高考物理知识点:气体的性质

合集下载

气体的性质

气体的性质
二、气体实验定律
1.气体的等温变化玻意耳定律
(1)内容:一定质量的气体,在温度不变的情况下,它的压强跟体积成正比.
(2)表达式为: 或 .
2.气体的等容变化查理定律
(1)内容:一定质量的气体,在体积不变的情况下,它的压强跟热力学温度成正比.
(2)表达式为: 或者 常数.
3.气体的等压变化盖·吕萨克定律
3.(2012福建)(2)空气压缩机的储气罐中储有1.0atm的空气6.0L,现再充入1.0atm的空气9.0L。设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为_____。
A.2.5atm B.2.0 atm C.1.5 atm D.1.0 atm
4.如图所示,左边的体积是右边的4倍,两边充以同种气体,温度分别为20℃和10℃,此时连接两容器的细玻璃管的水银柱保持静止,如果容器两边的气体温度各升高10℃,忽略水银柱及容器的膨胀,则水银柱将( )
系统内能减小
2.热力学第二定律
(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化(热传导的方向)。
(2)不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化(机械能和内能转化过程的方向性)。或第二类永动机是不可能制成的。
3.热力学第三定律
热力学零度不可达到。
典型例题
1.(2010·广东理综·T14)图是密闭的气缸,外力推动活塞P压缩气体,对缸内气体做功800J,同时气体向外界放热200J,缸内气体的
(i)求玻璃泡C中气体的压强(以mmHg为单位)
(ii)将右侧水槽的水从0°C加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温。
16.
图9
(12分)如图9甲是一定质量的气体由状态A经过状态B变为状态C的V—T图象.已知气体在状态A时的压强是1.5×105Pa.

高考理综知识点总结

高考理综知识点总结

理科弱的考生,把这些弄会可保你理综过200一、物理性质1、有色气体:F2(淡黄绿色)、Cl2(黄绿色)、Br2(g)(红棕色)、I2(g)(紫红色)、NO2(红棕色)、O3(淡蓝色),其余均为无色气体.其它物质的颜色见会考手册的颜色表.2、有刺激性气味的气体:HF、HCl、HBr、HI、NH3、SO2、NO2、F2、Cl2、Br2(g);有臭鸡蛋气味的气体:H2S.3、熔沸点、状态:①同族金属从上到下熔沸点减小,同族非金属从上到下熔沸点增大。

②同族非金属元素的氢化物熔沸点从上到下增大,含氢键的NH3、H2O、HF反常。

③常温下呈气态的有机物:碳原子数小于等于4的烃、一氯甲烷、甲醛。

④熔沸点比较规律:原子晶体>离子晶体>分子晶体,金属晶体不一定。

⑤原子晶体熔化只破坏共价键,离子晶体熔化只破坏离子键,分子晶体熔化只破坏分子间作用力。

⑥常温下呈液态的单质有Br2、Hg;呈气态的单质有H2、O2、O3、N2、F2、Cl2;常温呈液态的无机化合物主要有H2O、H2O2、硫酸、硝酸.⑦同类有机物一般碳原子数越大,熔沸点越高,支链越多,熔沸点越低.同分异构体之间:正>异〉新,邻>间>对。

⑧比较熔沸点注意常温下状态,固态>液态>气态。

如:白磷〉二硫化碳>干冰。

⑨易升华的物质:碘的单质、干冰,还有红磷也能升华(隔绝空气情况下),但冷却后变成白磷,氯化铝也可;三氯化铁在100度左右即可升华。

⑩易液化的气体:NH3、Cl2 ,NH3可用作致冷剂。

4、溶解性①常见气体溶解性由大到小:NH3、HCl、SO2、H2S、Cl2、CO2。

极易溶于水在空气中易形成白雾的气体,能做喷泉实验的气体:NH3、HF、HCl、HBr、HI;能溶于水的气体:CO2、SO2、Cl2、Br2(g)、H2S、NO2。

