精馏塔的工艺标准计算
精馏塔的工艺计算
![精馏塔的工艺计算](https://img.taocdn.com/s3/m/159bad1da76e58fafab00363.png)
精馏塔的计算对于要完成多组分分离设备的最终设计,必须使用严格算法,但是近似算法可以为严格计算提供合适的迭代变量初值,因此本设计中采用两种方法相结合,并以计算机进行数值求解的方式来确定各级上的温度、压力、流率、气液组成和理论板数。
计算过程描述如下:第一步确定关键组分塔Ⅰ重关键组分(HK):四氯化硅(SiCl4)轻关键组分(LK):三氯氢硅(SiHCl3) 轻组分(LNK):二氯硅烷(SiH2Cl2)塔Ⅱ重关键组分(HK):三氯化硅(SiHCl3)轻关键组分(LK):二氯硅烷(SiH2Cl2) 重组分(HNK):四氯化硅(SiCl4)塔Ⅰ塔顶42℃SiH2Cl2 1.167397 1.916284 馏出液中SiHCl3质量含量>=93.946釜液中SiCl4质量含量>=94.000SiHCl315.3096 25.13082塔釜78℃SiCl444.44285 72.95299塔Ⅱ塔顶35℃SiH2ClⅠ塔塔顶出料流量Ⅰ塔塔顶出料组成馏出液中SiH2Cl2质量含量>=99.600釜液中SiHCl3质量含量>=99.500SiHCl3塔釜65℃SiCl4第三步用FUG简捷计算法求出MESH计算的初始理论板数组分塔Ⅰ塔Ⅱ进塔组成/% 塔顶组成/% 塔釜组成/% 进塔组成/% 塔顶组成/% 塔釜组成/% SiH2Cl2 1.916284 7.221959 0 7.221959 99.67945 0.374527 SiHCl325.13072 92.62967 0.751706 92.62967 0.320551 99.46612 SiCl472.95299 0.148369 99.24829 0.148369 0 0.159357 Σ100.00 100.00 100.00 100.00 100.00 100.002.由Fenske公式计算mNlg lg LK HKLK HKd d w w Nm a-轾骣骣犏琪琪琪琪犏桫桫臌=3.由恩特伍德公式计算最小回流比,,1()i i Fim i i D m m i x q R x R a a q a a q üï=-ï-ï?ýï=ï-ïþåå4.由芬斯克公式计算非清晰分割的物料组成()1i i Nm HK i HK HK f w d w a -=骣琪+琪桫 ,()()1NmHK i i HK HK i NmHK i HKHK d f w d d w a a--骣琪琪桫=骣琪+琪桫5.由Kirkbride 经验式确定进料位置0.2062,,,,HK F LK WR S LK F HK D z x N W N z x D 轾骣骣骣犏琪琪琪=琪犏琪琪桫犏桫桫臌6.由吉利兰关系式计算理论板数即0.56680.750.75Y X=-式中1m R R X R -=+ ,1mN N Y N -=+ 第四步 由MESH 方程计算理论板数 1. 用FUG 简捷计算法得到的理论板数N 和进料位置M 作为初始值,初始化汽液流量j V 和j L 。
化工原理课程设计——精馏塔设计
![化工原理课程设计——精馏塔设计](https://img.taocdn.com/s3/m/2e34c1b63186bceb18e8bb54.png)
南京工程学院课程设计说明书(论文)题目乙醇—水连续精馏塔的设计课程名称化工原理院(系、部、中心)康尼学院专业环境工程班级K环境091学生姓名朱盟翔学号240094410设计地点文理楼A404指导教师李乾军张东平设计起止时间:2011年12月5日至 2011 年12月16日符号说明英文字母A a——塔板开孔区面积,m2;A f——降液管截面积,m2;A0——筛孔面积;A T——塔截面积;c0——流量系数,无因此;C——计算u max时的负荷系数,m/s;C S——气相负荷因子,m/s;d0——筛孔直径,m;D——塔径,m;D L——液体扩散系数,m2/s;D V——气体扩散系数,m2/s;e V——液沫夹带线量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;F——气相动能因子,kg1/2/(s·m1/2);F0——筛孔气相动能因子,kg1/2/(s·m1/2);g——重力加速度,9.81m/s2;h1——进口堰与降液管间的距离,m;h C——与干板压降相当的液柱高度,m液柱;h d——与液体流过降液管相当的液柱高度,m;h f——塔板上鼓泡层液高度,m;h1——与板上液层阻力相当的高度,m液柱;h L——板上清夜层高度,m;h0——降液管底隙高度,m;h OW——堰上液层高度,m;h W——出口堰高度,m;h'W——进口堰高度,m;Hσ——与克服表面张力的压降相当的液柱高度,m液柱;H——板式塔高度,m;溶解系数,kmol/(m3·kPa);H B——塔底空间高度,m;H d——降液管内清夜层高度,m;H D——塔顶空间高度,m;H F——进料板处塔板间距,m;H P——人孔处塔板间距,m;H T——塔板间距,m;K——稳定系数,无因次;l W——堰长,m;L h——液体体积流量,m3/h;L S——液体体积流量,m3/h;n——筛孔数目;P——操作压力,Pa;△P——压力降,Pa;△P P——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m,t——筛板的中心距,m;u——空塔气速,m/s;u0——气体通过筛孔的速度,m/s;u0,min——漏气点速度,m/s;u'0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h;V s——气体体积流量,m3/h;W c——边缘无效区宽度,m;W d——弓形降液管宽度,m;W s——破沫区宽度,m;x——液相摩尔分数;X——液相摩尔比;y——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m。
第3章精馏塔主要工艺标准尺寸的设计1
![第3章精馏塔主要工艺标准尺寸的设计1](https://img.taocdn.com/s3/m/82bab517b9d528ea80c77981.png)
精馏段
取阀孔动能因子 则
每层塔板上浮阀数目为
取边缘区宽度 ,破沫区宽度
塔板上的鼓泡区面积
浮阀排列方式采用等腰三角形叉排,取同一个横排的孔心距 。
则排间距:
按 ,以等腰三角形叉排方式作图,排得阀数6个.
