2 ∠ OCB∴,∠ BOC=2 ∠ TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠ BOC=2 ∠CAB (同一弧所对的圆心角等于圆周角的两倍)∴∠ TCB= ∠ CAB (定理:弦切角的度数等于它所夹的弧的圆周角)证明已知: AC 是⊙ O 的弦, AB 是⊙ O 的切线, A 为切点,弧是弦切角∠BAC 所夹的弧.求证:(弦切角定理)证明:分三种状况:(1)圆心 O 在∠ BAC 的一边 AC 上∵ AC 为直径, AB 切⊙ O 于 A ,∴弧 CmA= 弧 CA∵为半圆 ,∴∠ CAB=90= 弦 CA 所对的圆周角( 2)圆心 O 在∠ BAC 的内部 . (B点应在A点左边)过 A 作直径 AD 交⊙ O 于 D,若在优弧 m 所对的劣弧上有一点 E那么,连结 EC 、ED 、 EA则有:∠ CED= ∠CAD 、∠ DEA= ∠DAB∴ ∠ CEA= ∠CAB∴ (弦切角定理)( 3)圆心 O 在∠ BAC 的外面 ,过 A 作直径 AD 交⊙ O 于 D那么∠ CDA+ ∠CAD= ∠ CAB+ ∠ CAD=90 °∴∠ CDA= ∠ CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙ O 中,⊙ O 的切线 AC 、 BC 交与点C ,求证:∠ CAB= ∠ CBA 。
弦切角定理证明方法
弦切角定理证明方法篇一:弦切角定理及推论弦切角定义顶点在圆上,一边和圆相交,另图示一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90-∠OCB∵∠BOC=180-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB (圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角B点应在A点左侧(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90∴∠CDA=∠CAB∴(弦切角定理)弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.解:连结OA,OB.∵在Rt△ABC中, ∠C=90∴∠BAC=30°∴BC=1/2a(RT△中30°角所对边等于斜边的一半)例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC∠EFD=∠BAD∠EFD=∠DAC⊙O切BC于D ∠FDC=∠DAC∠EFD=∠FDCEF∥BC 例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB∴∠ACD=∠B,∵MN切⊙O于C∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.篇二:弦切角定理导学案弦切角定理导学案【学习目标】:1.理解弦切角的概念,掌握弦切角定理及其推论,能运用它们解决有关问题。
(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理
弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. (B点应在A点左侧)过A作直径AD交⊙O于D,E若在优弧m所对的劣弧上有一点那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90°∴∠CDA=∠CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB ∴∠ACD=∠B,∵MN切⊙O于C ∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
弦切角定理的证明方法
弦切角定理的证明方法证明弦切角定理时,需要使用到以下几何模型:1.一个圆,圆心为O,半径为r;2.在圆上选择两个点A和B,连接OA和OB;3.以A和B分别为圆心,r为半径,画两个与圆相交的圆弧。
接下来按照以下步骤进行证明:第一步:证明OA与OB垂直。
由于OA和OB是圆的半径,所以OA和OB相等,即OA≡OB。
根据等腰三角形的性质,OA和OB的中垂线也相等,即OM≡OM。