极易溶于水的气体尾气吸收时要用防倒吸装置。

②溶于水的有机物:低级醇、醛、酸、葡萄糖、果糖、蔗糖、淀粉、氨基酸。

高中 高考物理 气体和热力学定律

高中 高考物理  气体和热力学定律

续表 玻意耳定律 查理定律 盖—吕萨克定律
适用 实际气体在压强不太大(相对于 1 标准气压)、 温度不太低(相 条件 对于常温)的情况遵守三个实验定律
4.理想气体的状态方程 (1)理想气体 ①宏观上讲, 理想气体是指在任何条件下始终遵守气体实验定律 的气体。实际气体在压强 不太大、温度 不太低 的条件下,可视为理 想气体。
(3)压强(p) ①定义:作用在器壁单位面积上的压力叫做气体压强。 ②产生原因: 由于大量气体分子无规则的运动而频繁碰撞 器壁,形成对器壁各处均匀、持续的压力。 ③决定气体压强大小的因素 宏观:决定于气体的 温度 和 体积 。 微观:决定于分子的 平均动能 和分子的 密集程度 (单位 体积内的分子数)。
解析:开始时由于活塞处于静止,由平衡条件可得 mg p0S+mg=p1S,则 p1=p0+ S 当气缸刚提离地面时气缸处于静止,气缸与地面间无 作用力,因此由平衡条件可得 p2S+Mg=p0S Mg 则 p2=p0- S 。 mg 答案:p0+ S Mg p0- S
2.[考查液柱封闭的气体压强]若已知大气压强 为 p0,在图中各装置均处于静止状态,图中液体密 度均为 ρ,求被封闭气体的压强。
解析:在图甲中,以高为 h 的液柱 为研究对象,由二力平衡知 p 气 S=-ρghS+p0S 所以 p 气=p0-ρgh
在图乙中,以 B 液面为研究对象,由平衡方程 F 上=F 下 有:p 气 S+ρghS=p0S p 气=p0-ρgh 在图丙中,以 B 液面为研究对象,有 3 p 气+ρghsin 60° =pB=p0,所以 p 气=p0- ρgh 2 在图丁中,以液面 A 为研究对象,由二力平衡得 p 气 S=(p0+ρgh1)S,所以 p 气=p0+ρgh1。 答案:甲:p0-ρgh 乙:p0-ρgh 3 丙:p0- ρgh 2 丁:p0+ρgh1

理想气体的性质

理想气体的性质

理想气体的性质
理想气体是指在一定条件下具有理想行为的气体。

它是理想化的气
体模型,假设气体中分子之间没有相互作用和体积,并且分子之间的
碰撞是弹性碰撞。

以下是理想气体的主要性质:
1. 理想气体的分子是无限小的,没有体积,分子之间没有相互作用力。

这意味着气体的体积可以无限压缩,并且气体分子之间不存在任
何引力或斥力。

2. 理想气体的分子运动是完全混乱的,分子在空间中自由运动,并
且沿各个方向上的速度分布是相等的。

这被称为分子速度均分定理。

3. 理想气体的压强与温度成正比,压力与体积成反比。

这意味着如
果气体的温度升高,压强也会增加,反之亦然;如果气体的体积减小,压力也会增加,反之亦然。

这被称为理想气体状态方程或理想气体定律。

4. 理想气体的温度与体积成正比,温度与压强成正比。

这意味着如
果气体的体积增加,温度也会增加,反之亦然;如果气体的压强减小,温度也会减小,反之亦然。

这被称为理想气体的热力学性质。

需要注意的是,现实气体往往存在分子间相互作用和体积,因此它
们不完全符合理想气体模型。

然而,理想气体模型在许多实际应用中
仍然是一个非常有用的近似模型。

高三物理高考知识点分析气体、固体和液体

高三物理高考知识点分析气体、固体和液体

气体、固体和液体(一)气体一 气体的状态参量(1)温度(T )1、意义:微观――是分子平均动能的标志 宏观――物体的冷热程度2、单位:摄氏温度(t ) 摄氏度 ℃开氏温度(热力学温度T ) 开尔文 K (补: 摄氏――摄尔修斯华氏温度――华伦海特勒氏――勒奥默) T = t + 273.15 3、 就每一度来说,它们是相同的 (2)体积(V )与液体和固体的体积不同,气体的体积是指气体分子所能达到的空间,也就是气体所充满容器的容积,无论气体的分子个数多少,无论气体的种类。

理解:r 大力小 容易扩展 填充整个容器单位:m 3 dm 3 或Lcm 3 mm 3(3)、压强(p )单位面积上受到的正压力1、 液体和大气压强的产生原因――重力gh sgVs mg p ρρ===h 是某点距液面的距离 压强与深度有关,向各个方向都有压强 2、 容器内气体压强的产生原因――碰撞大量的气体对器壁的频繁撞击,产生一个均匀的,持续的压力 (举例:雨伞),这个压力就产生了压强。