所以
阀孔动能因子变化不大,仍在9~13范围内
塔板开孔率=0.552/6.53×100%=8.45%
平均密度
气相
ρV
㎏/㎥
2.73
3.01
液相
ρL
799.47
771.48
平均表面张力
σ
mN/m
19.84
17.51
平均粘度μΒιβλιοθήκη mPa·s0.290
0.251
平均流率
气体
VS
㎥/s
0.039
0.040
液体
LS
6.06×10-5
33.23×10-5
3、2 精馏塔主要尺寸的计算
3、2、1 塔径的计算
精馏段:
由 , , ,
第4章 附属设备与接管的选取
4、1 原料的预热器的设计
采用绝对压力为200kPa的水蒸气逆流加热,饱和水蒸气到饱和液体流出,温度都是120℃,利用蒸汽潜热讲原料从tF加热到tb。
已知tF=25℃,tb=105.64℃,
所以定性温度:
4、1、1 物性数据
表-1
定性温度/℃
密度/﹙㎏/㎥﹚
粘度/Pa·s
1、堰长
取
出口堰高:本设计采用平直堰,堰上液高度 (近似取E=1)
精馏段
提馏段
2、弓形降液管的宽度和横截面
查图得:
则
验算降液管内停留时间:
精馏塔塔径圆整规则
![精馏塔塔径圆整规则](https://img.taocdn.com/s3/m/dbb23a52a31614791711cc7931b765ce05087a9d.png)
精馏塔塔径圆整规则
【原创实用版】
目录
一、精馏塔塔径圆整规则的概述
二、常用标准塔径
三、精馏塔设计时计算后圆整的提馏段和精馏段的塔径不同的处理原则
正文
一、精馏塔塔径圆整规则的概述
精馏塔是化工行业中常用的设备之一,其主要作用是通过升华和冷凝的过程对物质进行分离和提纯。
在精馏塔的设计过程中,塔径圆整规则是非常重要的一个环节。
所谓塔径圆整,就是在计算出塔径后,按照一定的标准进行四舍五入取整,使得塔径能够满足实际设计和生产的需要。
二、常用标准塔径
在实际的精馏塔设计中,常用的标准塔径有:400、500、600、700、800、1000、1200、1400、1600、2000、2200 等。
这些标准塔径是基于工程实践和设计经验总结出来的,能够满足大多数情况下的生产需求。
当然,具体的塔径选择还需要根据实际的生产工艺和设计要求进行确定。
三、精馏塔设计时计算后圆整的提馏段和精馏段的塔径不同的处理原则
在精馏塔设计时,提馏段和精馏段的塔径可能会出现不同的情况。
这时,我们需要按照规定的原则进行处理,一般情况下,我们会将塔径圆整到 1.8mm。
这样的处理原则既能保证塔径的精度,又能满足实际生产的需要。
总的来说,精馏塔塔径圆整规则是精馏塔设计过程中的一个重要环节,
其目的是为了保证塔径的精度和满足实际生产的需要。
精馏工艺计算
![精馏工艺计算](https://img.taocdn.com/s3/m/2084556f10a6f524ccbf85e0.png)
F=D+W FxF=DxD+WxW 塔顶产品易挥发组分回收率η为: η= DxD/FxF 式中:F、D、W分别为进料、塔顶产品、塔底馏出液的摩尔流 量(kmol/h), xF、xD、xW分别为进料、塔顶产品、塔底馏出液组 成的摩尔分率
2. 确定最小回流比
一般是先求出最小回流比,然后根据
气流截面积固定,操作弹性小 a、舌型塔板 —
气相夹带严重,板效率降低 气流截面积可调,操作弹性大
b、浮动喷射塔板 — 存在漏夜和吹干现象,板效率降低
c、浮舌塔板 — 操作弹性大、压降低,特适用减压蒸馏
二.塔板上汽液两相的流动现象
气液接触状态
塔板上汽液两相的流动现象
塔板上汽液两相的流动现象
(ii)当塔顶为分凝器时, x0 xd K
先求出分凝器内与 xd 成相平衡的 x0,再由操作线方程以 x0 计算得出 y1,然后由相平衡方程由 y1 计算出 x1,如此交替地使用操作线方程和相 平衡关系逐板往下计算,直到规定的塔底组成为止,得到理论板数和加 料位置。
(3)加料板位置的确定
求出精馏段操作线和提馏段操作线的交点 xq 、yq ,并以 xq 为分
塔板类型 喷射型塔板:
板式塔
舌形塔板
浮舌塔板
无 溢 流 堰 , 液 层 较 薄压,降 降 低 雾 沫 夹 带 少 , 气 速 可高较, 生 产 能 力 增 大
喷射型
并 流 喷 射 , 液 面 落 差 小
塔板
传 质 表 面 增 大 且 不 断新更, 传 质 效 果 提 高 板 效 率 并 不 是 很 高
塔板上汽液两相的流动现象
注意
通常希望在泡沫状态、喷射状态或两者的过渡状态下操作 液汽比较大时处于泡沫状态,较小时处于喷射状态 易挥发组分与难挥发组分的表面张力的相对大小对汽液 接触状态有影响
精馏塔塔径圆整规则
![精馏塔塔径圆整规则](https://img.taocdn.com/s3/m/825f9f4fe97101f69e3143323968011ca300f733.png)
精馏塔塔径圆整规则摘要:一、精馏塔塔径圆整的必要性二、常用标准塔径列表三、塔径圆整的方法与原则四、变径的注意事项正文:一、精馏塔塔径圆整的必要性在精馏塔设计中,塔径的计算是一项重要任务。
计算出塔径后,我们需要按照标准塔径进行圆整,以满足实际生产需求。
塔径的圆整有助于确保精馏塔的性能稳定,提高馏分纯度和分离效果。
二、常用标准塔径列表根据相关资料,常用标准塔径(mm)如下:400、500、600、700、800、1000、1200、1400、1600、2000、2200。
在实际设计中,可以根据塔的高度、流量等参数选择合适的标准塔径。
三、塔径圆整的方法与原则1.方法:首先,根据精馏塔的工艺条件,计算出理论塔径。
然后,参考常用标准塔径列表,选取最接近计算值的标准塔径进行圆整。
2.原则:圆整后的塔径应满足以下条件:(1)确保塔内流体动力学性能良好,避免产生气流速度过大或过小的问题;(2)满足塔板数要求,保证馏分分离效果;(3)考虑塔的结构强度和材料要求,避免因塔径过大导致成本上升或设备选型困难。
四、变径的注意事项1.变径位置:在设计时,提馏段和精馏段的塔径可能不同,需要进行变径。
变径位置应选择在塔板数相同或相近的位置,以减小流体动力学影响。
2.变径过渡:变径过渡应采用圆滑过渡方式,以减小流体在塔内的局部阻力。
过渡段的长度应适当,避免产生流动死区。
3.变径原因:在满足塔径要求的前提下,尽量避免无故变径。
确实需要变径时,应充分论证变径的合理性,避免造成不必要的能耗损失和设备投资。
总之,在精馏塔设计中,塔径的圆整和变径是一项关键任务。
遵循一定的原则和方法,合理选择塔径和变径方案,有助于确保精馏塔的稳定运行和高效分离效果。
精馏塔和塔板的主要工艺尺寸的计算
![精馏塔和塔板的主要工艺尺寸的计算](https://img.taocdn.com/s3/m/1863e386e53a580216fcfe83.png)
塔和塔板的主要工艺尺寸的计算(一)塔径 D 参考下表 初选板间距H T =0.40m,取板上液层高度H L =0.07m 故: ①精馏段:H T -h L =0.40-0.07=0.311220.00231394.3()()()()0.04251.04 3.78s L s V L V ρρ== 查图表 20C =0.078;依公式0.20.22026.06()0.078()0.0733C C σ===;max0.078 1.496/u m s ===,则:u=0.7⨯u =0.7⨯2.14=1.047m/s 故: 1.265D m ===; 按标准,塔径圆整为1.4m,则空塔气速为2244 1.040.78/1.3s V u m s D ππ⨯===⨯ 塔的横截面积2221.40.63644T A D m ππ===②提馏段:11''22''0.002771574.8()()()()0.05070.956 5.14s L s V L V ρρ==;查图20C0.20.222.09()0.0680.069420C C σ⎛⎫==⨯= ⎪⎝⎭; max 1.213/u m s===,'0.70.7 1.2130.849/u u m s =⨯=⨯=;' 1.20D m ===; 为了使得整体的美观及加工工艺的简单易化,在提馏段与精馏段的塔径相差不大的情况下选择相同的尺寸; 故:D '取1.4m塔的横截面积:''2221.4 1.32744T A D m ππ===空塔气速为22440.956'0.720/1.3s V u m s D ππ⨯===⨯ 板间距取0.4m 合适(二)溢流装置采用单溢流、弓形降液管、平形受液盘及平形溢流堰,不设进流堰。
