BL-S100A-14S-1中文资料
中国牛人外文翻译
ORIGINAL PAPERStability assessment of a slope under a transformer substation using numerical modellingH.J.Li •F.C.Dai •W.C.Li •L.Xu •H.MinReceived:2April 2010/Accepted:26July 2010/Published online:17September 2010ÓSpringer-Verlag 2010Abstract This paper presents an analysis of the defor-mation mechanism and stability assessment of a slope in Yunnan Province,China.Field investigations indicated that the deformation of the slope was caused by the com-bined effects of the unfavorable topographical,geological and hydrogeological conditions and the placement of man-made fill.The stability of the slope was assessed by 3D numerical modeling which showed that the factor of safety of the slope was 1.1in the natural state but reduced to 1.03after fill was placed.Pile reinforcement was undertaken,which raised the factor of safety to 1.27.Keywords Fill slope ÁDeformation mechanism ÁNumerical modelling ÁStrength reductionRe´sume ´L’article pre ´sente une analyse du me ´canisme de de´formation et une e ´valuation de la stabilite ´d’une pente dans la province de Yunnan,en Chine.Les travaux deterrain ont indique´que la de ´formation de la pente re ´sultait d’effets combine´s en rapport avec des conditions topo-graphiques,ge´ologiques et hydroge ´ologiques de ´favorables et la construction d’un stabilite´de la pente a e´te ´e ´value ´e a `l’aide d’une simulation nume ´rique 3D qui a montre´que le facteur de se ´curite ´de la pente valait 1,1en conditions naturelles mais passait a`1,03apre `s construction du remblai.Des renforcements par pieux ont e´te ´re ´alise ´s,ce qui a fait passer le coefficient de se´curite ´a `1,27.Mots cle´s Remblai sur pente ÁMe ´canisme de de´formation ÁSimulation nume ´rique ÁDiminution de re´sistance IntroductionIn order to develop the provincial economy and satisfy the need for power,a 220kV transformer substation was constructed in Yanjin,located in northeastern Yunnan Province,PR China.The construction of the transformer substation commenced in November 2004,and the site was filled in March 2005.The total volume of cut and fill was 152,000m 3.The compaction was accomplished using a sheeps-foot roller with a layer thickness of 200mm.During heavy rainfall between July 18and July 20,2005,a creeping slide was observed in the slope at the northwest of the construction site.It led to tensile cracks in the retaining wall with a maximum crack width of 20cm.Meanwhile,the foundation of the 110kv framework located on the top of the slope subsided by 29cm.The moving slope was 340m long and 100m wide.The unstable slope threatened the safety of the transformer substation,the end tower of the 110kv power output and the lives and prop-erties of the residents nearby.After deformation,the fill slope was reinforced immediately with 23rectangular piles in the northwest of the site and 41circular piles in two rows at the northwestern corner of the site.Each rectangular pileH.J.Li (&)Institute of Mine Safety Technology,China Coal Research Institute,Beijing 100013,People’s Republic of China e-mail:geolhj@F.C.Dai ÁW.C.Li ÁL.XuInstitute of Geology and Geophysics,Chinese Academy of Sciences,P.O.Box 9825,Beijing 100029,People’s Republic of China H.MinInstitute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,People’s Republic of ChinaBull Eng Geol Environ (2011)70:385–394DOI 10.1007/s10064-010-0318-7was 2.5m 91.8m while the circular piles had a diameter of 1m;in each case the spacing was 2.5m.The bases of the piles were extended into the bedrock.The paper presents a detailed analysis of the deforma-tion mechanism and slope stability assessment undertaken using numerical modeling,in the natural condition,after the placement of the fill and after reinforcement.Geological conditions GeomorphologyThe transformer substation is located in the Wumeng mountain area in the northeast of Yunnan province.The dominant geomorphic feature is a deeply incised canyon.The aspect of the slope is approximately N15°E and the gradient is in the range of 10°–15°with multi-step topog-raphy.The step height is between 1and 3m and the topographic relief between 35and 40m (see Figs.1,2).LithologyThe ground investigations for the second exploration stage (stability assessment)consisted of 13boreholes (BH12–BH24)and four exploratory wells (Fig.2).The results indicated that the slope consists mainly of Quaternary deposits and is underlain by Triassic detrital rock.The lithological components are illustrated in Fig.3.For the sake of simplicity,the Quaternary deposits are subdivided into three lithotypes:(a)Landfill:Light yellow to light grey in color,and composed of soft silty clay.(b)Top soil:Composed of upland field soil and irrigatedfield soil,distributed widely across the site.Theupland field soil is dark in color and composed of loose silty clay;the irrigated field soil is grey and consists mainly of soft,wet,plastic clay.The thickness is less than 0.40m.(c)Silty clay:Light yellow to light grey in color with 15–20%breccia or gravel from mudstone and pelitic siltstone.The thickness varies from 3.1to 16.2m,being thinnest at the toe and thicker along the line from BH4to BH20(Fig.3).The bedrock is a suite of detrital rock formations and is divided into completely to highly weathered mudstone and moderately to slightly weathered sandstone in the light of their different characteristics.The purple completely to highly weathered mudstone is weak and could be crushed by hand;the peak strength of the undisturbed samples being /p 0=28.1°,c p 0=40.5kPa,and the residual strength /r 0=21.5°,c r 0=14.6kPa (Fig.4).The bore-holes indicated that the completely to highly weathered mudstone is only found in the upper concave region and not at the slope toe (Fig.3).The grey moderately to slightly weathered sandstone is strong and dense.Geological structureThe site is located on the southern flank of an east–west syncline and the strata strike N80°E–S85°E with dips to the north of 10°–15°.The site investigation indicated two joint sets for the moderately to slightly weathered sandstone.The N30°E to N50°E joints had dip angles of [80°,rough and moderately weathered joint surfaces with a spacing of 0.2–0.7m while the N15°W–N40°W joints had dip angles [74°,smooth and moderately weathered surfaces and a spacing of 0.3–0.8m.The joints are generally closed although a few had a \1mm infilling of mud.HydrogeologyThe groundwater is mainly pore water in the Quaternary formation.The permeability of the completely to highly weathered mudstone is 10-8m/s hence a high water level developed above the slip surface—at some 1–3m depth because of the multi-step topography.Mechanical properties of soil and rockFrom the site investigation the materials can be grouped into four lithotypes:(a)Landfill:Mechanical strength parameters for the landfill adopted were the empirical parameters /0=14°,c 0=20kPa,given by the Yunnan Electric Power DesignInstitute.Fig.1Overview of the site area.Movement zone is outlined in red ;solid line observed,dashed line interpreted386H.J.Li et al.(b)Silty clay:In view of the similarity of the index properties of the thin top soil and the silty clay,their shear strength parameters were considered together based on samples of silty clay obtained from a man-made well.The physical properties are shown in Table 1.In order to determine themechanicalFig.2Map of the slopeshowing contours and boreholepositionsStability of a slope using numerical modelling 387parameters of the silty clay,both consolidated drained (CD)and undrained(CU)tests were carried out on four61.8mm diameter,125mm high samples.The axial strain velocity was0.011mm/min for the CD tests and0.073mm/min for CU tests.The consolida-tion stresses were25,50,100and200kPa,respec-tively,and samples were saturated by back-pressure in triaxial compression tests.The results were/ 0=26.4°,c0=8.5kPa;/0=15°,c0=18kPa for the CU and CD tests,respectively.Similarly,the friction angle(CU)of the saturated clays was lower than that of the CD tests for the same clay due to increase in pore pressures under undrained conditions (Budhu2000).(c)Weathered mudstone:X-ray diffraction tests wereconducted on the completely to highly weathered mudstone and indicated that the mudstone was com-posed of quartz(50%),chlorite(20%),illite(10%)and hematite(10%).The occurrence of hematite indicatedthat the process of weathering was in an oxidizing environment and that the mudstone was completely weathered.The physical properties of the soils are shown in Table1.The shear strength parameters were obtained using a shear rate of0.02mm/min and for the undisturbed samples indicated peak strength parame-ters of/p0=28.1°,c p0=40.5kPa,and residual strength parameters(four reverals)of/r0=21.5°,c r0=14.6kPa.However,using these peak and resid-ual parameters,the numerical simulation did not show creeping and deformation.As the slope has been deformed,shear tests were carried out on saturated remolded samples,which gave residual strength parameters of/r0=21.7°c r0=1.0kPa(Fig.4),i.e.,a friction angle similar to that of the undisturbedsamples but a lower cohesion.Adjusting the strength parameters of the completely to highly weathered mudstone to/r0=16.5°,c r0=1.0kPa,the slope progressively crept and deformed in a manner similar to the observed failure.The factor of safety was1.03 by the shear strength reduction method,close to the critical state.Therefore,the optimized residual strength of remolded samples was used in simulation (Table2).(d)Sandstone:To estimate the rock mass strength andstiffness of moderately to slightly weathered sand-stone,the Hoek–Brown(2002,2006)failure criterion was used together with the uniaxial compression strength and the characteristics of the structural surface.Uniaxial compression testing was undertaken following the National Standard of People’s Republic of China(1999)Code for Water Resources and Hydropower Engineering Geological Investigation, GB50287-99,and allowing for the anisotropy of the rock.The average values of uniaxialcompressionTable1Physical properties of silty clay and mudstoneSoil Soil propertiesWet density(g/cm3)Water content(%)Specific gravity Liquid limit(%)Plastic limit(%)Plasticity indexSilty clay 2.0(8)22.2(8) 2.69(8)36.9(8)22.0(8)14.9(8) Mudstone 2.1(8)16.9(8) 2.68(8)32.8(8)12.8(8)20.0(8)Values in parentheses represent numbers of samples testedTable2Geotechnical parameters of rock and soil adopted for numerical modelingMaterials Elastic modulus(GPa)Poisson’s ratio Unit weight(MN/m3)Cohesion(MPa)Friction angle(°)Landfill0.040.350.0180.0214.0Silty clay0.070.350.0200.01815.0 Weathered mudstone0.030.370.0210.00116.5 Sandstone14.000.220.026 3.052.0388H.J.Li et al.strength were183MPa(perpendicular to the bed-ding)and160MPa(parallel to the bedding).Clearly some anisotropy is present and hence,to be conser-vative,a value of150MPa(derived from the Yunnan Electric Power Design Institute)was adopted in the stability analysis.To establish the structure and surface conditions,55GSI estimates were made and an m i of18was obtained(Hoek et al.2002;Hoek and Diederichs2006).Using these parameters,values of m b=3.61,a=0.5and s=0.0067were obtained.The Hoek–Brown failure envelope was calculated assuming an undisturbed rock mass and then trans-lated to a linear Mohr–Coulomb envelope using RocLab software(RocScience2002). Deformation characteristics and mechanism Deformation characteristicsAfter site works involvingflattening andfilling,the retaining wall in the transformer substation cracked (Fig.5a)and other foundations showed evidence of dis-tress.In addition,tensile cracks up to50m long and 20mm wide appeared,coalescing at the top of the concave slope.Within the transformer substation the cracks appeared to run in an east–west direction,while near the backscar they had a north-east trend.Tensile cracks and differential subsidence were also observed in the retaining wall of the transformer substation(Fig.5b).In addition,a small-scale local collapse and rock fall occurred at theslope toe.From the geometry of the movement,it would appear that the landslide had been caused by the placement fill towards the top of the slope.Analysis of deformation mechanismWhilst thefilling was clearly a cause of the landslide,other inherent factors also contributed to the slope deformation, including:(a)Topography:The concave shape can result in easycollection of groundwater in the slope.In addition,the depth/location of the sliding surface would clearly be conducive to slope deformation.(b)Geological structure:The Quaternary gravelly depos-its are highly permeable.In addition to the difference between the peak strength and the residual strength of thefiner material,once a shear zone has been created the frictional resistance would be significantly reduced once movement has begun.The presence of low permeability completely to highly weathered mudstone results in a perched water table such thatthe overlying Quaternary deposits can slip relatively easily along the interface as the dip of the strata is in the same direction as the slope profile.