压强与深度无关,在各处都相等,向各个方向都有压强 3、 单位1 P a =1 N/m2 1 atm =101325 P a =10 5 P a 1 atm =760 mmHg 1 mmHg =133.322 P a0℃273K-2730K h(4)、状态的改变对应一定质量的气体,如果三个参量有 两个或三个都发生了变化就说气体的状态改变了(只有一个发生变化是不可能的),如果都不改变,就说它处于某一个状态。

二、玻意尔定律1、内容: ——一定质量气体,在等温变化过程中,压强和体积成反比 即3322111221v p v p v p v v p p ===或2、p ~V 图 1、 等温线2、 状体M 经过等温变化到状态N 。

3、矩形的面积相等4、同质量的某种气体 T 1>T 2三、查理定律1、内容:一定质量的气体,等容变化过程中,压强和热力学温度成正比即 常数=∆∆===TpT p T p T p 3322112、图象读图: 1、等容线2、有M 到N 经历了等容变化3、V 1<V 23、查理定律的另一种表述内容:一定质量的气体,在等容变化过程中,温度升高(或降低)1℃,增加(或减小)的压强等于0℃时压m T恒定p V反比Vp p 2mV 恒定p T正比强的1 / 273。

空气的性质

空气的性质

空气的性质在我们日常生活中,空气是必不可少的存在。

虽然看似无形无色,但空气实际上具有多种性质和特征,对我们的生活和环境起着至关重要的作用。

以下将就空气的性质进行探讨。

组成成分空气主要由氮气(约占78%)、氧气(约占21%)和少量的其他气体如二氧化碳、氩气等组成。

这些气体在统一压力下以气态形式存在,彼此之间通过碰撞进行运动,形成大气环流。

物理性质气体状态空气的主要成分氮气和氧气都是气态物质,不具有固定形状和体积。

可以充分填充封闭容器并均匀分布,具有高度的流动性。

密度空气的密度随海拔高度和温度的变化而变化。

在海平面上,空气密度较大;而在较高海拔或温暖环境下,空气密度相对较小。

压强空气由于气体分子的碰撞产生压强。

在地球表面,空气压强约为101.3千帕(标准大气压),但随海拔高度增加而逐渐降低。

化学性质反应特性空气中氧气是许多物质的氧化剂,能够参与许多化学反应。

例如,燃烧是指物质与氧气反应放热并产生火焰和热量的过程。

污染空气中含有二氧化碳、一氧化氮等有害气体,大气污染严重影响了空气的质量和人类健康。

因此,加强环境保护工作,减少空气污染,对人类生存具有重要意义。

温度和湿度空气的温度和湿度直接影响着气候和天气情况。

温暖的空气会上升形成对流气流,而潮湿的空气则可能导致降水和云团的形成。

结语空气作为人类生活的基本条件之一,其性质和特征对我们的生存和发展有着重要影响。

理解空气的性质,加强对大气环境的保护,对于人类来说至关重要。

希望通过本文的介绍,读者能更全面地了解空气的本质和重要性。

认识常见的气体与气体的性质

认识常见的气体与气体的性质

认识常见的气体与气体的性质气体是一种在常温常压下呈现气态的物质,具有多种特性和性质。

本文将介绍一些常见的气体以及它们的性质。

一、氮气(N2)氮气是空气中最主要的组成部分之一,占据了空气的78%。

氮气呈无色、无味、无臭的状态,具有不易燃烧、低活性的特点。

由于其稳定性高,氮气常被用作保护气体、制造氮气气氛以及用于冷冻食品保存等领域。

二、氧气(O2)氧气是空气中的另一个重要组成成分,占据了空气的约21%。

氧气是一种无色无味的气体,能够支持燃烧并维持物质的燃烧过程。

氧气在生物体内参与新陈代谢过程,是生命的必需气体。

此外,氧气还被广泛用于医疗、焊接和氧气割等领域。

三、二氧化碳(CO2)二氧化碳是一种无色的气体,是空气中的微量成分。

二氧化碳是许多化学反应的产物,也是人类活动(如燃烧化石燃料和工业过程)的副产品。

它是温室气体之一,能够吸收太阳辐射的一部分并阻止其散失,使地球保持一定的温度。

四、氢气(H2)氢气是一种轻质、无色、无味、无毒的气体。