由此可得,△OMA≡△OMB。
根据等腰三角形的定义,可以得出∠MOA≡∠MOB。
而∠MOA和∠MOB是相交直线与两条相交弧所夹的角,因此根据垂直角的定义,可以得到OA与OB垂直。
第二步:证明角AOB的度数等于弦AB所对的圆心角的度数。
由于AOB是一个半圆角,根据半圆角的定义,它的度数等于180°。
另一方面,弦AB所对的圆心角的度数等于弧AMB的度数。
所以,要证明两者相等,我们只需要证明两个弧所对的角相等。
第三步:证明弦AB所对的圆心角的度数等于弦AB所对的切角的度数。
以A为圆心,r为半径,作弧周上的线段AC切圆于点C。
连接OC。
根据圆的切线定理,切线与半径垂直,所以OC与AC垂直。
又由于OA与OC是圆半径,所以∠OAC是一个直角。
因此,在△OAC中,∠OAC+∠OCA=90°。
由于∠OAC是弦AB所对的圆心角,OC是切线AC所对的切角。
根据三角形中角的性质,弦切角等于其所对的圆心角的补角,即∠OCA等于∠OAB的补角,即180°-∠OAB。
所以,∠OAC+∠OAB=90°。
综上所述,在△OAC中,∠OAC+∠OCA=90°,∠OAC+∠OAB=90°。
所以,∠OCA=∠OAB,即切角与圆心角相等。
第四步:综合前面的结论,得到结论弦切角定理的证明。
由第一步可得△OMA≡△OMB,由第二步可得∠AOB=180°。
由第三步可得∠OAC=∠OAB。
将这些结论整合起来,可以得到△OMA和螺旋△OAC与△OMB和螺旋△OBC全等,即∠MOA=∠COA,∠MOB=∠COB。
弦切角定理证明方法
弦切角定理证明方法弦切角定理证明方法(1)连oc、oa,则有oc⊥cd于点c。
得oc‖ad,知∠oca=∠cad。
而∠oca=∠oac,得∠cad=∠oac。
进而有∠oac=∠bac。
由此可知,0a与ab重合,即ab为⊙o的直径。
(2)连接bc,且作ce⊥ab于点e。
立即可得△abc为rt△,且∠acb=rt∠。
由射影定理有ac²=ae*ab。
又∠cad=∠cae,ac公用,∠cda=∠cea,得△cea≌△cda,有ad=ae,所以,ac²=ab*ad。
第一题重新证明如下:首先证明弦切角定理,即有∠acd=∠cba。
连接oa、oc、bc,则有∠acd+∠aco=90°=(1/2)(∠aco+∠cao+∠aoc)=(1/2)(2∠aco+∠aoc)=∠aco+(1/2)∠aoc,所以∠acd=(1/2)∠aoc,而∠cba=(1/2)∠aoc(同弧上的圆周角等于圆心角的一半),得∠acd=∠cba。
另外,∠acd+∠cad=90°,∠cad=∠cab,所以有∠cab+∠cba=90°,得∠bca=90°,进而ab为⊙o的直径。
2证明一:设圆心为o,连接oc,ob,。
∵∠tcb=90-∠ocb∵∠boc=180-2∠ocb∴,∠boc=2∠tcb(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠boc=2∠cab(圆心角等于圆周角的两倍)∴∠tcb=∠cab(定理:弦切角的度数等于它所夹的弧的圆周角) 证明已知:ac是⊙o的弦,ab是⊙o的切线,a为切点,弧是弦切角∠bac所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心o在∠bac的一边ac上∵ac为直径,ab切⊙o于a,∴弧cma=弧ca∵为半圆,∴∠cab=90=弦ca所对的圆周角(2)圆心o在∠bac的内部.过a作直径ad交⊙o于d,若在优弧m所对的劣弧上有一点e那么,连接ec、ed、ea则有:∠ced=∠cad、∠dea=∠dab∴∠cea=∠cab∴(弦切角定理)(3)圆心o在∠bac的外部,过a作直径ad交⊙o于d那么∠cda+∠cad=∠cab+∠cad=90∴∠cda=∠cab∴(弦切角定理)编辑本段弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在rt△abc中,∠c=90,以ab为弦的⊙o与ac相切于点a,∠cba=60°,ab=a求bc长.解:连结oa,ob.∵在rt△abc中,∠c=90∴∠bac=30°∴bc=1/2a(rt△中30°角所对边等于斜边的一半)例2:如图,ad是δabc中∠bac的平分线,经过点a的⊙o与bc切于点d,与ab,ac分别相交于e,f.求证:ef∥bc.