4-4函数的极值及求法
多元函数的极值与最值的求法
2.5柯西不等式法………………………………………………………………21
2.6向量法………………………………………………………………………22
2.7 利用极值求最值……………………………………………………………23
小结…………………………………………………………………………………25
1.2利用拉格朗日(Lagrange)乘数法求极值………………………………2
1.3利用几何模型法求解极值…………………………………………………3
1.4 通过雅可比(Jacobi)矩阵求条件极值…………………………………5
1.5利用参数方程求解条件极值………………………………………………11
1.6 利用方向导数判别多元函数的极值………………………………………12
1.7 用梯度法求极值……………………………………………………………15
2多元函数最值的求法……………………………………………………………17
2.1消元法………………………………………………………………………18
2.2均值不等式法………………………………………………………………18
2.3换元法………………………………………………………………………19
又方程(1)对x求偏导: ,得 , .
方程(1)对y求偏导: ,得 .
方程(2)对y求偏导: ,得 ,
在点(1,-1,6)有 ,且A<0,所以 是极大值。
在点(1,-1,2)处有 ,且A>0,所以 是极小值。
综上所述,知由方程 在点(1,-1,6)的某邻域内确定的函数, 是极大值;在点(1,-1,2)的某邻域内确定的函数, 是极小值.
高考复习专题四—求极值的六种方法
高考复习专题四—求极值的六种方法高中学生可以体会
1.极值的定义
极值(extremum)是指函数在其中一区间的最大值或最小值。
也就是说,当函数在一定范围内取得最大(或最小)值时,该值称为該函数在该范围上的极值。
2.求极值的六种方法
(1)最值法
即直接从函数的图形上来确定函数最大值和最小值,只要找到这样的定义域点,使它是图的最高点或最低点,那么该点就是函数的极大值或极小值点。
(2)十字法
即使用十字观测的方法,通过求解相邻两点的切线的斜率,搭配图形定义域,确定函数的极值点,进而确定函数的最大值和最小值。
(3)观察法
即对函数进行全面性的观察,然后根据函数的规律,用数值验证的方法,确定该函数的最大值和最小值。
(4)求导数法
即通过求解函数的导数,然后观察函数的单调性,从而求得函数的极值点,进而确定函数的最大值和最小值。
(5)二分法
即把定义域分成二份,根据函数的单调性,确定极值点,从而确定函数的最大值和最小值。
(6)逐段求和法
即把定义域分成多份,根据函数的单调性,对每一点分段求解,确定极值点,从而确定函数的最大值和最小值。
函数的极值与最大值最小值
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.
(完整版)求函数极值的几种方法
求解函数极值的几种方法1.1函数极值的定义法说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件.例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,225x =,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题:Min (,)z f x y =s.t (,)0x y =如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得****(,)(,)0x x f x y g x y λ+=****(,)(,)0y y f x y g x y λ+=利用这一性质求极值的方法称为Lagrange 乘法数例2 在曲线31(0)y x x =>上求与原点距离最近的点.解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函数2231()w x y y x λ=++-然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得43320201x x y y x λλ⎧+=⎪⎪+=⎨⎪⎪=⎩解得x y ⎧=⎪⎨=⎪⎩这是唯一可能取得最值的点 因此x y ==. 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得****(,)(,)0x x f x y g x y λ+=****(,)(,)0y y f x y g x y λ+=这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0p点的Hessene 矩阵H ,判定H 正定或负定,若H 正定则()f p 在0p 点取得极小值;若H 负定则()f p 在0p 点取得极大值.例3 求三元函数222(,,)23246f x y z x y z x y z =++++-的极值解 先求驻点,由 220440660x y zf x f y f z =+=⎧⎪=+=⎨⎪=-=⎩ 得1,1,1x y z =-=-=-所以驻点为0(1,1,1)p ---.再求Hessene 矩阵,因为 2,0,0,4,0,0,0,0,6xx xz xy yy yz yx zx zy zz f f f f f f f f =========所以 200040006H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦由此可知,H 是正定的,所以(,,)f x y z 在0(1,1,1)p ---点取得极小值:222(1,1,1)(1)2(1)312(1)4(1)6166f ---=-+⨯-+⨯+⨯-+⨯--⨯-=-说明:此方法适合多元函数求极值的放法,要注意求偏导数以及 Hessene 矩阵.。
函数的极值与最值的求解方法
函数的极值与最值的求解方法在数学中,函数的极值与最值是我们经常遇到的问题。
极值是指函数在某一区间内达到的最大值或最小值,而最值则是函数在整个定义域内的最大值或最小值。
正确地求解函数的极值与最值对于解决实际问题和优化算法具有重要意义。
本文将介绍一些常见的函数极值与最值的求解方法。
一、导数法求函数极值导数法是求解函数极值的常用方法之一。
对于一元函数,我们可以通过求取其导数来确定函数的极值点。
具体步骤如下:1. 求取函数的导数。
根据函数的表达式,求取其一阶导数。
对于高阶导数存在的情况,可以继续求取导数直到找到导数不存在的点。
2. 解方程求取导数为零的点。
导数为零的点对应着函数的极值点。
将导数等于零的方程进行求解,找到函数的极值点。
3. 判断极值类型。
在找到导数为零的点后,可以通过二阶导数或借助函数图像来判断该点处的极值类型。
若二阶导数大于零,则为极小值;若二阶导数小于零,则为极大值。
二、边界法求函数最值边界法是求解函数最值的一种有效方法。
当函数在闭区间上连续且有界时,最值一定是在该闭区间的端点处取得的。
具体步骤如下:1. 确定函数定义域的闭区间。
根据函数表达式或实际问题,找到函数定义域所对应的闭区间。
2. 计算函数在端点处的取值。
将函数在闭区间的端点处依次带入函数表达式,计算函数的取值。
3. 比较函数取值找到最值。
对于最大值,选取函数取值最大的端点;对于最小值,选取函数取值最小的端点。