(c)Ground water:In addition to rainfall,as the areabelow the transformer station was irrigated,there is an almost continuous supply of water into the zone with perched water conditions such that the depth to saturated conditions is only1–3m in the stepped topography;groundwater seepage was observed at the drainage hole in the retaining wall(Fig.6).The sketch map of the creep deformation mode is shown in Fig.7.Stability analysisModel setupIn this study thefinite differences program FLAC3D(Fast Lagrangian Analysis of Continua in3-Dimensions)was used for slope stability assessment(Itasca2002).This Fig.5Inner(a)and outer(b)retaining walls of transformer substationStability of a slope using numerical modelling389method has been widely used in analyzing slope stability and deformation mechanisms (Guadagno et al.2003;Kinakin and Stead 2005;Brideau et al.2006;Deng et al.2007).The mesh for finite differences modeling is shown in Fig.8.The model was 420m long and 250m wide with a maximum height of 121m.The model was composed of 128,581elements and 25,839grid points.According to the slope lithology,the materials are divided into four groups:(a)landfill (b)silty clay (c)completely to highly weatheredmudstone (d)moderately to slightly weathered sandstone.The retaining wall was taken as linear elastic material.The slope materials were assumed to be perfectly elasto-plastic and satisfy the Mohr–Coulomb failure criterion.Piles were simulated by pile structural elements which are suitable for modeling structural-support members (Itasca 2002).Roller boundaries were applied on both the four sides of the model and the bottom while the slope surface was free.The geotechnical properties for the materials are shown in Table 2;bulk modulus (K )and shear modulus (G )were converted from Young’s modulus (E )and Poisson’s ratio (m ).The initial stresses under gravity and hydrostatic pressure were calculated under natural conditions.Loading and reinforcement piles were added after the displacement and velocity were set to zero.Simulation processThe simulation process involves two conditions:one is filling,and the other is reinforcement.The fill simulation condition is composed of three steps.1.Initial stress:Linearly elastic material behavior and homogeneous elastic properties before filling were assumed to generate simple initial stresses due to gravity and the hydrostatic pressure of water under natural conditions;the displacements are set to zero.2.Natural condition:The material model of the soil and rock mass was switched from linearly elastic to elastic-perfectly plastic and the stresses corrected accordingly.The factor of safety was calculated by the shear strength reduction method.3.Filling:The zones are ‘filled’according to the scope of fill.The factor of safety under the filling condition was calculated through the shear strength reduction technique.The reinforcement condition consists of two steps.1.Initial stress:In the actual condition,the structure was reinforced by piles when the slope was deformed after filling.The initial stress was generated according totheFig.6Groundwater seepage at the drainage hole of retaining wall (a )and water level from well (b)390H.J.Li et al.actual deformation situation and the displacements were subsequently set to zero.2.Reinforcement:The slope was reinforced by pile structural elements according to the field construction.The factor of safety with the reinforcement state was calculated using shear strength reduction.The pore water pressure was calculated from the site investiga-tion evidence and the ground water table was assumed to be adjacent to the ground surface.Failure criteria and shear strength reduction technique To date there is no uniform failure criterion for numerical simulation.Griffiths and Lane (1999)and Dawson et al.(1999)took non-convergence as an indicator for failure in finite element methods while Matsui and San (1992)assumed the contour of shear strain to indicate failure;a slope will fail if the contour of shear strain exceeds 15%developing from the toe to top.Deng et al.(2007)took the plastic zone as the indicator of the failure;a slope will fail if the plastic zones are all connected from the toe to the crest of the slope.For FLAC 3D ,four indicators may be used to assess the system state,including (a)maximum unbalanced force,(b)grid point velocities,(c)grid point displacements and (d)plastic indicators (Itasca 2002).In this paper,the criteria listed above are adopted to assess the slope stability and the factor of safety is calculated using the shear strength reduction technique.There are two ways commonly used to calculate the factor of safety,limit equilibrium and numerical methods (Zienkiewicz et al.1975;Dawson et al.1999;Duncan 1996).The shear strength reduction method has advantages over the limit equilibrium,as the critical failure surface is found automatically,to satisfy translational and rotational equilibrium.In addition,it can provide a more realistic indication of the behavior of a slope.The shear strength reduction method was first proposed by Zienkiewicz et al.(1975).The numerical simulation is run for a series of trial factors of safety (F s ).The cohesion c and friction /are reduced for each F s simultaneously according to the fol-lowing equations until failure occurs:c 0¼c =F sð1Þ/0¼arctan ðtan /=F s Þð2ÞAs Duncan (1996)pointed out.F is the factor by which the shear strength of the soil would have to be divided to bring the slope into a state of barely stable equilibrium.Deng et al.(2007)evaluated the stability of landslides based on a three-dimensional strength reduction technique.This paper adopts this technique to assess the stability and calculatetheFig.8Mesh forcalculationFig.9Calculated shear strain increment (a )and plasticity state (b )Stability of a slope using numerical modelling 391safety using the FLAC 3D program in which the command SOLVE FOS can find the slip surface automatically.Modeling results Natural stateA shear band is first formed at the natural state,as shown in Fig.9a, b.No dramatic increase of displacement is observed at this stage.The shear failure occurs at the toe and in the middle of the slope,but the slip band does not completely reach the residual condition.The results from the numerical simulation showed that the factor of safety in the natural state was 1.1.Effect of fillFill was loaded onto the natural condition model in steps until the system reached equilibrium.The displacement contours after filling are shown in Fig.10,which indicates the displacement at the middle and near the crest of the slope is greater than that near the toe.Shear strains increased after filling (compared with Fig.9a)and the failure surface (as indicated by the accumulation of the shear strain increment)propagated almost from the toe to the crest (Fig.11a).The slope is in active shear failure,whereas tensile failure occurs at the slope crest (Fig.11b).The shear strength reduction method indicated a factor of safety after filling of 1.03,i.e.,close to the criticalstateFig.10Generation of ground displacement for filledconditionFig.11Calculated shear strain increment (a )and plasticity state (b)Fig.12Generation of ground displacement for reinforcement condition392H.J.Li et al.such that creep or deformation would occur under unfa-vorable conditions (e.g.,rainfall).Effect of reinforcementThe slope was reinforced with piles when the deformation reached the actual situation at the site (Fig.2).The cor-responding displacement increment after reinforcement is shown in Fig.12,which indicates that the deformation has been controlled and the small displacement occurs at the toe rather than the crest.After stabilization the shear strain increment was not developed at the rear but the small values were concentrated at the front (Fig.13a).With the continued time-stepping,failure (shear-n)is occasionally observed at the toe but reinforcement prevents it affecting the crest (Fig.13b).The factor of safety was 1.27after the installation of the reinforcement piles (calculated by the shear strength reduction technique).From Fig.13c,the FOS does not apply to the whole slope but only the upper part which is stabilized by the piling.Summary and conclusionsField investigation in the study area indicated that the unfavorable topographical,geological and hydrogeological conditions were the inherent factors contributing to the creep movement of the slope while man-made filling was the main external factor.The deformation mechanism of the slope was analyzed using a numerical model which indicated:(a)A shear band first formed in the natural state with shear failure occurring in the middle and toe of the slope.The factor of safety under natural conditions was 1.1,an insufficient margin to accommodate the subsequent placement of fill.(b)After filling,creep slipping or deformation would belikely to occur under unfavorable conditions (e.g.,rainfall)when the FOS would decrease to 1.03.When the fill was placed,the factor of safety would be reduced by 6.4%.Failure would be likely to occur in the form of shear (in the slope)and tension (at the crest).The modeling results were in good agreement with the actual deformation observed.(c)After the site was reinforced with piles,the FOS wasincreased to 1.27,I indicating the reinforcement had been effective and the slope was stable.ReferencesBrideau MA,Stead D,Couture R (2006)Structural and engineeringgeology of the East Gate Landslide,Purcell Mountains,British Columbia,Canada.Eng Geol 84:183–206Budhu M (2000)Soil mechanics and foundations.Wiley,New York Dawson EM,Roth WH,Drescher A (1999)Slope stability analysis bystrength reduction.Geotechnique49(6):835–840Fig.13Calculated shear strain increment (a ),plasticity state (b )and (c )plasticity state under reinforcement conditions after shear strength reduction (FOS =1.27)Stability of a slope using numerical modelling 393Deng JH,Tham LG,Lee CF,Yang ZY(2007)Three-dimensional stability evaluation of a preexisting landslide with multiple sliding directions by the strength-reduction technique.Can Geotech J44:343–354Duncan JM(1996)State of the art:limit equilibrium andfinite element analysis of slopes.J Geotech Eng ASCE122(7):577–596Griffiths DV,Lane PA(1999)Slope stability analysis byfinite element.Geotechnique49(3):387–403Guadagno FM,Martino S,Scarascia Mugnozza G(2003)Influence of man-made cuts on the stability of pyroclastic covers(Campania, southern Italy):a numerical modeling approach.Env Geol 43:371–384Hoek E,Diederichs MS(2006)Empirical estimation of rock mass modulus.Int J Rock Mech Min Sci43(2):203–215Hoek E,Carranza-Torres C,Corkum B(2002)Hoek-Brown failure criterion-2002Edition.Proceedings of thefifth North American Rock Mechanics Symposium,University of Toronto,Toronto, pp267–273Itasca(2002)FLAC3D—Fast Lagrangian analysis of continua in3 dimensions(Version2.1).User’s manual[M].Itasca Consulting Group,Inc,USAKinakin D,Stead D(2005)Analysis of the distributions of stress in natural ridge forms:implications for the deformation mecha-nisms of rock slopes and the formation of sackung.Geomor-phology65:85–100Matsui T,San KC(1992)Finite element slope stability analysis by shear strength reduction technique.Soils Found32(1):59–70 National Standard of People’s Republic of China(1999)Code for water resources and hydropower engineering geological inves-tigation(GB50287-99)RocScience(2002)RocLab(Version1.010).RocScience Inc,Toronto Zienkiewicz OC,Humpeson C,Lewis RW(1975)Associated and nonassociated visco-plasticity in soil mechanics.Geotechnique 25(4):671–689394H.J.Li et al.。
SCC100A中文资料
FEATURESPRESSURE SENSOR CHARACTERISTICSPart NumberSCC05(D,G)SCC15A SCC15(D,G)SCC30(A,D,G)SCC100A SCC100(D,G)9SCC300APerformance Characteristics (Individual Models) I S = 1.0 mA, T A = 25°C 1Operating Pressure Range0-5 psid(g)0-15 psia 0-15 psid(g)0-30 psid(g)0-100 psia 0-100 psig 0-300 psiaMaximum Over Pressure20 psi 30 psia 30 psi 60 psi 150 psia 150 psig 450 psiaAccuracy 20.50%0.50%0.50%0.50%0.50%0.50%0.50%Effect On Span 3(0°C-50°C)1.50%1.50%1.50%1.50%1.50%1.50%1.50%Effect On Offset 4(0°C-50°C)2.00%2.00%2.00%2.00%2.00%2.00%2.00%Full-Scale Span 5(mV)25-6530-9540-9560-15085-22585-22550-120Performance Characteristics (All Models) I S = 1.0 mA, T A = 25°CCharacteristicsZero Pressure OffsetCombined, Linearity, Hysteresis, Repeatability 2Temperature Effect on Span 3, 8Temperature Effect on Offset 4,8Long T erm Stability of Offset and Span 6Response Time (10% to 90%)7Input Impedance Output ImpedanceMin.-30.0---------------4.004.00Typ.-100.250.250.500.100.105.005.00Max.20.00.501.502.00------6.506.50UnitmV %FSO %FSO %FSO %FSO mSec k Ωk ΩSpecification Notes:1:Reference Conditions: Supply Current = 1.0 mA, T A =25°C, Common-mode Line Pressure = 0 psig, Pressure Applied to P1, unless otherwise noted.2:Accuracy is the sum of Hysterisis and Linearity. Hysterisis is the maximum output difference at any point within the operating pressure range for increasing and decreasing pressure.Linearity refers to the best straight line fit as measured for the offset, full-scale and 1/2 full-scale pressure at 25°C.3:This is the maximum temperature shift for span when measured between 0°C and 50°C relative to the 25°C reading. Typical temperature coefficients for span and resistance are -2200 ppm/°C and +2200 ppm/°C respectively.4:This is the maximum temperature shift for offset when measured between 0°C and 50°C relative to the 25°C reading.5:Span is the algebraic difference between the output voltage at full-scale pressure and the output at zero pressure.6:Maximum difference in output at any pressure with the operating pressure range and temperature within 0°C to 50°C after:a)100 temperature cycles, 0°C to 50°C b) 1.0 million pressure cycles, 0 psi to full-scale span7:Response time for a 0 psi to full-scale span pressure step change. 10% to 90% rise time8:Temp effect on span and offset are guaranteed by design. Therefore these parameters are not 100% tested.9:The SCC100D devices can only be used in a forward gauge mode. Application of more than 30 psig to the back side of any of the SCC Series devices can result in device failure.Maximum Ratings (For All Devices)Supply Current, I S1.5 mATemperature RangesCompensated 0°C to +50°C Operating -40°C to +85°C Storage-55°C to +125°C Humidity0 to 100 %RHLead T emperature (soldering 4 sec)250°C Common-Mode Pressure150 psiPHYSICAL DIMENSIONSButton PackageBasic Sensor DIP "D2" PackagePHYSICAL DIMENSIONS (cont.)Basic Sensor DIP "D4" PackageN PackagePressure RangeAbsolute Pressure0 - 15 psi 0 - 30 psi0 - 100 psi 0 - 300 psiGage Pressure0 - 5 psi 0 - 15 psi 0 - 30 psi 0 - 100 psiDifferential Pressure0 - 5 psi 0 - 15 psi 0 - 30 psi 0 - 100 psi (9)Order Part NumberButton PackageSCC15A SCC30A SCC100A---use differential devices SCC05D SCC15D SCC30D SCC100D"N" Package SCC15AN SCC30AN SCC100AN---use differential devices SCC05DN SCC15DN SCC30DN SCC100DNTO Package SCC15AHO SCC30AHO SCC100AHO SCC300AHO SCC05GSO SCC15GSO SCC30GSO---------------DIP Packagesingle portSCC15AD2SCC30AD2SCC100AD2SCC05GD2SCC15GD2SCC30GD2---------------DIP Package Dual port------------------------SCC05DD4SCC15DD4SCC30DD4SCC100DD4SenSym and Sensortechnics reserve the right to make changes to any products herein. SenSym and Sensortechnics do not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.ORDERING INFORMATIONPHYSICAL DIMENSIONS (cont.)AHO Package (TO-5)GSO Package (TO-39)。
