电机转距惯量功率计算

合集下载

伺服电机的转矩 惯量计算公式

伺服电机的转矩 惯量计算公式

伺服电机的转矩惯量计算公式伺服电机的转矩惯量计算公式在探讨伺服电机的转矩和惯量计算公式之前,我们先来了解一下什么是伺服电机。

伺服电机是一种能够精准控制位置、速度和加速度的电机,通常被广泛应用于自动化设备、机器人、数控机床等领域。

它具有高速度、高精度和高可靠性的特点,因此在工业生产中扮演着非常重要的角色。

1. 伺服电机的转矩伺服电机的转矩是指电机在运动时所产生的力矩,通常用来描述电机的输出能力。

伺服电机的转矩大小直接影响着其可驱动的负载,因此在实际应用中,我们需要准确地计算出伺服电机的转矩。

在伺服电机的转矩计算中,有一个重要的概念需要引入,那就是转矩常数。

转矩常数是描述电机输出转矩与输入电流之间关系的参数,通常用KT表示。

它的单位是N·m/A,表示在给定电流下电机能够输出的转矩大小。

转矩常数的计算方法是通过实际测试得到的,可以通过将电机固定在特定的支架上,给定一定的电流,测量电机输出的转矩大小,然后通过计算得到转矩常数。

在实际应用中,获取准确的转矩常数对于伺服电机的控制非常重要。

2. 伺服电机的惯量在伺服电机的转矩计算中,还有一个重要的参数需要引入,那就是惯量。

惯量是描述物体抵抗运动状态改变的能力,通常用J表示,单位是kg·m²。

对于伺服电机来说,惯量越大,表示电机对于速度和位置的改变越难,因此其加速度和减速度就会越小。

在伺服电机的惯量计算中,通常有两种情况需要考虑,一种是转动惯量,另一种是质量惯量。

转动惯量描述了物体绕其旋转轴旋转的惯性,通常用Jr表示;而质量惯量描述了物体对于线性运动的惯性,通常用Jm表示。

在实际应用中,我们需要根据伺服电机的实际结构和运动方式来计算出相应的惯量值。

3. 伺服电机的转矩惯量计算公式在实际应用中,我们需要根据伺服电机的转矩和惯量参数来计算其所需的控制参数,从而实现精准的控制。

伺服电机的转矩和惯量计算公式如下:控制所需的转矩 = 负载转矩 + 加速度转矩 + 摩擦转矩 + 重力转矩其中,负载转矩表示外部负载对电机所产生的转矩,通常由实际应用中的载荷参数计算得到;加速度转矩表示电机在加速和减速过程中产生的转矩,可以通过伺服电机的惯量和加速度参数来计算得到;摩擦转矩表示电机在运动中克服摩擦力所产生的转矩;重力转矩表示电机在垂直方向上所受到的重力影响所产生的转矩。

(仅供参考)常用机构的转动惯量与扭矩----的计算

(仅供参考)常用机构的转动惯量与扭矩----的计算

附录 1. 常用物体转动惯量的计算惯量的计算:
矩形体的计算
角加速度的公式α=(2π/60)/t
转矩T=J*α=J*n*2π/60)/t
α-弧度/秒 t-秒 T –Nm n-r/min
图1 矩形结构定义
以a-a为轴运动的惯量:
公式中:
以b-b为轴运动的惯量:
圆柱体的惯量
图2 圆柱体定义
空心柱体惯量
图3 空心柱体定义
摆臂的惯量
图4-1 摆臂1结构定义
图4-2 摆臂2结构定义
曲柄连杆的惯量
图5 曲柄连杆结构定义带减速机结构的惯量
图6 带减速机结构定义齿形带传动的惯量
图7 齿形带传动结构齿轮组减速结构的惯量
图8 齿轮组传动结构滚珠丝杠的惯量
图9 丝杠传动结构
折算到电机的力矩
传送带的惯量
图10 传送带结构总惯量
折算到电机的惯量
折算到电机的扭矩
齿轮,齿条传动惯量的计算
图11 齿轮齿条结构定义
1,确认您的负载额定扭矩要小于减速机额定输出扭矩, 2,伺服电机额定扭矩*减速比要大于负载额定扭矩。