三、拉格朗日乘数法求函数约束条件下的极值当函数需要满足一定的约束条件时,可以使用拉格朗日乘数法来求解函数的极值。
该方法适用于带有约束条件的最优化问题,具体步骤如下:1. 设置拉格朗日函数。
将原函数与约束条件构建为一个拉格朗日函数,其中拉格朗日乘子为未知数。
2. 求取拉格朗日函数的偏导数。
对拉格朗日函数进行偏导数运算,得到一组方程。
3. 解方程求取极值点。
将得到的偏导数方程组求解,找到满足约束条件的极值点。
4. 判断极值类型。
高中数学《函数的极值》知识点讲解及重点练习
5.3.2 函数的极值与最大(小)值第1课时 函数的极值学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一 函数极值的定义1.极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.3.极大值点、极小值点统称为极值点;极大值、极小值统称为极值.知识点二 函数极值的求法与步骤1.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)列表;(4)利用f′(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值.1.导数为0的点一定是极值点.( × )2.函数的极大值一定大于极小值.( × )3.函数y=f(x)一定有极大值和极小值.( × )4.函数的极值点是自变量的值,极值是函数值.( √ )一、求函数的极值例1 求下列函数的极值:(1)f (x )=x 3-3x 2-9x +5;(2)f (x )=x -a ln x (a ∈R ).解 (1)f ′(x )=3x 2-6x -9,令f ′(x )=0,即3x 2-6x -9=0,解得x 1=-1,x 2=3.当x 变化时,f (x ),f ′(x )的变化情况如下表:x (-∞,-1)-1(-1,3)3(3,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =-1时,函数y =f (x )有极大值,且f (-1)=10;当x =3时,函数y =f (x )有极小值,且f (3)=-22.(2) f (x )=x -a ln x 的定义域为(0,+∞),由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0,当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.反思感悟 函数极值和极值点的求解步骤(1)确定函数的定义域.(2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格.(4)由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况.跟踪训练1 (1)求函数f (x )=2xx 2+1-2的极值.解 函数f (x )的定义域为R .f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1)-1(-1,1)1(1,+∞)f ′(x )-0+0-f (x )↘极小值↗极大值↘由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3;当x =1时,函数有极大值,且极大值为f (1)=-1.(2)已知函数f (x )=x +ax +1,a ∈R .求此函数的极值.解 函数的定义域为{x |x ≠0},f ′(x )=1-ax 2=x 2-ax2.当a ≤0时,显然f ′(x )>0,这时函数f (x )在区间(-∞,0),(0,+∞)上均单调递增,此时函数无极值.当a >0时,令f ′(x )=0,解得x =±a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-a )-a (-a ,0)(0,a )a (a ,+∞)f ′(x )+0--0+f (x )↗极大值↘↘极小值↗由上表可知,当x =-a 时,函数取得极大值f (-a )=-2a +1.当x =a 时,函数取得极小值f (a )=2a +1.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =-a 处取得极大值-2a +1,在x =a 处取得极小值2a +1.二、由极值求参数的值或取值范围例2 (1)若函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a =________,b =________.答案 4 -11解析 f ′(x )=3x 2+2ax +b ,依题意得Error!即Error!解得Error!或Error!但由于当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故f (x )在R 上单调递增,不可能在x =1处取得极值,所以Error!不符合题意,应舍去.而当a =4,b =-11时,经检验知符合题意,故a ,b 的值分别为4,-11.(2)已知函数f (x )=13x 3-12(m +3)x 2+(m +6)x (x ∈R ,m 为常数),在区间(1,+∞)内有两个极值点,求实数m 的取值范围.解 f ′(x )=x 2-(m +3)x +m +6.因为函数f (x )在(1,+∞)内有两个极值点,所以f ′(x )=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点,如图所示.所以Error!解得m >3.故实数m 的取值范围是(3,+∞).反思感悟 已知函数的极值求参数的方法(1)对于已知可导函数的极值求参数的问题,解题的切入点是极值存在的条件:极值点处的导数值为0,极值点两侧的导数值异号.注意:求出参数后,一定要验证是否满足题目的条件.(2)对于函数无极值的问题,往往转化为其导函数的值非负或非正在某区间内恒成立的问题,即转化为f ′(x )≥0或f ′(x )≤0在某区间内恒成立的问题,此时需注意不等式中的等号是否成立.跟踪训练2 (1)若函数f (x )=ax -ln x 在x =22处取得极值,则实数a 的值为( )A.2B.22C .2 D.12答案 A解析 因为f ′(x )=a -1x ,所以f ′(22)=0,即a -122=0,解得a =2.(2)已知函数f (x )=13x 3-x 2+ax -1.①若函数的极大值点是-1,求a 的值;②若函数f (x )有一正一负两个极值点,求a 的取值范围.解 ①f ′(x )=x 2-2x +a ,由题意得,f ′(-1)=1+2+a =0,解得a =-3,则f ′(x )=x 2-2x -3,经验证可知,f (x )在x =-1处取得极大值,故a =-3.②由题意得,方程x 2-2x +a =0有一正一负两个根,设为x 1,x 2,则x 1x 2=a <0,故a 的取值范围是(-∞,0).三、利用函数极值解决函数零点(方程根)问题例3 已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围.解 由f (x )=x 3-6x 2+9x +3,可得f ′(x )=3x 2-12x +9,13 f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m .