它是宇宙中最丰富的元素,也是最轻的元素。

氢气具有高热导率和高燃烧性,通常用作燃料或原料来产生能源。

氢气还可以用于氢气球、氢气火箭和氢气燃料电池等领域。

五、氦气(He)氦气是一种无色、无味、无毒的气体,是宇宙中第二丰富的元素。

氦气的熔点和沸点都非常低,因此常以液体形式存在。

氦气广泛用于充气球和飞船、制冷机械以及核反应堆等领域。

六、氯气(Cl2)氯气是一种黄绿色的气体,具有刺激性气味。

氯气可溶于水,形成盐酸。

氯气有强烈的氧化性,因此常用于消毒和漂白剂,也用于制造PVC 材料等。

七、氨气(NH3)氨气是一种无色气体,具有刺激性气味。

氨气有强烈的碱性,能够与酸中和生成盐。

氨气主要用于农业中作为植物营养物质的来源,也用于制备肥料、催化剂等。

总结:以上所述的气体只是常见气体中的一小部分,每种气体都有其独特的性质和广泛的应用领域。

通过深入了解不同气体的性质,我们能够更好地利用它们,满足生活和工业中的各种需求。

气体知识点

气体知识点

解:1 mol 标况下的气体,在题目所给状态下,求占有的体积V,
每个分子平均占空体积 分子间的平均距离
气体的性质
知识要点: (一)气体的状态参量——体积、温度和压强
1、气体的体积: 国际单位制中,体积单位:m3 常用单位及换算关系: 2、气体的温度: (1)温度:表示物体的冷热程度,是七个基本物理量之一。 (2)国际单位制中,用热力学温度标表示的温度,叫热力学温度。 单位:开尔文。(符号):K 热力学温度摄氏温标换算关系: 3、气体的压强: (1)气体压强:气体对容器壁单位面积上的压力。 (2)气体压强可以用压强计测量。 (3)压强的单位: 国际单位制中用:帕斯卡、符号:Pa 1 Pa = 1N / m2 常用单位:标准大气压 (atm)毫米汞柱(mmHg) 换算关系:1 atm = 760mmHg = 1.013×105 Pa
分子仍永不住息地做热运动,而分子热运动的平均效果不变。
2、气体的状态参量:
(1)气体的体积(V)
① 由于气体分子间距离较大,相互作用力很小,气体向各个方向做
直线运动直到与其它分子碰撞或与器壁碰撞才改变运动方向,所以它能
充满所能达到的空间,因此气体的体积是指气体所充满的容器的容积。
(注意:气体的体积并不是所有气体分子的体积之和)
一定质量的气体,分子总数不变。在等温变化过程中,气体分子的平 均支能不变,气体分子碰撞器壁的平均冲量不变。气体体积增大几倍, 气体单位体积内分子总数减小为原来的,单位时间内碰撞单位面积上的 分子总数也减小为原来的,当压强减小时,结果相反。所以,对于一定 质量的气体,温度不变时,压强和体积成反比。 ⑥玻意耳定律的适用条件 玻意耳定律是用真实气体通过实验得出的规律。因此这个规律只能在 气体压强不太大,温度不太低的条件下适用。 (2)气体的等容变化——查理定律

高中物理必备知识点 气体的等容变化和等压变化

高中物理必备知识点 气体的等容变化和等压变化

(℃)0 气体的等容变化和等压变化在物理学中,当需要研究三个物理量之间的关系时,往往采用“控制变量法”——保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系。

一、气体的等容变化:1、等容变化:当体积(V )保持不变时, 压强(p )和温度(T )之间的关系。

2、查理定律:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273.或一定质量的某种气体,在体积保持不变的情况下, 压强p 与热力学温度T 成正比.3、公式:常量==1122T p T p4、查理定律的微观解释:一定质量(m )的气体的总分子数(N )是一定的,体积(V )保持不变时,其单位体积内的分子数(n )也保持不变,当温度(T )升高时,其分子运动的平均速率(v )也增大,则气体压强(p )也增大;反之当温度(T )降低时,气体压强(p )也减小。