金升阳隔离电源模块
5 (4.5-5.5)
±24 5 12 15 24 ±5 ±12
12 (10.8-13.2)
±15 5 12 15 ±5
15 (13.5-16.5)
±15 5 15 ±5 ±12
24 (21.6-26.4)
±15 5 12 15
该版权及产品最终解释权归广州金升阳科技有限公司所有
A_S-1WR2 & B_LS-1WR2
A/0-2012
第 1 页 共 5 页
输入特性
项目 工作条件
5VDC 输入 12VDC 输入 15VDC 输入 24VDC 输入 Min. -0.7 -0.7 -0.7 -0.7 Typ. ----C型 Max. 9 18 VDC 21 30
单位
输入浪涌电压(1sec. max.)
输入滤波器
输出特性
效率(%)
输入电压(V)
效率 (%)
输入电压(V)
100 90 80 70 60 50 40 30 20 10 0 10
效率V S输出 负载曲 线图 ( 标称输入 电压)
A0505S-1WR2
100 90 80 70 60 50 40 30 20 10 0 10
效率VS 输出负载 曲线图 (标称 输入电 压)
YSI X100 Series 产品说明书
Transmitter x100e Seriesfor pH, Dissolved Oxygen and ConductivityAdvanced transmitters for reliable measurements and for harsh conditions Technical DataDrawings2Specifications transmitter pH 2100e 4Specifications transmitter O 24100e 6Specifications transmitter O 24100ppb 7Specifications transmitter Cond 7100e 8Specifications transmitter Cond Ind 7100e 10Terminal assignment «Advanced Line» transmitters 12General specifications «Advanced Line» transmitters 14Ordering information17Short descriptionThe cost-effective Transmitter X100 Series are suitable designed for highly reliable and accurate measure-ments in a wide range of industrial applications. The instruments are easy to operate and the large-size LCD provides substantial all essential information. The measurement values are displayed in largecharacters and additional pictographs explain the function operation and advise any signal or functional irregularities.Features–Two 0/4…20 mA current outputs –Two limit contacts –Alarm & wash contact–Continuous monitoring of sensor and transmitter performance –Sensor diagnostics–Easy operation with help of pictographs –PID controller–Communication with EasyClean, the METTLER TOLEDO cleaningContentsDrawings AssemblyMounting1Sealing plugs2Hexagon nuts3Pg cable glands4Rubber reducer5Pg plug6Enclosure screws7Hinge pin8Cable ties9Filler plugs10Gaskets11Washer12Jumper876541Cable gland (3 pieces)2Breakthroughs for cablegland or conduit 1/2 ",Ø 21.5 mm(2 breakthroughs).Conduits not included!3Holes for post mounting4Holes for wall mountingDrawingsPipe mounting with ZU 0274 bracket kitProtective hood ZU 0276 for wall and pipe mountingPanel-mount kit ZU 0275165 mm 132 mm173 m m1 Protected hood (if required)2 Hose clamps with worm gear drive to DIN 3017(2 pieces)3 Postmounting plate4 For vertical orhorizontal post/pipe mounting5 Self-tapping screws1 Screws2 Seal3 Control panel4 Span pieces5 Threaded sleevesSpecifications Transmitter pH 2100e pH/mV input Input for pH, ORP electrodes or ISFETMeasurement range –1500…+1500 mVDisplay range pH value –2.00…16.00ORP –1999…+1999 mVGlass electrode input1)Input resistance > 0.5 x 10 12ΩInput current < 2 x 10 –12AReference electrode input1)Input resistance > 1 x 1010ΩInput current < 1 x 10 –10AMeas. error 1,2,3)pH value< 0.02mV value< 1 mVElectrodestandardization pH *Operating modes-BUF Calibration with automatic buffer recognition Calimatic:Buffer sets-01-Mettler-Toledo 2.00/4.01/7.00/9.21-02-Merck/Riedel de Haen 2.00/4.00/7.00/9.00/12.00-03-Ciba (94) 2.06/4.00/7.00/10.00-04-NIST technical 1.68/4.00/7.00/10.01/12.46-05-NIST standard 1.679/4.006/6.865/9.180-06-HACH 4.00/7.00/10.18-07-WTW technical buffers 2.00/4.01/7.00/10.00-PRD Product Calibration-MAN Calibration with manual entry of individual buffer values-DAT Data entry of premeasured electrodesZero point adjustment ±200 mVMax. calibration range Asymmetry potential: ±60 mVSlope: 80…103 % (47.5…61 mV/pH)Sensor standardizationORP*ORP calibrationMax. calibration range –700…+700D mVCal timer 0000…9999 hSensocheck automatic monitoring of glass andreference electrode (can be disabled)Sensoface provides information on the electrode condition.Evaluation of zero/slope, response,calibration interval, SensocheckSpecifications Transmitter pH 2100e Temperature input *Pt100/Pt1000/NTC 30 kΩ / NTC 8,55 kΩ2-wire connection, adjustableMeasurement range Pt100/Pt1000: –20.0…+ 200.0 °C/–4…+ 392 °FNTC 30 kΩ – 20.0…+ 150.0 °C/–4…+ 302 °FNTC 8.55 kΩ –10.0…+ 130.0 °C/+14…+ 266 °FAdjustment range 10 KResolution0.1 °C/1 °FMeas. error 1,2,3)< 0.5 K (< 1 K for Pt100; <1K for NTC >100 °C)Temp. compensation Linear –19.99…+19.99 %/Kof process medium (reference temp. 25 °C)Power output for operating an ISFET adapter+ 3 V/0.5 mA– 3 V/0.5 mA*User-defined1)To IEC 746 Part 1, at nominal operating conditions2)± 1 count3)Plus sensor errorSpecifications Transmitter O24100e Dissolved oxygen inputSensor type A:InPro6000 (6800)Sensor type B:InPro6900Measuring current-2…1800 nAResolution0.05 nA (with Vpol ≤ 800 mV and Vref ≤ 200 mV)Saturation (–10…80 °C)0…500 %Meas. error1,2,3)0.5 % of meas. val. +0.5 %Concentration (–10…80 °C)0.00…50.00 mg/l0.00…50.00 ppmMeas. error 1,2,3)0.5 % of meas. val. + 0.05 mg/lor 0.05 ppmAdm. guard current20 µAPolarization voltage * 0…1000 mVProcess pressure* 0.000…9.999 bar(…999.9 kPa/…145.0 psi)Salt correction * 00.00…45.00 g/kgSensor standardizationOperating modes * DO saturation (automatic)DO concentration (automatic)Product calibrationZero point calibrationCalibration range Zero point ± 2 nASensor type A Slope 25…130 nA(at 25 °C, 1013 mbars)Calibration range Zero point ± 2 nASensor type B Slope200…550 nA(at 25 °C, 1013 mbars)Calibration timer * 0000…9999 hPressure correction * 0.000…9.999 bars/999.9 kPa/145.0 psiSensocheck Monitoring for short circuits/open circuits (can be disabled)Sensoface Provides information on the sensor conditionEvaluation of zero/slope, response, calibration interval, SensocheckTemperature input *NTC 22 kΩ / NTC 30 kΩ*2-wire connection, adjustableMeasurement range– 20.0…+150.0 °C/– 4…+ 302 °FAdjustment range10 KResolution0.1 °C/1 °FMeas. error 1,2,3)< 0.5 K (< 1 K at >100 °C)*User-defined1)To IEC 746 Part 1, at nominal operating conditions2)± 1 count3)Plus sensor errorSpecifications Transmitter O24100ppb Dissolved oxygen inputSensor type A:InPro6000 (6800)Sensor type B:InPro6900Measuring current-2…600 nAResolution0.01 nA (with Vpol ≤ 500 mV and Vref ≤ 200 mV)Saturation (–10…80 °C)0.0.…120.0 %Meas. error1,2,3)0.5 % of meas. val. +0.1 %Concentration (–10…80 °C)0000…9999 µg/l0000…9999 ppb0.0000…9.999 mg/l0.0000…9.999 ppmMeas. error 1,2,3)0.5 % of meas. val. +0.005 mg/lor 0.005 ppmAdm. guard current20 µAPolarization voltage* 0…1000 mVProcess pressure* 0.000…9.999 bars(to 999.9 kPa/…145.0 psi)Salt correction* 00.00…45.00 g/kgSensor standardizationOperating modes * DO saturation (automatic)DO concentration (automatic)Product calibrationZero point calibrationCalibration range Zero point ± 2 nASensor type A Slope25…130 nA(at 25 °C, 1013 mbars)Calibration range Zero point ± 2 nASensor type B Slope 200…550 nA(at 25 °C, 1013 mbars)Calibration timer * 0000…9999 hPressure correction * 0.000…9.999 bars/999.9 kPa/145.0 psiSensocheck Monitoring for short circuits/open circuits (can be disabled)Sensoface Provides information on the sensor conditionEvaluation of zero/slope, response, calibration interval, SensocheckTemperature input *NTC 22 kΩ/ NTC 30 kΩ*2-wire connection, adjustableMeasurement range–20.0…+150.0 °C/–4…+302 °FAdjustment range10 KResolution0.1 °C/1 °FMeas. error 1,2,3)< 0.5 K (< 1 K at >100 °C)*User-defined1)To IEC 746 Part 1, at nominal operating conditions2)± 1 count3)Plus sensor errorSpecifications Transmitter Cond 7100e Conductivity input Input for 2-e or 4-e conductivity sensorsWorking range4-electrode sensor:0.2 µS *c …1000 mS * c (c = cell constant)2-electrode sensor:0.2 µS *c …200 mS * c(the actual range is very much depending on the sensor used,display limited to 3500 mS)Effective ranges Conductivity0.000…9.999 µS/cm00.00…99.99 µS/cm000.0…999.9 µS/cm0000…9999 µS/cm0.000…9.999 mS/cm00.00…99.99 mS/cm000.0…999.9 mS/cm0.000…9.999 S/m00.00…99.99 S/mResistivity00.00…99.99 MΩcmConcentration0.00…9.99 % by wt.Salinity0.0…45.0 ‰ (0…35 °C)Measurement error1,2,3)< 1% of measured value +0.4 µS * cConc. measurements-01- NaCl0.00…9.99 % by wt.(0 …60°C)-02- HCl0.00…9.99 % by wt.(–20…50 °C)-03- NaOH0.00…9.99 % by wt.(0…100 °C)-04- H2SO40.00…9.99 % by wt.(–17…110 °C)-05- HNO30.00…9.99 % by wt.(–17…50 °C)Sensor standardization Input of cell constant with simultaneous displayof conductivity value and temperatureInput of conductivity value with simultaneous displayof cell constant and temperatureProduct calibrationTemperature probe adjustmentPermissible cell constant00.0050…19.9999 cm–1Sensocheck Monitoring of sensor polarization and cable capacitance (can be disabled)Sensoface Provides information on the sensor condition (Sensocheck)Sensor monitor Display of direct measurement values for validationpurpose (resistance/temperature)USP-Function Monitoring of conductivity of water for pharmaceuticalapplications to USP (USP <645>) with adjustable limitvalues (10…100 % of USP value)Specifications Transmitter Cond 7100e Temperature input*)Pt100/Pt1000/NTC 30 kΩ / NTC 8.55 kΩ2-wire connection, adjustableMeasuring range Pt100/Pt1000–20…+200 °C / –4…+392 °FNTC 30 kΩ–20…+150 °C / -4…+302 °FNTC 8.55 kΩ–10…+130 °C / +14…+266 °FResolution0.1 °C / 1 °FError1,2,3)0.5 K (< 1 K with Pt100; < 1 K with NTC > 100 °C)Temperature compensation(OFF)not compensated(ref. temp. 25 °C)(Lin)linear, 0.00…19.99 %/K, –20…130 °C(NLF)natural waters to EN 27888, 0…36 °C(nACL)ultrapure water with NaCl traces, 0…120 °C(HCL)ultrapure water with HCl traces, 0…120 °C(nH3)ultrapure water with NH3traces, 0…120 °C*User-defined1)To IEC 746 Part 1, at nominal operating conditions2)± 1 count3)Plus sensor errorSpecifications Transmitter Cond Ind 7100e Conductivity input Input for inductive sensorsWorking range Conductivity0.000…1999 mS/cmConcentration0.00…100 % by wt.Salinity0.0…45.0 ‰ (0…35 °C)Effective ranges Conductivity0.000…9.999 mS/cm00.00…99.99 mS/cm000.0…999.9 mS/cm0000…1999 mS/cm0.000…9.999 S/m00.00…99.99 S/mConcentration0.00…99.99 %Salinity0.0…45.0 ‰ (0…35 °C)Measurement error1,2,3)< 1% of measured value +0.005 mSConc. measurements-01- NaCl0…26 %(0…60 °C)-02- HCl0…18 % (–20…50 °C)-03- NaOH0…14 % (0…100 °C)-04- H2SO40…30 % (–17…110 °C)-05- HNO30…30 % (–20…50 °C)-06- H2SO492…99 % (–17…115 °C)-07- HCl22…39 % (–20…50 °C)-08- HNO335…96 % (–20…50 °C)-09- H2SO432…84 % (–17…115 °C)-10- NaOH18…50 % (0…100 °C)Sensor standardization Input of cell factor with simultaneous displayof conductivity value and temperatureInput of conductivity value with simultaneous displayof cell factor and temperatureProduct calibrationZero point calibrationTemperature probe adjustmentPermissible cell factor00.100…19.999Permissible transfer ratio01.00…199.99Permissible zero pointdeviation± 0.5 mS/cmSensocheck Monitoring of sender coil and leads for short circuiting,and of the receiver coil for disruption (can be disabled)Sensoface Indicates sensor status (zero point, sensocheck)Sensor monitor Display of direct measurement values for validationpurpose (resistance /temperature)Specifications Transmitter Cond Ind 7100e Temperature input*Pt100/Pt1000/NTC 100 kΩ2-wire connection, adjustableMeasuring range Pt100/Pt1000–20…+200 °C / –4… +392 °FNTC–20…+130 °C / –4… +266 °FResolution0.1 °C / 1 °FError1,2,3)0.5 K (< 1 K with Pt100; < 1 K with NTC > 100 °C)Temperature compensation(OFF)not compensated(ref. temp. 25 °C)(LIN)linear, 0.00…19.99 %/K(NLF)natural waters to EN 27888 (0…35 °C)* User-defined1) To IEC 746 Part 1, at nominal operating conditions2) ± 1 count3) Plus sensor errorTerminal assignment «Advanced Line» transmittersTransmitter O 24100 ppbTransmitter O 24100 eTransmitter pH 2100 eTerminal assignment«Advanced Line» transmitters Transmitter Cond 7100eTransmitter Cond Ind 7100eGeneral specifications «Advanced Line» transmitters HOLD input Galv. separated (OPTO coupler)Function Switches device to HOLD stateSwitching voltage 0…2 V (AC/DC) hold inactive10…30 V (AC/DC) hold activeCONTROL input pH/O2)Galv. separated (OPTO coupler)Function Control input for automatic cleaning/calibration systemSwitching voltage0…2 V (AC/DC) inactive10…30 V (AC/DC) activeCONTROL input (Cond)Galv. separated (OPTO coupler)Function Switches between two parameter setsSwitching voltage0…2 V (AC/DC) set #1 active10…30 V (AC/DC) set #2 activeOutput 10/4…20 mA, max. 10 V, floating(galv. connected to output 2)Process variable *pH 2100 e pH/mVO24100e%, mg/lO24100 ppb%, mg/lCond 7100e conductivity, resistivity, concentration, salinityCond Ind 7100e conductivity, concentration, salinityCurrent characteristics*linear or logarithmic (depends on transmitter)Overrange *22 mA in the case of error messageOutput filter *Low-pass, filter time constant 0…120 sMeas. error1)< 0.3 % of current value +0.05 mAStart/end of scale As desired within measuring rangeAdm. span pH 2100e 2.00…18.00/200…3000 mV024100e 5…500 %, 0.5…50 mg/l024100 ppb 2…200 %, 0.2…10 mg/lCond 7100e LIN 5 % of selected measuring rangeLOG 1 decadeCond Ind 7100e LIN 5 % of selected measuring rangeLOG 1 decadeOutput 20/4…20 mA, max. 10 V, floating(galv. connected to output 1)Process variable TemperatureOverrange *22 mA in the case of temp error messagesOutput filter *Low-pass, filter time constant 0…120 sMeas. error 1)< 0.3 % of current value + 0.05 mAStart/end of scale *pH, Cond: –20…+200 °C/–4…+392 °F, 02:–20…+150 °C/–4...