则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点.∵g ′(x )=3x 2-14x +8=(3x -2)(x -4),∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:x (-∞,23)23(23,4)4(4,+∞)g ′(x )+0-0+g (x )↗极大值↘极小值↗则函数g (x )的极大值为g (23)=6827-m ,极小值为g (4)=-16-m .由g (x )的图象与x 轴有三个不同的交点,得Error!解得-16<m <6827.∴实数m 的取值范围为(-16,6827).反思感悟 (1)利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.(2)解决这类问题,一个就是注意借助几何图形的直观性,另一个就是正确求导,正确计算极值.跟踪训练3 若函数f (x )=13x 3-4x +4的图象与直线y =a 恰有三个不同的交点,则实数a 的取值范围是________.答案 (-43,283)解析 ∵f (x )=13x 3-4x +4,∴f ′(x )=x 2-4=(x +2)(x -2).令f ′(x )=0,得x =2或x =-2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2)-2(-2,2)2(2,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =-2时,函数取得极大值f (-2)=283;当x =2时,函数取得极小值f (2)=-43.且f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减,在(2,+∞)上单调递增.根据函数单调性、极值的情况,它的图象大致如图所示,结合图象知-43<a <283.1.(多选)函数f (x )的定义域为R ,它的导函数y =f ′(x )的部分图象如图所示,则下面结论正确的是( )A.在(1,2)上函数f(x)单调递增B.在(3,4)上函数f(x)单调递减C.在(1,3)上函数f(x)有极大值D.x=3是函数f(x)在区间[1,5]上的极小值点答案 ABC解析 由题图可知,当1<x<2时,f′(x)>0,函数f(x)单调递增;当2<x<4时,f′(x)<0,函数f(x)单调递减;当4<x<5时,f′(x)>0,函数f(x)单调递增,∴x=2是函数f(x)的极大值点,x=4是函数f(x)的极小值点,故A,B,C正确,D错误.2.(多选)已知函数f(x)=2x3+ax2+36x-24在x=2处有极值,则该函数的一个单调递增区间是( )A.(-∞,2) B.(3,+∞)C.(2,+∞) D.(-∞,3)答案 AB解析 ∵f′(x)=6x2+2ax+36,且在x=2处有极值,∴f′(2)=0,即24+4a+36=0,解得a=-15,∴f′(x)=6x2-30x+36=6(x-2)(x-3),由f′(x)>0得x<2或x>3.3.设函数f(x)=x e x,则( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点答案 D解析 令f′(x)=e x+x·e x=(1+x)e x=0,得x=-1.当x<-1时,f′(x)<0;当x>-1时,f′(x)>0.故x=-1为f(x)的极小值点.4.函数f(x)=x3-3x2+1的极小值点为________.答案 2解析 由f ′(x )=3x 2-6x =0,解得x =0或x =2.列表如下:x (-∞,0)0(0,2)2(2,+∞)f ′(x )+0-0+f (x )↗极大值↘极小值↗∴当x =2时,f (x )取得极小值.5.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a =___________,b =________.答案 2 -4解析 f ′(x )=3x 2+2ax +b ,由题意知Error!即Error!解得Error!经验证知符合题意.1.知识清单:(1)函数极值的定义.(2)函数极值的判定及求法.(3)函数极值的应用.2.方法归纳:方程思想、分类讨论.3.常见误区:导数值等于零不是此点为极值点的充要条件.1.下列函数中存在极值的是( )A .y =1xB .y =x -e xC .y =2D .y =x 3答案 B解析 对于y =x -e x ,y ′=1-e x ,令y ′=0,得x =0.在区间(-∞,0)上,y ′>0;在区间(0,+∞)上,y ′<0.故当x =0时,函数y =x -e x 取得极大值.2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)答案 D解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.3.函数f (x )=ln x -x 在区间(0,e)上的极大值为( )A .-e B .-1C .1-e D .0答案 B解析 函数f (x )的定义域为(0,+∞),f ′(x )=1x -1.令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,e)时,f ′(x )<0,故f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.4.已知a 是函数f (x )=x 3-12x 的极小值点,则a 等于( )A .-4 B .-2 C .4 D .2答案 D解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增;当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.5.(多选)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的值可以是( )A .-4 B .-3 C .6 D .8答案 AD解析 由题意知f ′(x )=3x 2+2ax +(a +6)=0有两个不相等的根,所以Δ=4a 2-12(a +6)>0,解得a >6或a <-3.6.f (x )=2x +1x 2+2的极小值为________.答案 -12解析 f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1;令f ′(x )>0,得-2<x <1.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增,所以f (x )极小值 =f (-2)=-12.7.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =________.答案 -23解析 因为f ′(x )=ax +2bx +1,由题意得Error!所以a =-23.8.已知关于x 的函数f (x )=-13x 3+bx 2+cx +bc ,如果函数f (x )在x =1处取得极值-43,则b =________,c =________.答案 -1 3解析 f ′(x )=-x 2+2bx +c ,由Error!解得Error!或Error!