各计算如下: ①精馏段:1、溢流堰长 w l 为0.7D ,即:0.7 1.40.91w l m =⨯=;2、出口堰高 h w h w =h L -h ow 由l w /D=0.91/1.4=0.7, 2.5 2.58.2810.480.91h w L l m ==查手册知:E 为1.03 依下式得堰上液高度:22332.84 2.848.281.030.013100010000.91h ow w L h E m l ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 故:L ow h -h 0.070.0130.057w h m ==-=3、 降液管宽度d W 与降液管面积f A有/w l D =0.7查手册得/0.14,/0.08d fT W D A A ==故:d W =0.14D=0.14 ⨯1.3=0.182m2220.080.08 1.30.106244f A D m ππ==⨯⨯=()0.10620.418.55,0.0023f T s A H s s L τ⨯===>符合要求4、降液管底隙高度0h取液体通过降液管底隙的流速0u =0.1m/s 依式计算降液管底隙高度0h , 即:000.00230.0250.910.1s w L h m l u ===⨯ ②提馏段:1、 溢流堰长'w l 为0.7'D ,即:'0.7 1.40.91w l m =⨯=;2、出口堰高'w h ''w L ow h =h -h ;由 '/D=0.91/1.4=0.7w l ,'2.5 2.59.9812.630.91h w L l m ==查手册知 E 为1.04依下式得堰上液高度:2233''2.84 2.849.981.040.0146100010000.91h oww L h E ml ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭0.070.01460.0554w h m =-=。
精馏塔工艺工艺设计计算
![精馏塔工艺工艺设计计算](https://img.taocdn.com/s3/m/5ecfd51fff00bed5b9f31d1c.png)
第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。
本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。
3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。
(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,kg/m 3V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W O W L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。
32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。
hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。
精馏塔主要工艺尺寸计算
![精馏塔主要工艺尺寸计算](https://img.taocdn.com/s3/m/c3751ee8964bcf84b8d57b2c.png)
精馏塔主要工艺尺寸计算一、塔径D1、精馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0319.030.28.87792.00015.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SS V L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /45.21时的C0720.02045.21071.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /405.130.230.28.8770720.0max =-⨯=-=ρρρ可取安全系数为,则s m u u /843.0405.160.060.0max =⨯==故m u V D S 179.1843.092.044=⨯⨯==ππ 按标准,塔径圆整为1.2m,则空塔气速。
2、提馏段塔径初选板间距m H T 40.0=,取板上液层高度m h L 06.0=,故m h H L T 34.006.040.0=-=-; 0782.070.20.96041.00017.02121=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛vL SSV L ρρ 查Smith 关联图得C 20;依2.02020⎪⎭⎫⎝⎛=σC C 校正物系表面张力为m mN /92.19时的C ,即0679.02092.19068.0202.02.020=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=σC Cs m Cu V V L /279.170.270.20.9600679.0max =-⨯=-=ρρρ 可取安全系数为,则s m u u /767.0279.160.060.0max =⨯== 故m u V D S 825.0767.041.044=⨯⨯==ππ 按标准,塔径圆整为1.0m,则空塔气速。
为统一精馏段和提馏段塔径,取为。
精馏塔的规格如何计算公式
![精馏塔的规格如何计算公式](https://img.taocdn.com/s3/m/2f1e39153a3567ec102de2bd960590c69ec3d8cf.png)
精馏塔的规格如何计算公式精馏塔是一种用于分离液体混合物的设备,通常用于石油化工、化学工业和精细化工等领域。
其主要原理是利用液体混合物中不同成分的沸点差异,通过加热和冷却来使不同成分分离。
精馏塔的规格设计是非常重要的,它直接影响着设备的性能和效率。
在设计精馏塔的规格时,需要考虑到多种因素,包括所需分离效果、流体性质、操作压力和温度等。
精馏塔的规格计算是一个复杂的过程,需要考虑到多种因素。
其中最重要的因素之一是塔板间距。
塔板间距是指在精馏塔内部设置的板块之间的垂直距离。
塔板间距的大小直接影响着塔内的液体和气体流动情况,从而影响着分离效果。
一般来说,塔板间距越小,分离效果越好,但也会增加设备的成本和能耗。
因此,在设计精馏塔的规格时,需要综合考虑分离效果和成本因素,选择合适的塔板间距。
精馏塔的规格计算还需要考虑到气液流体的性质。
在精馏塔内部,气体和液体会进行频繁的传质和传热过程,因此需要考虑到流体的密度、粘度、热导率等性质。
这些性质会直接影响着塔内的流动情况和传热效果,从而影响着分离效果和能耗。
在设计精馏塔的规格时,需要根据实际情况选择合适的流体性质参数,进行流体力学和传热传质计算,确定合理的塔板间距和塔板数量。
除了塔板间距和流体性质,精馏塔的规格计算还需要考虑到操作压力和温度等因素。
在设计精馏塔的规格时,需要根据所处理的液体混合物的成分和性质,确定合理的操作压力和温度范围。
这些参数会直接影响着塔内的气液相平衡和传热传质过程,从而影响着分离效果和能耗。
在确定精馏塔的规格时,需要根据实际情况选择合适的操作压力和温度范围,确保设备能够稳定运行并达到预期的分离效果。
在实际工程中,精馏塔的规格计算是一个复杂的过程,需要综合考虑多种因素。
通常情况下,需要进行流体力学和传热传质计算,确定合理的塔板间距和塔板数量;根据所处理的液体混合物的成分和性质,确定合理的操作压力和温度范围;并综合考虑成本和能耗等因素,选择合适的设备规格。
乙醇—水精馏塔的工艺设计
![乙醇—水精馏塔的工艺设计](https://img.taocdn.com/s3/m/462416e676c66137ef0619c4.png)