+302 °FAdm. span pH, Cond: 20…320 K, 02:20…170 KAlarm contact Relay contact, floatingContact ratings AC < 250 V/< 3 A/< 750 VADC < 30 V/< 3 A/< 90 WContact response N/C (fail-safe type)Alarm delay 0000…0600 sGeneral specifications «Advanced Line» transmitters Limit values Output via relay contacts R1, R2Contacts R1, R2 floating, but inter-connectedContact ratings AC < 250 V/< 3 A/< 750 VADC < 30 V/< 3 A/< 90 WContact response *N/C or N/ODelay *0000…9999 sSwitching points *As desired within measuring rangeHysteresis *pH 2100e0…5.00 pH/0…500 mV024100e 0…50 %/0…5.00 mg/l (ppm)024100ppb 0…50 %/0…5.00 mg/l (ppm)Cond 7100e0…50 % of measuring rangeCond Ind 7100e0…50 % of measuring rangePID process controller Output via relay contacts R1, R2 (see limit values)Setpoint specification *pH 2100e–02.00…16.00/– 1500…+1500 mV024100e 0…500 % / 0…50 mg/l024100ppb 0…120% / 0…9.999 mg/lCond 7100e within selected measuring rangeCond Ind 7100e within selected measuring rangeNeutral zone *pH 2100e0…5.00 pH / 0…+500 mV024100e 0…50 % / 0…5 mg/l024100ppb 0…50 % / 0…5 mg/l (ppm)Cond 7100e within selected measuring rangeCond Ind 7100e max. 50 % of selected measuring rangeP-action *Controller gain K R:0010…9999 %I-action component *Reset time Tr: 0000…9999 s(0000 s = no integral action)D-action component *Derivative-actiontime Td: 0000…9999 s(0000 s = no derivative action)Controller type*Pulse length controller or pulse frequency controllerPulse period *0001…0600 s, min. ON time 0.5 s (pulse length controller)Max. pulse frequency *0001…0180 min–1(pulse frequency controller)Cleaning function/Relay contact, floating2nd parameter set for controlling a simple rinsing system or an automatic cleaning systemor to show that 2nd parameter set is activeContact ratings AC < 250 V/< 3 A/< 750 VADC < 30 V/< 3 A/< 90 WContact response *N/C or N/O (cleaning function)N/O (2nd parameter set)Rinsing interval *000.0…999.9 h(000.0 h = cleaning function switched off)Cleaning time *0000…1999 sCalibration interval *000.0…999.9 hCleaning interval*000.0…999.9 h*User-defined1)To IEC 746 Part 1, at nominal operating conditions2)± 1 count3)Plus sensor errorGeneral specifications«Advanced Line» transmitters Display LC display, 7-segment with iconsMain display Character height 17 mm, unit symbols 10 mmSecondary display Character height 10 mm, unit symbols 7 mmSensoface 3 status indicators (friendly, neutral, sad smiley)Mode indicators 5 status bars: «meas», «cal», «alarm», «cleaning», «config»18 further icons for configuration and messagesAlarm indication Red LED in case of alarm or HOLD, user definedKeypad 5 keys: [cal] [conf] [] [] [enter]Service functionsCurrent source Current specifiable for output 1 and 2 (00.00…22.00mA)Manual controller Controller output entered directly (start of control process)Device self-test Automatic memory test (RAM, FLASH, EEPROM)Display test Display of all segmentsLast Error Display of last error occurredSensor monitor Display of direct, uncorrected sensor signal (electrode/sensor)Relay test Manual control of the four switching contactsParameter sets*Two selectable parameter sets for different applicationsData retention Parameters and calibration data > 10 years (EEPROM)EMC EN 61326EN 61326/A1Lightning protection EN 61000-4-5, Installation Class 2Protection against Protective separation of all extra-low-voltageelectrical shock circuits against mains as per EN 61010FM/CSA NI, Class 1, Div 2, Group A, B, C, D, T4Power supply24 (–15%)…230 (+10%) V AC/DC; approx. 5 VA, 2.5 WAC: 45…65 HzOvervoltage category II, Class IINominal operating conditionsAmbient temperature– 20…+55 °C / –4...+131 °FTransport/Storage temp – 20…+70 °C / -4...+158 °FRelative humidity 10…95 % non condensingPower supply24 (–15%)…230 (+ 10 %) V AC/DCFrequency for AC 45…65 HzGeneral specifications and ordering information«Advanced Line» transmittersEnclosure molded enclosure made of PBT (polybutylene terephtalate)Color Bluish gray RAL 7031Assembly• Wall mounting• Pipe mounting: Ø 40…60 mm,Ø 30…45 mm• Panel mounting, cutout to DIN 43 700, sealed against panelDimensions H x W x L: 144 x 144 x 105 mm (5.67 x 5.67 x 4.13")Ingress protection IP 65/NEMA 4XCable glands 3 breakthroughs for cable glands M20 x 1.52 breakthroughs for NPT 1/2 " or Rigid Metallic ConduitWeight approx. 1 kg*User-defined1)To IEC 746 Part 1, at nominal operating conditions2)± 1 count3)Plus sensor errorOrdering information Array Transmitter pH 2100e pH 2100e52 121 102Transmitter O24100e O24100e52 121 103Transmitter O2 4100ppb O24100ppb52 121 104Transmitter Cond 7100e Cond 7100e52 121 126Transmitter Cond Ind 7100e Cond Ind 7100e52 121 127Installation accessoriesBracket kit ZU 027452 120 741Panel-mount kit ZU 027552 120 740Protective hood ZU 027652 120 739NotesNotesMETTLER TOLEDO Market Organizations Subject to technical changes.© Mettler-Toledo AG, Process Analytics 08/13 Printed in Switzerland. 52 121 132Mettler-Toledo AG, Process Analytics Im Hackacker 15, CH–8902 Urdorf Tel. + 41 44 729 62 11, Fax +41 44 729 66 Sales and Service:Australia Mettler-Toledo Ltd.220 Turner Street Port Melbourne AUS-3207 Melbourne/VIC Phone +61 1300 659 761Fax +61 3 9645 3935e-mail *****************Austria Mettler-Toledo Ges.m.b.H.Südrandstraße 17A-1230 Wien Phone +43 1 604 19 80Fax +43 1 604 28 80e-mail ***********************Brazil Mettler-Toledo Ind. e Com. Ltda.Avenida Tamboré, 418TamboréBR-06460-000 Barueri/SP Tel.+55 11 4166 7400Fax +55 11 4166 7401e-mail *******************.br *******************.br China Mettler-Toledo Instruments (Shanghai) Co. Ltd.589 Gui Ping Road Cao He Jing CN-200233 Shanghai Phone +86 21 64 85 04 35Fax +86 21 64 85 33 51e-mail *************** Croatia Mettler-Toledo d.o.o.Mandlova 3HR-10000 Zagreb Phone +385 1 292 06 33Fax +385 1 295 81 40e-mail ****************Czech Republic Mettler-Toledo s.r.o.Trebohosticka 2283/2CZ-100 00 Praha 10 Phone +420 2 72 123 150Fax +420 2 72 123 170e-mail *****************Denmark Mettler-Toledo A/S Naverland 8DK-2600 Glostrup Phone +45 43 27 08 00Fax +45 43 27 08 28e-mail ****************France Mettler-Toledo Analyse Industrielle S.A.S.30, Boulevard de Douaumont F-75017 Paris Phone +33 1 47 37 06 00Fax +33 1 47 37 46 26e-mail **************Germany Mettler-Toledo GmbH Prozeßanalytik Ockerweg 3D-35396 Gießen Phone +49 641 507 333Fax +49 641 507 397e-mail **************Great Britain Mettler-Toledo LTD 64 Boston Road, Beaumont Leys GB-Leicester LE4 1AW Phone +44 116 235 7070Fax +44 116 236 5500e-mail *******************Hungary Mettler-Toledo Kereskedelmi KFT Teve u. 41HU-1139 Budapest Phone +36 1 288 40 40Fax +36 1 288 40 50e-mail ***************India Mettler-Toledo India Private Limited Amar Hill, Saki Vihar Road Powai IN-400 072 Mumbai Phone +91 22 2857 0808Fax +91 22 2857 5071e-mail *****************Italy Mettler-Toledo S.p.A.Via Vialba 42I-20026 Novate Milanese Phone +39 02 333 321Fax +39 02 356 2973e-mail **************************Japan Mettler-Toledo K.K.Process Division 6F Ikenohata Nisshoku Bldg.2-9-7, Ikenohata Taito-ku JP-110-0008 Tokyo Phone +81 3 5815 5606Fax +81 3 5815 5626e-mail **********************Malaysia Mettler-Toledo (M) Sdn Bhd Bangunan Electroscon Holding, U 1-01Lot 8 Jalan Astaka U8/84Seksyen U8, Bukit Jelutong MY-40150 Shah Alam Selangor Phone +60 3 78 44 58 88 Fax +60 3 78 45 87 73e-mail ****************************Mexico Mettler-Toledo S.A. de C.V.Ejercito Nacional #340Col. Chapultepec Morales Del. Miguel Hidalgo MX-11570 México D.F.Phone +52 55 1946 0900e-mail *****************Poland Mettler-Toledo (Poland) Sp.z.o.o.ul. Poleczki 21PL-02-822 Warszawa Phone +48 22 545 06 80Fax +48 22 545 06 88e-mail *************Russia Mettler-Toledo Vostok ZAO Sretenskij Bulvar 6/1Office 6RU-101000 Moscow Phone +7 495 621 56 66Fax +7 495 621 63 53e-mail **************Singapore Mettler-Toledo (S) Pte. Ltd.Block 28Ayer Rajah Crescent #05-01SG-139959 Singapore Phone +65 6890 00 11Fax +65 6890 00 12+65 6890 00 13e-mail ****************Slovakia Mettler-Toledo s.r.o.Hattalova 12/A SK-83103 Bratislava Phone +421 2 4444 12 20-2Fax +421 2 4444 12 23e-mail *************Slovenia Mettler-Toledo d.o.o.Pot heroja Trtnika 26SI-1261 Ljubljana-Dobrunje Phone +386 1 530 80 50Fax +386 1 562 17 89e-mail *******************South Korea Mettler-Toledo (Korea) Ltd.Yeil Building 1 & 2 F 124-5, YangJe-Dong SeCho-Ku KR-137-130 Seoul Phone +82 2 3498 3500Fax +82 2 3498 3555e-mail *****************Spain Mettler-Toledo S.A.E.C/Miguel Hernández, 69-71ES-08908 L’Hospitalet de Llobregat (Barcelona)Phone +34 902 32 00 23Fax +34 902 32 00 24e-mail *************Sweden Mettler-Toledo AB Virkesvägen 10Box 92161SE-12008 Stockholm Phone +46 8 702 50 00Fax +46 8 642 45 62e-mail ****************Switzerland Mettler-Toledo (Schweiz) GmbH Im Langacher Postfach CH-8606 Greifensee Phone +41 44 944 45 45Fax +41 44 944 45 10e-mail ******************Thailand Mettler-Toledo (Thailand) Ltd.272 Soi Soonvijai 4Rama 9 Rd., Bangkapi Huay Kwang TH-10320 Bangkok Phone +66 2 723 03 00Fax +66 2 719 64 79e-mail ****************************USA/Canada Mettler-Toledo Ingold, Inc.36 Middlesex Turnpike Bedford, MA 01730, USA Phone +1 781 301 8800Freephone +1 800 352 8763Fax +1 781 271 0681e-mail**************。
深圳金天丹产品型号表
SH9010C TD80 K302 8688 S100 N900 2618 E200 8310 F608 8100 8700 8800 9000 9500 M8 696 818 E700 900A 838 C720 C730 C750 P800 第 5 页,共 12 页
175
176
177
178
179
161
162
联想
步步高
BK-B-33 CPLD-36 CPLD-37
0
164
165
166 酷派
167
168
169
170
CPLD-38
171 173
174
黑莓 ERRY 魅族 MEIZU
172 BLACKB
CM-2 C-S1 C-X2 M-S1 DX-1
BA1200 PH17B PM16A PH26B PU16A GENE160
多普 达 187 DOPOD /HTC
186 188 190
CONV160 TRIN160 DIAM160 NEON161 POLA160
BLAC160 DIAM171 ST26A ELFO160 ELF0160 BOSE160 DIAM160 DREA160 SAPP160 TWIN160
A23ZCJ/COP
诺基亚(BP-3001L)6708/明基P51 诺基亚(BLC-2)3310/3330/3530/3585/3350/5510 诺基亚(BLD-3)7210/3300/3200/2100/6220/6610/7250 诺基亚(BLB-2)8210/8250/8310/8850/8890/3610/7650/8910I 诺基亚(BP-6M)9300/6280/3250/N93/N73/6233;6288/9300I/6234/6151/N77/N73I 诺基亚(BL-4B)6111/7370/7373/N76/7500 Prism/2760/2630/2660/2505/7088/7070/S5000/ 诺基亚(BL-5B) 5140/7260/3230/6060/6070/6021/7360/N80/N90/5200/5300/5500/6080/6020/6120C/ 5070/6121C/长虹M618/长虹Q9/6122C/5320XM/N83/5208/5320di XM/6120ci 诺基亚(BL-4C) 6100/5100/3108/7270/6260/6101/6102/7200/6131/6125/2652/2650/6131I/3500C/12 65/6300/6301/1325/6136/6170/1661/1202/3690/2690/8208/2220S/6316S/1506/2692 诺基亚(BL-5C) 3620/3660/2270/2280/6108/6230/6600/3100/2300/2600/1100/6670/6680/6681/6820 /7600/7610/6030/6630/1600/1110/3120/N70/N71/N91/E60/6270/6268/2355/1255/长 虹 M868/N72/E50/3110C/1650/1208/6555/6086/2626/1108/2112/2255/2610/3100/3105/ 3125/6230I/6822/1315/6085/E50/2626/6267/6263/6822/长虹A320/长虹A330/长虹 A338/金鹏E5115/高新奇 N365/3110E/2330C/2700C/5130XM/2730classic/6555/5130C/5030/3555/2730C/2710N /1800/1616/1280/1200/1209/1680C/3109C/3280C/2322/1682C 诺基亚(BL-6C)QD\6015\6255\6235\E70\2865\6275 诺基亚(BP-5X)/(BP-6X)8800/8860/ 诺基亚(BL4S)/3600S/2680S/7610S/3680S/3602S/6208C/3602C/7100S/6202c/7020/1006/3771 诺基亚(BL4U)8800Arte/8900/3120c/8800SA/6212C/8800E/6600S/E66/8800CA/8800Goid 诺基亚(BL-4D)/N97Mini/E5/N8-00 诺基亚(BP-4L) E61I/E90/N800/E71/6650T/N97/E63/E55/E52/E72/E71X/6790/N97I/E73/6760S/6650f /E72/E72I 诺基亚(BL4CT)/5310XM/6600F/7310C/7210C/7210C/7212C/5630XM/X3/6700S/7230/6700C/7230/ 2720A 诺基亚(BL-4J)/C6 诺基亚(BL-5BT)N75/2600C/7510S/7510a 诺基亚(BL-5CT)/5220XM/6303C/6730C/C5/6303I/3720/C5 诺基亚(BP-5M)7390/5700/6110 Navigator/8600 Luna/5610XM/6500S/6220C/5710XM/5611XM 诺基亚(BL-5U)/8900e/2660C 诺基亚(BL5J)/5800XM/5800T/5802XM/5800iXM/5900XM/N900/X6/5230/5820/ 5233/5232/5235/X6 -00/X6M/5800W/C3-00 诺基亚(BL-5K)/N85/N86 诺基亚BL-5S 诺基亚(BL-5F) N95/N93i/E65/6210N/6290/N96/N98/6210S/6710N/6210si/N99/6210si 诺基亚(BL-6F)N95(8GB)/N78/N79/6788/6788I 诺基亚(BP-6MT)N81/E51/N82/N81(8GB)/6720C 诺基亚(BL-6P)6500C/7900 诺基亚(BL-6Q)/6700C 摩托罗拉(SNN5697A)A1000
14S104 二次供水消毒设备选用及安装
M#:P.&f,i:>ft» GB 5749- 2006tf9,jt! *~.it.
s. 3 '11'*~#iW~.fll.~~i.tl9JJe..-*l!lilt~4. 16. 21'9[.
1 14J105 1 14J936 7 14SG313 10 14G443 13 14S104 16 14K117-1 19 14K118
2 14J913-2 6 14J938 8 140330-1 11 14SG903-2 14 14$307 17 14K117-2 20 10108-2 9 140330-2 12 14G910 15 14SS706 18 14KI 17- 3 21 140001
"~JM if! [2014) 210~·,, ::t11tl'IEft:J21~ il*li!$t*ffil'IEW:it00~%
oo:m.q ff~ Ill~-!} ff"} llJ~q. ff.\} Ill~.\} if..(} 00'1f!.{} if..{} oo~.q ff.\}
!ff} Ill~~
~2 1 ~ IE*n1Jt~fl-i.tl¥JJfil~u
Jt~ ~ (201 4] 21o-;-
~~, 13~18:i10f~~M!-ijtff , J!l!fgrlJ'M!~ <~~J~) Jk:fr;l(:flllf1 , li';fiiJJl1::F~ti~fl:l~-ijtf,5}, ~
XBS104S14资料
0.6
10000
FoFrowrawradrdVoVltolatgage:e VFV(FV()V)
Reverse Current: IR (ЖA) Reverse Current IR (uA)
1000
VR=40V
20V
IF=1A
0.4
5V
100
0.5A
10
0.2
0.1A
1
0.01A
0.0
-50
0
50
20
30
40
ReRveevresreseVoVltoaltgaeg:eV RV(RV()V)
0.5
0.0 0
50
100
150
Opeeraattinngg TTeemmppeerraattuurree : Ta (ˆ℃)
2/3
XBS104S14
1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date.