若b =1,c =-1,则f ′(x )=-x 2+2x -1=-(x -1)2≤0,此时f (x )没有极值;若b =-1,c =3,则f ′(x )=-x 2-2x +3=-(x +3)(x -1),当-3<x <1时,f ′(x )>0,当x >1时,f ′(x )<0,所以当x =1时,f (x )有极大值-43.故b =-1,c =3即为所求.9.设函数f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.解 (1)f ′(x )=a x -12x 2+32(x >0).由题意知,曲线在x =1处的切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上单调递增.故f (x )在x =1处取得极小值,极小值为f (1)=3,无极大值.10.设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点?解 (1)f ′(x )=3x 2-2x -1.令f ′(x )=0,得x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-13)-13(-13,1)1(1,+∞)f′(x)+0-0+f(x)↗极大值↘极小值 ↗∴f(x)的极大值是f (-13)=527+a,极小值是f(1)=a-1.(2)函数f(x)=x3-x2-x+a=(x-1)2(x+1)+a-1,由此可知,x取足够大的正数时,有f(x)>0,x取足够小的负数时,有f(x)<0,∴曲线y=f(x)与x轴至少有一个交点.由(1)知f(x)极大值=f (-13)=527+a,f(x)极小值=f(1)=a-1.∵曲线y=f(x)与x轴仅有一个交点,∴f(x)极大值<0或f(x)极小值>0,即527+a<0或a-1>0,∴a<-527或a>1,∴当a∈(-∞,-527)∪(1,+∞)时,曲线y=f(x)与x轴仅有一个交点.11.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是( )答案 C解析 因为f(x)在x=-2处取得极小值,所以当x<-2时,f(x)单调递减,即f ′(x )<0;当x >-2时,f (x )单调递增,即f ′(x )>0.所以当x <-2时,y =xf ′(x )>0;当x =-2时,y =xf ′(x )=0;当-2<x <0时,y =xf ′(x )<0;当x =0时,y =xf ′(x )=0;当x >0时,y =xf ′(x )>0.结合选项中的图象知选C.12.函数y =x e x 在其极值点处的切线方程为________.答案 y =-1e解析 由题意知y ′=e x +x e x ,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为(-1,-1e ),又极值点处的切线为平行于x 轴的直线,故方程为y =-1e.13.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为________.答案 [1,5)解析 ∵f ′(x )=3x 2+2x -a ,函数f (x )在区间(-1,1)上恰有一个极值点,即f ′(x )=0在(-1,1)内恰有一个根.又函数f ′(x )=3x 2+2x -a 的对称轴为x =-13.∴应满足Error!∴Error!∴1≤a <5.14.若函数f (x )=x 3-3ax +1在区间(0,1)内有极小值,则a 的取值范围为________.答案 (0,1)解析 f ′(x )=3x 2-3a .当a ≤0时,在区间 (0,1)上无极值.当a >0时,令f ′(x )>0,解得x >a 或x <-a .令f ′(x )<0,解得-a <x <a .若f (x )在(0,1)内有极小值,则0<a <1.15.已知函数f (x )=ax 3+bx 2+cx 的图象如图所示,且f (x )在x =x 0与x =2处取得极值,则f (1)+f (-1)的值一定( )A .等于0B .大于0C .小于0D .小于或等于0答案 B解析 f ′(x )=3ax 2+2bx +c .令f ′(x )=0,则x 0和2是该方程的根.∴x 0+2=-2b 3a <0,即b a>0.由题图知,f ′(x )<0的解集为(x 0,2),∴3a >0,则b >0,∵f (1)+f (-1)=2b ,∴f (1)+f (-1)>0.16.设函数f (x )=x 33-(a +1)x 2+4ax +b ,其中a ,b ∈R .(1)若函数f (x )在x =3处取得极小值12,求a ,b 的值;(2)求函数f (x )的单调递增区间;(3)若函数f (x )在(-1,1)上只有一个极值点,求实数a 的取值范围.解 (1)因为f ′(x )=x 2-2(a +1)x +4a ,所以f ′(3)=9-6(a +1)+4a =0,得a =32.由f (3)=13×27-52×9+4×32×3+b =12,解得b =-4.(2)因为f ′(x )=x 2-2(a +1)x +4a =(x -2a )(x -2),令f ′(x )=0,得x =2a 或x =2.当a >1时,f (x )的单调递增区间为(-∞,2),(2a ,+∞);当a =1时,f (x )的单调递增区间为(-∞,+∞);当a <1时,f (x )的单调递增区间为(-∞,2a ),(2,+∞).(3)由题意可得Error!即Error!解得-12<a<12,所以实数a的取值范围是(-12,12).。
函数极值和其求法
可疑极值点:驻点、不可导点
可疑极值点是否是真正的极值点,还须进一步 判明。由单调性判定法则知,若可疑极值点的左、 右两侧邻近,导数分别保持一定的符号,则问题 即可得到解决。
定理2(第一充分条件)
设f 在点x0连续,在某邻域U 0 ( x0 , )内可导
(1)如果 x ( x0 , x0 ), 有 f ' ( x ) 0;而 x ( x0 , x0 ) , x 处取得极大值. 有 f ' ( x ) 0 ,则 f ( x )在 (2)如果 x ( x0 , x0 ), 有 f ' ( x ) 0;而 x ( x0 , x0 ) ' f 有 ( x ) 0 ,则 f ( x )在x0 处取得极小值. ' (3)如果当 x ( x0 , x0 ) 及 x ( x0 , x0 ) 时, f ( x ) 符号相同,则 f ( x ) 在 x0 处无极值.
点, 注意: 可导函数 f ( x ) 的极值点必定是它的驻 但函数的驻点却不一定 是极值点.
3 y x , y x 0 0, 例如,
但x 0不是极值点.
注
①这个结论又称为Fermat定理 ②如果一个可导函数在所论区间上没有驻点 则此函数没有极值,此时导数不改变符号 ③不可导点也可能是极值点
f(x)
0(极大)
3 3 20 (极小) 25
2 2 3 x 0 为极大点,x 为极小点,极大值 f (0) 0,极小值 f ( ) 3 20 5 5 25
定理3(第二充分条件) 设 f ( x ) 在 x0 处具有二阶导数, 且 f ' ( x0 ) 0 , f '' ( x0 ) 0 , 那末 (1)当 f '' ( x0 ) 0 时, 函数 f ( x ) 在 x0 处取得极大值; '' f (2)当 ( x0 ) 0 时, 函数 f ( x ) 在 x0 处取得极小值.
