6.3实数的有关运算

合集下载

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.

人教版七年级下册数学:6.3实数的运算 (共17张PPT)

人教版七年级下册数学:6.3实数的运算 (共17张PPT)

实数的运算
• 1.实数的相反数:数a的相反数是-a . • 2.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的
绝对值是0. • 3、实数之间可以进行加、减、乘、除(除数不为0)、乘方、非负实数的开
方运算,还有任意实数的开立方运算,在进行实数的运算中,交换律、结合 律、分配律等运算性质也适用.

在实数运算中,当遇到无理数并且需要求出结果的近似
值时,可以按照所要求的精确度用相应的近似有限小数去代
替无理数,再进行计算
随堂练习

• 随堂练习
• 1、计算(1)4 2 6 2 (2) 3( 3 2) (3) 3 5 2 3
• 2、计算(1)2 2 3 (精确到0.01)

(2) 5 2 2.34 (精确到0.01)
• (1) 5
(2) 3 2
分析:在实数的运算中,当遇到无理数并且需要求出结果的近似值时,可以按 照要求的精确度用相应的近似有限小数去代替无理数,再进行运算。
• 解:(1) 5 2.236 3.142 5.378 5.38
• (2) 3 2 1.7321.414 2.45
总结:
乘法 a×b=b×a 2.结合律:加法 (a+b)+c=a+(b+c)
乘法(a×b)×c=a×(b×c) 3.分配律:乘法 a×(b+c)=a×b+a×c (3)有理数的运算法则和运算律是否在实数范围内也适用?
二、合作交流,解读探究
• 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘 方运算,而且正数及0可以进行开平方运算,任意一个实数都可以进行开立方运算。在进行 实数的运算时,有理数的运算法则以及运算性质等同样适用。

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数和无理数的概念之后,进一步对实数进行系统学习的开始。

本节内容主要包括实数的定义、实数与数轴的关系、实数的运算等。

通过本节课的学习,使学生对实数有一个清晰的认识,为后续的代数学习和解决实际问题打下基础。

二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。

但实数作为介于有理数和无理数之间的一个整体,其定义和性质还需要进一步引导和探究。

此外,实数与数轴的关系以及实数的运算对学生来说也是一个新的挑战。

三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。

2.掌握实数的运算规则,能进行实数的基本运算。

3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

3.实数的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解实数的定义和性质,通过小组合作学习法让学生在讨论中掌握实数与数轴的关系和实数的运算规则。