3,负载通过减速机转化到伺服电机的转动惯量,要在伺服电机允许的范围内。

4,确认减速机精度能够满足您的控制要求。

5,减速机结构形式,外型尺寸既能满足设备要求,同时能与所选用的伺服电机很好,转动惯量一定要算的,不算是因为你已经确认了不会有问题,否则负载拖电机是一定的。

如果对启动的时间有要求,如初速度为0需要几秒后达到速度为何,就需要计算转动惯量,角的加速度和转动惯量求转矩。

电机选型计算公式总结

电机选型计算公式总结

电机选型计算公式总结功率:P=FV(线性运动)T=9550P/N(旋转运动)P——功率——WF——力——NV——速度——m/sT——转矩——速度:V=πD N/60X1000D——直径——mmN——转速——rad/min加速度:A=V/tA——加速度——m/s2t——时间——s力矩:T=FL惯性矩:T=JaL——力臂——mm(圆一般为节圆半径R)J ——惯量——a ——角加速度——rad/s21. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量)82MD J =对于钢材:341032-⨯⨯=gLrD J π)(1078.0264s cm kgf L D ⋅⋅⨯-M-圆柱体质量(kg);D-圆柱体直径(cm); L-圆柱体长度或厚度(cm);r-材料比重(gf /cm 3)。

2. 丝杠折算到马达轴上的转动惯量:2i Js J = (kgf·c m·s 2)J s c m·s 2); i-降速比,12z z i =3. 工作台折算到丝杠上的转动惯量gw22⎪⎭⎫ ⎝⎛⋅=n v J π gw2s 2⎪⎭⎫ ⎝⎛=π (kgf·c m·s 2)角加速度a=2πn/60t v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf);g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm)2. 丝杠传动时传动系统折算到驱轴上的总转动惯量:())s cm (kgf 2g w 122221⋅⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++=πs J J iJ J S tJ 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf ·cm ·s 2);J s -丝杠转动惯量(kgf ·cm ·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量2gw R J =(kgf ·c m·s 2)R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量⎪⎪⎭⎫ ⎝⎛++=2221g w 1R J i JJ t J 1,J 2-分别为Ⅰ轴,Ⅱ轴上齿轮的转动惯量(kgf ·c m·s 2);R-齿轮z 分度圆半径(cm);w-工件及工作台重量(kgf)。

伺服扭矩惯量计算

伺服扭矩惯量计算

电机转矩T (N.m) 小轮1质量M1(kg) 小轮1半径r1(m) 小轮2质量M2(kg) 小轮2半径r2(m) 重物质量M3(kg) 减速比r1/r2=1/R
JL=1/2*M1*r12 + (1/2*M2*r22)/R2 + M3*r12
JL=1/2*M1*r12 + 1/2*M2*r12 + M3*r12
扭矩计算
电机转矩T (N.m) 滑轮半径r (m)
T r
F
T 提升力F (N) ——力F= —— · R r
T
1/R
F
1
扭矩计算
F
电机转矩T (N.m) 螺杆导程PB (m)
T
推力F (N)
2π F=T ·—— PB
PB
F
2π 经过减速机后的推力F=T ·—— · R PB
注意: 这种传动方式计算惯量公式只与r1有关
5
3
惯量计算
二、负载直线运动时惯量计算 JL(㎏ • ㎡)
(以电机轴心为基准计算转动惯量)
M
直线运动部分 PB JK=M ×( )² 2π 经过减速机之后的转动惯量 JL= JK R²
1/R PB
4
惯量计算
三、皮带类传动时惯量计算 JL(㎏ • ㎡)
(以电机轴心为基准计算转动惯量)
M1 r1 M3 r2 M2
T
1/R
PB
2
惯量计算
一、负载旋转时惯量计算 JL(㎏ • ㎡)
(以电机轴心为基准计算转动惯量)
1/R L(m) 实心圆柱 D(m)
JK= 1 ×MK ×D² 8
L(m) D1 D0 (m) (m) 空心圆柱
JK= 1 ×MK ×(D02- D12) 8 经过减速机之后的转动惯量 JL= JK R²

伺服电机步进电机选型中转动惯量计算折算公式

伺服电机步进电机选型中转动惯量计算折算公式

以下是我们在非标设备设计中对《伺服电机、步进电机在电机功率计算》中需要用到的转动惯量计算方法,具体需要了解计算方法和各种参数的选型计算方法视频教程,请加群进入直播课程和老师进行交流。

详情参见精攻开物教育官网(jxsb.jgkwedu.)咨询。

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量)82MD J =对于钢材:341032-⨯⨯=gLrD Jπ)(1078.0264s cm kgf L D ⋅⋅⨯-M-圆柱体质量(kg); D-圆柱体直径(cm);L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。