函数的极值与最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
一、函数的极值及其求法
极值定义 设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
如果对 x U ( x0 ) ,有 f ( x ) f ( x0 ) ( 或 f ( x ) f ( x0 ) ),
求函数 f ( x ) x 2 3 x 2 在 [3,4] 上的 例3 最大值与最小值 .
解: 显然
一定取得最大值与最小值.
f ( x) ( x 2)( x 1)
又
x 1, x 2为不可导点
x [3,1] [2,4] x (1,2).
x 2 3 x 2, f ( x) 2 x 3 x 2,
2 5
0 0.33
2 ( 5 , )
其极大值为 是极大点,
是极小点, 其极小值为
确定函数极值点和极值的步骤
(1) 确定函数定义域 , 并求导数 f ( x );
(2) 求出 f ( x ) 的全部驻点与不可导点;
(3)驻点和不可导点将定义域区间分成若干个区间, 列表考察导函数在各个区间内的符号,以便确定该点
x 最大(小)值若在区间内部取得,则它一定是极大(小)值. o a x1 x2 x3x4 b x 2 , x4 为极小值点
费马( Fermat )引理
设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
若 (1) f ( x)在 x0 点可导
则 f ( x0 ) 0.
(2) f ( x)在 x0 点取得极大值或极小值
点处的切线与直线 y 0 及 x 8 所围成的三角形
函数的极值,最大值与最小值
m
x1
x2
x3
x4
x5
例4. 求 y 2 x 3x 12 x 14 在 [3,4] 上的最大值与最小值. 2 解: y 6 x 6 x 12 6( x 2)( x 1), 令 y 0, 得驻点 x1 2, x2 1. 因为
3 2
f (3) 23, f (2) 34, f (1) 7, f (4) 142,
(1) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极大值点.
(2) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极小值点.
如果f(x)在x0的两侧保持相同符号, 则x0 不是f(x)的极值点.
x x0 f ( x) f ( x0 ) f ( x0 ) lim 0, 当 x x0 时, x x x x0 f ( x) f ( x0 ) f ( x) f ( x0 ) 0, 0, 所以 f ( x0 ) lim x x x x0 x x0
(1) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极大值点.
(2) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极小值点.
说明: 对于情形(1),由判别定理可知, 当 x x0 时, f(x)单调增加, 当 x x0 时, f(x)单调减少, 因此可知x0为f(x)的极大值点. 同理可说明情形(2).
特殊情况下的最大值与最小值: 若 f(x)在一区间(有限或无限 开或闭)内可导且 有且只有一个驻点x0 则: 当f(x0)是极大值时 f(x0)就是f(x)在该区间上的 最大值 当f(x0)是极小值时 f(x0)就是f(x)在该区 区间上的最小值
函数的极值与最值的求解
函数的极值与最值的求解在数学中,我们经常需要求解函数的极值和最值。
函数的极值指的是函数在某个定义域内取得的最大值或最小值,最值则是函数在整个定义域内的最大值或最小值。
本文将介绍如何求解函数的极值和最值的方法。
一、函数的极值求解方法1. 导数法导数法是求解函数极值的一种常用方法。
根据函数的极值定义,极值点处函数的导数为零或不存在。
因此,我们可以通过以下步骤求解函数的极值:1)求函数的导数;2)令导数等于零,解方程得到极值点的横坐标;3)将极值点的横坐标代入原函数,求得纵坐标。
例如,对于函数f(x) = x^2 - 2x + 1,我们可以进行如下计算:1)求导:f'(x) = 2x - 2;2)令导数等于零:2x - 2 = 0,解得x = 1;3)将x = 1代入原函数:f(1) = 1^2 - 2(1) + 1 = 0,得到极小值0。
2. 二阶导数法在某些情况下,使用二阶导数可以更方便地求解函数的极值。
根据函数的极值定义,当函数的一阶导数为零且二阶导数大于零时,函数取得极小值;当一阶导数为零且二阶导数小于零时,函数取得极大值。
例如,对于函数f(x) = x^3 - 6x^2 + 9x + 2,我们可以进行如下计算:1)求导:f'(x) = 3x^2 - 12x + 9;2)求二阶导数:f''(x) = 6x - 12;3)令一阶导数等于零,解方程得到极值点的横坐标:3x^2 - 12x +9 = 0,解得x = 1;4)将x = 1代入二阶导数:f''(1) = 6 - 12 = -6,表明函数在x = 1处取得极大值。
二、函数的最值求解方法函数的最值即为整个定义域内的最大值或最小值。
求解函数最值的方法有以下几种:1. 导数法和求解极值类似,我们可以通过求解函数在定义域内的导数来找到函数的最值。
例如,对于函数f(x) = -x^2 + 4x - 3,我们可以进行如下计算:1)求导:f'(x) = -2x + 4;2)令导数等于零,解方程得到最值点的横坐标:-2x + 4 = 0,解得x = 2;3)将x = 2代入原函数:f(2) = -(2^2) + 4(2) - 3 = 1,得到函数的最大值1。