XBS104S14
Schottky Barrier Diode, 1A, 40V, SOD-123A Package
ETR1609-002
˙FEATURES
Forward Voltageç ç ç ç ç ç Forward Currentç ç ç ç ç ç
霍尼韦尔 S10010 S20010 A使用说明书
® U.S. Registered TrademarkEN0B-0463GE51 R0418Copyright © 2018 Honeywell Inc. • All rights reservedS10010 / S20010SPRING RETURN DIRECT-COUPLED DAMPER ACTUATORS10/20 Nm (88/177 lb-in) FOR MODULATING AND FLOATING CONTROLPRODUCT DATAGENERALThese direct-coupled damper actuators provide modulating / floating control for: ∙ air dampers, ∙ VAV units, ∙ air handlers, ∙ ventilation flaps, ∙ louvers, and∙ reliable control for air damper applications with up to1.5 m 2 / 16 sq.ft (10 Nm / 88 lb-in) or 4.6 m 2 / 50 sq.ft. (20 Nm / 177 lb-in) (seal-less dampers; air friction-dependent).FEATURES∙ Self-centering shaft adapter ∙ Removable access cover∙ Mechanical end limits (non-adjustable)∙Rotation direction selectable by choice of mounting orientation∙ Mountable in any orientation (IP54 only whenmounted on a horizontal shaft with access cover below the shaft)∙ Mechanical position indicatorSPECIFICATIONSSupply voltage S10010 / S20010 24 VAC ±20% / 24 VDC, 50/60 Hz Nominal voltage S10010 / S20010 24 VAC / 24 VDC, 50/60 Hz All values stated hereinafter apply to operation under nominal voltage conditions. Power consumption Holding Driving S10010 5 VA / 5 W 14 VA S20010 5 VA / 5 W 16 VA Ambient limitsAmbient operating limits -40...+60 ︒C Ambient storage limits -40...+70 ︒C Relative humidity 5...95%, non-condensing SafetyProtection standard IP54 Overvoltage category III Lifetime Full strokes 60000 Repositions 1.5 million Full stroke spring return 60000 MountingRound damper shaft 10...27 mm Square damper shaft 13...19 mm Shaft length 25 mm End switch (when included) Rating 5 A (resistive) / 3 A (induct.) Triggering points 7︒ / 85︒ Torque rating S10010 10 Nm (88 lb-in) S20010 20 Nm (177 lb-in) Runtime 90 sec (50 Hz) Spring return timing 20 sec (50 Hz) Rotation stroke 95︒ ± 3︒ Dimensions see Fig. 8 on page 6 Weight 3.2 kg Noise rating Driving 40 dB(A) Holding 20 dB(A) (no audible noise) Spring return 50 dB(A)SmartAct S10010, S20010 – PRODUCT DATAEN0B-0463GE51 R0418 2MODELSorder numbersupply voltage end switchespower consumption torque S1001024 VAC / 24 VDC-- 14 VA (driving) / 5 VA (holding) 10 Nm (88 lb-in) S10010-SW2 2 S20010-- 16 VA (driving) / 5 VA (holding)20 Nm (177 lb-in)S20010-SW2 2Product Identification SystemFig. 1. Product Identification SystemOPERATION / FUNCTIONSContents of Package1 Self-centering shaft adapter2 Retainer clip3 Rotational angle scales (0...90° / 90...0°)4 Mechanical end limits (non-adjustable)5 Hex wrench for manual adjustment6 Rotation direction switch7 Access coverRotary MovementThe actuators are designed to open a damper by driving the damper shaft in either a clockwise or counterclockwise direction.NOTE: Actuators are shipped in the fully-closed (springreturn) position.Position IndicationAn arrow molded into the hub points to tick marks on the label to indicate the hub rotary position.CCW to close (failsafe position)CW to open90°0°45°CW to close (failsafe position)CCW to open90°0°45°Fig. 2. Mounting orientationSmartAct S10010, S20010 – PRODUCT DATA3 EN0B-0463GE51 R0418Manual Adjustment IMPORTANTTo prevent equipment damage, before manual adjustment, you must remove power.The actuator can be operated with no power present. Use this feature during installation or to move and lock the damper or valve shaft position when there is no power.Operating the Manual PositioningTo operate the manual positioning with no power, proceed as follows:1. If the power is ON, turn it OFF.2. Insert the supplied hex wrench (key) as shown in Fig.3. 3. Rotate the key in the direction indicated on the cover.4. Once the desired position has been reached, hold the keyto prevent the spring return from moving the actuator. 5. With the key held in place, use a screwdriver to turn thegear train lock pin in the indicated direction until the detent is reached.NOTE: At the detent, the pin resists further rotation.6. Remove the key without rotating it further.Releasing the Manual PositioningTo release the manual positioning with no power present, proceed as follows:1. Insert the supplied key.2. Turn the key ¼ of a turn in the direction indicated on thecover.3. Remove the key without engaging the gear train lock pin.4. The spring will return the actuator to the failsafe position.NOTE: Once power is restored, the actuator will return tonormal automated control.Fig. 3. Manual positioningInternal End SwitchesNOTE: Only those actuators for which "-SW2" has beenspecified when ordering (e.g.: "S10010-SW2") feature internal end switches.The internal end switches are set to switch from "common" to "normally open" at angles of 7° (±3°) and 85° (±3°), respectively, from the totally counterclockwise position.Fig. 4. Internal end switch triggering pointsMechanical Stroke Limit ReductionFor applications requiring a span of less than 95°, a simple adjustment can be made. When the rotational mounting of the shaft coupling is changed, the actuator drives less than the full 95° stroke.The stroke is adjustable in 5° increments. Once adjusted, the actuator drives until the shaft coupling reaches themechanical stop (part of the housing). The stop causes the motor to discontinue driving, and the shaft coupling drives no farther. When the actuator returns, it stops at the fail-safe position.To set the fail-safe position, proceed as follows:1. Remove the retainer clip from the shaft coupling and set itaside for later use.2. Remove the shaft coupling from the actuator.3. Rotate the coupling to the desired fail-safe position,aligning it based on the stroke labeling. See Fig. 5.EXAMPLE: Setting the shaft coupling to an approx. fail-safeposition of 35° (as indicated on the housing) limits the stroke to 60° (see Fig. 5).4. Install the shaft coupling at this position.5. Replace the retainer clip on the shaft coupling using thegroove of the coupling.6. If necessary, replace the holder and position indicator onthe shaft coupling.SmartAct S10010, S20010 – PRODUCT DATAEN0B-0463GE51 R0418 4Fig. 5. Stroke reductionINSTALLATIONThese actuators are designed for single-point mounting.IMPORTANTTo prevent equipment damage, before manual operation, you must remove power.Mounting InstructionsAll information and steps are included in the Installation Instructions supplied with the actuator.Mounting PositionThe actuators can be mounted in any position (IP54 only when mounted on a horizontal shaft with access cover below the shaft). Choose a mounting position permitting easyaccess to the actuator's cables and controls. When stationing outdoors, equip with suitable cover to protect against UV and rain.Mounting Bracket and ScrewsIf the actuator is to be mounted directly on a damper shaft, use the mounting bracket included in the delivery package.Self-Centering Shaft AdapterThe self-centering shaft adapter can be used for shafts having various diameters and shapes (round: 10...27 mm; square: 13...19 mm).In the case of short shafts, the shaft adapter may be reversed and mounted on the duct side.StrokeThe stroke amounts to 95° ( 3°) and is mechanically limited by end limits (non-adjustable).WiringConnecting to the Power SupplyIn order to comply with protection class II, the power source of 24 V actuators must be reliably separated from the network power supply circuits as per DIN VDE 0106, part 101.Access CoverTo facilitate wiring the actuator to the controller, the access cover can be detached from the actuator.IMPORTANTRemove power before detaching the access cover. Once the access cover has been removed, please take care to avoid damaging any of the parts now accessible.Fig. 6. Access cover (S10010-SW2)Fig. 7. S10010-SW2 with access cover removedSmartAct S10010, S20010 – PRODUCT DATA5 EN0B-0463GE51 R0418Wiring DiagramsS10010 / S20010S10010-SW2 / S20010-SW2NOTE: Internal end switches S1 and S4 must be connected to the same power source.SmartAct S10010, S20010 – PRODUCT DATAManufactured for and on behalf of the Environmental & Energy Solutions Division of Honeywell Technologies Sàrl, Rolle, Z.A. La Pièce 16, Switzerland by its Authorized Representative:Home and Building Technologies Honeywell GmbH Böblinger Strasse 1771101 Schönaich, Germany Phone +49 (0) 7031 637 01 Fax +49 (0) 7031 637 740 EN0B-0463GE51 R0418Subject to change without noticeDIMENSIONS40M I N . 64247MIN. 76MIN. 76757ANTI-ROTATION BRACKET230 mm2 mm20 mm13 mm7 mm10 mmSHAFT ADAPTERALTERNATE POSITION1005050MIN. 15MIN. 155SHAFT ADAPTER SUITABLE FOR SHAFTS WITH LENGTH OF 25 ... 80 mmWHEN THE SHAFT ADAPTER IS INSTALLED IN ALTERNATE POSITION, THE POSITION INDICATOR IS NOT VISIBLE.170 (190)20...25 NmFig. 8. Dimensions (in mm)。
自恢复保险丝选型手册
产品图片Figure 1 Figure 2 Figure 3 Figure 4 GR16V系列产品型号及电气参数产品型号I H(A)I T(A)V Max(V)I Max(A)R0(mΩ)A MaxB MaxCD Max线径(mm)图形宽度高度间距厚度GR16-0500.50 1.01640160-4806.611.35.1±0.53.00.5F1GR16-0650.65 1.31640120-3606.612.05.1±0.53.00.5F1GR16-0750.75 1.51640110-2307.012.05.1±0.53.00.5F1GR16-0900.9 1.8164070-1807.012.05.1±0.53.00.5F3GR16-110 1.10 2.2164060-1406.614.55.1±0.53.00.5F3GR16-120 1.20 2.4164050-1408.813.85.1±0.53.00.5F1GR16-135 1.35 2.7164040-1108.813.85.1±0.53.00.5F3GR16-160 1.60 3.2164035-1108.815.55.1±0.53.00.5F3GR16-185 1.85 3.7164030-9010.016.05.1±0.53.00.5F3GR16-250 2.5 5.0164020-6011.318.55.1±0.53.00.5F3GR16-300 3.0 5.11610030-97.58.811.85.1±0.53.00.8F4I H : 保持电流:在25℃环境温度、静止空气下旳最大工作电流。
I T : 动作电流:在25℃环境温度、静止空气下启动保护旳最小流。
VMax : 元件所能承受旳最大工作电压。
I Max : 元件在额定电压下所能承受旳最大故障电流。
百安产品选型目录(1)