目录(一)设计方案简介.................................................................................................................. - 1 - (二)工艺计算及主体设备设计计算...................................................................................... - 1 - 1.精馏流程的确定............................................................................................................ - 1 - 2.塔的物料恒算................................................................................................................ - 1 -2.1料液及塔顶、塔底产品的摩尔分数....................................................................... - 1 -2.2 料液及塔顶、塔底产品的平均摩尔质量.............................................................. - 2 -2.3 物料恒算.................................................................................................................. - 2 -3.塔板数的确定................................................................................................................ - 2 -3.1理论塔板数的求取................................................................................................... - 2 -3.1.1绘制相平衡图................................................................................................... - 2 -3.1.2 求最小回流比、操作回流比.......................................................................... - 3 -3.1.3 求理论塔板数.................................................................................................. - 3 -3.2全塔效率................................................................................................................... - 5 -3.3实际塔板数............................................................................................................... - 5 -4.塔的工艺条件及物性数据计算[2]................................................................................. - 5 -4.1操作压力................................................................................................................... - 5 -4.2温度[1] ....................................................................................................................... - 5 -4.3平均摩尔质量........................................................................................................... - 6 -4.4平均密度................................................................................................................... - 6 -4.5液体表面张力........................................................................................................... - 7 -4.6液体黏度................................................................................................................... - 7 -5.精馏段气液负荷计算[2]................................................................................................. - 7 - 6.塔和塔板主要工艺尺寸计算[3],[4] ............................................................................... - 8 -6.1塔径........................................................................................................................... - 8 -6.2溢流装置................................................................................................................... - 8 -6.3塔板布置................................................................................................................... - 9 -6.4筛孔数与开孔率..................................................................................................... - 10 -6.5塔的有效高度(精馏段)......................................................................................... - 10 -6.6塔高计算................................................................................................................. - 10 -7.筛板的流体力学验算[5]................................................................................................. - 10 -7.1塔板压降................................................................................................................. - 10 -7.2液面落差................................................................................................................. - 11 -7.3.液沫夹带................................................................................................................ - 11 -7.4漏液......................................................................................................................... - 11 -7.5液泛......................................................................................................................... - 11 -8.