极值的求解及应用
极值的求解及应用极值是数学分析中的重要概念,指的是函数在某个定义域内取得的最大值和最小值。
极值的求解及应用是数学分析中的基础内容之一,涉及到函数的最优化问题以及其在各个科学领域中的实际应用。
一、极值的求解方法常见的求解函数极值的方法有以下几种:一阶导数法、二阶导数法、拉格朗日乘数法。
1. 一阶导数法:使用一阶导数可以求得函数的极值点。
如果函数在极值点处导数为零,那么这个点就是函数的极值点,同时要按照函数的性质确定是极大值还是极小值。
然而,导数为零并不一定保证这个点是极值点,还需要使用二阶导数进行进一步的判定。
2. 二阶导数法:使用二阶导数可以判定函数在极值点处的极值类型。
如果函数在某个点的一阶导数为零,并且二阶导数大于零,那么这个点就是函数的极小值点;反之,如果二阶导数小于零,那么这个点是函数的极大值点。
3.拉格朗日乘数法:拉格朗日乘数法适用于求解带有约束条件的最优化问题。
对于有n个变量和m个约束条件的最优化问题,可以构建一个泛函函数,通过使用拉格朗日乘数法,将约束条件与目标函数结合起来,并通过求解泛函函数的偏导数为零来求得极值点。
二、极值应用的例子极值的求解与应用在日常生活和各个学科中都有广泛的应用。
以下是几个极值应用的例子:1. 经济学中的利润最大化问题:在市场经济中,企业通过确定合适的产量与售价来达到最大化利润的目标。
利用一阶导数法,可以求得利润函数的极值点,从而确定适当的产量和价格。
2.物理学中的运动最优化问题:在物理学中,例如弹道学中,要求在给定条件下,使得物体的飞行轨迹距离最远或时间最短。
通过构建合适的数学模型和方程,利用导数法可以求得极值点,从而得到最优解。
3. 机器学习中的模型优化问题:在机器学习中,通过构建合适的数学模型,可以将其视为一个优化问题。
利用梯度下降算法,通过求解模型参数的极值点,可以找到最优的模型参数,从而实现模型的优化。
4. 人口学中的人口增长问题:人口学研究中经常需要解决人口增长的模型和问题。
函数极大值和极小值的求法
函数极大值和极小值的求法函数极大值和极小值是数学分析中的重要概念,它们帮助我们研究函数的特性、优化问题,并且在实际问题的建模中有着广泛的应用。
在本文中,我将详细介绍函数极大值和极小值的求法,以帮助读者更好地理解和应用这一概念。
首先,我们需要明确什么是函数的极值。
在数学中,给定一个函数f(x),若存在某一点a,使得在a的某个邻域内的所有函数值都小于(或大于)等于f(a),那么称f(a)为函数f(x)的极小值(或极大值)。
换句话说,极值点是函数在局部范围内取得最小或最大值的点。
那么如何确定函数的极值点呢?这里我们需要借助导数的概念和求导的方法。
首先我们需要明确导数的几何意义:导数可以理解为函数在某一点处的斜率。
如果函数在某一点处的导数大于0,说明函数在该点附近是递增的;如果导数小于0,说明函数在该点附近是递减的;如果导数等于0,说明函数在该点处取得极值。
接下来,我们介绍一些常见的求导方法,以帮助我们找到函数的极值点。
第一个方法是使用导数的一阶条件。
如果一个函数在某一点处存在极值,那么该点处的导数必然为0或者不存在。
因此,我们可以通过求导并解方程的方法求得函数的极值点。
例如,考虑函数f(x) = 2x^2- 3x + 1,我们首先对该函数求导,得到f'(x) = 4x - 3。
然后我们设置f'(x) = 0,并解方程得到x = 3/4。
因此,函数f(x)的极值点为x=3/4。
第二个方法是使用导数的二阶条件。
根据导数的几何意义,我们知道当函数在某一点处的导数为0时,可能存在极值点,也可能不存在极值点。
因此,我们需要进一步进行判断。
如果一个函数在某一点处的导数为0,并且该点处的导数的二阶导数(即函数的二阶导数)大于0,那么该点处必然是函数的极小值点;如果二阶导数小于0,那么该点处是函数的极大值点。
以前述的函数f(x)=2x^2-3x+1为例,我们已经求得了f'(x)=4x-3。
然后我们对f'(x)再求导,得到f''(x) = 4。
极值与最值的求解方法
极值与最值的求解方法极值和最值是数学中一种重要的求解方法,用于寻找函数在特定区间上的最大值和最小值。
在实际问题中,我们常常需要找到某一函数的最优解,从而得到最优的方案或结果。
本文将介绍极值和最值的概念,以及常见的求解方法。
一、极值与最值的概念极值是指函数在某一点或某一区间内取得的最大值或最小值。
根据函数在极值点的导数性质,可以将极值分为两类:局部极值和全局极值。
1. 局部极值:局部极值是指函数在某一点附近取得的最大值或最小值。
在数学上,局部极值点的判断依据是函数在该点的导数为零或不存在。
如果导数为零,该点可能是极大值点、极小值点或拐点。
如果导数不存在,该点可能是间断点。
2. 全局极值:全局极值是指函数在整个定义域内取得的最大值或最小值。
全局极值点的判断需要考虑函数在定义域端点处的取值情况,并比较区间内各个局部极值点的函数值。
二、求解极值与最值的方法在求解极值与最值的过程中,我们常用的方法有以下几种:极值定理法、导数法、区间划分法和图像法。
1. 极值定理法:极值定理是数学中的一个重要定理,用于判断函数的极值点。
根据这个定理,如果函数在某一区间上连续,并且在区间的内部有导数,则函数在该区间内必定存在极值点。
通过对函数进行区间划分并计算函数值,可以找到局部极大值点和极小值点。
2. 导数法:导数是函数在某一点的变化率,通过计算函数的导数可以判断函数在极值点的增减性。