百安选型目录(注:黑色为批量生产型号;绿色为待开发型号;蓝色为即将淘汰型号;红色为选样型号)一、数显变送智能电测表1. BAM4T(E)系列网络(多功能)电力仪表a.BAM4E系列(多功能电力仪表)BAM4E-AY(单相多功能表,72×72)BAM4E-5SY(单相多功能表,48×96)BAM4E-9SY(三相多功能表,96×96)b. BAM4T系列(智能测控单元)BAM4T-9SY(三相多功能表,96×96)2. BAM-Y系列液晶数显表a. 5Y系列(48×96)BAM4I-5Y(单相电流表)BAM4I3-5Y(三相电流表)BAM4U-5Y(单相电压表)BAM4U3-5Y(三相电压表)BAM4P-5Y(单相有功功率表)BAM4P3-5Y(三相有功功率表)BAM4Q-5Y(单相无功功率表)BAM4Q3-5Y(三相无功功率表)BAM4F-5Y(频率表)BAM4H-5Y(功率因数表)b. 9Y系列(96×96)BAM4I-9Y(单相电流表)BAM4I3-9Y(三相电流表)BAM4U-9Y(单相电压表)BAM4U3-9Y(三相电压表)BAM4P-9Y(单相有功功率表)BAM4P3-9Y(三相有功功率表)BAM4Q-9Y(单相无功功率表)BAM4Q3-9Y(三相无功功率表)BAM4F-9Y(频率表)BAM4H-9Y(功率因数表)c. DY系列(48×48)BAM4I-DY(单相电流表)BAM4I3-DY(三相电流表)c. AY系列(72×72)BAM4I3-AY(三相电流表)3. BAM-X系列数显表a. 2X系列(120×120)BAM4I-2X1(单相电流表,单排数码显示)BAM4I3-2X4(三相电流表,三排数码显示)BAM4U-2X1(单相电压表,单排数码显示)BAM4U3-2X4(三相电压表,三排数码显示)BAM4P-2X1(单相有功功率表,单排数码显示)BAM4P3-2X4(三相有功功率表,三排数码显示)BAM4Q-2X1(单相无功功率表,单排数码显示)BAM4Q3-2X4(三相无功功率表,三排数码显示)BAM4F-2X1(频率表,单排数码显示)BAM4H-2X1(功率因数表,单排数码显示)b. 3X系列(80×80)BAM4I-3X1(单相电流表,单排数码显示)BAM4I3-3X4(三相电流表,三排数码显示)BAM4U-3X1(单相电压表,单排数码显示)BAM4U3-3X4(三相电压表,三排数码显示)BAM4P-3X1(单相有功功率表,单排数码显示)BAM4P3-3X4(三相有功功率表,三排数码显示)BAM4Q-3X1(单相无功功率表,单排数码显示)BAM4Q3-3X4(三相无功功率表,三排数码显示)BAM4F-3X1(频率表,单排数码显示)BAM4H-3X1(功率因数表,单排数码显示)c. 5X系列(48×96)BAM4I-5X1(单相电流表,单排数码显示)BAM4U-5X1(单相电压表,单排数码显示)BAM4P-5X1(单相有功功率表,单排数码显示)BAM4Q-5X1(单相无功功率表,单排数码显示)BAM4F-5X1(频率表,单排数码显示)BAM4H-5X1(功率因数表,单排数码显示)d. 9X系列(96×96)BAM4I-9X1(单相电流表,单排数码显示)BAM4I3-9X4(三相电流表,三排数码显示)BAM4U-9X1(单相电压表,单排数码显示)BAM4U3-9X1(三相电压表,三排数码显示)BAM4P-9X1(单相有功功率表,单排数码显示)BAM4P3-9X4(三相有功功率表,三排数码显示)BAM4Q-9X1(单相无功功率表,单排数码显示)BAM4Q3-9X4(三相无功功率表,三排数码显示)BAM4F-9X1(频率表,单排数码显示)BAM4H-9X1(功率因数表,单排数码显示)e. DX系列(48×48)BAM4I-DX1(单相电流表,单排数码显示)BAM4I3-DX1(三相电流表,单排数码显示)BAM4U-DX1(单相电压表,单排数码显示)f. AX系列(72×72)BAM4I-AX1(单相电流表,单排数码显示)BAM4I3-AX4(三相电流表,三排数码显示)BAM4U-AX1(单相电压表,单排数码显示)BAM4U3-AX1(三相电压表,三排数码显示)BAM4P-AX1(单相有功功率表,单排数码显示)BAM4P3-AX4(三相有功功率表,三排数码显示)BAM4Q-AX1(单相无功功率表,单排数码显示)BAM4Q3-AX4(三相无功功率表,三排数码显示)BAM4F-AX1(频率表,单排数码显示)BAM4H-AX1(功率因数表,单排数码显示)二、综合状态指示仪表1. BAZ11A(C)系列开关状态综合指示仪BAZ1110A(单次回路模拟指示)BAZ1110C(单次回路模拟指示)BAZ1120A(模拟指示﹢带电指示)BAZ1120C(模拟指示﹢带电指示)BAZ1130A(模拟指示﹢温湿度控制)BAZ1130C(模拟指示﹢温湿度控制)BAZ1140A(模拟指示﹢温湿度控制﹢带电指示)BAZ1140C(模拟指示﹢温湿度控制﹢带电指示)2. BAZ80系列开关柜智能操控装置BAZ8061(模拟指示+带电指示+二路普通温湿度控制器+液晶显示)BAZ8060(模拟指示+带电指示+一路普通温湿度控制器+液晶显示)BAZ8031(模拟指示+带电指示+二路普通温湿度控制器+数码显示)BAZ8030(模拟指示+带电指示+一路普通温湿度控制器+数码显示)3. BAZ8600系列开关柜智能操控装置BAZ8600SYCDWH-10KV/100*2(电压以及加热器可选)三、BASC系列智能式电力电容器1.普通型智能式电力电容器a.三相共补(电压:450V)BASC-8CS/450-X(X代表电容总容量)b.单相分补(电压:250V)BASC-8CF/250-X(X代表电容总容量)2.抗谐波型智能式电力电容器a.三相共补BASC-8XS/480- X(X代表电容总容量)b.三相分补BASC-8XF/260- X(X代表电容总容量)四、BARE系列无功补偿控制器1.BARE-8CYH系列无功补偿控制器BARE-8CYH混合补偿BARE-8CYZ三相共补2.BARE-8CYH2型无功补偿控制器BARE-8CKH2混合补偿BARE-8CKZ2三相共补五、温湿度控制仪器1.BAT10A系列温湿度控制器a. BAT10A-1S系列(1组传感器)BAT10A-1S/AQ(温湿度双控+升温除湿+无断线报警+A尺寸+嵌入式) BAT10A-1S/AG(温湿度双控+升温除湿+无断线报警+ A尺寸+导轨式) BAT10A-1SB/AQ(温湿度双控+升温除湿+断线报警+A尺寸+嵌入式) BAT10A-1SB/AG(温湿度双控+升温除湿+断线报警+ A尺寸+导轨式) BAT10A-1J/AQ(温湿度双控+降温排风+无断线报警+A尺寸+嵌入式) BAT10A-1J/AG(温湿度双控+降温排风+无断线报警+ A尺寸+导轨式) BAT10A-1JB/AQ(温湿度双控+降温排风+断线报警+A尺寸+嵌入式) BAT10A-1JB/AG(温湿度双控+降温排风+断线报警+ A尺寸+导轨式) BAT10A-1TJ/AQ(温度单控+降温排风+无断线报警+A尺寸+嵌入式) BAT10A-1TJ/AG(温度单控+降温排风+无断线报警+ A尺寸+导轨式)BAT10A-1TJ/BQ(温度单控+降温排风+无断线报警+B尺寸+嵌入式) BAT10A-1TJB/AQ(温度单控+降温排风+断线报警+A尺寸+嵌入式) BAT10A-1TJB/AG(温度单控+降温排风+断线报警+ A尺寸+导轨式) BAT10A-1TJB/BQ(温度单控+降温排风+断线报警+B尺寸+嵌入式) b.BAT10A-2S系列(2组传感器)BAT10A-2S/BQ(温湿度双控+升温除湿+无断线报警+B尺寸+嵌入式) BAT10A-2SB/BQ(温湿度双控+升温除湿+断线报警+B尺寸+嵌入式) BAT10A-2J/BQ(温湿度双控+降温排风+无断线报警+B尺寸+嵌入式) BAT10A-2JB/BQ(温湿度双控+降温排风+断线报警+B尺寸+嵌入式) BAT10A-2TJ/BQ(温度单控+升温除湿+无断线报警+B尺寸+嵌入式) BAT10A-2TJB/BQ(温度单控+升温除湿+无断线报警+B尺寸+嵌入式)2.BAT10D系列温湿度控制器a.48系列(48宽×48高×92深)BAT10D-48E/S(1组传感器+无通讯+升温除湿型)BAT10D-48E/J(1组传感器+无通讯+降温排风型)BAT10D-48ES/S(1组传感器+有RS485通讯+升温除湿型)BAT10D-48ES/J(1组传感器+有RS485通讯+降温排风型)b.72系列(72宽×72高×112深)BAT10D-722E/S(2组传感器+无通讯+升温除湿型)BAT10D-722E/J(2组传感器+无通讯+降温排风型)BAT10D-722ES/S(2组传感器+有RS485通讯+升温除湿型)BAT10D-722ES/J(2组传感器+有RS485通讯+降温排风型)六、带电指示仪BADNX-HT4(提示型)BADNX-HQ4(强制闭锁型,带验电功能)七、BAMD系列电动底盘车及地刀控制器1.BAMDF系列(带电动底盘车控制功能)a.面板式BAMDF4200/D110(带进度条指示+不带485通讯+电机额定电压110V)BAMDF4200/D220(带进度条指示+不带485通讯+电机额定电压220V)BAMDF4200/SD110(带进度条指示+带485通讯+电机额定电压110V)BAMDF4200/SD220(带进度条指示+不带485通讯+电机额定电压220V)BAMDF4200N/D110(不带进度条指示+不带485通讯+电机额定电压110V) BAMDF4200N/D220(不带进度条指示+不带485通讯+电机额定电压220V) BAMDF4200N/SD110(不带进度条指示+带485通讯+电机额定电压110V)BAMDF4200N/SD220(不带进度条指示+不带485通讯+电机额定电压220V)b.导轨式BAMDF4201/D110(带进度条指示+不带485通讯+电机额定电压110V)BAMDF4201/D220(带进度条指示+不带485通讯+电机额定电压220V)BAMDF4201/SD110(带进度条指示+带485通讯+电机额定电压110V)BAMDF4201/SD220(带进度条指示+不带485通讯+电机额定电压220V)BAMDF4201N/D110(不带进度条指示+不带485通讯+电机额定电压110V) BAMDF4201N/D220(不带进度条指示+不带485通讯+电机额定电压220V) BAMDF4201N/SD110(不带进度条指示+带485通讯+电机额定电压110V)BAMDF4201N/SD220(不带进度条指示+不带485通讯+电机额定电压220V)2.BAMDG系列(带电动接地开关控制功能)a.面板式BAMDG4200/D110(带进度条指示+不带485通讯+电机额定电压110V)BAMDG4200/D220(带进度条指示+不带485通讯+电机额定电压220V)BAMDG4200/SD110(带进度条指示+带485通讯+电机额定电压110V)BAMDG4200/SD220(带进度条指示+不带485通讯+电机额定电压220V) BAMDG4200N/D110(不带进度条指示+不带485通讯+电机额定电压110V) BAMDG4200N/D220(不带进度条指示+不带485通讯+电机额定电压220V) BAMDG4200N/SD110(不带进度条指示+带485通讯+电机额定电压110V) BAMDG4200N/SD220(不带进度条指示+不带485通讯+电机额定电压220V) b.导轨式BAMDG4201/D110(带进度条指示+不带485通讯+电机额定电压110V)BAMDG4201/D220(带进度条指示+不带485通讯+电机额定电压220V)BAMDG4201/SD110(带进度条指示+带485通讯+电机额定电压110V)BAMDG4201/SD220(带进度条指示+不带485通讯+电机额定电压220V) BAMDG4201N/D110(不带进度条指示+不带485通讯+电机额定电压110V) BAMDG4201N/D220(不带进度条指示+不带485通讯+电机额定电压220V) BAMDG4201N/SD110(不带进度条指示+带485通讯+电机额定电压110V) BAMDG4201N/SD220(不带进度条指示+不带485通讯+电机额定电压220V) 3.BAMDX系列(带电动底盘车和电动接地开关控制功能)BAMDG4201/D110(带进度条指示+不带485通讯+电机额定电压110V)BAMDG4201/D220(带进度条指示+不带485通讯+电机额定电压220V)BAMDG4201/SD110(带进度条指示+带485通讯+电机额定电压110V) BAMDG4201/SD220(带进度条指示+不带485通讯+电机额定电压220V) BAMDG4201N/D110(不带进度条指示+不带485通讯+电机额定电压110V) BAMDG4201N/D220(不带进度条指示+不带485通讯+电机额定电压220V) BAMDG4201N/SD110(不带进度条指示+带485通讯+电机额定电压110V) BAMDG4201N/SD220(不带进度条指示+不带485通讯+电机额定电压220V)。
2011年深圳飞毛腿通用型号电池型号对照表
序号品牌型号原装型号艾罗威容量原装电容量1诺基亚2600c BL-5BT 9008702诺基亚2680BL-4S8608603诺基亚3100BL-5C 11509704诺基亚N72BL-5C 11009705诺基亚3220BL-5B 9508206诺基亚N83BL-5B 9008207诺基亚5220BL-5CT 11508608诺基亚5310BL-4CT 9508609诺基亚5800BL-5J 1420132010诺基亚6100BL-4C 102090011诺基亚6131BL-4C 95090012诺基亚6111BL-4B 83070013诺基亚7390BP-5M 100090014诺基亚5700BP-5M 90090015诺基亚7710BP-5L 1700150016诺基亚7900BL-6P 89083017诺基亚6500c BL-6P 70083018诺基亚8800BL-5X/6X 70060019诺基亚8900BL-4U11201000诺基亚 N O K I A飞毛腿电子(深圳)有艾罗威型号表SCUD Electronic (Shenzhen) Co., Ltd飞毛腿电池型号表-2010.11 SCUD Battery3.Welcome to propose new products' demand or pro2、以上数据仅供参考,因设计改进或电芯品质提升,容量会有所调整,最终容量请以实物铭牌标称为准!3、欢迎提出新品需求或提供电池通用信息!Annotation:1. “★” stands for those new products that will soon come into market.2. Above data is only for your reference. Due to desig accordingly.The exact capacity is signed on the mark on the products.o n圳)有限公司型号表d FAX:0755-********/33810161 tery model form-September 2010终容量请以实物铭牌标称为准!s that will soon come into market.design or core improving, the battery capacity might be adjusted mark on the products.r provide universal battery information.。
施耐德变频器维修资料
+
Mesure tension moteur W Wph Wph
TEMP SEL 1
TEMP SEL 2
GENE
SAFE BACK
VTEMP
CRC
VBUS
FAN CD
PASS BRST CTF
L1 - L2 - L3
SAFE
VBUS /2 Interface puissance de commande relais P16F - 0VF Commande chopper de freiange Commande de voie basse 4 Commande de voie basse 6 Commande de voie basse 2 P25J - 0VJ Commande de voie haute 1
connector
+ 2 1
FAN
Capital electrical components for Athena Inverter unit
REC IGBT
(Diode bridge)
HCT Shunt resistor
(Up to 4kW)
(5.5-18kW)
+
Uph IW IV IU
Comparateur courant IZCT Comparateur courant LIC +
V BlicH 0SHV Gain IV ISHV
+
Comparateur courant LIC -
IU
0SHU Gain ISHU
+
P3.3燜 P5FA 0VFA P24M1 T2 0VM T3 0VM T3 T4 T5 T6 BLIC BTRIP BCV CONF SHCONF GENE PASS BRST VBUS /2 CT4 CT1 CT6 CT3 CT2 CT5 Safe Safe back Fan CD TFB5 Comparateur tension moteur V TFB1 T2 0VF P5F SDAP SLCP CFVW CFUW I W IV IU T1 T1 BZCT BICC BLICHB V BlicB Comparateur tension moteur U Mesure tension moteur U Uph
25届(新教材QG版)数学新考案基础课35数列的综合问题
基础课35数列的综合问题考点考向课标要求真题印证考频热度核心素养等差、等比理解2022年全国甲卷(文)T***逻辑推理数列的综合18数学运算2021年全国乙卷(文)T19数列与其他理解2023年北京卷T21***逻辑推理知识的交汇2020年新课标II卷(理)T数学运算12命题分析预从近几年高考的情况来看,一般以压轴题的形式出现,属千中档题测或较难题,命题热点以递推式为载体,常常与不等式、函数、方程交汇,具有知识点多、覆盖面广、综合性强的特点预计2025年高考命题情况变化不大,但应加强对阅读、理解、迁移和运算的训练一基础知识.诊断穷实基础一、数列与函数数列与函数的综合问题主要有以下两类:_1. 已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;2. 已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法等对式子化简变形.二、数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.诊断自测题组1走出误区1. 判-判(对的打"✓"'错的打"X")(1) 已知等差数列{a n }的公差d>0, 等比数列{b n }的公比为q ,若a 1= b 1 = 1, a 2 = b z ,a 14 = b 3'则d + q = 25.(X )(2) 已知数列{a n }满足a l 'a 2'a 3成等差数列,a l ,a 2'a 4成等比数列,若a l a l + a 4+ a 2 + a 3 = a 4'则a3= 3.(X )(3) 若数列{a n }的前n项和S n =2n+l_C ,则"c=2"是“数列{a n }为等比数列"的充分不必要条件.(X )(4) 若数列{a n }满足a n+1 = 2a n (a n *0,n EN勹,且a z与a 4的等差中项是5,则a l +a z +…+ a n = 2n -1.(✓)2. (易错题)记数列{a n }的前n项和为S n '已知a 1= 1, 5 n + 1 = 4a n + 1设丸=a n+1-2a n 'e n = l b n -1001, T n 为数列{e n }的前n 项和,则T l O =尥甡.【易错点】忽视对伲-100忡b n -100的符号的分类讨论致错.[解析]由S n+1= 4a n + 1得S n=4a n -l + l(n�2,n EN勹,两式相减得a n+1 = 4 bnan+1-2an 2(an-2an_1) 妇-a n _1)(n �2),即a n+1-2a n = 2妇-2a n -1)'所以==bn-1an -2an-1an -2an-1= 2(n �2),故数列{b n }是首项b 1= a 2-2a 1 = 4-2 = 2, 公比为2的等比数列,即丸=2.2n -l = 2n (n EN 勹,所以e n =I泸-1001= {100-2n,n:::; 6,2n-100,n > 6,T 10 = 600-2 X (1-26)切+22+…+26)+27+28+29+210-400=200-1-2+27+28+29+沪=200 + 2 + 28 + 29 + 210 = 1994. 题组2走进教材3. (人教A版选修@P56•TIO改编)已知等差数列{a n }的前n 项和为S n '且s 4= 4S 2,a 2n = 2a n + l(n EN*)若b n = 3n -l,c n = a n b n 'T n 为数列{e n }的前n项和,则T n = 1 + (n-1)·3n.[解析]设等差数列{a n }的公差为d,由a 2n = 2a n + 1得a 1+ (2n-1)d = 2a 1 + 2 (n-l)d + 1, 即d= a 1 + 1, CD 由S 4= 4S 2得4a 1+ 6d= 4(2a 1 + d ), 即d= 2a 1 , @)联立(D(Z)解得{a 1=1,d = 2, 故数列{a n }的通项公式是a n =2n -1, n EN 勹所以e n =a 九=(2n-1)·3n -1(n EN 勹,则飞=1 X 3+ 3 X 31+ 5 X 32+…+ (2n-3)·3n -Z + (2n-1)·3n -l , @3T n= 1 X 31+ 3 X 32+…+ (2n-5)·3n -Z + (2n-3)·3n -l + (2n-1)·3n, @由@-句得-2T n = 1 + 2 X 31+ 2 X 32+…+ 2 X 3n -l -(2n-1)·3n= 1 + 2 X3(1-3n -l )1_3 -(2n-1)·3n = -2 + (2-2n)·3气故T n= 1 + (n-1)·3n.4. (人教A 版选修@P37•例9改编)设等比数列{an}的前n 项和为S n '若鸟=9, S 6=36, 则a 7+ a 8 + a 9 = (B ). A .. 144B .. 81C . .45D .. 63[解析]由等比数列的性质可知s 3,s 6-s 3, s 9-s 6,成新的等比数列,设这个27新数列的公比为q,由s 6-s 3= 36-9 = 27, 得q =了=3, 所以a 7+ a 8 + a 9 = S 9-S 6 =27 x 3 = s 1. 故选B.题组3走向高考5. [2021• 新高考11卷](多选题)设正整数n =a。
细胞周期和细胞凋亡类基因