2. 丝杠折算到马达轴上的转动惯量:2iJsJ =(kgf ·cm ·s 2)–丝杠转动惯量(kgf ·cm ·s 2);DMLi-降速比,12z z i =3. 工作台折算到丝杠上的转动惯量gw22⎪⎭⎫ ⎝⎛⋅=n v J π gw2s 2⎪⎭⎫ ⎝⎛=π (kgf ·cm ·s 2)v -工作台移动速度(cm/min);n-丝杠转速(r/min); w-工作台重量(kgf);g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm)2. 丝杠传动时传动系统折算到驱轴上的总转动惯量:())s cm (kgf 2g w 122221⋅⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++=πs J J i J J S tJ 1-齿轮z 1及其轴的转动惯量;J 2-齿轮z 2的转动惯量(kgf ·cm ·s 2); J s-丝杠转动惯量(kgf ·cm ·s 2);s-丝杠螺距,(cm);w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量2gw R J =(kgf ·cm ·s 2)R-齿轮分度圆半径(cm);w-工件及工作台重量(kgf)6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量⎪⎪⎭⎫ ⎝⎛++=2221g w 1R J i J J tJ 1,J 2-分别为Ⅰ轴,Ⅱ轴上齿轮的转动惯量(kgf ·cm ·s 2);R-齿轮z 分度圆半径(cm);w-工件及工作台重量(kgf)。

关于电机功率、转矩和惯量等

关于电机功率、转矩和惯量等
我们知道,转矩 T 的定义是力( F)乘以力臂 (r) ,即:
故,把上式代入可得:
其中: P 为电机额定功率,单位为 T 为电机额定转矩,单位为 N为电机额定转速,单位为
W; N·m; RPM。
惯量和力矩的关系 电机有小惯量、中惯量和大惯量电机之分,同一功率下,电机转动惯量 J 越 大,则电机的输出转矩越大,但速度越低。故,小惯量电机有响应速度快的
.
关于电机功率、转矩和惯量等
额定功率 P、额定转矩 N 和额定转矩 T 有这样一条公式,转矩 T 可以从功率 P 和转速 T 算得:
公式说明,同一功率下,转矩和转速成反比,即使用减速箱放大输出转矩时,同 时会减少转速。 从力的做功角度,得推导过程如下:
其中: F 为电机输出合力,单位为 N(牛); r 为力臂,单位为 m(米); N为电机转速,单位为 RPM(转 / 分)。
'.
优点,当然,这前提是其所拖负载的惯量不能大。 惯量的单位为 Kgm2,其定义如下,从能量角度:
由于式中质量和半径对于特定对象,是不变的,所以把它们提取出来,便成 为了惯量 J:
从做功的角度分析,电机输出转矩做功 W为:
'.
.
理想下,电机转矩做功全部转化为功能,得: 故得:
即: 其中: T 为转矩,单位为 N· m; J 为总惯量,单位为 Kgm2; β为角加速度,单位为 rad/s 2; 从式中可得到,惯量和加速度有直接关系,在特定应用场合,如果负载惯量 恒定且已知,则可从要求的加速要求算出电机的输出转矩,作为电机选型的 参数之一。 总结 关于电机的额定功率、额定转矩、额定转速、转动惯量,如果为一电机安装 减速箱,则电机的安额定功率不变,额定转矩增大、额定转速减少、转动惯 量增大。 所以,为一系统选择电机,需要知道系统的负载惯量、要求的最大转速、要 求的最大加 / 减速时间、系统电压等要求、从而算出一系列的电机参数,再进 行电机选型,从而既能满足系统要求又不构成浪费。

转矩、转动惯量和飞轮转矩的折算

转矩、转动惯量和飞轮转矩的折算
转矩、转动惯量和飞轮转矩的折算
例题
• 动力学
位移与角度 速度 加速度 质量、转动惯量、飞轮转矩 牛顿定律 功、功率、动能
• • • • •
折算的原则 转矩的折算 作用力的折算 转动惯量和飞轮转矩的折算 直线运动质量的折算
例1 、
• 图示的电机拖动系统中,已知飞轮矩GDm2=14.7N· m2, GD12=18. 8 N· m 2,GDL2=120 N· m 2,拖动效率η1=0.91, η2=0.93,负载转矩TL=85 N· m,转速n=2450r/min, n1=810r/min,nL=150r/min,忽略电动机空载转矩,求: • 折算到电动机轴上的系统总惯量J; • 折算到电动机轴上的负载转矩 。
2 1 GDd dn 1 + ( 2 2 2) 375 j1 j 2 j3 dt 1 2 3
800 2 2 .7 9 (3.5+ 2 + 2 + ) 2 2 2 2 2 3 375 2 0.9 2 1.5 0.9 2 1.5 2 0.9 800 4.769=10.17 N .m 2 = 375
2n f
150 2 3.1416 241.7 103 3.796KW 切削功率 P T f T 60 60
( 2 )电动机输出功率 P2
P
1 2 3
2 a