六. 教学准备1.PPT课件。

2.数轴教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。

同时,提出问题:“实数与数轴有什么关系?”激发学生的学习兴趣。

2.呈现(10分钟)通过PPT课件呈现实数的定义和性质,实数与数轴的关系,实数的运算规则。

结合案例,让学生直观地理解实数的内涵。

3.操练(10分钟)让学生在小组内进行实数的运算练习,如加、减、乘、除等。

教师巡回指导,解答学生疑问。

4.巩固(5分钟)选取一些典型练习题,让学生独立完成,检验对实数知识的掌握程度。

教师及时点评,指出错误并讲解。

5.拓展(5分钟)引导学生思考实数在实际生活中的应用,如面积、体积计算等。

让学生举例说明,培养解决实际问题的能力。

人教版七年级数学下册章节重难点举一反三 专题6.3 实数的混合运算专项训练(60题)(原卷版+解析

人教版七年级数学下册章节重难点举一反三  专题6.3 实数的混合运算专项训练(60题)(原卷版+解析

专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况!一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−√3).13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3√3)−√16.21.(2022春•平邑县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.22.(2022春•费县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)﹣23﹣|1−√2|−√−273×√(−3)2.23.(2022春•西平县期末)计算:(1)√183+√(−2)2+√14; (2)﹣12+√4+√−273+|√3−1|.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x 的值:(x +2)3=−1258.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x 的值,2(x +3)3+54=0.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2; (2)|√3−√2|+|√3−2|﹣|√2−1|.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183.(1)√1−89−√643+√−1273; (2)√2.56−√0.2163+|1−√2|.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.32.(2022春•忠县期末)计算:(1)√32+√−273+√49; (2)−14×√4+|√9−5|+√214+√−0.1253.(1)求式子中x的值:√x2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;(2)求x 的值:(x +1)3=−278.38.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273+√(−3)2−√−13.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2;(2)计算:4√3−2(1+√3)+|2−√2|.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3; (2)(−√6)2×12+√−273+√62+82.42.(2022春•海淀区校级期中)计算: (1)√25+√−643−|2−√5|+√(−3)2; (2)√2(2+√2)﹣2√2.43.(2022春•洛龙区期中)计算和解方程: (1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x )2=8.44.(2022春•随州期中)计算下列各式: ①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|−√−(−4);(1)√16+√149(2)√52−42−√62+82+√(−2)2.46.(2022春•渝北区月考)计算:3−√9+(−1)2021+(−√2)2;(1)√−8(2)(−3)2+2×(√2−1)−|−2√2|.47.(2022春•崇义县期中)计算:3+(﹣1)2022;(1)√4+|﹣2|+√−642÷2.(2)(−√3)2+√(−5)2−(﹣7)+√8(1)﹣(12)2−√2516−√−83; (2)|√2−√3|+|1−√2|+√3−(﹣1)2021.49.(2022春•渑池县期中)计算: (1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.50.(2022春•江北区校级月考)计算: (1)√0.2163−√1916+5×√1100;(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.52.(2022春•天门校级月考)计算 (1)|√5−2|+√25+√(−2)2+√−273;(2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13; (2)|−√2|﹣(√3−√2)﹣|√3−2|.54.(2021春•涪城区校级期中)计算: (1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.55.(2016秋•苏州期中)计算下列各题. (1)√0.16+√0.49−√0.81; (2)﹣16√0.25−4√1−653; (3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x 是﹣27的立方根,y 是13的算术平方根,求x +y 2+6的平方根.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a +5的一个平方根是﹣3,−14b ﹣a 的立方根是﹣2,求√a +√b 的值.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +c+d 5+e 2+√f 3的值.59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√x −2−√x +10y +√245y 3的值.60.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|;(2)解方程:25x 2﹣36=0;(3)已知√x +1+|y −2|=0,且√1−2z 3与√3z −53互为相反数,求yz ﹣x 的平方根.专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况! 一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.【分析】利用绝对值的意义,实数的乘方法则和立方根的意义解答即可. 【解答】解:原式=√3−1+2−√3+9﹣4 =6.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.【分析】首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:√−273−√925+|√643−√49|=﹣3−35+|4﹣7| =﹣3−35+|﹣3| =﹣3−35+3=−35.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23. 【分析】利用算术平方根和立方根的意义化简运算即可. 【解答】解:原式=√94−√49+√643=32−7+4=−32.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.