细胞周期和细胞凋亡类基因G0 G1 转变(G0 to G1 transition) 1: mdm4G1/S 特异转录,有丝分裂细胞周期(G1/S-specific transcription in mitotic cell cycle) 1: gfi1G1/S 转变, 有丝分裂细胞周期(G1/S transition of mitotic cell cycle) 19: bcat1 ccnd1 ccne1 cdc 34 cdc7 cdca5 cdk4 cdkn3 cul1 cul2 cul3 cul4a cul5 gspt1 lats2 pml ppp6c rcc1 skp2G1/S 转变检控点(G1/S transition checkpoint) 4: dlg1 hus1 nbn puraG1 期(G1 phase) 2: cdc42 rb1G1 期, 有丝分裂细胞周期(G1 phase of mitotic cell cycle) 10: anapc2 cdc23 cdk6 cdkn1c dn aja2 e2f1 map3k11 taf1 taf1l tbrg4G1 特异转录,有丝分裂细胞周期(G1-specific transcription in mitotic cell cycle) 1: gfi1bG2/M转变, 有丝分裂细胞周期(G2/M transition of mitotic cell cycle) 10: anapc10 anapc4 anapc5 birc5 ccnb1 cdk2 dnm2 khdrbs1 lats1 tpd52l1G2/M转变DNA 损伤检控点(G2/M transition DNA damage check-point) 1: brsk1G2 期, 有丝分裂细胞周期(G2 phase of mitotic cell cycle) 4: cenpf ches1 gtse1 kpna2M期(M phase) 2: ilf3 rb1M期, 有丝分裂细胞周期(M phase of mitotic cell cycle) 4: cdc25b dlg7 mphosph6 mphosph9M期特异微管过程(M phase specific microtubule process) 1: kpna2S-M检控点(S-M checkpoint) 1: appbp1S 期, 有丝分裂细胞周期(S phase of mitotic cell cycle) 1: cdk2ap1S 期特异转录,有丝分裂细胞周期(S-phase-specific transcription in mitotic cell cycle) 1: abl1胞裂蛋白环组装(septin ring assembly) 1: nubp1胞质分裂(cytokinesis) 16: arhgef11 aurkc cecr2 dctn3 diaph2 espl1 myh10 pr c1 rasa1 rock2 sept2 sept3 sept4 sept5 sept6 sept7不对称细胞分裂(asymmetric cell division) 1: pard3凋亡程序(apoptotic program) 10: bad bik casp2 casp7 casp8 casp9 mcl1 pdia 2 psen2 vdac1凋亡核改变(apoptotic nuclear changes) 2: dedd2 ndufa13凋亡染色体浓缩(apoptotic chromosome condensation) 1: acin1凋亡线粒体改变(apoptotic mitochondrial changes) 4: bak1 bax bcl2l1 bid动粒组装(kinetochore assembly) 2: cenpe cenpf纺锤体组织和生物发生(spindle organization and biogenesis) 7: aurka bub1b cks2 kntc2 sp ag5 ube2c zwint分裂间期, 有丝分裂细胞周期(interphase of mitotic cell cycle) 1: katna1减数分裂(meiosis) 30: boll c8orf1 ccna1 ccnb3 cspg6 dmc1 dmwd dusp13 exo1 h2afx mre11a msh4 msh5 nek2 rad50 rad51 rad54l rec8l1 smc1l1 smc1l2 spo11 stag2 stag3 sycp1 sycp2 top3a tsga2 utp14c xrcc2 zw10减数分裂纺锤体组织和生物发生(meiotic spindle organization and biogenesis) 1: tubg1减数分裂前期I (meiotic prophase I) 1: sycp2减数分裂前期II (meiotic prophase II) 1: msh5减数分裂染色体凝集(meiotic chromosome segregation) 1: sgol1减数分裂重组(meiotic recombination) 19: atm chek1 dmc1 klhdc3 lig3 mlh3 mre11a msh4 msh5 rad21 rad50 rad51 rad51l1 rad51l3 rad52 rad54b rec8l1 spo 11 sycp1姐妹染色单体凝集(sister chromatid segregation) 1: lats1姐妹染色单体连接(sister chromatid cohesion) 3: cspg6 pols rec8l1跨越开始控制点, 有丝分裂细胞周期(traversing start control point of mitotic cell cycle) 6: cdc2 cd c25c cdc6 cdc7 cdk10 cdk2联会复合体形成(synaptonemal complex formation) 4: sc65 stag3 sycp1 sycp2内S DNA 损伤检控点(intra-S DNA damage checkpoint) 1: nek11确立有丝分裂纺锤体定位(establishment of mitotic spindle localiz-ation) 1: espl1确立有丝分裂纺锤体取向(establishment of mitotic spindle orient-ation) 1: pafah1b1染色体凝集(chromosome segregation) 13: espl1 psen1 psen2 pttg1 rad21 riok3 s gol2 smc1l1 smc1l2 srpk1 stag1 stag2 stag3染色体浓缩(chromosome condensation) 1: hils1染色体组织和生物发生(chromosome organization and biogenesis) 8: pttg1 pttg3 rad50 smc1l 1 smc1l2 smc2l1 smc5l1 smchd1染色体组织和生物发生(见于真核生物) (chromosome organization and biogenesis (sensu Eukaryota)) 82: abtb 2 ard1a atrx cbx4 cenpa chd1 chd2 chd3 chd4 cspg6 egf h1f0 h1fx h2 afb1 h2afb3 h2afv h2afx h2afy h2afy2 h2afz h2bfm h2bfs h3f3a h3f3b h ist1h1b hist1h1c hist1h1d hist1h1e hist1h2ab hist1h2ac hist1h2ae hist1h2 ag hist1h2ak hist1h2aps4 hist1h2ba hist1h2bb hist1h2bc hist1h2bd hist1h2 bh hist1h2bj hist1h2bk hist1h2bl hist1h2bm hist1h2bn hist1h2bo hist1h3f hist1h4g hist2h2aa hist2h2ac hist2h2bc hist2h2be hist2h3c hist3h2bb hi st3h3 hmga1 hmga2 loc340096 loc340549 loc347376 loc388177 loc391405 loc 391769 loc391770 loc442461 loc653604 prm1 prm2 psen1 psen2 rad21 rad21 l1 rec8l1 smc4l1 tnfrsf7 tnp1 tnp2 top3a top3b twist1 znf238细胞成熟(cell maturation) 1: il21细胞凋亡(apoptosis) 262: acin1 ad7c-ntp adora2a adra1a agtr2 ahr akt1 api5 aplp1 app apr-2 arhgef6 atg12 atg5 aven axin1 axud1 bag1 bag2 bag3 bag4 bag5 bax bbc3 bcap29 bcap31 bcl2l11 bcl2l12 bfar birc1 birc4birc5 birc6 birc7 bmf bnip1 bnip2 bnip3l bnipl bre c12orf22 casp14 c asp3 casp6 casp8ap2 cd14 cd40 cd5l cdc2l1 cdc2l2 cdkn2a cgb7 ciapin1 cias1 cidea cideb cidec clu crop cse1l ctnnal1 ctnnbl1 cycs dad1 d ap dap3 dapk1 dapk2 dapk3 daxx dcc ddx41 dffa dffb dhcr24 diablo di do1 dnase1 dnase1l3 dnase2 dock1 dpf2 e2f1 eaf2 ebag9 edar egln3 eif 2ak2 elmo1 elmo2 elmo3 ep300 ern1 ern2 espl1 f2 f2r faf1 faim faim2 fas faslg fastk fis1 fksg2 flj21901 foxo3a fxr1 gadd45a gadd45b gad d45g gas2 glrx2 gml gpr65 gzma gzmb gzmh hd hipk2 hipk3 htra2 iapp ier3 ihpk3 il17 il19 il1a il1b il24 il2ra ing4 itgb2 itgb3bp kcnip 3 kiaa0971 kiaa1967 lgals12 lgals7 litaf ltbr ly86 maea mageh1 magi3 map3k5 mdm4 moap1 mrps30 mtp18 nalp2 nckap1 ndufa13 nfkb1 nfkbia ng fr ngfrap1 nme3 nme6 ntn1 p2rx1 pak1 pawr pax3 pdcd1 pdcd10 pdcd11 pdcd2 pdcd4 pdcd6 pdcd6ip pdcd7 pdcd8 pdcl3 pde1b phlda1 phlpp pml p pard ppm1f ppp1r13b ppp1r13l ppp1r15a ptk2b ptpn6 ptrh2 pura purb rad 21 raf1 rffl ripk1 ripk3 rnf130 rnf34 rock1 rybp scarb1 sema6a sgk sgpl1 sh3glb1 siah1 siah2 sirt1 siva slc25a6 smndc1 spata4 spin2 sqst m1 stk17a stk17b stk3 stk4 sulf1 taip-2 taok2 tbrg4 tegt tesk2 tia1 tiaf1 tial1 tnf tnfaip3 tnfrsf10a tnfrsf10c tnfrsf10d tnfrsf11b tnfrs f12a tnfrsf14 tnfrsf19 tnfrsf1a tnfrsf1b tnfrsf21 tnfrsf25 tnfrsf6b tnf rsf7 tnfsf10 tnfsf12 tnfsf7 tnfsf9 tp53 tp53bp2 tp53inp1 tp73 tp73l t radd triad3 trib3 trim35 txnl1 ube4b unc5a unc5b unc5c unc5d yars zb tb16 zdhhc16 znf346细胞分裂(cell division) 138: als2cr19 anapc1 anapc10 anapc11 anapc2 anapc4 anapc5 anapc7 aspm bcar1 brrn1 bub1 bub1b ccdc16 ccdc5 ccna1 ccna2 ccnb1 ccnb2 ccnb3 ccnc ccnd1 ccnd2 ccnd3 ccne1 ccne2 ccnf ccng1 cc ng2 ccnk ccnt1 ccnt2 ccrk cdc14a cdc16 cdc2 cdc20 cdc23 cdc25a cdc25 b cdc25c cdc2l2 cdc2l6 cdc40 cdc42 cdc6 cdc7 cdca1 cdca5 cdca8 cdk2 cdk3 cdk4 cdk5 cdk6 cdk7 cdk8 cenpe cenpf cenpj cetn1 cetn2 cetn3 chfr cit cks1b cks2 clasp1 clasp2 cnap1 cntrob cspg6 dclre1a flj379 27 ftsj3 fzr1 hcap-g incenp katna1 katnb1 kif11 kif23 kntc1 lats1 la ts2 lig1 lig3 lig4 mad1l1 mad2l1 mad2l2 mapre1 mapre2 mapre3 nedd9 n ek1 nek2 nek3 nek4 nek9 nudc pafah1b1 papd5 pard6a pard6b pard6g pol s ppp1ca ppp1cb ppp1cc pttg1 rad21 rcc1 rcc2 sept1 sept10 sept11 sgo l1 sgol2 sirt2 smc1l1 smc2l1 smc4l1 spag5 spata5l1 sssca1 stag1 stag2 sycp1 sycp2 tacc1 terf1 txnl4a ube2c wee1 zc3hc1 znf367 zw10细胞溶解(cytolysis) 15: c5 c6 c7 c8a c8b c8g c9 gzma gzmb gzmh gzmm ly z mmd mmd2 prf1细胞生长(cell growth) 31: ar csrp2 ddx5 dgkd emp1 emp3 erbb2ip esr1 fgf20 fgfr1 fgfr2 fgfr3 fhl1 frap1 klf6 lefty1 lefty2 loc440836 ltbp4 mt pn ndrg4 nop5/nop58 notch2 p8 slc3a2 tgfb1 tgfb2 tgfb3 tnn vat1 xrn2细胞死亡(cell death) 22: aplp1 aptx bnip3 clu clul1 dbc1 eif4g2 emp1 emp 2 emp3 faf1 fosl2 il17 ins nup62 parp4 psmc5 ptger3 setx tgfb1 tgfb 2 zak细胞增殖(cell proliferation) 253: ache adra1b adra1d akr1c3 appl ar areg arhgef1 bcar1 bcat1 bhlhb3 bin1 blzf1 bst2 btc bub1 bub1b bub3 c2orf 29 cbfa2t2 cbfa2t3 cckbr cd160 cd5 cd74 cdc14a cdc16 cdc25a cdc25c c dc27 cdc2l1 cdk3 cdk4 cdk5 cdk5r1 cdk5rap1 cdk5rap3 cdk6 cdk7 cdk9 c enpf chgn chrm1 chrm3 chrm4 chrm5 cklf cks2 clk1 col4a3 creg1 crip1 cse1l csf1 csf1r csrp2 ctf1 ctnnbip1 cul5 cxcl1 cyr61 dab2 dctn2 d ip13b dkc1 dlg7 dtymk e2f1 e4f1 edd1 ednra egfr eln emp1 emp2 enpep ephb4 eps15 eps8 erbb2 erbb4 erf erg evi5 fes fgf1 fgf2 fgf3 fgf4 fgf5 fgf6 fgf7 fgf8 fgf9 figf frat2 fscn1 fth1 fzd3 gab1 gas6 gcg gfer gfi1b gkn1 gpc4 grn grpr hdgf hdgfrp3 ifi16 ifrd2 igf2 igfbp4 igsf8 il15ra il1a il1b il2ra il5ra il6r il8rb il9r ilk-2 insig1 in sl4 irf2 isg20 khdrbs1 kif2c kitlg klf10 krt16 lgi1 lmo1 lrp1 lrpap1 ly86 map3k11 mapre1 mapre2 mas1 matk mdk mdm4 met mia mif mki67 m nat1 mpl ms4a2 mt3 mtcp1 mxd1 myc myt2 nab2 ndp npy nr6a1 nrd1 osm osmr pa2g4 pcna pdap1 pdgfa pdgfb pdgfra pemt pes1 pgf pim1 pim2 plk1 ppard ppbp prdm4 prdx1 prg4 prkd1 prl prmt5 prok1 prok2 psphl ptch pten ptn pura purb pyy raf1 rapgef3 rbbp7 reg1b reg3a retnlb r fp rps27 runx3 s100a6 s100b serpinf1 sfn shfm3p1 sipa1 skp2 slc29a2 sphk2 spock1 stil syk tacstd2 tal1 tcf19 tcf8 tfdp1 tgfa tgfb1 tgfb2 tgfb3 tgfbi thpo tnfrsf17 tnfsf13b tnfsf7 tnfsf8 tnfsf9 tp53 tpd52l2 tpx2 traip tspan1 tspan2 tspan3 tspy1 tusc2 txlna txn txndc ube2v2 usp8 vegf vegfb vegfc vti1b wit1 zak zfp36l2 zmynd11 znf259细胞周期(cell cycle) 354: ahr als2cr19 anapc1 anapc10 anapc11 anapc2 anapc 4 anapc5 anapc7 ankrd15 apc appbp1 appl aspm atm atr aurka aurkb au rkc axin1 bax bcl10 bin1 bin3 brca1 brms1 bub1 bub1b c10orf46 c13orf 10 c6orf88 ccdc16 ccdc5 ccna1 ccna2 ccnb1 ccnb2 ccnb3 ccnc ccnd1 ccn d2 ccnd3 ccne1 ccne2 ccnf ccng1 ccng2 ccnh ccnk ccnt1 ccnt2 ccrk cd c14a cdc16 cdc2 cdc20 cdc23 cdc25a cdc25c cdc2l1 cdc2l2 cdc42 cdc45l cdc5l cdc6 cdc7 cdc73 cdca5 cdk2 cdk2ap1 cdk3 cdk4 cdk5 cdk6 cdk7 cdk8 cdkn1a cdkn1b cdkn1c cdkn2a cdkn2b cdkn2c cdkn2d cdkn3 cdt1 ce npe cetn1 cetn2 cgref1 cgrrf1 chaf1a chaf1b chek1 chek2 chfr cit cks 1b cks2 clasp1 clasp2 clspn cnap1 cntrob cspg6 ctcf ctcfl cul1 cul2 cul3 cul4a cul4b cul5 cul7 cyld dbc1 dcc dclre1a ddit3 ddx11 dip13 b dlec1 dlg7 dmbt1 dmc1 dtymk dusp1 e2f1 e2f2 e2f3 e2f4 e2f6 egfreif2ak2 ep300 erbb2ip esco1 esco2 ext1 ext2 fancd2 fh fhit flcn flj3 7927 flj44060 fzr1 g0s2 gadd45a gak gas1 gas2 gmnn gps1 gps2 grlf1 gsg2 h2afx hcap-g hcfc1 hdac4 hdac6 hic1 hmg20b hrasls3 hsmpp8 htatip 2 incenp ing1 ing4 irf1 jag2 katna1 katnb1 khdrbs1 kif11 kif23 klk10 kntc1 kntc2 lats1 lats2 lig1 lig3 lig4 loc644162 loh11cr2a lzts1 lz ts2 mad1l1 mad2l1 mad2l2 mapk1 mapk12 mapk13 mapk3 mapk4 mapk6 mapk7 mapre1 mapre2 mapre3 mcc mcm2 mcm3 mcm6 mcm7 mcm8 mdc1 mis12 mki67 mlh1 mn1 mnat1 msh2 mtss1 mutyh nat6 nbl1 nedd9 nek1 nek11 nek2 n ek3 nek4 nek9 nf1 nf2 nipbl nme1 nme2 nolc1 nudc pafah1b1 papd5 parc pard3 pard6a pard6b pard6g pcaf pcnp pcoln3 pfdn1 pin1 pinx1 pkmyt1 pms1 pms2 pnn pols ppm1d ppp1ca ppp1cb ppp1cc ptch pten ptp4a1 pt tg1 pycard rad17 rad21 rad50 rap1a rassf1 rb1cc1 rbbp4 rbl1 rbl2 rbm 22 rbm5 rcbtb1 rcc1 rcc2 reck rfp2 rgs2 rhob rif1 rint1 s100a6 sa sh1 sass6 sept1 sept10 sept11 sept2 sept3 sept4 sept5 sept6 sept7 se pt8 sgol1 sgol2 sh3bp4 siah1 siah2 sirt2 smarcb1 smc1l1 smc1l2 smc2l1 smc4l1 smpd3 snf1lk spag5 spin2 sssca1 stag1 stag2 stag3 stim1 strn 3 sufu sycp1 sycp2 tacc1 tada2l taf1 taf1l terf1 terf2 tfdp1 tfdp2 tlk1 tlk2 tp53 tp53bp2 tp73 tsc1 tsc2 tusc2 tusc4 txnl4a txnl4b uba5 2 ube1c ube2c uhrf1 uhrf2 usp16 vash1 vhl wee1 wt1 wwox xrn1 zak z c3hc1 zmynd11 zw10 zwint zwintas细胞周期检控点(cell cycle checkpoint) 11: atr brca1 ccne2 ccng2 cdkn2a fancg ra d1 rb1 smc1l1 tp53 zak 细胞周期停滞(cell cycle arrest) 68: aif1 apbb1 apbb2 bard1 btg4 c10orf7 cdkn1 a cdkn1b cdkn1c cdkn2a cdkn2b cdkn2c cdkn2d cdkn3 cgref1 cgrrf1 cul1 cul2 cul3 cul4a cul5 ddit3 dhcr24 dst eif4g2 ern1 gadd45a gas1 gas 2 gas2l1 gas2l2 gas2l3 gas7 hbp1 ifnw1 il8 ing4 inha inhba jmy khdr bs1 macf1 map2k6 mapk12 mfn2 mllt7 mphosph1 myc nbn notch2 pa2g4 pca f pcbp4 plagl1 pml ppm1g ppp1r15a ppp2r3b rassf1 sart1 sesn1 sesn2 s esn3 tbrg4 tp53 uhmk1 vash1 zak雄性减数分裂(male meiosis) 3: hspa2 pim2 taf1l雄性减数分裂I (male meiosis I) 1: ccna1一维细胞生长(unidimensional cell growth) 1: bin3引导细胞凋亡(induction of apoptosis) 92: alox15b apoe bad bak1 bax bcl10 bcl2 l11 bcl2l13 bclaf1 bik bnip3 bnip3l bok casp10 casp3 casp4 casp6 cd2 cias1 cideb cidec col4a3 dapk2 dapk3 dcc dedd diablo dpf1 ei24 erc c2 ercc3 ern1 ern2 fas faslg foxo3a hd hrk ifna2 ifnb1 ikbkg inha inhba jmy lalba lck lta mal map3k10 mapk1 mx1 nalp1 nme3 notch2 nud t2 p8 pdcd5 plagl1 plg pml ppp1r13b ppp2ca ppp2r1a ppp2r1b prkce pten pycard s100b sipa1 smndc1 stk17a stk17b tia1 tial1 tlr2 tnfrsf10a tnfrsf19 tnfrsf7 tnfrsf9 tnfsf10 tnfsf12 tnfsf14 tnfsf8 tp53bp2 tp73l tpd52l1 tradd traf3 traip unc13b utp11l znf443引导细胞凋亡经死亡域受体(induction of apoptosis via death dom-ain receptors) 10: bid cradd daxx dedd