证明:连df.ad是∠bac的平分线∠bad=∠dac∠efd=∠bad∠efd=∠dac⊙o切bc于d∠fdc=∠dac∠efd=∠fdcef∥bc例3:如图,δabc内接于⊙o,ab是⊙o直径,cd⊥ab于d,mn 切⊙o于c,求证:ac平分∠mcd,bc平分∠ncd.证明:∵ab是⊙o直径∴∠acb=90∵cd⊥ab∴∠acd=∠b,∵mn切⊙o于c∴∠mca=∠b,∴∠mca=∠acd,即ac平分∠mcd,同理:bc平分∠ncd.第二篇:弦切角的逆定理的证明弦切角逆定理证明已知角cae=角abc,求证ae是圆o的切线证明:连接ao并延长交圆o于d,连接cd,则角adc=角abc=角cae而ad是直径,因此角acd=90度,所以角dac=90度-角adc=90度-角cae所以角dae=角dac+角cae=90度故ae为切线第三篇:弦切角定理证明弦切角定理证明弦切角定理编辑本段弦切角定义顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
完整版弦切角定理圆幂定理之割线相交弦切割线定理
弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义1图如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)的度数等于它所夹的弧的圆周角)弦切角:定理(CAB∠TCB=∴∠.AC是⊙O的弦,AB是⊙O的切线,A证明已知:为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. ()点左侧A点应在B D, 于交⊙过A作直径ADOE 所对的劣弧上有一点若在优弧mEA那么,连接、、EDECDAB ∠CADCED=∠、∠DEA=则有:∠CAB CEA= ∠∠∴∴(弦切角定理), O3()圆心在∠BAC的外部D于ADA过作直径交⊙O CAD=CDA+ 那么∠∠∠°CAD=90∠CAB+CAB∠CDA=∴∠.∴(弦切角定理)弦切角推论3推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC 分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC 平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90,B∠ACD=∴∠AB ⊥CD∵.∴∠MCA=∠切⊙OB于C ,∵MN∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
弦切角定理 证明-概念解析以及定义
弦切角定理证明-概述说明以及解释1.引言1.1 概述弦切角定理是几何学中一个重要的定理,被广泛应用于圆的相关问题中。
根据该定理,如果一个弦切割了一个圆,并且与该圆的切线相交于切点,那么与这个弦相对的角与这个切线相交的角是相等的。
这个定理基于圆的几何性质而推导得出,它不仅具有理论的重要性,还被大量应用于解决实际问题。
无论是在数理推导中,还是在物理、工程等实际应用中,弦切角定理都被广泛运用。
本文将会系统地介绍弦切角定理的定义、证明要点和应用。
在正文部分,我们将详细阐述定理的定义,解释证明该定理所需的关键要点,并通过推理和几何演绎来证明这一定理的正确性。
同时,我们也将结合实际问题,展示弦切角定理在实际中的应用。
结论部分将对弦切角定理的意义进行总结,并回顾全文的主要内容。
通过阅读本文,读者将能够深入了解弦切角定理的定义、证明过程,并能够灵活运用该定理解决与圆相关的问题。
同时,本文也为读者展示了弦切角定理在实际中的重要性和应用价值。
在接下来的章节中,我们将逐步介绍弦切角定理的定义、证明要点以及其在实际问题中的应用。
希望读者通过对本文的阅读和理解,能够对弦切角定理有一个全面而深入的认识,从而在解决相关问题时能够能够灵活运用并取得理想的结果。
1.2 文章结构文章结构部分的内容可以按照以下方式编写:在本文中,我将探讨弦切角定理的证明。
本文分为引言、正文和结论三部分。
引言部分将对弦切角定理进行概述,介绍其定义、重要性和应用领域。
然后我会详细说明本文的结构以及每个部分的内容。
正文部分将详细介绍弦切角定理的证明。
首先,我将给出弦切角定理的定义,并解释其背后的数学原理。
然后,我会重点讨论证明该定理所需的关键要点。