塔板负荷性能图[6]......................................................................................................... - 12 -8.1漏液线..................................................................................................................... - 12 -8.2液沫夹带线............................................................................................................. - 12 -8.3液相负荷下限线..................................................................................................... - 13 -8.4液相负荷上限线..................................................................................................... - 13 -8.5液泛线..................................................................................................................... - 14 -9.附图................................................................................................................................ - 16 -10.本设计的评价或有关问题的分析讨论...................................................................... - 18 - 附:参考文献符号说明.......................................................................................................... - 18 -(一)设计方案简介塔设备是炼油、化工、石油化工、生物化工和制药等生产中广泛应用的气液传质设备。
精馏塔的设计(毕业设计)
![精馏塔的设计(毕业设计)](https://img.taocdn.com/s3/m/e54cdf0fc4da50e2524de518964bcf84b9d52d7d.png)
精馏塔的设计(毕业设计)精馏塔尺⼨设计计算初馏塔的主要任务是分离⼄酸和⽔、醋酸⼄烯,釜液回收的⼄酸作为⽓体分离塔吸收液及物料,塔顶醋酸⼄烯和⽔经冷却后进⾏相分离。
塔顶温度为102℃,塔釜温度为117℃,操作压⼒4kPa。
由于浮阀塔塔板需按⼀定的中⼼距开阀孔,阀孔上覆以可以升降的阀⽚,其结构⽐泡罩塔简单,⽽且⽣产能⼒⼤,效率⾼,弹性⼤。
所以该初馏塔设计为浮阀塔,浮阀选⽤F1型重阀。
在⼯艺过程中,对初馏塔的处理量要求较⼤,塔内液体流量⼤,所以塔板的液流形式选择双流型,以便减少液⾯落差,改善⽓液分布状况。
4.2.1 操作理论板数和操作回流⽐初馏塔精馏过程计算采⽤简捷计算法。
(1)最少理论板数N m系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,⼀般按Fenske ⽅程[20]求取。
式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或⽓相)中的摩尔分数;x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数;αav——轻、重关键组分在塔内的平均相对挥发度;N m——系统最少平衡级(理论板)数。
塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度:由式(4-9)得最少理论板数:初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较⼩,则最少理论板数:。
(2)最⼩回流⽐最⼩回流⽐,即在给定条件下以⽆穷多的塔板满⾜分离要求时,所需回流⽐R m,可⽤Underwood法计算。
此法需先求出⼀个Underwood参数θ。
求出θ代⼊式(4-11)即得最⼩回流⽐。
式中——进料(包括⽓、液两相)中i组分的摩尔分数;c——组分个数;αi——i组分的相对挥发度;θ——Underwood参数;——塔顶馏出物中i组分的摩尔分数。
进料状态为泡点液体进料,即q=1。
取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以利⽤试差法解得θ=0.9658,并代⼊式(4-11)得(3)操作回流⽐R和操作理论板数N0操作回流⽐与操作理论板数的选⽤取决于操作费⽤与基建投资的权衡。
精馏塔的设计计算
![精馏塔的设计计算](https://img.taocdn.com/s3/m/2c046b7bae1ffc4ffe4733687e21af45b307fe1c.png)
液流型式选取参考表
液 体 流 量 m3/h U 型流型 单流型 双流型 阶梯流型
<7
<45
<9
<70
<11
<90 90-160
<11
<110 110-200 200-300
<11
<110 110-230 230-350
<11
<110 110-250 250-400
<11
<110 110-250 250-450
兼顾技术上的可行性和经济上的合理性进行考虑。
可考虑取常压操作,塔顶压力为4kPa(表压), 每层塔板压降p≤0.7kPa。
现在六页,总共六十五页。
3、进料状况的选择 进料状态与塔板数、塔径、回流量及塔的热负荷都有密切
的联系。 在实际的生产中进料状态有多种,但一般都将料液预热到
泡点或接近泡点才送入塔中,这主要是由于此时塔的操作比较 容易控制,不致受季节气温的影响。
umax C
L V V
C
C20
L
20
0.2
筛板塔,可查教材Smith图 求 C20 ; 浮阀塔可查数据手册书确定C20 。
现在十九页,总共六十五页。
0.1 0.09
0.07 0.06
C20
0.05 0.04
0.03
0.02
HT=0.6 0.45 0.3
0.15
0.01 0.01
课本P.129
Vs
VMVm
3600Vm
m3/s
L=RD
Ls
LMLm
3600Lm
m3/s
提馏段: V=V +(q-1)F L =L +F
《化工原理》乙醇-水混合液精馏塔设计
![《化工原理》乙醇-水混合液精馏塔设计](https://img.taocdn.com/s3/m/1a12594200f69e3143323968011ca300a6c3f618.png)
《化工原理》乙醇-水混合液精馏塔设计一、设计任务:完成精馏塔工艺优化设计、精馏塔结构优化设计以及有关附属设备的设计和选用,绘制精馏塔的工艺条件图及塔板性能负荷图,并编制工艺设计说明书。
二、操作条件:年产量:7500t。
料液初温:30℃料液浓度:43%(含乙醇摩尔分数)塔顶产品浓度:97%(含乙醇摩尔分数)乙醇回收率:99.8%(以摩尔分数计)年工作日:330天(24小时运行)精馏塔塔顶压力:4kPa(表压)冷却水温度:30℃饱和蒸汽压力:2.5kgf/cm2(表压)单板压降:不大于0.7kPa全塔效率:52%回流比是最小回流比的1.8倍进料状况:泡点进料三、设计内容:(1)设计方案简介:对确定的工艺流程及精馏塔型式进行简要论述。
(2)工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。
(3)主要设备的工艺尺寸计算板间距,塔径,塔高,溢流装置,塔盘布置等。
(4)主要附属设备设计计算及选型塔顶全凝器设计计算:热负荷,载热体用量。
(5)用坐标纸绘制乙醇-水溶液的y-x图一张,并用图解法求理论塔板数(贴在说明书中对应的地方)。
(6)绘制精馏塔设计条件图。