这与查理定律的结论一致。

二、气体的等压变化:1、等压变化:当压强(p ) 保持不变时,体积(V )和温度(T )之间的关系.2、盖·吕萨克定律:一定质量的气体,在压强不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的体积等于它0℃时体积的1/273.或一定质量的某种气体,在压强p 保持不变的情况下, 体积V 与热力学温度T 成正比.3、公式:常量==1122T V T V 4、盖·吕萨克定律的微观解释:一定质量(m )的理想气体的总分子数(N )是一定的,要保持压强(p )不变,当温度(T )升高时,全体分子运动的平均速率v 会增加,那么单位体积内的分子数(n )一定要减小(否则压强不可能不变),因此气体体积(V )一定增大;反之当温度降低时,同理可推出气体体积一定减小三、气态方程一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。

nR T V p T V p ==111222 n 为气体的摩尔数,R 为普适气体恒量063.上海市南汇区2008年第二次模拟考试1A .由查理定律可知,一定质量的理想气体在体积不变时,它的压强随温度变化关系如图中实线表示。

高考物理重要知识点:气体实验定律

高考物理重要知识点:气体实验定律

高考物理重要知识点:气体实验定律气体实验定律即关于气体热学行为的5个基本实验定律,下面是高考物理重要知识点:气体实验定律,希望对考生有帮助。

一、气体的状态参量一定质量m的某种(摩尔质量M一定)理想气体可以用力学参量压强(p)、几何参量体积(V)和热学参量温度(T)来描述它所处的状态,当p、V、T一定时,气体的状态是确定的,当气体状态发生变化时,至少有两个参量要发生变化.1.压强(p)我们学过计算固体压强的公式p=F/S,计算液体由于自重产生的压强用p=ρgh,那么(1)对密闭在容器中的一定质量的气体的压强能否用上述公式计算呢?(2)密闭气体的压强是如何产生的呢?和什么因素有关?(3)密闭气体的压强如何计算呢?二、气体的实验定律提问:(1)气体的三个实验定律成立的条件是什么?(2)主要的实验思想是什么?很好,我们要会用文字、公式、图线三种方式表述出气体实验定律,更要注意定律成立的条件.(1)一定质量的气体,压强不太大,温度不太高时.(2)控制变量的方法.对一定质量的某种气体,其状态由p、V、T三个参量来决定,如果控制T不变,研究p-V间的关系,即得到玻-马定律;如果控制V不变,研究p-T间的关系,即得到查理定律;如果控制p不变,研究V-T间的关系,即得到盖·吕萨克定律.1.等温过程——玻-马定律(1)表达式: p1V1=p2V22.等容过程——查理定律(1)内容:提问:法国科学家查理通过实验研究,发现的定律的表述内容是什么?把查理定律“外推”到零压强而引入热力学温标后,查理定律的表述内容又是什么?内容:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273.一定质量的气体,在体积不变的情况下,它的压强和热力学温标成正比.3.等压变化——盖·吕萨克定律(1)内容:(2)表达式:内容:一定质量的气体,在压强不变的情况下,它的体积和热力学温标成正比.高考物理重要知识点:气体实验定律就为大家分享到这里,更多精彩内容请关注。