第一要点将涉及到几何图形的构建和性质推导,第二要点将涉及到角度关系的推理和推导。
通过详细的推导和证明过程,读者将能够全面理解弦切角定理的证明方法。
结论部分将归纳总结弦切角定理的应用和意义。
我将讨论该定理在几何学中的实际应用,以及它对其他几何定理的推导和应用的重要性。
弦切角定理推理过程-概述说明以及解释
弦切角定理推理过程-概述说明以及解释1.引言1.1 概述概述部分:弦切角定理是数学中的一条基本几何定理,它描述了一个圆内切线与弦之间的关系。
通过研究弦切角定理,我们可以深入理解圆与其内切线的几何性质。
本文将详细介绍弦切角定理的定义、推导过程以及应用场景,并展望了其进一步的研究方向。
在几何学中,圆是最基本的几何图形之一,而弦则是圆上的一条线段。
弦切角定理是指当一个线段在圆上截取弦时,与该弦相交的切线与该弦之间的角度相等。
这个定理的重要性在于它提供了切线和弦之间的几何关系,使我们在解决实际问题时能够更加便利和高效。
本文将首先介绍弦切角定理的定义,明确其几何意义和表述方式。
其次,我们将详细推导弦切角定理,从最基本的几何性质出发,逐步推导得出定理的数学表达式。
通过推导过程,我们可以深入理解弦切角定理的本质和原理。
接着,我们将探讨弦切角定理的应用场景。
弦切角定理广泛应用于数学和物理等领域,例如在测量和计算过程中,我们可以利用弦切角定理来求解未知量或优化问题。
此外,弦切角定理还与圆的切线、割线等几何性质密切相关,对于深入理解圆的性质具有重要意义。
最后,我们将总结弦切角定理的重要性,指出它在几何学中的地位和作用。
同时,我们还将探讨弦切角定理的实际应用场景,例如在建筑、地理勘测、机械工程等领域的应用。
同时,对于弦切角定理的进一步研究也是不可忽视的,我们将展望弦切角定理在更广泛领域的应用和深化研究的可能性。
通过本文的阐述,读者将能全面了解弦切角定理的概念、推导过程和应用场景,进一步认识到弦切角定理在数学和实际问题求解中的重要性和实用性。
同时也将对弦切角定理的未来研究方向产生更多的兴趣和思考。
1.2 文章结构文章结构部分的内容可以按照以下方式编写:文章结构:本文将按照以下结构进行论述:引言、正文和结论。
引言部分将概述本文的研究对象——弦切角定理,并介绍文章的结构和目的。
正文部分将包含弦切角定理的定义、推导过程和应用。
弦切角定理证明逆定理
弦切角定理证明逆定理
弦切角定理是指:一条弦所对的两个角中,以弧度为单位的较大角等于这条弦所对的圆周上的切线与这条弦所在直线所成角的补角。
根据此定理,可以得出其逆定理:如果一条直线与一条圆相交,且这条直线的切线与这条圆的一个弦所成角的补角等于这条弦所对
的圆心角的一半,那么这条直线就是这条圆的切线。
证明如下:设直线与圆相交于点A和B,切线与弦的交点为C。
根据弦切角定理可得:∠CAB=∠ACB的补角,且∠ABC的补角等于弧BC所对的圆心角的一半。
因为∠CAB和∠ABC的补角之和为180度,所以∠CAB+∠ABC的补角=180度。
将以上两个式子代入得:∠ACB的补角+弧BC所对的圆心角的一半=180度。
即:∠ACB+弧BC所对的圆心角=180度。
因为弧BC所对的圆心角等于∠ABC的两倍,所以∠ACB+∠
ABC=180度。
因此,直线AC与圆相切。
证毕。
- 1 -。
弦切角定理证明方法_0
弦切角定理证明方法篇一:弦切角定理及推论弦切角定义顶点在圆上,一边和圆相交,另图示一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)如右图所示,直线pT切圆o于点c,bc、Ac为圆o的弦,∠Tcb,∠TcA,∠pcA,∠pcb都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明:证明一:设圆心为o,连接oc,ob,。