3.796 5.207KW 0.9 0.9 0.9
2 GDb2 GDc2 GDd ( 3 )系统总飞轮矩 GD GD 2 2 2 2 2 2 j1 j1 j 2 j1 j2 j3 2
2
m , GDc2 =2 .7 N· m , GDd2 =9 N· m ,各级传动效率1 = 2 =3 =90% , 动机轴), GDb2 = 2 N·

5.5kw电机转动惯量

5.5kw电机转动惯量

5.5kw电机转动惯量
对于一个5.5kW电机,假设它是一个直流电机,我们可以通过以下步骤来计算它的转动惯量:
1. 首先,我们需要确定电机的转速。

假设电机转速为3000转/分钟。

2. 根据电机的转速和电机的输出功率,我们可以使用转速和功率之间的关系来计算电机的扭矩。

直流电机的输出功率和转矩之间的关系为:功率 = 扭矩 * 转速。

根据这个关系,可以得到扭矩 = 功率 / 转速 = 5.5kW / (3000转/分钟)。

3. 接下来,我们需要根据电机的扭矩和转速来计算电机的转动惯量。

直流电机的转动惯量和扭矩之间的关系为:转动惯量 = 扭矩/ (2 * π * 转速)。

根据这个关系,可以得到转动惯量 = (5.5kW / (3000转/分钟)) / (2 * π)。

注意:在计算转速和转动惯量时,要确保使用相同的单位,例如转速使用转/分钟,扭矩使用N·m。

请注意,这只是一个简单的计算方法,具体的转动惯量可能受到电机设计和结构的影响。

如果需要更准确的结果,建议参考电机的技术规格或咨询电机制造商。

电机转矩计算公式

电机转矩计算公式

电机转矩计算公式电机转矩是指电机在转动时产生的扭矩,它决定着电机的负载能力,是电机负载性能的重要指标,是电机的工作重要参数。

要计算电机的转矩,首先要知道它的转动惯量、转速和转矩系数。

一、电机转矩计算公式:电机转矩T=M*ω*K其中,M为电机转动惯量,ω为转速,K为转矩系数。

二、电机转动惯量M的计算:电机转动惯量M可以通过以下两种方法计算:(1)给定电机转动惯量M:如果电机转动惯量M给定,可以在产品说明书中找到,比如以kgm、gcm等单位计算的电机转动惯量M可以直接使用。

(2)由电机参数计算:电机转动惯量M可以通过电机结构参数和尺寸参数计算。

M=(ρd)/2其中ρ为电机的材料密度,d为电机的轴径,m为电机转动惯量单位。

三、电机转速计算:电机转速ω可以通过电机输入电压、输出转矩、电机转动惯量等参数计算。

ω=VCM/(KT)其中V为电压,C为转矩系数,M为电机转动惯量,K为功率系数,T为输出转矩。

四、电机转矩系数的计算:电机转矩系数C可以通过电机结构形式、转子电极数量以及内阻来计算。

C=(2*π*K)/(m*N)其中K是功率系数,m是电机转矩系数,N是转子极数。

五、电机转矩计算实例:假设一个电机,它的输入电压为220V,转动惯量M为5kgm,转子极数N为6,功率系数K为0.9。

现在要计算这台电机的转矩,需要先求解出转矩系数C和转速ω,然后再进行转矩计算。

(1)转矩系数C的计算:C=(2*π*K)/(m*N)C=(2*π*0.9)/(5*6)=0.1765(2)电机转速ω的计算:ω=VCM/(KT)由计算给出的转矩系数C求得转速ω为:ω=220V*0.1765*5kgm/(0.9*T)=274.87rad/s(3)电机转矩T的计算:T=M*ω*K由计算给出的转动惯量M和转速ω求得转矩T为:T=5kgm*274.87rad/s*0.9=1115.1Nm由以上流程,可以计算出一台电机转矩为1115.1Nm,如果实际转矩需要较大,可以改变设定的其他参数,获得较大转矩。