附:汽液平衡数据表1一、总体设计计算1.1 汽液平衡数据(760mm Hg)1.2塔的物料衡算=43/46.07/(43/46.07+57/18.01)=0.2277XF=97/46.07/(97/46.07+31/18.01)=0.9267XDM=0.2277⨯46.07+(1-0.2277)⨯18.02=24.399kg/kmol F同理可得M=44.013 D,=7.5*106/7920=946.97DD=946.97/44.013=21.516η=0.998=DXD /FXF=21.516*0.9267/0.2277FF=87.742 由 F=D+WFXF =DXD+WXW得:Xw=0.03998W=66.226 Kmol/h1.3塔板计算tF=(0.2277-0.1661/0.2337-0.1661)*(82.7-84.1)+84.1=82.82°CtF=82.82℃乙醇不同温度的饱和蒸气压乙醇的饱和蒸气压o={[(82.82-80)/(90-80)]*(158.27-108.32)}+108.32=122.41 PA水不同温度的饱和蒸气压由图数据通过内插法得P B O =53.0525 α =122.41/53.0525=2.31 泡点进料q=1R min =1/α-1[X D /X F -α(1-X D )/1-X F ]=2.94 R=1.8R min =5.292精馏段操作线方程1111n n D R y x x R R +=+++=0.841x+0.1473提馏段操作线方程W m m x WqF L W x W qF L qF L y -+--++=+''1=1.503x-0.000849实际塔板数N pE T =0.52精馏段Np1=11/0.52=21块提馏段Np2=3/0.52=6块总板数21+6=27块二、塔的工艺条件及物性数据计算2.1精馏段的数据1.平均压力Pm单板降压不大于0.7Kpa所以等于0.7Kpa塔顶:PD=4+101.3=105.3Kpa加料板:PF=105.3+0.7*21=120Kpa平均压力:Pm=(105.3+120)/2=112.65Kpa2.平均温度tD={[(0.9267-0.08943)/(1-0.8943)]*(80.02-78.15)}+78.15=78.72℃tF=82.82℃精馏段tm=(82.82+78.72)/2=80.77℃3.平均分子量塔顶:M VDM = XD×M轻组分+(1-XD)×M重组分=46.07*0.9267+(1-0.9267)*18.01=44.01kg/kmolM LDM = x1×M轻组分+(1-x1)×M重组分=46.07*0.743+(1-0.743)*18.01=38.86kg/kmol进料板的平均分子量:进料板对应的组成Xn 和ynM VFM = yn×M轻组分+(1-yn)×M重组分=46.01*0.512+(1-0.512)*18.01=32.38kg/kmolM LFM = Xn×M轻组分+(1-Xn)×M重组分=46.07*0.2277+(1-0.2277)*18.01=24.4kg/kmol 精馏段:MVm=(44.01+32.38)/2=38.2kg/kmolMLm=(38.36+24.4)/2=31.63kg/kmol4.平均密度塔顶:aA =0.97 aB=0.03查物性数据:易挥发组分密度ρ1= 763.42 Kg/m3难挥发组分密度ρ2= 972.58 Kg/ m3塔顶液相密度:ρLD =1/[a1/ρ1+(1-a1) /ρ2]= 741.84Kg/ m3进料板:aA =0.43 aB=0.53查物性数据:易挥发组分密度ρ1= 733.59 Kg/m3难挥发组分密度ρ2= 969.97 Kg/ m3进料液相密度:ρLF =1/[a2/ρ1+(1-a2) /ρ2]= 851.93Kg/ m3精馏段的平均液相密度:ρLM =(ρLD+ρLF)/2=796.88Kg/ m3精馏段平均汽相密度:TM =(TF+TD)/2=80.77℃ρVM =PM V /RT M =1.463Kg/ m 35. 液体的平均表面张力 (1)塔顶t D =78.72℃ бO =17.26 бW =62.8V O =46.07/737=0.06251m 3/kmol V w =18.01/973=0.01851m 3/kmol X o =X D =0.9267 X W =1-0.9267=0.0733 φo =X o V O /(X W V w +X o V O )=0.977 φW =1-0.977=0.023 B=lg(φW q /φo )=-3.266Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.0007 A=B+Q=-3.266-0.0007=-3.2667lg(φs W q /φso )=-3.2667和φs W +φso =1解得 φs W =0.021 φso =0.979бm 1/4=φs W бW 1/4+φso бO 1/4=2.05 бDm =17.81N/m2. 进料板t F =82.82℃ бO =16.88 бW =62.04V O =46.07/733=0.06285m 3/kmol V w =18.01/969.3=0.01858m 3/kmol X o =X F =0.2277 X W =1-0.2277=0.7723 φo =X o V O /(X W V w +X o V O )=0.499φW =1-0.499=0.501 B=lg(φW q /φo )=-0.298Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.00748A=B+Q=-0.298-0.00748=-0.3055lg(φs W q /φso )=-0.3055和φs W +φso =1解得 φs W =0.498 φso =0.502бm 1/4=φs W бW 1/4+φso бO 1/4=2.415 бFm =34.01N/m(3) 精馏段бm =(17.81+34.01)/2=25.91N/m 6. 液体的平均黏度,L D μ=0.44⨯0.9267+(1-0.9267)⨯0.357=0.434.a mP s,L F μ=0.12⨯0.33+(1-0.12)⨯0.30=0.3904.a mP s,L M μ精=0.435*0.3904+0.357*(1-0.3904)=0.387.a mP s 7. 精馏段的汽液负荷计算V=(R+1)D=(5.292+1)⨯21.516=135.38/kmol hS V =,,3600V V m V M ρ精精=135.38*38.2/(3600*1.463)=0.91m 3/sV h =3600*0.91=3262.96m 3/hL=RD=50292⨯21.516=113.86/kmol h,3600L s L m LM L ρ=精精=113.86*31.63/(3600*796.88)=0.001255L h =3600*0.001255=4.52m 3/h2.2 提馏段的数据1.平均温度t W ={[(0.03998-0.019)/(1-0.019)]*(89-95.5)}+95.5=92.93℃ t F =82.82℃提馏段t m =(82.82+92.93)/2=87.88℃2.平均分子量 塔底:M VWM = X W ×M 轻组分+(1-X W )×M 重组分=46.07*0.414+(1-0.414)*18.01=29.63kg/kmol M LWM = x 1×M 轻组分+(1-x 1)×M 重组分=46.07*0.03998+(1-0.03998)*18.01=19.13kg/kmol 提馏段:M Vm =(29.63+32.38)/2=31kg/kmol M Lm =(19.13+24.4)/2=21.77kg/kmol 3.平均密度塔底:a A =0.64 a B =0.36查物性数据: 易挥发组分密度ρ1= 725.87 Kg/m 3 难挥发组分密度ρ2= 963.23 Kg/ m 3塔底液相密度:ρLD =1/[a 1/ρ1+(1-a 1) /ρ2]= 963.15Kg/ m 3 提馏段的平均液相密度:ρLM =(ρLW +ρLF )/2=907.54Kg/ m 3 提馏段平均汽相密度:T M =(T F +T D )/2=87.88℃ ρVM =PM V /RT M =1.16Kg/ m34.液体的平均表面张力 (1)塔底t W =92.93℃ бO =13.27 бW =60.16V O =46.07/737=0.06251m 3/kmol V w =18.01/973=0.01851m 3/kmol X o =X W =0.03998 X W =1-0.03998=0.96 φo =X o V O /(X W V w +X o V O )=0.123φW =1-0.123=0.877B=lg(φW q /φo )=0.796Q=0.041(q/T)(бO V O 2/3/q-бW V w 2/3)=-0.000163 A=B+Q=0.796-0.000163=0.794lg(φs W q /φso )=0.794和φs W +φso =1解得 φs W =0.634 φso =0.366бm 1/4=φs W бW 1/4+φso бO 1/4=2.46 бWm =36.62N/m提馏段бm =(36.62+34.01)/2=35.32N/m 5.