∵∠Tcb=90-∠ocb∵∠boc=180-2∠ocb∴,∠boc=2∠Tcb(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠boc=2∠cAb(圆心角等于圆周角的两倍)∴∠Tcb=∠cAb(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:Ac是⊙o 的弦,Ab是⊙o的切线,A为切点,弧是弦切角∠bAc所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心o在∠bAc的一边Ac上∵Ac为直径,Ab切⊙o于A,∴弧cmA=弧cA∵为半圆,∴∠cAb=90=弦cA所对的圆周角b点应在A点左侧(2)圆心o在∠bAc的内部.过A作直径AD交⊙o于D,若在优弧m所对的劣弧上有一点e那么,连接ec、eD、eA则有:∠ceD=∠cAD、∠DeA=∠DAb∴∠ceA=∠cAb∴(弦切角定理)(3)圆心o在∠bAc的外部,过A作直径AD交⊙o于D那么∠cDA+∠cAD=∠cAb+∠cAD=90∴∠cDA=∠cAb∴(弦切角定理)弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在Rt△Abc中,∠c=90,以Ab为弦的⊙o与Ac相切于点A,∠cbA=60°,Ab=a求bc长.解:连结oA,ob.∵在Rt△Abc中,∠c=90∴∠bAc=30°∴bc=1/2a(RT△中30°角所对边等于斜边的一半)例2:如图,AD是ΔAbc中∠bAc的平分线,经过点A的⊙o与bc 切于点D,与Ab,Ac分别相交于e,F.求证:eF∥bc.证明:连DF.AD 是∠bAc的平分线∠bAD=∠DAc∠eFD=∠bAD∠eFD=∠DAc⊙o切bc于D∠FDc=∠DAc∠eFD=∠FDceF∥bc例3:如图,ΔAbc内接于⊙o,Ab是⊙o直径,cD⊥Ab于D,mn 切⊙o于c,求证:Ac平分∠mcD,bc平分∠ncD.证明:∵Ab是⊙o直径∴∠Acb=90∵cD⊥Ab∴∠AcD=∠b,∵mn切⊙o于c∴∠mcA=∠b,∴∠mcA=∠AcD,即Ac平分∠mcD,同理:bc平分∠ncD.篇二:弦切角定理导学案弦切角定理导学案【学习目标】:1.理解弦切角的概念,掌握弦切角定理及其推论,能运用它们解决有关问题。
高中数学弦切角定理的证明方法
高中数学弦切角定理的证明方法高中数学弦切角定理的证明方法弦切角是几何中的定理,那它们是怎么被证明的呢?证明的方法是的呢?下面就是店铺给大家整理的弦切角定理证明方法内容,希望大家喜欢。
弦切角定理证明方法一1)连OC、OA,则有OC⊥CD于点C。
得OC‖AD,知∠OCA=∠CAD。
而∠OCA=∠OAC,得∠CAD=∠OAC。
进而有∠OAC=∠BAC。
由此可知,0A与AB重合,即AB为⊙O的直径。
(2)连接BC,且作CE⊥AB于点E。
立即可得△ABC为Rt△,且∠ACB=Rt∠。
由射影定理有AC²=AE*AB。
又∠CAD=∠CAE,AC公用,∠CDA=∠CEA,得△CEA≌△CDA,有AD=AE,所以,AC²=AB*AD。
第一题重新证明如下:首先证明弦切角定理,即有∠ACD=∠CBA 。
连接OA、OC、BC,则有∠ACD+∠ACO=90°=(1/2)(∠ACO+∠CAO+∠AOC)=(1/2)(2∠ACO+∠AOC)=∠ACO+(1/2)∠AOC,所以∠ACD=(1/2)∠AOC,而∠CBA=(1/2)∠AOC(同弧上的圆周角等于圆心角的一半),得∠ACD=∠CBA 。
另外,∠ACD+∠CAD=90°,∠CAD=∠CAB,所以有∠CAB+∠CBA=90°,得∠BCA=90°,进而AB为⊙O的直径。
弦切角定理证明方法二证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90-∠OCB∵∠BOC=180-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的'弧的圆周角) 证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角 (2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴ ∠CEA=∠CAB∴ (弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90∴∠CDA=∠CAB∴(弦切角定理)弦切角定理证明方法三若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.解:连结OA,OB.∵在Rt△ABC中, ∠C=90∴∠BAC=30°∴BC=1/2a(RT△中30°角所对边等于斜边的一半)例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC∠EFD=∠BAD∠EFD=∠DAC⊙O切BC于D ∠FDC=∠DAC∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB∴∠ACD=∠B,∵MN切⊙O于C∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.【高中数学弦切角定理的证明方法】。