当函数在某一点导数为零或导数存在突变时,该点有可能是局部极值点。
通过求解函数导数为零的方程,可以得到可能的极值点,进而通过对函数值的比较得出最终的极值。
3. 区间划分法:区间划分法适用于函数在闭区间上求解最大值和最小值的情况。
通过将区间分为若干个子区间,并计算函数在每个子区间的值,然后比较这些值,即可找到全局最值所对应的点。
4. 图像法:图像法是通过绘制函数的图像来观察函数在特定区间上的变化趋势,从而估计函数的极值位置。
通过观察函数图像的特点,可以找到局部极大值点和极小值点的位置。
函数求极值的方法总结
函数求极值的方法总结一、利用二次方程的判别式求极值在求某一类分式函数的极值时,若其分子或分母是关于x的二次式,可将其变为关于x的一元二次方程,依据x在实数范围内有解,由判别式求的。
例1、求函数y=求函数极值的若干方法的极值。
解:将原函变形为关于x的二次方程(y1)x 求函数极值的若干方法 2yx3y=0∵x∈R,且x≠3,x≠1,∴上方程在实数范围内肯定有解。
△= (2y) 求函数极值的若干方法4 (3y)(y1)= 4y(4y3)≥0解之得y≤0 或y≥ 求函数极值的若干方法这里虽然y无最大〔小〕值,但对应于y=0和y= 求函数极值的若干方法的x分别为x=0和x=3,所以当x=0时,y有极大值0,当x=3时,y有微小值求函数极值的若干方法。
例2、求函数y= 求函数极值的若干方法的值域。
解:将原函数变形得:y+yx 求函数极值的若干方法 =2x∵x∈R,∴△= 44y 求函数极值的若干方法≥0,解之得:1≤y≤1∴函数y= 求函数极值的若干方法值域为[1,1]由上面两例可以看出,用二次方程的判别式求函数的极值时,事实上就是将y看作x的系数,利用函数的定义域非空,即方程有解,将问题转化为解一元二次不等式。
但要留意的是:在变型过程中,可能会将x的取值范围扩大,但所求函数的极值肯定在不等式的解集内,此时,要留意检验,即招2出y取极值时的x是否有意义,若无意义必需舍去,再重新考虑其极值。
二、利用倒数关系求极值对于有些分式函数,当其分子不含变量时,可由分母的极值来求整个函数的极值。
例3、求函数y=2 求函数极值的若干方法的最小值。
解:∵x 求函数极值的若干方法 2x+6 = (x1) 求函数极值的若干方法 +5>0∴函数的定义域为一切实数,又由 x 求函数极值的若干方法2x+6=(x1) 求函数极值的若干方法 +5 知当x=1时,求函数极值的若干方法取最小值求函数极值的若干方法 ,∴ 求函数极值的若干方法取最大值求函数极值的若干方法 ,此时 y=2 求函数极值的若干方法取最小值 2 求函数极值的若干方法 ,即当x=1时,有y的最小值是 2 求函数极值的若干方法。
函数的极值和最值
21
t 0 令 f
3.3 函数的极值最值 在实际问题中,往往根据问题的实际意义 就可断定函数f(x)必有最大值或最小值.如果函 数在定义区间内有只有一个驻点,x0则不必讨论 f(x0)是不是极值,就可断定函数f(x0)是最大值或 最小值.
22
3.3 函数的极值最值
通过研究一组学生的学习行为,心理学家发现
接受能力(即学生掌握一个概念的能力)依赖于在
概念引入之前老师提出和描述问题所用时间.讲座 开始时,学生的兴趣激增,但随着时间的延长,学 生的注意力开始分散.分析结果表明,学生掌握概 念的能力由下式给出:
2 G x 0 . 1 x 2 . 6 x 43
x是提出概念所用 其中Gx 是接受能力的一种度量,
f x 6 x 6 ,
f x 3 x 1 x 3 0
x 1 1
x2 3
1 12 0 因为 f , 所以极大值为 f 1 10
3 12 0 因为 f
3 22 所以极小值为 f .
9
3.3 函数的极值最值 求 y 1 x 2 的极值.
, 定义域为
2 3
例2
解
2 1 3 y 3 x2
x2
使 y 无意义的点
x
y
, 2
+
2
2 ,
_
y
极大值1
10
3.3 函数的极值最值 例3 解
3 2的极值. 求y x 1 x
f x f x 1 2
f x 在点 x 0 4.如果函数 f x 在点 x 0 处取得极值,则曲线 y
函数的极值与最大值
求函数f(x)=x3-3x的极值. 解 f′(x)=3x2-3,f″(x)=6x.令f′(x)=0,求得驻点x1=- 1,x2=1. 因f″(1)=6>0,故极小值是f(1)=-2.由于f″(-1)=- 6<0,故极大值是 f(-1)=2. 如果函数在驻点处的二阶导数为零,则定理3失效,这 种情况必须使用定理2判断.
一、函数的极值及其求法
定理1
必要条件)如果f(x)在点x0处可导,且在x0处取得极值,那么 f′(x0)=0.
证明 不妨设x0是f(x)的极小值点,由极小值的定义可知,f(x) 在点x0的某个邻域U(x0)内有定义,且对于x0+Δx∈U(x0),恒有
Δy=f(x0+Δx)-f(x0)≥0, 于是
因为f(x)在点x0处可导,所以 f′(x0)=f′-(x0)=f′+(x0),
一、函数的极值及其求法
当求出函数的驻点或不可导点后,还要从这些 点中判断哪些是极值点,以及进一步判断极值点是 极大值点还是极小值点.由函数极值的定义和函数单 调性的判定法易知,函数在其极值点的邻近两侧单 调性改变(即函数一阶导数的符号改变),由此可 导出关于函数极值点判定的一个充分条件.
一、函数的极值及其求法
定理2
(第一充分条件)设函数f(x)在点x0处连续,且在 x0的某去心邻域内可导.
(1)若在点x0的左邻域内,f′(x)>0;在点x0的右 邻域内,f′(x)<0,则f(x)在x0处取得极大值f(x0).