气体知识点的总结归纳

气体知识点的总结归纳

气体知识点的总结归纳首先,我们来探讨气体的性质。

气体的分子间距较大,分子之间存在很弱的相互作用,因此气体具有较低的密度和可压缩性。

此外,气体具有较强的扩散性和渗透性,能够通过半透膜扩散到另一边。

气体的温度和压力对其性质有显著的影响,温度升高会增加气体的分子速度,压力增大会使气体分子紧密排列。

而气体的密度是通过气体的摩尔质量和压力来决定的。

其次,我们将讨论气体的行为。

理想气体是理想化的气体模型,它假设分子之间不存在相互作用力,分子之间的碰撞是完全弹性的。

根据理想气体定律,PV=nRT,其中P表示气体压力,V表示气体体积,n表示气体的摩尔数,R是气体常数,T表示气体的温度。

实际气体则不符合理想气体的假设,存在分子之间相互作用力和分子体积,因此需要修正理想气体定律。

例如范德华力修正和分子体积修正等。

此外,气体还具有一些特殊的行为。

如气体的液化和气化过程、气体的流体性和热传导性等。

气体的液化和气化过程是利用温度和压力对气体进行控制,将气体转化为液体或气体状态。

而气体的流体性使其能够流动,易于扩散和混合。

气体的热传导性则表现为气体能够通过分子碰撞传递热量。

最后,我们将介绍气体的应用。

气体在日常生活中有许多应用,如氧气和氮气用于医疗和工业,天然气和液化天然气用于能源生产,空气净化和空调系统中的制冷剂等。

此外,气体还被用于科学研究和实验室中。

例如氢气在化学实验中作为还原剂,氦气在核磁共振和激光技术中的应用等。

综上所述,气体是一种重要的物质状态,具有许多特殊的性质和行为。

了解气体的基本知识对于理解自然界和应用中的气体问题具有重要意义。

通过本文的总结和归纳,希望读者能够对气体有更深入的理解,并在实际生活和工作中加以应用。

化学气体的性质与应用

化学气体的性质与应用

化学气体的性质与应用化学气体是指在常温下以气态存在,并且具有化学特性的物质。

气体的性质和应用在化学领域具有广泛的研究和应用,本文将从气体的特性和相关实验方法、气体在日常生活中的应用以及气体在工业生产中的应用等方面进行介绍和探讨。

气体的特性和相关实验方法气体具有以下特性:1.具有扩散性和膨胀性;2.气体分子间间距较大,分子运动速度快;3.气体具有压力、温度和体积之间的关系,符合气体状态方程;4.气体具有可溶性;5.气体能够进行化学反应。

为了研究气体的性质,常用的实验方法包括:1.气体收集实验:常用的收集气体的方法有水封法、排空法和露点法等;2.气体的测量:包括气体的质量测量和体积测量;3.气体的溶解性实验:溶解度与气体的压力和温度有关,可以通过溶解度曲线进行研究;4.气体的扩散性实验:常用的方法是观察两种气体的相对扩散速度,或者使用扩散管进行实验。

气体在日常生活中的应用气体在日常生活中有着广泛的应用。

例如:1.空气中的氧气是人体进行呼吸和维持生命所必需的;2.可燃气体如天然气和液化石油气被广泛用于家庭燃气和工业能源;3.二氧化碳气体被广泛用于饮料制造过程中,起到给饮料增加气泡和保持新鲜口感的作用;4.氦气是用于充气气球和制冷设备中的重要气体。

气体在工业生产中的应用气体在工业生产中有着各种各样的应用。

例如:1.制氧工业:通过分离空气中的氧气和氮气,获得高纯度的氧气用于医疗和冶金等领域;2.气体分离与液化:通过低温分离和压缩,可将空气中的气体分离出来,取得高纯度的气体产品;3.气体燃烧:氧气和可燃气体的燃烧反应广泛应用于炼铁、炼钢和电焊等领域;4.气体在化学反应中的应用:例如,氧气在化学反应中作为氧化剂,氮气在惰性气体环境中起到保护作用。

总结化学气体的性质与应用在化学研究和实际应用中具有重要的地位。

通过实验方法的研究,我们可以更好地了解气体的特性和行为。

在日常生活中,气体被广泛应用于各个方面,如维持生命所需的氧气和家庭燃气等。

高考物理选修3-3气体方程知识点

高考物理选修3-3气体方程知识点

气体编辑:李鸿书一、气体的等温变化1、等温变化(1)状态参量:气体的状态由状态参量决定,对一定质量的气体来说,当三个状态参量都不变时,我们就说气体的状态一定,否则气体的状态就发生了变化.对于一定质量的气体,压强、温度体积三个状态参量中只有一个量变而其他量不变是不可能的,至少其中有两个量变或三个量都发生变化.(2)等温变化:一定质量的气体,在温度不变时发生的状态变化过程,叫做气体的等温变化2.玻意耳定律(1)内容:一定质量的某种气体, 在温度不变的情况下,压强p 与体积V 成反比,即pV=常量,或p ₁V ₁ =p ₂V ₂.其中P ₁、V ₁和P ₂、V ₂分别表示气体在1、2两个不同状态下的压强和体积.(2)研究对象:一定质量的气体,且这一部分气体保持温度不变.(3)适用条件:①压强不太大(与大气压相比),温度不太低(与室温相比).②被研究的气体质量不变,温度不变。