启动转矩计算公式讲解学习

启动转矩计算公式讲解学习

学习资料
启动转矩计算公式
T=9550P/n
T是转矩,单位N·m
P是输出功率,单位KW
n是电机转速,单位r/min
扭转力矩M(N.m)=Jβ
式中:J—转动惯量,β—角加速度
当圆柱状负载绕其轴线转动时,转动惯量J=mr^2/2
式中:m—圆柱体质量,r—圆柱体半径
根据在△t秒达到△ω转/分角速度的要求,可算出圆柱的角加速度β=△ω/△t
这样,根据半径r、长度L、材料密度ρ,算出质量m和转动惯量J,
根据要求的启动速度算出角加速度β,然后就可算出扭转力矩M了。

再根据M选取电机。

同时根据负载转速和传动比可以求出电机的驱动功率。

同时你还要考虑此时得到的转矩为负载转矩,还要折合减速后的电机实际转矩,电机额定参数都有这个数据,然后就可以选择适合的电机了。

看启动方式了,直接启动的电机根据大小不一启动时间长短一步一样,一般1-----3秒就能启动;
如用星三角时间继电器可设定,一般不超8秒的,看启动电流从启动到平稳的时间段是几秒就设成几秒。

仅供学习与参考。

电机扭矩、惯量计算

电机扭矩、惯量计算

一、进给驱动伺服电机的选择1.原则上应该根据负载条件来选择伺服电机。

在电机轴上所有的负载有两种,即阻尼转矩和惯量负载。

这两种负载都要正确地计算,其值应满足下列条件: 1)当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。

2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。

3)电机在加速/减速过程中的转矩应在加减速区(或间断工作区)之内。

4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。

并应小于电机的连续额定转矩。

5)加在电机轴上的负载惯量大小对电机的灵敏度和整个伺服系统的精度将产生影响。

通常,当负载小于电机转子惯量时,上述影响不大。

但当负载惯量达到甚至超过转子惯量的5倍时,会使灵敏度和响应时间受到很大的影响。

甚至会使伺服放大器不能在正常调节范围内工作。

所以对这类惯量应避免使用。

推荐对伺服电机惯量Jm和负载惯量Jl之间的关系如下:Jl<5×Jm1、负载转矩的计算负载转矩的计算方法加到伺服电机轴上的负载转矩计算公式,因机械而异。

但不论何种机械,都应计算出折算到电机轴上的负载转矩。

通常,折算到伺服电机轴上的负载转矩可由下列公式计算:Tl=(F*L/2πμ)+T0式中:Tl折算到电机轴上的负载转矩(N.M);F:轴向移动工作台时所需要的力;L:电机轴每转的机械位移量(M);To:滚珠丝杠螺母,轴承部分摩擦转矩折算到伺服电机轴上的值(N.M);Μ:驱动系统的效率F:取决于工作台的重量,摩擦系数,水平或垂直方向的切削力,是否使用了平衡块(用在垂直轴)。

无切削时: F=μ*(W+fg),切削时: F=Fc+μ*(W+fg+Fcf)。

W:滑块的重量(工作台与工件)Kg;Μ:摩擦系数;Fc:切削力的反作用力;Fg:用镶条固紧力;Fcf:由于切削力靠在滑块表面作用在工作台上的力(kg)即工作台压向导轨的正向压力。

常用机构转动惯量与扭矩计算

常用机构转动惯量与扭矩计算

附录 1. 常用物体转动惯量的计算
惯量的计算:
矩形体的计算
/t /60)=(2π角加速度的公式α
/t=J*n*/6转T=JNm n-r/min
T弧t-
1 矩形结构定义图
为轴运动的惯量:以a-a
公式中:
为轴运动的惯量:以b-b
圆柱体的惯量
图2 圆柱体定义
空心柱体惯量
图3 空心柱体定义
摆臂的惯量
图4-1 摆臂1结构定义
图4-2 摆臂2结构定义
曲柄连杆的惯量
5 曲柄连杆结构定义图带减速机结构的惯量
图6 带减速机结构定义齿形带传动的惯量
图7 齿形带传动结构齿轮组减速结构的惯量
8 齿轮组传动结构图
滚珠丝杠的惯量
丝杠传动结构图9
折算到电机的力矩
传送带的惯量
10 传送带结构图总惯量
折算到电机的惯量折算到电机的扭矩
齿轮,齿条传动惯量的计算
11 齿轮齿条结构定义图
1,确认您的负载额定扭矩要小于减速机额定输出扭矩,2,伺服电机额定扭矩*减速比要大于负载额定扭矩。