dedd2 diablo fadd il18 tnfrsf10a tnfrsf10b引导细胞凋亡由胞外信号(induction of apoptosis by extracellular signals) 19: adora1 bax b tk casp8ap2 cd38 cflar dap dap3 dapk1 dpf2 fastk map3k5 ndufa13 pdcd 6 prkca ripk3 siva timp3 tnfrsf25引导细胞凋亡由激素(induction of apoptosis by hormones) 3: pth sstr3 tp53引导细胞凋亡由细胞内信号(induction of apoptosis by intracellular signals) 9: cdkn1a cul1 c ul2 cul3 cul4a cul5 hipk2 lgals12 sart1引导细胞凋亡由氧化压力(induction of apoptosis by oxidative stress) 2: prodh rnf7有丝分裂(mitosis) 98: akap8 anapc1 anapc11 anapc2 anapc7 aspm aurka brrn1 bub1 bub1b bub3 ccdc16 ccdc5 ccna1 ccna2 ccnb1 ccnb2 ccnf ccng1 cc ng2 ccnk cdc2 cdc20 cdc25a cdc25b cdc2l1 cdc2l2 cdc6 cdca5 cdk2 cdk3 cenpf cetn1 cetn2 cetn3 chfr cit clasp1 clasp2 cnap1 coro1a dclre1a dctn1 dctn2 dctn3 eml4 fgf4 flj37927 fzr1 hcap-g hgf incenp katna1 katnb1 kif22 kif23 kif2c kntc1 lats1 lats2 mad2l1 mad2l2 mapre1 map re2 mapre3 mis12 nedd9 nek1 nek3 nek4 nek9 nolc1 nudc pafah1b1 papd5 pbk plk1 pols ppp5c pttg1 rad21 rcc2 sgol1 sirt2 smc2l1 spag5 sssc a1 stag1 stag2 sugt1 tardbp tpx2 ttn txnl4a txnl4b ube2c wee1 zc3hc1有丝分裂G2 检控点(mitotic G2 checkpoint) 2: ccna2 nbn有丝分裂纺锤体检控点(mitotic spindle checkpoint) 5: bub1 bub3 cenpf mad2l2 ttk有丝分裂纺锤体延伸(mitotic spindle elongation) 2: kif23 prc1有丝分裂纺锤体组织和生物发生(mitotic spindle organization and biogenesis) 10: cspg6 dync1h1 kif 11 ran rcc1 smc1l1 stmn1 ttk tubg1 unc84b有丝分裂纺锤体组装(mitotic spindle assembly) 1: rae1有丝分裂后期(mitotic anaphase) 5: anapc10 anapc4 anapc5 mad1l1 numa1有丝分裂检控点(mitotic checkpoint) 7: brca2 bub1b chfr kntc1 mad1l1 mad2l1 zw10有丝分裂姐妹染色单体凝集(mitotic sister chromatid segregation) 5: espl1 kif25 kifc1 kntc2 zw10有丝分裂姐妹染色单体凝集蛋白(mitotic sister chromatid cohesion) 1: smc1l1有丝分裂末期(mitotic telophase) 1: mad1l1有丝分裂染色体浓缩(mitotic chromosome condensation) 11: brrn1 cdca5 cnap1 hcap-g pam pcoln3 pols prm1 prm2 smc2l1 smc4l1有丝分裂染色体运动向纺锤体柱(mitotic chromosome movement towards spindle pole) 2: cenpe dlg7 有丝分裂细胞周期(mitotic cell cycle) 2: brrn1 cep250有丝分裂中期(mitotic metaphase) 2: cenpe mad1l1有丝分裂中期/后期转变(mitotic metaphase/anaphase transition) 1: cdc27有丝分裂中期板汇集(mitotic metaphase plate congression) 3: cdc23 cdca5 cenpe有丝分裂中心体分离(mitotic centrosome separation) 1: cetn1有丝分裂重组(mitotic recombination) 3: rad51 rad52 rad54b增殖(reproduction) 1: mmp23b中心体复制(centrosome duplication) 1: sass6中心体周期(centrosome cycle) 3: cetn3 npm1 tube1中性粒细胞凋亡(neutrophil apoptosis) 1: il6周期蛋白分解代谢(cyclin catabolism) 3: anapc2 cyb561d2 ube2c转化细胞凋亡(transformed cell apoptosis) 2: prf1 rhob。
葡萄籽原花青素低聚体抑制A1型星形胶
网络出版时间:2022-12-0918:30:28 网络出版地址:https://kns.cnki.net/kcms/detail//34.1086.R.20221209.1428.017.html葡萄籽原花青素低聚体抑制A1型星形胶质细胞极化机制王 青1,杨智超1,董艺薇1,苑舒文1,李彦青1,宋丽娟1,黄建军2,马存根1,3(1.山西中医药大学神经生物学研究中心,国家中医药管理局益气活血法治疗多发性硬化重点研究室,山西晋中 030619;2.国药同煤总医院神经外科/山西省卫健委神经疾病防治研究重点实验室,山西大同037003;3.山西大同大学脑科学研究所,山西大同 037009)收稿日期:2022-08-10,修回日期:2022-10-10基金项目:国家自然科学基金项目(No81903596);山西高校科技创新项目(No2019L0721,2019L0728);山西省卫健委医学科技领军团队(No2020TD05);基于炎性反应的重大疾病创新药物山西省重点实验室项目(No202105D121011);山西中医药大学培育项目(No2019PY130,2020PY JC 14);山西中医药大学学科建设经费(No030200117)作者简介:王 青(1983-),女,博士,副教授,研究方向:神经免疫和神经保护,E mail:4024771456@163.com;马存根(1960-),男,博士,教授,研究方向:中西医结合防治神经炎性变性疾病,通信作者,E mail:macungen@sx tcm.edu.cndoi:10.12360/CPB202203014文献标志码:A文章编号:1001-1978(2023)01-0077-07中国图书分类号:R 332;R285 5;R322 81;R364 5;R744 5摘要:目的 星形胶质细胞(astrocytes,AS)是脑内最丰富的神经胶质细胞,可对中枢神经系统(centralnervoussystem,CNS)损伤迅速作出反应,极化为不同的表型。
成人散发型腹部伯基特淋巴瘤一例报告并文献复习
10·罕少疾病杂志 2024年1月 第31卷 第 1 期 总第174期【第一作者】林杨皓,男,主治医师,主要研究方向:腹部影像诊断工作。
E-mail:***********************【通讯作者】连永伟,男,主任医师,主要研究方向:腹部影像诊断工作。
E-mail:*******************·短篇论著·成人散发型腹部伯基特淋巴瘤一例报告并文献复习林杨皓 朱文淼 何伟荣 刘维健 连永伟*梅州市中医医院医学影像科 (广东 梅州 514000)【摘要】目的 探讨一例成人散发型腹部伯基特淋巴瘤临床、影像特征,提高对该肿瘤的认识。
方法 回顾性分析本院一例成人散发型腹部伯基特淋巴瘤患者临床、影像学资料,并复习国内外有关文献,探讨其临床、影像学特点。
结果 患者男性,87岁,因腹痛不适,近一天疼痛加剧就诊,超声示左肾周围肿物,CT 示左侧腹膜后团块状软组织肿块,横结肠左侧段肠壁增厚,增强呈不均匀轻中度强化。
穿刺取病理,结合光镜及免疫组化,考虑伯基特淋巴瘤。
结论 成人散发型伯基特淋巴瘤属于少见、罕见病,确诊主要依靠病理及免疫组化,具有一定影像特征,充分认识有利于提高诊断。
【关键词】成人;散发型;伯基特淋巴瘤;影像学【中图分类号】R733.1【文献标识码】ADOI:10.3969/j.issn.1009-3257.2024.1.004Sporadic Abdominal Burkitt’s Lymphoma in Adults: A Case Report and Literature ReviewLIN Yang-hao, ZHU Wen-miao, HE Wei-rong, LIU Wei-jian, LIAN Yong-wei *. Department of Radiology, Meizhou Hospital of Traditional Chinese Medicine, Meizhou 514000, Guangdong Province, ChinaAbstract: Objective To explore the clinical and imaging features of a case of sporadic abdominal Burkitt’s lymphoma in adults and to improve theunderstanding of this tumor. Methods The clinical and imaging data of an adult patient with sporadic abdominal Burkitt’s lymphoma were analyzed retrospectively, and the relevant literatures at home and abroad were reviewed to explore the clinical and imaging characteristics. Results The patient, an 87-year-old male, visited the doctor due to abdominal pain and discomfort. The pain worsened in the past day. Ultrasound showed a mass around the left kidney, CT showed a massive soft tissue mass in the left retroperitoneal mass, and the intestinal wall thickened in the left transverse colon segment with uneven mild to moderate enhancement. Burkitt's lymphoma was considered by puncture pathology combined with light microscopy and immunohistochemistry. Conclusion Sporadic Burkitt’s lymphoma in adults is a rare disease. The diagnosis mainly depends on pathology and immunohistochemistry. It has certain image characteristics and it is helpful to improve diagnosis.Keywords: Adult; Sporadic; Burkitt's Lymphoma; Imaging 伯基特淋巴瘤(Burkitt’s lymphoma,BL)起源于未分化B 淋巴细胞,属于非霍奇金淋巴瘤(non-Hodgkin’s lymphoma,NHL)的一种,成年人相对少见,本例患者是老年人散发型伯基特淋巴瘤,属于罕少见疾病,收集其临床、病理及影像学资料,总结归纳其特征,通过复习国内外有关经典文献,认识到成年人散发型BL具有较明显的分子细胞遗传学、免疫学特征,影像表现多样,常累及腹部,容易结外侵犯,侵袭性强,有利于提高疾病术前诊断。
14s501-6
14s501-6介绍本文档是关于14s501-6的详细介绍和技术规范。
规格- 型号:14s501-6- 尺寸:可选- 重量:可选- 电压:14S- 容量:501mAh- 循环寿命:6次- 温度范围:-10°C 至 60°C- 充电速率:可选- 放电速率:可选特点- 高容量:14s501-6电池拥有501mAh的容量,适合高能量需求的应用。
- 长寿命:具有6次循环寿命,能够提供可靠的长期使用。
- 宽温度范围:适用于-10°C至60°C的环境,具有良好的温度适应性。
- 快速充放电:可选的充放电速率,可以满足不同需求的充电和放电时间。
- 可选尺寸和重量:根据各种应用需求,可以选择合适的尺寸和重量。
应用14s501-6广泛应用于以下领域:- 无人机和航空器- 移动设备和消费电子产品- 电动工具和设备- 物联网设备- 备用电源和能源存储安全注意事项- 在使用前,请确保按照生产商的说明书正确操作和安装电池。
- 避免过度充放电,以免影响电池性能并导致损坏。
- 不要将电池强力撞击或穿刺,以免引起火灾或爆炸。
- 不要将电池浸入水中,以免损坏电池并引起危险。
- 电池在儿童和宠物无法触及的地方储存和使用。
支持和售后如需更多关于14s501-6的信息或有任何问题,请联系我们的客户服务团队。
结论本文档提供了关于14s501-6的详细信息,包括规格、特点、应用、安全注意事项以及支持和售后服务。
我们希望这个文档能够帮助您更好地了解并使用14s501-6电池。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
www .be t l u x.co m BL-S100X-14Features:25.40mm (1.0”) Single digit numeric display series Low current operation.Excellent character appearance.Easy mounting on P .C. Boards or sockets. I.C. Compatible.ROHS Compliance.Super BrightElectrical-optical characteristics: (Ta=25) (Test Condition: IF=20mA)Part NoChipVFUnit:V Common CathodeCommon AnodeEmitted ColorMaterialλP (nm)Typ Max Iv TYP.(mcd)BL-S100A-14S-XX BL-S100B-14S-XX Hi Red GaAlAs/GaAs,SH 660 1.852.2080BL-S100A-14D-XX BL-S100B-14D-XX Super Red GaAlAs/GaAs,DH 660 1.852.20120 BL-S100A-14UR-XX BL-S100B-14UR-XX Ultra Red GaAlAs/GaAs,DDH6601.852.20130 BL-S100A-14E-XX BL-S100B-14E-XXOrange GaAsP/GaP635 2.102.5092 BL-S100A-14Y-XX BL-S100B-14Y-XXYellow GaAsP/GaP 585 2.102.5092 BL-S100A-14G-XXBL-S100B-14G-XXGreenGaP/GaP 570 2.202.5092Ultra BrightElectrical-optical characteristics: (Ta=25) (Test Condition: IF=20mA)Part NoChipVFUnit:V Common Cathode Common AnodeEmitted Color MaterialλP(nm)Typ Max Iv TYP .(mcd) BL-S100A-14UHR-X XBL-S100B-14UHR-XXUltra Red AlGaInP645 2.10 2.50 130BL-S100A-14UE-XXBL-S100B-14UE-XX Ultra Orange AlGaInP 630 2.10 2.50 95 BL-S100A-14YO-XX BL-S100B-14YO-XX Ultra Amber AlGaInP 619 2.10 2.50 95 BL-S100A-14UY-XXBL-S100B-14UY-XX Ultra Yellow AlGaInP 590 2.10 2.50 95 BL-S100A-14UG-XX BL-S100B-14UG-XX Ultra Green AlGaInP574 2.20 2.50 120 BL-S100A-14PG-XX BL-S100B-14PG-XX Ultra Pure Green InGaN 525 3.80 4.50 150 BL-S100A-14B-XX BL-S100B-14B-XX Ultra Blue InGaN 470 2.70 4.20 85 BL-S100A-14W-XXBL-S100B-14W-XXUltra WhiteInGaN/2.704.20120-XX: Surface / Lens colorNumber1 2 3 4 5 Ref Surface Color White Black Gray Red Green Epoxy Color WaterclearWhite diffusedRed DiffusedGreen DiffusedYellow Diffusedwww .be t l u x.co m BL-S100X-14Absolute maximum ratings (Ta=25)ParameterS D UR E Y G Unit Forward Current I F 25 2525 25 25 30 mA Power Dissipation P d 60 60 60 60 60 65 mW Reverse Voltage V R5 5 5 5 5 5 V Peak Forward Current I PF (Duty 1/10 @1KHZ)150150150 150150150mAOperation Temperature T OPR -40 to +80 Storage Temperature T STG -40 to +85Lead Soldering Temperature T SOLMax.260±5 for 3 sec Max. (1.6mm from the base of the epoxy bulb)Absolute maximum ratings (Ta=25°C) ParameterUHRUE YO UYUGPGUBUWUnitForward Current I F 30 3030 30 30 3030 30 mA Power Dissipation P d 75 65 65 65 75 110 120 120 mW Reverse Voltage V R55555 555V Peak Forward Current I PF (Duty 1/10 @1KHZ)150150150150150150100100mA Operation Temperature T OPR -40 to +80Storage Temperature T STG-40 to +85Lead Soldering TemperatureT SOLMax.260±5 for 3 sec Max. (1.6mm from the base of the epoxy bulb)w.b e t l ux.co mBL-S100X-14Package configuration & Internal circuit diagram Notes:1. All dimensions are in millimeters (inches)2. Tolerance is 0.25(0.01")unless otherwise noted.3. Specifications are subject to change without notice.w wwwu x.co m BL-S100X-14Typical electrical-optical characteristics curves:1.00.503504004505005506006507007508008509009501000(A)(B)(C)(D)(2)(3)(8)(4)(1)(6)(5)(9)(10)Wavelength(nm)RELATIVE INTENSITY Vs WAVELENGTH()p (1) - GaAsP/GaAs 655nm/Red (2) - GaP 570nm/Yellow Green (3) - GaAsP/GaP 585nm/Yellow(4) - GaAsp/GaP 635nm/Orange & Hi-Eff Red (5) - GaP 700nm/Bright Red(6) - GaAlAs/GaAs 660nm/Super Red (8) - GaAsP/GaP 610nm/Super Red(9) - GaAlAs 880nm(10) - GaAs/GaAs & GaAlAs/GaAs 940nm (A) - GaN/SiC 430nm/Blue (B) - InGaN/SiC 470nm/Blue(C) - (D) - InGaN/SiC 505nm/Ultra Green InGaAl/SiC 525nm/Ultra Green504030201001.21.62.0 2.4 2.63.016345285040302010020406080100162,4,8,A 353210.50.20.1-30-20-10102030405060701542310987654321110100100010,00010KHz 3KHz1KHz 300KHz 100KHz F-REFRESH RATE100KHz 30KHz10KHz 3KHz 1KHz 300Hz 100Hz 10987654321110100100010,000FORWARD VOLT AGE (Vf)FORWARD CURRENT VS.FORWARD VOLTAGERELATIVE LUMINOUSINTENSITY VS. FORWARD CURRENTAMBIENT TEMPERATURE T a()FORWARD CURRENT VS. AMBIENT TEMPERATUREtp-PULSE DURATION uS (1,2,3,4,6,8,B.D.J.K)NOTE:25 free air temperature unless otherwise specifiedtp-PULSE DURATION uSFORWARD CURRENT(mA)FORWARD CURRENT (mA)RELATIVE LUMINOUS INTENSITYFORWARD CURRENT(mA)RELATIVE LUMINOUS INTENSITYAMBIENT TEMPERATURE T a()(5)Ipeak MAX.IDC MAX.Ipeak MAX.IDC MAX.。