高中数学证明弦切角的常用方法
高中数学证明弦切角的常用方法高中数学证明弦切角的常用方法弦切角是一种形状的描述,那关于这种形状该怎样证明呢?下面就是店铺给大家整理的怎样证明弦切角内容,希望大家喜欢。
怎样证明弦切角的方法1设圆心为O,连接OC,OB,OA。
过点A作TP的平行线交BC 于D,则∠TCB=∠CDA∵∠TCB=90-∠OCD∵∠BOC=180-2∠OCD∴,∠BOC=2∠TCB(弦切角的度数等于它所夹的弧的圆心角的度数的一半)∵∠BOC=2∠CAB∴∠TCB=∠CAB(弦切角的度数等于它所夹的弧的`圆周角)2接OB OC 过O做OE⊥BC所以∠A=1/2又因为∠OCT=90°∠OEC=90°所以∠EOC=∠TCB所以∠TCB=∠A3温馨提示设切点为A 切线AB 弦AC 圆心为O 过A作直径AD 连OC角CAB等于90度减角DAC因为OA等于OC 所以角AOC等于180度减去二倍的角DAC即可证明角AOC等于二倍的角CAB参考资料:弦切角是这弦所对的圆心角的一半弦切角介绍顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
其大小等于它所夹的弧所对的圆周角。
其顶点在圆上。
弦切角一条边与圆周相交,另一条边与圆相切,切点在圆周上。
①顶点在圆上;②一条边与圆周相交,另一条边与圆相切,切点在圆周上;③弦切角的大小等于它所夹的弧所对的圆周角的大小。
弦切角定理弦切角等于它所夹的弧所对的圆周角。
推论1:弦切角等于它所夹的弧所对的圆心角的一半。
推论2:两个弦切角所夹的弧相等,那么这两个弦切角也相等。
推论3:弦切角等于它所夹的弧的度数的一半。
弦切角定理的证明:如图2,AB为圆O的切线,因为BD是直径,所以内接三角形BCD是直角三角形,其中∠DCB是直角所以∠BDC+∠1=90°又因为∠1 +∠CBA=90°所以∠CBA=∠BDC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦切角定理证明方法弦切角定理证明方法连oc、oa,则有oc⊥cd于点c。
得oc‖ad,知∠oca=∠cad。
而∠oca=∠oac,得∠cad=∠oac。
进而有∠oac=∠bac。
由此可知,0a与ab重合,即ab为⊙o的直径。
连接bc,且作ce⊥ab于点e。
立即可得△abc为rt△,且∠acb=rt∠。
由射影定理有ac²=ae*ab。
又∠cad=∠cae,ac公用,∠cda=∠cea,得△cea ≌△cda,有ad=ae,所以,ac²=ab*ad。
第一题重新证明如下:首先证明弦切角定理,即有∠acd=∠cba。
连接oa、oc、bc,则有∠acd+∠aco=90°===∠aco+∠aoc,所以∠acd=∠aoc,而∠cba=∠aoc,得∠acd=∠cba。
另外,∠acd+∠cad=90°,∠cad=∠cab,所以有∠cab+∠cba=90°,得∠bca=90°,进而ab为⊙o的直径。
2证明一:设圆心为o,连接oc,ob,。
∵∠tcb=90-∠ocb∵∠boc=180-2∠ocb∴,∠boc=2∠tcb∵∠boc=2∠cab∴∠tcb=∠cab证明已知:ac是⊙o的弦,ab是⊙o 的切线,a为切点,弧是弦切角∠bac所夹的弧.求证:证明:分三种情况:圆心o在∠bac的一边ac上∵ac为直径,ab切⊙o于a,∴弧cma=弧ca∵为半圆,∴∠cab=90=弦ca所对的圆周角圆心o在∠bac的内部.过a作直径ad交⊙o于d,若在优弧m所对的劣弧上有一点e那么,连接ec、ed、ea则有:∠ced=∠cad、∠dea=∠dab∴∠cea=∠cab∴圆心o在∠bac的外部,过a作直径ad交⊙o于d那么∠cda+∠cad=∠cab+∠cad=90∴∠cda=∠cab∴编辑本段弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在rt△abc中,∠c=90,以ab为弦的⊙o与ac相切于点a,∠cba=60°,ab=a求bc长.解:连结oa,ob.