(4)数学表达式:1221p p V V =,p ₁V ₁ =p ₂V ₂,或pV=C(常量). [注意]①玻意耳定律p ₁V ₁ =p ₂V ₂是个实验定律,阐述的是在温度不变的情况下,一定质量的气体的变化规律,其中P ₁、V ₁和P ₂、V ₂分别表示气体在1、2两个不同状态下的压强和体积②此定律中的常量C 不是一个普适常量,它与气体所处的温度高低有关,温度越高,常量C 越大,③由于经常使用p ₁V ₁ =p ₂V ₂1221p p V V =这两种形式,故对单位要求使用统一单位即可. 3. 气体等温变化的P-v 图像(1) p-V 图象.一定质量的气体发生等温变化时的p-V 图象如右图所示,(2) 图象为双曲线的一支.说明:①平滑的曲线是双曲线的一段,反映了在等温情况下,一定质量的气体的压强与体积成反比的规律.②图象上的点,代表的是一定质量气体的一个状态.③这条曲线表示了一定质量的气体由一个状态过渡到另一个状态的过程,这个过程是一个等温过程,因此该曲线也叫等温线. (2)p-V1图象.一定质量的气体的图象如右图所示, 图线为延长线过原点的倾斜直线。

物理高考气体变化知识点

物理高考气体变化知识点

物理高考气体变化知识点气体变化是物理学中一个重要的研究领域,也是高考物理中的重点内容之一。

在高考中,掌握气体变化的知识点对于理解和解答相关题目非常重要。

本文将从气体的三态、气体压强和气体状态方程三个方面介绍一些常见的气体变化知识点。

一、气体的三态气体可以存在于三种不同的状态,即固态、液态和气态。

在固态下,气体的分子紧密排列,保持着固定的位置,只能做微小的振动;在液态下,气体的分子之间的距离比较近,可以自由运动并且具有一定的相互吸引力;在气态下,气体的分子之间的距离比较远,具有较大的自由度和运动速度。