液体的平均黏度μlw =0.03998⨯0.324+(1-0.03998)⨯0.324=0.393.a mP s ,L F μ=0.12⨯0.33+(1-0.12)⨯0.30=0.3904.a mP s μL,M 提=0.393*0.084+0.393*(1-0.084)=0.33.a mP s 6.精馏段的汽液负荷计算V=(R+1)D=(5.292+1)⨯21.516=135.38/kmol hS V ==135.38*31/(3600*1.16)=1m 3/sV h =3600*1=3600m 3/hL=RD=50292⨯21.516=113.86/kmol hL s =113.86*21.77/(3600*907.54)=0.00154L h =3600*0.00154=5.508m 3/h三、塔和塔板主要工艺尺寸计算 3.1 塔径首先考虑精馏段:参考有关资料,初选板音距T H =0.5m 取板上液层高度L h =0.06m 故 T H -L h=0.5-0.06=0.44ms s L V ⎛ ⎝查图可得 20C =0.097校核至物系表面张力为9.0mN/m 时的C ,即C=20C 0.220σ⎛⎫⎪⎝⎭=0.0102max u =CL VVρρρ-可取安全系数0.7,则 u=0.7max u =0.7⨯2.378=1.665m/s故4sV uπ按标准,塔径圆整为1.2m ,则空塔气速为0.805m/s3.2 精馏塔有效高度的计算精馏段有效高度为1Z N =-T 精精()H =(21-1)⨯0.5=10m提馏段有效高度为1Z N =-T 提提()H =(6-1)⨯0.5=2.5mZ 总=10+2.5=12.5m3.3 溢流装置采用单溢流、弓形降液管⑴ 堰长 w l 取堰长 w l =0.6Dw l =0.6⨯1.2=0.72m⑵ 出口堰高w h =L ow h h -选用平直堰,堰上液层高度ow h 由下式计算ow h =2/32.841000h w L E L ⎛⎫ ⎪⎝⎭近似取E=1.03,则ow h =0.00995故 w h =0.06-0.00995=0.05m ⑶ 降液管的宽度d W 与降液管的面积f A 由L D /D T =0.6《化工设计手册》 得dW D =0.1,f TA A =0.053 故 d W =0.12 f A =0.0722()24D π=0.062m留时间 f T sA H L τ==23.9s (>5s 符合要求)提馏段t=A d H T /Ls=33.11=>5s⑷ 降液管底隙高度 h ο u o ,=0.08h ο=L s /w l u o ,=0.022m3.4 塔板布置(1)取边缘区宽度c W =0.06,安定区宽度s W =0.075(2)计算开孔面积212sin 180a x A R R π-⎡⎤=⎢⎥⎣⎦=0.7992m 其中 x=2D-(d s W W +)=0.405m R=2D-c W =0.54m 3.5 筛板数n取筛孔的孔径0d 为39mm,正三角形排列,一般碳钢的板厚δ为3mm,孔中心距t=75.0mm 浮阀数目 取阀动能因数11F =,则由式o υ=o υ=计算塔板上的筛孔数n,即 n=4V s /πd o 2u o =83.75=84提馏段的筛口气速和筛孔数用上述公式计算, 提馏段 u 0=10.21m/s, n=82个取边缘区宽度c W =0.06,安定区宽度s W =0.075,板厚δ为3mm, 做等腰三角形叉排h=Aa/0.075n=0.127m=120mm 阀孔气速μo =4V s /πnd o 2=9.12m/s F 0=10.97四、筛板的流体力学性能 1. 塔板压降校核 h f =h c +h e(1)气体通过干板的降压h c临界孔速 u 0c =(73/ρv )1/1.825=8.52m/s<u 0 所以h c =5.34(ρv /ρL )(u 02/2g)=0.0411m (2)气体通过班上液层的压降h e h e =β(h w +h ow )=0.05*0.06=0.03 (3)h б克服表面张力的压降 h б=0.00034m(4)气体通过筛板压降h f 和∆p f h f =h c +h e +h б=0.07144m∆p f =ρl *g*h f =558.5kpa<0.7kpa 2. 雾沫夹带量校核泛点率1100%F bF =板上液体流经长度 Z L =D T -2W D =0.96m F=40.72%<80%不会发生过量的雾沫夹带 3. 漏液校核=4.134m/s k=u 0/u'0=2.19=>2提馏段用同样的方法得,k=u 0/u'0==>2 4. 降低管液泛校核为防止降液管液泛的发生,应使降液管中清液层高度()d T w H H h ≤Φ+d P L d H h h h =++ 即h d =0.153(L s /L w h o )2=0.00096m取 取校正系数Φ=0.5,H d =0.1324,Φ(H T +h w )=0.275m可见(),d T W H H h φ≤+符合防止淹塔的要求。
精馏塔的设计及选型
![精馏塔的设计及选型](https://img.taocdn.com/s3/m/0277caf976c66137ef06197f.png)
精馏塔的设计及选型目录精馏塔的设计及选型 (1)目录 (1)1设计概述 01。
1工艺条件 01。
2设计方案的确定 02塔体设计计算 (1)2。
1有关物性数据 (1)2。
2物料衡算 (3)2.3塔板数的确定 (4)2。
4精馏塔的工艺条件及相关物性数据 (8)2.5塔体工艺尺寸的设计计算 (11)2.6塔板工艺尺寸的设计计算 (14)2.7塔板流体力学验算 (18)2.8负荷性能图 (22)2。
9精馏塔接管尺寸计算 (27)3精馏塔辅助设备的设计和选型 (31)3。
1原料预热器的设计 (32)3.2回流冷凝器的设计和选型 (34)3。
3釜塔再沸器的设计和选型 (38)3。
4泵的选择 (40)3。
5筒体与封头 (41)1设计概述1.1工艺条件(1)生产能力:2836.1kg/d(料液)(2)工作日:250天,每天4小时连续运行(3)原料组成:35。
12%丙酮,64.52%水,杂质0.35%,由于杂质含量较小且不会和丙酮一起蒸馏出去,所以可以忽略。
所以此母液可以视为仅含丙酮和水两种成分,其质量组成为:35。
12%丙酮,水64。
88%(下同)(4)产品组成:馏出液99%丙酮溶液,回收率为90%,由此可知塔釜残液中丙酮含量不得高于5.16%即每天生产99%的丙酮905。
54kg。
(5)进料温度:泡点(6)加热方式:间接蒸汽加热(7)塔顶压力:常压(8)进料热状态:泡点(9)回流比:自选(10)加热蒸气压力:0。
5MPa(表压)(11)单板压降≤0.7kPa1。
2设计方案的确定(1)、精馏方式及流程:在本设计中所涉及的浓度范围内,丙酮和水的挥发度相差比较大,容易分离,且丙酮和水在操作条件下均为非热敏性物质,因此选用常压精馏,并采取连续精馏方式。
母液经过换热器由塔底采出液预热到泡点,在连续进入精馏塔内,塔顶蒸汽经过塔顶冷凝器冷凝后,大部分连续采出,采出部分经冷却器后进入储罐内备用,少部分进行回流;塔底液一部分经过塔釜再沸器气化后回到塔底,一部分连续采出,采出部分可用于给原料液预热.塔顶装有全凝器,塔釜设有再沸器,进料输送采用离心泵,回流液采用高位槽输送.(2)、进料状态:泡点进料.(3)、加热方式:间接蒸汽加热。
板式精馏塔的工艺计算
![板式精馏塔的工艺计算](https://img.taocdn.com/s3/m/e08235957e192279168884868762caaedd33bab7.png)
板式精馏塔的工艺计算板式精馏塔是一种常用的化工设备,广泛应用于石油、化工、医药等行业。
其主要功能是通过将混合物中的组分按照其沸点进行分馏,使得目标组分的纯度得到提高。
在进行板式精馏塔的工艺计算时,需要考虑到以下几个方面:输入参数、计算目标、热力学计算和桶盖数的确定。
首先,需要明确输入参数。
输入参数包括原料混合物的组分和含量、所需纯度、塔顶温度和压力、塔底产品温度和压力等。
这些参数会直接影响到工艺计算的结果,因此需要准确确定。
计算目标包括分离效果、塔塔顶压力降、塔底回流比等。
分离效果是指目标组分在塔底的摩尔分数,一般通过输入纯度和目标产量来确定。
塔塔顶压力降是指输送各级板之间的压力差,需要根据所使用的塔板类型和流体性质进行计算。
塔底回流比则是指塔底回流液体的量与塔底产品量的比值,也会直接影响到分离效果。
其次,进行热力学计算。
热力学计算是指根据输入的参数和计算目标,通过热力学模型来计算实际的分馏过程。
常用的热力学模型有理想图、实际图和平均图等。
根据输入的参数和计算目标,可以利用这些模型计算出所需的塔塔回流比、板间汽液流量分布等。
最后,确定桶盖数。
桶盖数是指精馏塔具有多少个板。