∵在rt△abc中,∠c=90∴∠bac=30°∴bc=1/2a例2:如图,ad是δabc中∠bac的平分线,经过点a的⊙o与bc切于点d,与ab,ac分别相交于e,f.求证:ef∥bc.证明:连df.ad是∠bac的平分线∠bad=∠dac∠efd=∠bad∠efd=∠dac⊙o切bc于d∠fdc=∠dac∠efd=∠fdcef∥bc例3:如图,δabc内接于⊙o,ab是⊙o直径,cd⊥ab于d,mn切⊙o于c,求证:ac平分∠mcd,bc平分∠ncd.证明:∵ab是⊙o直径∴∠acb=90∵cd⊥ab∴∠acd=∠b,∵mn切⊙o于c∴∠mca=∠b,∴∠mca=∠acd,即ac平分∠mcd,同理:bc平分∠ncd.弦切角逆定理证明已知角cae=角abc,求证ae是圆o 的切线证明:连接ao并延长交圆o于d,连接cd,则角adc=角abc=角cae而ad是直径,因此角acd=90度,所以角dac=90度-角adc=90度-角cae 所以角dae=角dac+角cae=90度故ae为切线弦切角定理证明弦切角定理编辑本段弦切角定义顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
∴∠tcb=∠cab证明已知:ac是⊙o的弦,ab是⊙o 的切线,a为切点,弧是弦切角∠bac所夹的弧.求证:证明:分三种情况:圆心o在∠bac的一边ac上∵ac为直径,ab切⊙o于a,∴弧cma=弧ca∵为半圆,∴∠cab=90=弦ca所对的圆周角圆心o在∠bac的内部.过a作直径ad交⊙o于d,若在优弧m所对的劣弧上有一点e那么,连接ec、ed、ea则有:∠ced=∠cad、∠dea=∠dab∴∠cea=∠cab∴圆心o在∠bac的外部,过a作直径ad交⊙o于d那么∠cda+∠cad=∠cab+∠cad=90∴∠cda=∠cab∴编辑本段弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在rt△abc中,∠c=90,以ab为弦的⊙o与ac相切于点a,∠cba=60°,ab=a求bc长.解:连结oa,ob.∵在rt△abc中,∠c=90∴∠bac=30°∴bc=1/2a例2:如图,ad是δabc中∠bac的平分线,经过点a的⊙o与bc切于点d,与ab,ac分别相交于e,f.求证:ef∥bc.证明:连df.ad是∠bac的平分线∠bad=∠dac∠efd=∠bad∠efd=∠dac⊙o切bc于d∠fdc=∠dac∠efd=∠fdcef∥bc例3:如图,δabc内接于⊙o,ab是⊙o直径,cd⊥ab于d,mn切⊙o于c,求证:ac平分∠mcd,bc平分∠ncd.证明:∵ab是⊙o直径∴∠acb=90∵cd⊥ab∴∠acd=∠b,∵mn切⊙o于c∴∠mca=∠b,∴∠mca=∠acd,即ac平分∠mcd,同理:bc平分∠ncd.弦切角定理的证明弦切角定理:定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明证明:设圆心为o,连接oc,ob,oa。
过点a作tp的平行线交bc于d,则∠tcb=∠cda∵∠tcb=90-∠ocd∵∠boc=180-2∠ocd∴,∠boc=2∠tcb证明:分三种情况:圆心o在∠bac的一边ac上∵ac为直径,ab切⊙o于a,∴弧cma=弧ca∵为半圆,圆心o在∠bac的内部.过a作直径ad交⊙o于d,那么.圆心o在∠bac的外部,过a作直径ad交⊙o于d那么2连接并延长to交圆o于点d,连接bd因为td为切线,所以td垂直tc,所以角btc+角dtb=90因为td为直径,所以角bdt+角dtb=90所以角btc=角bdt=角a 3编辑本段弦切角定义顶点在圆上,一边和圆相交,另图示一边和圆相切的角叫做弦切角。