3,负载通过减速机转化到伺服电机的转动惯量,要在伺服电机允许的范围内。

4,确认减速机精度能够满足您的控制要求。

5,减速机结构形式,外型尺寸既能满足设备要求,同时能与所选用的伺服电机很好,转动惯量一定要算的,不算是因为你已经确认了不会有问题,否则负载拖电机是一定的。

如果对启动的时间有要求,如初速度为0需要几秒后达到速度为何,就需要计算转动惯量,角的加速度和转动惯量求转矩。

转矩、转动惯量和飞轮转矩的折算

转矩、转动惯量和飞轮转矩的折算
2
2
(指电动机
2 m m m 轴), GD1 = 2 N· , GD2 =2 .7 N· , GD3 =9 N· ,各级传动效率1 = 2 =3 =90% ,求:
2
2 2
( 1 )切削功率; ( 2 )电动机输出功率; ( 3 )系统总飞轮矩; ( 4 )忽略电动机空载转矩时,电动机电磁转矩; ( 5 )车床开车但未切削时,若电动机加速度
=
2 2 GDM dn 1 GD12 dn 1 1 GD2 dn 1 ( 5 ) TM + + ( ) ( 2 ) 375 dt 375 i12 dt 1 375 i12i2 dt 1 2
1 GD32 dn 1 + ( 2 2 2) 375 i1 i2 i3 dt 123
800 2 2 .7 9 (3.5+ 2 + 2 + 2 ) 375 2 0.9 2 1.5 2 0.9 2 2 1.5 2 2 2 0.9 3 800 4.769=10.17 N .m 2 = 375
负载转矩
150 1 1 1 =6.15(N· m) TL =TL = 85 2450 0.91 0.93 j
例2
某车床电力拖动系统中,已知切削力 F=2000 N ,工件直径 d=150 mm ,电动机转速 n=1450
2 r /min,减速箱的三级转速比 i=2 ,i=1.5 ,i=2 ,各转轴的飞轮矩为 GDM =3. 5 N· m 2
2n f
150 2 3.1416 241.7 103 3.796KW 切削功率 P T f T 60 60
( 2 )电动机输出功率 P2
P
1 2 3
2 M

电机负载转矩与负载惯量计算方法

电机负载转矩与负载惯量计算方法

电机负载转矩与负载惯量计算方法一、计算折合到电机上的负载转矩的方法如下:1、水平直线运动轴:9.8*μ·W·PBTL= 2π·R·η (N·M)式PB:滚珠丝杆螺距(m)μ:摩擦系数η:传动系数的效率1/R:减速比W:工作台及工件重量(KG)2、垂直直线运动轴:9.8*(W-WC)PBTL= 2π·R·η (N·M)式WC:配重块重量(KG)3、旋转轴运动:T1TL= R·η (N·M)式T1:负载转矩(N·M)二:负载惯量计算与负载转矩不同的是,只通过计算即可得到负载惯量的准确数值。

不管是直线运动还是旋转运动,对所有由电机驱动的运动部件的惯量分别计算,并按照规则相加即可得到负载惯量。

由以下基本公式就能得到几乎所有情况下的负载惯量。

1、柱体的惯量D(cm)L(cm)由下式计算有中心轴的援助体的惯量。

如滚珠丝杆,齿轮等。

πγD4L (kg·cm·sec2)或πγ·L·D4(KG·M2)JK= 32*980 JK= 32式γ:密度(KG/CM3)铁:γ〧7.87*10-3KG/CM3=7.87*103KG/M3铝:γ〧2.70*10-3KG/CM3=2.70*103KG/M3JK:惯量(KG·CM·SEC2)(KG·M2)D:圆柱体直径(CM)·(M)L:圆柱体长度(CM )·(M)2、运动体的惯量用下式计算诸如工作台、工件等部件的惯量W PB 2JL1= 980 2π (KG·CM·SEC2)PB 2=W 2π (KG·M2)式中:W:直线运动体的重量(KG)PB:以直线方向电机每转移动量(cm)或(m)3、有变速机构时折算到电机轴上的惯量1、电机Z2J JOZ1KG·CN:齿轮齿数Z1 2JL1= Z2 *J0 (KG·CM·SEC2)(KG·M2)。