桶盖数的确定需考虑到分离目标、塔塔顶压力降和塔底回流比等因素。
一般情况下,桶盖数越多,分离效果越好。
但是桶盖数增加会使得塔塔顶压力降增大,需要更多的能量来提供给塔塔顶最后板降低塔底回流比降低。
要确定适当的桶盖数,可以采用经验方法或者利用板塔模拟软件进行计算。
经验方法一般是通过经验公式或者经验图来确定桶盖数,而板塔模拟软件通常是基于物理方程建立模型,通过解算来计算最佳的桶盖数。
综上所述,板式精馏塔的工艺计算需要考虑输入参数、计算目标、热力学计算和桶盖数的确定。
通过合理设置这些参数和确定适当的桶盖数,可以实现有效的分馏过程,并获得所需的目标组分纯度。
但是,需要指出的是,由于化工生产中的多种因素的影响,实际操作时仍需要根据实际情况进行调整和优化。
精馏塔工艺工艺设计计算
![精馏塔工艺工艺设计计算](https://img.taocdn.com/s3/m/eb29163881c758f5f71f67cb.png)
第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。
本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。
3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。
(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3 V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。
32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。
hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
26.6148.2lg )1324.05544.2120681.15612.9lg(lg ))()lg((min =⨯==-HK LK W LKHK D HK LK x xx x N α2.2.2塔板数的确定 一、最小回流比R min本设计为泡点进料,即饱和液体进料,q =1由恩特伍德公式:1)(min ,+=-∑R x i mD i i θαα1i iix q ααθ=--∑019375.01148.2046875.0148.21705.5015625.01705.5=-⨯+-⨯+-⨯=-∑θθθθααi i i x试差法求得=θ 2.3 则最小回流比304.113.2101.013.2148.27223.0148.23.21705.52677.01705.51)(min =--⨯+-⨯+-⨯=--∑=θααi m D i i x R ,二、实际回流比根据混合物分离的难易程度,取实际回流比为最小回流比的1.2倍 则R =1.2 R min =1.2×1.304=1.565组份 进料温度133塔顶温度105.5 塔底温度136 平均相对挥发度苯 4.38 5.9615.1705 甲苯 1.97 2.5141.962.148 乙苯1111三、全塔理论板数的确定102.01565.1304.1565.11min =+-=+-R R R 查《化工原理》下P33图1-28吉利兰图得52.02min=+-N N N将26.6min =N 代入,求得N=15.2 四、进料板的计算5.9lg )()(lg )(=⎪⎪⎭⎫ ⎝⎛÷=-HKLK HK LK m R f d f d N α3lg )()(lg )(=⎪⎭⎫⎝⎛÷=-HKLK HK LK m S f f N αωω因为S Rm S m R R S N NN N N N N ===+)()(2.15, 12.112.1535.9135.9)()(1)()(=⨯+=⨯+=N N N N N N m S mR mS m R R 08.412.112.15=-=-=R S N N N所以,第5层理论板是加料版。
3 精馏塔主要尺寸的设计3.1塔径的计算3.3.1填料精馏塔有关参数操作回流比:R=2 理论板数:N T =16 进料板序号:N F =5 塔顶温度:t D =105.5℃塔釜温度:t W =136℃3.3.2 塔顶有关参数计算[4 由化工物性手册查得:3/885m kg =苯ρ3/866m kg =甲苯ρ3/867m kg =乙苯ρ气体平均摩尔质量:mol g M V /39.8810601.092722.078268.0=⨯+⨯+⨯=气体密度:()335/85.22735.10510314.839.8810013.1m kg RT PM D V V =+⨯⨯⨯⨯==ρ 液体密度:3/102.87186701.0866722.0885268.0m kg L =⨯+⨯+⨯=ρs m V S /342.085.2360039.8873.393=⨯⨯=h kmol RD L /4868.262434.132=⨯== 3.3.3进料板有关参数计算s m V V S S /342.03,== 气相组成:94.2=m α()()014.0005.0194.21005.094.21=⨯-+⨯=-+=x a x y αα气体平均摩尔质量:molg M V /8.105106986.092014.0'=⨯+⨯=气体密度:()335''/71.315.27313310314.88.10510013.1m kg RT PM D V V=+⨯⨯⨯⨯==ρ3'/76101.0771763722.0755268.0m kg L =⨯+⨯+⨯=ρ3.3.4精馏段塔径计算液相质量流量为:h kg L /231333.874868.26=⨯=ω 气相质量流量为:h kg V /75.351139.887.39=⨯=ω流动参数为:0377.0102.87185.275.351123135.05.0=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=L V VLρρωωψ由于填料选择的是金属孔板波纹填料350Y ;查埃克特通用关联图得:7.02.02=L LV msx g u μρρφϕ由于s mPa L ⋅=262.0μ10.1102.8713.958===L ρρϕ水0033.0102.87185.2==L V ρρ257=φ 代入上式中得:7.08.90033.010.1262.02max 2.0=⨯⨯⨯u即:s m u /3.3max = 由于max 0.8uu =即:s m u u /64.23.38.08.0max =⨯== 由公式m u V D S 51.064.214.3342.044=⨯⨯==π圆整后为0.6m 3.3.5提溜段塔径计算液相质量流量为:h kg L/1709648.6735.253'=⨯=ω 气相质量流量为:h kg V/42008.1057.39'=⨯=ω流动参数为:28.076171.34200170965.05.0''''=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=L V V L ρρωωψ同上,查图得:4.02.0''''2'max =L L V g u μρρφϕ由于257=φs mPa L⋅=207.0'μ 12.1770863'===L ρρϕ水00488.076171.3''==L V ρρ代入上式中得:4.08.9000207.000488.012.12572.02'max =⨯⨯⨯⨯u即:s m u /1.3'max=s m u u /48.21.38.08.0max ''=⨯==则:m u V D S 53.048.214.3342.044'=⨯⨯==π比较精馏段与提溜段计算结果,二者基本相同。
圆整塔径,取D=600mm 3.4液体喷淋密度及空塔气速核算 精馏段液体喷淋密度为()hm m D U LL⋅=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=2322/58.4423.014.33.7406.23312πρω精馏段空塔气速为:sm D u VV/22.126.014.3360085.275.3511222=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=πρω提溜段液体喷淋密度为:()hm m U ⋅=⎪⎭⎫ ⎝⎛=232'/3.3326.014.3420017096提溜段空塔气速为: s m D u V V /11.126.014.3360071.34200222'''=⎪⎭⎫⎝⎛⨯=⎪⎭⎫⎝⎛=πρω查规整填料性能参数知32/350m m =σ,取)/(08.023(min)h m m L W ⋅= 则)/(2835008.023(min)(min)h m m L U W ⋅=⨯==σ 经核算,选用塔径600mm 符合要求。