(2)若在点x0的左邻域内,f′(x)<0;在点x0的右 邻域内,f′(x)>0,则f(x)在x0处取得极小值f(x0).
函数的极值与 最大值
一、函数的极值及其求法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 x 0时,
1 1 f ( x ) 2 x( 2 sin ) cos x x 当 x 0 时, 1 1 2 x ( 2 sin ) 0, cos 在–1和1之间振荡 x x
因而 f ( x ) 在 x 0 的两侧都不单调 .
故命题不成立.
思考题
下命题正确吗?
x 如果 x 0 为 f ( x ) 的极小值点,那么必存在 0 的某邻域,在此邻域内, f ( x ) 在x 0 的左侧下 降,而在 x 0 的右侧上升.
思考题解答
不正确.
1 2 2 x ( 2 sin ), x 0 x 例 f ( x) 2, x0 1 2 f 当 x 0时, ( x ) f (0) x ( 2 sin ) 0 x 于是 x 0为 f ( x ) 的极小值点
(1) f ' ( x ) 0 . 则 f ( x )在 x0处取得极大值. 有 x ( x0 , x0 ) ,有 f ' ( x ) 0; 而x ( x0 , x0 ) (2) 如果
f ' ( x) 0. 有
x ( x0 , x0 ) ,有 f ' ( x ) 0; 而x ( x0 , x0 ) 如果
驻点: 使导数为零的点. (即方程 f ( x ) 0 的实根)
可导函数 f ( x ) 的极值点必定是它的驻点 但函数的驻点却不一定是极值点. 例如,
y x3 ,
y
x 0
0,
但 x 0不是极值点.
定理2(第一充分条件) 若函数 f ( x )在 x0 的 某个邻域内可导( x0 可以除外)
当 x 2时,
f ( x ) 0;
当 x 2时,
f ( x ) 0;
f (2) 1 为 f ( x ) 的极大值.
可能的极值点是: 驻点和不可导点
三、小结
极值是函数的局部性概念:极大值可能 小于极小值,极小值可能大于极大值. 驻点和不可导点统称为临界点.
函数的极值必在临界点取得. 第一充分条件; 判别法 (注意使用条件) 第二充分条件; 作业: P 31: 一
a
y M
y= ƒ(x)
3
1
o
2
b x
m
而函数的最大值与最小值则是指整个定义域内区间
[a , b]的整体特性.
(2)一个函数可能有若干个极小值或极大值;但在定
义区间内却最多只有一个最大最小值。 (3)极小值可能比极大值还大;函数的最大值大于等于 最小值。
二、函数极值的求法
设 f ( x )在点x0 处具有导数, 且在 x0处取得 定理 极值, 那末必定有 f ( x0 ) 0. 费马定理
3
0
( 3, )
单 增
0
单 增
极 大 值
单 减
极 小 值
f (3) 22.
极大值 f ( 1) 10, 极小值
单调区间: ( ,1)、( 1,3)、 (3, ).
定理3(第二充分条件) f ( x )在 x0 处具有二阶导数,且 f ' ( x0 ) 0 , f '' ( x0 ) 0 设 那么 f '' ( x0 ) 0 时, 函数 f ( x ) 在 x0处取得极大值. (1)当
第四节 函数的极值及其求法
一、 函数极值的定义 二、 函数极值的求法 三、 小结
一、函数极值的定义
y M y= ƒ(x)
3
a
1
o
2
b
x
m
定义 设函数 f ( x ) 在(a , b)内有定义, x0 (a, b)
x U ( x0 , )有 f ( x ) f ( x0 )
称 f ( x0 ) 是数 f ( x )
仍用定理2. 注意:函数的不可导点,也可能是函数的极 值点.
例3 求出函数 f ( x ) 1 ( x 2) 的极值.
( x ) 2 ( x 2) 解 f ( x 2) 3 当 x 2 时, f ( x )不存在.但函数f ( x ) 在该点连续.
1 3
2 3
的一个极大值. x U ( x0 , )有 f ( x ) 的一个极小值.
f ( x0 )
称 f ( x0 ) 是函数 f ( x )
函数的极大值与极小值统称为极值; 使函数取得极值的点称为极值点. 例如, x 0 是 y x 2 的极小值点,
y 0是极小值.
注意:
(1)由极值定义知:极值 是函数的局部特性。
(2)当 f
''
( x0 ) 0
时, 函数 f ( x ) 在 x0处取得极小值.
例2 求出函数 f ( x ) x 3 x 24 x 20 的极值. f ( x ) 3 x 2 6 x 24 3( x 4)( x 2) 解
3 2
令
f ( x ) 0,
f ( x ) x 3 3 x 2 9 x 5 的极值和 例1 求出函数
单调区间. f ( x ) 3 x 2 6 x 9 3( x 1)( x 3) 解 令 f ( x ) 0,得驻点 x1 1, x2 3. 列表讨论
x
f ( x )
f ( x) ( ,1) 1 (1,3)
则 f ( x )在 x0处取得极小值.
(3) 如果当 x ( x0 , x0 )及 x ( x0 , x0 )时, f ' ( x )符号相同, 则f ( x ) 在 x0 处无极值.
求极值的步骤:
(1) 求定义域及导数
f ( x );
(2) 求驻点,即方程 f ( x ) 0 的根; 和不可导点. (3) 检查 f ( x ) 的驻点左右的正负号;判断极值点; 或检查二阶导数的正、负. (4) 求极值. 列表法
得驻点
x1 4,
x2 2.
f ( x ) 6 x 6, f ( 4) 18 0, f (2) 18 0,
故极大值
f ( 4) 60,
故极小值 f (2) 48. 注意:f ( x0 ) 0 时, f ( x )在点 x0处不一定取极值,