∴∠tcb=∠cab证明已知:ac是⊙o的弦,ab是⊙o的切线,a为切点,弧是弦切角∠bac所夹的弧.求证:证明:分三种情况:圆心o在∠bac的一边ac上∵ac为直径,ab切⊙o于a,∴弧cma=弧ca∵为半圆,∴∠cab=90=弦ca 所对的圆周角b点应在a点左侧圆心o 在∠bac的内部.过a作直径ad交⊙o于d,若在优弧m所对的劣弧上有一点e那么,连接ec、ed、ea则有:∠ced=∠cad、∠dea=∠dab∴∠cea=∠cab∴圆心o在∠bac的外部,过a作直径ad交⊙o于d 那么∠cda+∠cad=∠cab+∠cad=90∴∠cda=∠cab∴编辑本段弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在rt△abc中,∠c=90,以ab为弦的⊙o与ac相切于点a,∠cba=60°,ab=a求bc长.解:连结oa,ob.∵在rt△abc中,∠c=90∴∠bac=30°∴bc=1/2a例2:如图,ad是δabc中∠bac的平分线,经过点a的⊙o与bc切于点d,与ab,ac分别相交于e,f.求证:ef∥bc.证明:连df.ad是∠bac的平分线∠bad=∠dac∠efd=∠bad∠efd=∠dac⊙o切bc于d∠fdc=∠dac∠efd=∠fdcef∥bc例3:如图,δabc内接于⊙o,ab是⊙o直径,cd⊥ab于d,mn 切⊙o于c,求证:ac平分∠mcd,bc平分∠ncd.证明:∵ab是⊙o直径∴∠acb=90∵cd⊥ab∴∠acd=∠b,∵mn切⊙o于c∴∠mca=∠b,∴∠mca=∠acd,即ac平分∠mcd,同理:bc平分∠ncd.高二数学选修4-1编写:杨社锋编号:07-08教研组长:贾敏教研室主任:田土娟校审:王宏奇弦切角定理学习目标:理解弦切角定理的推导过程,掌握切线长定理、弦切角定理的内容及其推论学习重点:切线长定理及弦切角定理学习难点:切线长定理、弦切角定理及其推论的应用一、基础知识回顾:1切线的判定定理及性质:2.切线长定理切线长:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长以上结论叫做切线长定理:__________________________________ _______________________________________________________ __________________注意:切线长与切线的区别:__________________________________ ______________________________________________________ ____________________________________________写出图中所有的垂直关系:写出图中所有的全等三角形:写出图中所有的相似三角形:写出图中所有的等腰三角形:2弦切角定理及其推论圆周角∠cab,让射线ac绕点a旋转,产生无数个圆周角,当ac绕点a旋转至与圆相切时,停止旋转,得∠bae问:这时∠bae还是圆周角吗?为什么?像∠bae这样的角叫做弦切角,请你仿照圆周角的定义,给出弦切角的定义:________________________________________________ __________________________________ ______________ 问题:以下各图中的角哪个是弦切角?思考:弦切角的三要素是什么?弦切角相对于圆心的位置,分为哪几类?请在右上方画出图。
问题:已知如图,ab是⊙o的一条切线,a为切点,ac是⊙o的一条弦,则∠adc与∠bac有什么关系?请给出证明。
结论:弦切角定理:__________________________________ ______________________ 问题:若两个弦切角所夹的弧相等,,那么这两个弦切角相等吗?为什么?结论:弦切角定理的推论:__________________________________ _________________ 三质疑互探例5已知如图?1??2,ef切圆与点d。
求证:ef // bc例6 已知:如图pa ,pb分别与圆o相切于点a和点b,ac是圆o的直径。
求证:?apb?2?bac四、当堂检测1. 如图,pa、pb是⊙o的切线,切点分别是a、b,直线ef也是⊙o的切线,切点为q,交pa、pb为e、f点,已知pa?12cm,求△pef 的周长.2. 如图,ad是δabc中∠bac的平分线,经过点a的⊙o与bc切于点d,与ab,ac分别相交于e,f. 求证:ef∥bc.3.已知:如图,p为⊙o外一点,pa,pb为⊙o的切线,a和b是切点,bc是直径.求证:ac∥op.课时作业1.在△abc中,ab=5cm bc=7cm ac=8cm, ⊙o与bc、ac、ab分别相切于d、e 、f,则af=_____, bd=_______ 、cf=________2.已知pa、pb切⊙o于a、pa=4,则⊙o的半径为。