负载惯量、转矩、电机功率的计算方法[精彩]

负载惯量、转矩、电机功率的计算方法[精彩]

负载惯量、转矩、电机功率的计算方法
一、计算折合到电机上的负载转矩方法如下:
1、水平直线运动轴:
T L=(9.8* *W*P B)/2π*R*η
P B:滚珠丝杆螺距(m)
μ:摩擦系数
1/R:减速比
W:工作台及工件的重量(KG)
2、垂直直线运动轴:
T L=[9.8* *(W-W C)*P B]/2π*R*η
W C: 配重块重量(KG)
3、旋转轴运动
T L= T I/ (R*η)
T I: 粗在转矩(N.M)
二、负载惯量计算
与负载转矩不同的是,指通过计算即可得到负载的准确数值,不管是直线运动还是旋转运动,对所有由电机驱动的部件的惯量分别计算,并按照规则相加既可得负载惯量。

由以下基本公式就能得到几乎所有情况下的负载惯量。

1、柱体的惯量
D(cm)
L(cm)
由下式计算有中心轴的援助体的惯量。

如滚珠丝杠,滚轴等。

J K=(π*ρ*D4*L)/32
ρ:密度
2、运动体惯量
J L1=W*( /2)2
W:直线运动体的重量
P B:以直线方向电机每转移动量
三、运转功率及加速功率的计算
1、转功率计算
P0=(2π* Nm * Ti:)/60
P0:运转功率
Nm:电机运行速度
Ti:负载转矩。

常用机构的转动惯量与扭矩 的计算

常用机构的转动惯量与扭矩    的计算

附录 1. 常用物体转动惯量的计算惯量的计算:
矩形体的计算
角加速度的公式α=(2π/60)/t
转矩T=J*α=J*n*2π/60)/t
α-弧度/秒 t-秒 T –Nm n-r/min
图1 矩形结构定义
以a-a为轴运动的惯量:
公式中:
以b-b为轴运动的惯量:
圆柱体的惯量
图2 圆柱体定义
空心柱体惯量
图3 空心柱体定义
摆臂的惯量
图4-1 摆臂1结构定义
图4-2 摆臂2结构定义
曲柄连杆的惯量
图5 曲柄连杆结构定义带减速机结构的惯量
图6 带减速机结构定义齿形带传动的惯量
图7 齿形带传动结构齿轮组减速结构的惯量
图8 齿轮组传动结构滚珠丝杠的惯量
图9 丝杠传动结构
折算到电机的力矩
传送带的惯量
图10 传送带结构总惯量
折算到电机的惯量
折算到电机的扭矩
齿轮,齿条传动惯量的计算
图11 齿轮齿条结构定义
1,确认您的负载额定扭矩要小于减速机额定输出扭矩, 2,伺服电机额定扭矩*减速比要大于负载额定扭矩。

3,负载通过减速机转化到伺服电机的转动惯量,要在伺服电机允许的范围内。

4,确认减速机精度能够满足您的控制要求。

5,减速机结构形式,外型尺寸既能满足设备要求,同时能与所选用的伺服电机很好,转动惯量一定要算的,不算是因为你已经确认了不会有问题,否则负载拖电机是一定的。

如果对启动的时间有要求,如初速度为0需要几秒后达到速度为何,就需要计算转动惯量,角的加速度和转动惯量求转矩。

电机力矩计算

电机力矩计算

电机力矩计算公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]电机扭矩计算电机力矩的定义:垂直方向的力*到旋转中心的距离1、电动机有一个共同的公式:P=M*N/9550P为功率,M为电机力矩(也称扭矩),N为电机转速,当M 和N都为额定值时,电机的功率也是额定功率,额定是指电机能够长期工作的极限值2、瞬态扭矩是指电机在负载变化、速度变化时出现的过渡值,和额定没有关系,具体说,这个值可以超过额定扭矩,如果此时电机速度为额定时,电机可能会出现功率过载,这个过载只能持续很短的时间,这个时间取决于电机设计。

3、变频器的功率一般要大于等于三相异步电动机,但这还不够,还需要变频器输出的额定电流和过载电流都要大于等于电机所需的额定值或最大值,以保证电机能出足够的力矩(额定和瞬态力矩),否则可能出现变频器无法带动电机和负载的情况。