在不同的温度和压力条件下,气体可以相互转换,这种转换过程被称为气体的相变。

二、气体压强气体的压强是指气体分子对单位面积的撞击力,通常用帕斯卡(Pa)或大气压(atm)等单位来表示。

气体的压强与气体分子的速度、密度、温度和体积等因素密切相关。

根据理想气体状态方程,当温度和体积不变时,气体的压强与气体分子的数量呈正比。

而当温度不变时,气体的压强与气体分子的速度和密度呈正比。

此外,根据达尔顿分压定律和亨利气体溶解定律,气体的总压强等于各个气体分子的分压之和,气体溶解在溶液中的溶解度与该气体的分压成正比。

三、气体状态方程气体状态方程是描述气体性质的重要方程之一,也是高考中经常涉及的知识点。

根据气体的状态方程,可以揭示气体的性质与物理参数之间的内在关系。

根据理想气体状态方程,气体的压强与温度、体积和气体分子数量呈正比。

而据实际气体状态方程,气体的压强与温度、体积和气体分子的性质和数目相关。

此外,根据卡诺循环理论和理想气体状态方程,可以推导出热力学循环中的效率与温度之间的关系。

总结起来,气体变化是物理学中一个重要的研究领域,也是高考物理中的重点内容之一。

通过掌握气体的三态、气体压强和气体状态方程等知识点,可以更好地理解和解答与气体变化相关的问题。

尽管气体变化是复杂而丰富的,但只要理解了其中的基本原理和关键知识点,并掌握了一定的解题思路和方法,相信大家在高考中也能够应对自如,并取得满意的成绩。

陕西高考物理知识点总结

陕西高考物理知识点总结

陕西高考物理知识点总结导言:物理作为高中课程的一门重要科学学科,对于陕西高考来说,是必不可少的一部分。

掌握好物理的知识点,对于考生来说,不仅能够提升考试成绩,也能够为日后的学习和工作提供一定的帮助。

下面将通过总结陕西高考物理的核心知识点,为考生们提供一份有价值的学习参考。

第一部分:力学力学是物理学的基础,也是高考物理中的重点。

主要包括力的三要素、牛顿三定律、动力学等。

1. 力的三要素力的三要素指的是力的作用点、力的方向和力的大小。

了解这三个要素可以帮助我们准确地描述一个力,并解决有关力的问题。

2. 牛顿三定律牛顿三定律是力学的基本定律,是我们理解力和运动关系的关键。

其中,第一定律是惯性定律,第二定律是力的关系定律,第三定律是作用与反作用定律。

3. 动力学动力学是研究物体的力、质量和加速度之间关系的学科。

其中,重要的概念有加速度、功和机械能等。

第二部分:热力学热力学是研究物体热力学性质和热现象的科学。

在陕西高考物理中,重点包括气体分子运动理论、热传递和热力学定律等。

1. 气体分子运动理论气体的性质与其分子的运动状态有关。

通过学习气体分子运动理论,我们可以了解气体的压力、温度和体积之间的关系。

2. 热传递热传递是指热量从高温物体传递到低温物体的过程。

包括传导、对流和辐射三种方式,其中,导体热传导的特点是传热快、效率高;对流热传递主要发生在流体中;辐射热传递是由物体的热辐射产生。

3. 热力学定律热力学定律是热力学研究中的基本定律,包括热力学第一定律、热力学第二定律和热力学第三定律。

这些定律为我们理解热力学过程和热平衡提供了理论依据。

第三部分:电学电学是研究电荷、电场和电流的学科。

在陕西高考物理中,电学部分主要涉及静电学、电路和电磁感应等内容。

1. 静电学静电学研究静电场和静电力的性质。

其中,静电场是由带电粒子产生的,带电物体在静电场中受到的力称为静电力。

2. 电路电路是电流流动的路径。

在学习电路时,我们需要了解电阻、电容和电感等元件的基本原理,并能够解决电路中的问题。

上海高考物理合格考知识点

上海高考物理合格考知识点

上海高考物理合格考知识点近年来,随着高考制度的改革,物理作为一门科学必修课程,对于高中学生来说越来越重要。

无论是为了应对高考还是为了培养学生的科学素养,物理知识都扮演着重要的角色。

对于上海高考来说,物理合格考知识点更是考查学生的基础知识和应用能力。

在本文中,我们将介绍一些上海高考中重要的物理合格考知识点。

一、力学知识点1. 物体的运动规律:根据牛顿三定律,描述物体的运动状态以及受力及受力反作用的关系。

2. 力和压强:理解力的概念、计算力的大小和方向,并能应用力的合成和分解进行计算。

3. 运动学:了解速度、加速度的概念,计算匀速和变速运动的位移、速度和加速度。

4. 动量和动量守恒:理解动量的概念,并能应用动量守恒定律解决相关问题。

二、热学知识点1. 热力学第一定律:理解内能、热量和功的概念,并能应用热力学第一定律解决相关问题。

2. 理想气体状态方程:了解理想气体状态方程的表达式,并能应用该方程计算气体性质变化过程中的物理量。

3. 热传导和热对流:理解热传导和热对流的概念,了解传热的机制,并能应用传热的基本原理解决相关问题。

4. 热机效率:了解热机的工作原理,计算热机的效率并分析影响热机效率的因素。

三、光学知识点1. 光的折射和反射定律:了解光的折射和反射现象,并根据折射和反射定律计算光线的传播路径和角度。

2. 光的干涉和衍射:了解光的干涉和衍射现象,并分析干涉和衍射的条件及结果。

3. 光的电磁波性质:理解光的电磁波性质,了解光在不同介质中的传播速度和折射率的关系。

4. 光的像和成像规律:了解光的像和成像规律,能够通过光的成像规律确定像的位置和特点。

四、电学知识点1. 电路基本知识:了解电路的基本元件和符号,能够绘制和分析简单的串联、并联电路。

2. 电荷和电场:理解电荷和电场的概念,能够计算电场的强度和电场中电荷的受力。

3. 电势差和电势能:了解电势差和电势能的概念,能够计算电势差和电势能的大小。

4. 电磁感应和电磁波:了解电磁感应和电磁波的现象和基本特性,能够应用电磁感应定律解决相关问题。

高考物理知识点:气体的性质

高考物理知识点:气体的性质

高考物理知识点:气体的性质
高考物理知识点:气体的性质
1.气体的状态参量
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志。

热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}。

体积V:气体分子所能占据的空间,单位换算:
1m3=103L=106mL。

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:
1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点
分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程
p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物
质的量有关。

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温
度(K)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理知识点:气体的性质高考物理知识点:气体的性质
1.气体的状态参量
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志。

热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}。

体积V:气体分子所能占据的空间,单位换算:
1m3=103L=106mL。

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:
1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点
分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程
p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关。

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度
(K)。

相关文档
最新文档