步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。

每输入一个脉冲电机转轴步进一个步距角增量。

电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。

步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。

步进电机惯量低、定位精度高、无累积误差、控制简单等特点。

广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。

而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。

在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。

一般地说最大静力矩Mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。

在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。

但细分只能改变其分辨率,不改变其精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N1 :齿轮 1 转速; N 2 :齿轮 2 转速;
★若采用普通感应电机,功率根据以下公式计算: P= TN 9549 2 M × PB 2πη 式中
P :功率; T :扭矩; N :转速
★电机扭距估算 估算公式: T = 式中
M :负载质量; PB :丝杆螺距;π:3.14;η:效率
3
PDF 文件使用 "pdfFactory Pro" 试用版本创建
T2 :加速时的驱动扭矩 kgf ⋅ mm ; T1 :等速时的驱动扭矩 kgf ⋅ mm ;
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
J :对电机施加的惯性转矩 kg ⋅ m 2
2 N1 1 J = J m + J g1 + × J g2 + Js + m N 2π 2 2
电机负载转矩惯量功率计算估算法
最近,设计中要计算电机的转矩,查了些书公式太多,对不是专业设计的人员来 说还真是个麻烦事,于是在网上查了些资料并整理了一下,算是自己的一个学习笔记,助。
★非精确计算也可以套用以下公式: TL =
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建
5
PDF 文件使用 "pdfFactory Pro" 试用版本创建
6
PDF 文件使用 "pdfFactory Pro" 试用版本创建
得 FL = 0 + 0.1 × 1000 × 9.8 = 980 N ;
TL = FL × PB 980 × 5 ≈ 830 N gmm = 0.83N g M ,设η =0.94,得 TL = 2πη 5.9032
根据这个得数,可以选择电机功率。以台湾产某品牌伺服为例,查样 本得知,额定扭矩大于 0.83N.M 的伺服电机是 400W。 (200W 是 0.64N.M, 小了。400W 额定 1.27N.M,是所需理论扭矩的 1.5 倍,满足要求) 当然,端部安装部分和滚珠丝杠螺母预压以及润滑不良会对系统产生 静态扭矩,也称初始扭矩,实际选择是需要考虑的。另外,导向件的摩擦 系数不能单计理论值,比如采用滚珠导轨,多套装配后的总摩擦系数一定 大于样本参数。而且,该结果仅考虑驱动这个静止的负载,如果是机床工 作台等设备,还要考虑各向切削力的影响。 若考虑加速情况,较为详细的计算可以参考以下公式 ★水平使用滚珠丝杠驱动扭矩及电机功率计算: 实际驱动扭矩: T = (T1 + T2 ) × e
式中
ω :电机的角加速度 rad s 2 ; J g 1 :齿轮 1 的惯性转矩 kg ⋅ m 2 ;
J s :丝杠的惯性转矩 kg ⋅ m 2 ;
J m :电机的惯性转矩 kg ⋅ m 2 ;
J g 2 :齿轮 2 的惯性转矩 kg ⋅ m 2 ; (电机直接驱动可忽略 J g 1 、 J g 2 )
FL × PB 式中 2πη
TL:驱动扭矩 kgf ⋅ mm ; η :进给丝杠的正效率; PB :丝杠导程 mm ; FL:轴向负载 N 【 FL = F + µ mg , F :丝杠的轴向切削力 N,μ:导向件
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建
的综合摩擦系数,m:移动物体重量(工作台+工件)kg,g:9.8】 。 计算举例: 假设工况:水平使用,伺服电机直接驱动,2005 滚珠丝杠传动,25 滚珠直线导轨承重和导向, 理想安装, 垂直均匀负载 1000kg, 求电机功率:
FL = F + µ mg ,设切削力不考虑,设综合摩擦系数 μ=0.1,
T :实际驱动扭矩; T1 :等速时的扭矩; T2 :加速时的扭矩; e :裕量系数。
◆等速时的驱动扭矩: T1 =
Fa × PB 2πη
式中 T1 Байду номын сангаас等速驱动扭矩 kgf ⋅ mm ;
PB :丝杠导程 mm ;η :进给丝杠的正效率。 Fa :轴向负载( N )
【 Fa = F + µ mg , F :丝杠的轴向切削力( N );µ :导向件综合摩擦系 数; m :移动物体重量(工作台+工件) kg ;g:9.8 】 。 ◆加速时的驱动扭矩: T2 = T1 + J × ω 式中
相关文档
最新文档