【分析】先计算平方根、立方根,再计算乘法,后计算加减. 【解答】解:√36−√(−3)2+√−83×√14 =6−3+(−2)×12 =6﹣3﹣1 =2.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3. 【分析】先计算开平方、开立方、立方和绝对值,后计算加减. 【解答】解:√4+|√3−3|−√−273+(−2)3 =2+3−√3+3﹣8 =−√3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|. 【分析】根据二次根式的加减运算法则以及绝对值的性质即可求出答案. 【解答】解:原式=6﹣3﹣5﹣(2−√2) =﹣2﹣2+√2 =﹣4+√2.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|. 【分析】先计算开立方、开平方和绝对值,后计算加减. 【解答】解:√−273−√19+√3+|√3−√9|=﹣3−13+√3+3−√3 =−13.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).【分析】首先计算开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|√3−2|+√100×√0.0643−√3(√3−1) =2−√3+10×0.4﹣3+√3 =2−√3+4﹣3+√3 =3.9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.【分析】利用绝对值的意义,算术平方根的意义,立方根的意义和二次根式的性质化简运算即可.【解答】解:原式=√3−1+54−(−14)+2=√3−1+54+14+2 √3−1+32+2 =√3+52.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√81+√−273−√(−2)2+|−√3|=9+(﹣3)﹣2+√3=9﹣3﹣2+√3=4+√3.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=﹣3+2−√3+4+2√3=3+√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−√3).【分析】直接利用立方根的性质以及二次根式的性质、二次根式的乘法运算法则分别化简,进而得出答案. 【解答】解:原式=32−54−3+1 =−74. 13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022.【分析】根据立方根、绝对值和有理数的乘法分别化简,再计算即可.【解答】解:原式=2﹣3+√3−(√3−2)+3+1=2﹣3+√3−√3+2+3+1=5.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|.【分析】先算乘方和开方,再化简绝对值,最后算加减.【解答】解:原式=3﹣1﹣(﹣2)+√6−2=3﹣1+2+√6−2=2+√6.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83.【分析】先利用乘方,立方根,算术平方根进行运算,再进行实数的混合运算求解.【解答】解:原式=﹣1+4×9+(﹣6)÷(﹣2)=﹣1+36+3=38.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2.【分析】原式利用乘方的意义,算术平方根、立方根定义,绝对值的代数意义,以及二次根式性质计算即可求出值.【解答】解:原式=﹣1+5﹣(√2−1)﹣2﹣3=﹣1+5−√2+1﹣2﹣3=−√2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|52−√9|+(﹣1)2022−√273+√(−6)2 =12+1﹣3+6 =92.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:√25−|1−√2|+√−273−√(−3)2=5−√2+1+(−3)−3=5−√2+1−3−3=−√2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣2+3−√5−2+√5=3.20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3√3)−√16.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案. 【解答】解:原式=2−√3+2+3+1﹣4 =4−√3.21.(2022春•平邑县期末)计算: (1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.【分析】(1)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案;(2)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:(1)原式=−2−√3+5+√3−1=2;(2)原式=−8+1−√2−(−3)×3=−8+1−√2+9=2−√2.22.(2022春•费县期末)计算:(1)√−83−√3+(√5)2+|1−√3|;(2)﹣23﹣|1−√2|−√−273×√(−3)2.【分析】(1)原式利用立方根定义,二次根式性质,以及绝对值的代数意义计算即可求出值;(2)原式利用乘方的意义,绝对值的代数意义,以及立方根,二次根式性质计算求出值.【解答】解:(1)原式=﹣2−√3+5+√3−1=2;(2)原式=﹣8﹣(√2−1)﹣(﹣3)×3=﹣8−√2+1+9=2−√2.23.(2022春•西平县期末)计算:(1)√183+√(−2)2+√14; (2)﹣12+√4+√−273+|√3−1|.【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)√183+√(−2)2+√14 =12+2+12=3.(2)﹣12+√4+√−273+|√3−1|=﹣1+2+(﹣3)+(√3−1)=﹣1+2+(﹣3)+√3−1=√3−3.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x的值:(x+2)3=−1258.【分析】(1)根据乘方运算、绝对值的性质以及二次根式的加减运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=﹣1+√5−2﹣3=﹣6+√5.(2)(x+2)3=−1258,x+2=−52,x=−92.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x的值,2(x+3)3+54=0.【分析】(1)根据求立方根、绝对值的意义、实数的运算法则等知识直接计算即可;(2)利用立方根的含义求解x+3,再求解x即可.【解答】解:(1)√81+√−273+√(−2)2+|√3−2|;=9+(−3)+2+2−√3=10−√3;(2)2(x+3)3+54=0,变形得(x+3)3=﹣27,即有x+3=﹣3,则x=﹣6.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.【分析】(1)利用立方根、去绝对值、算术平方根、去括号定义求解即可.(2)利用数的平方、算术平方根、去绝对值化简求值即可.【解答】解:(1)原式=﹣2+3−√3+3+√3=4;(2)原式=4×14+2−√2+√2=1+2=3.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.【分析】(1)直接利用二次根式的性质、立方根的性质、绝对值的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质、立方根的性质、有理数的乘方运算法则分别化简,进而合并得出答案.【解答】解:(1)原式=2√2+5+2﹣(2−√2)=2√2+5+2﹣2+√2=3√2+5;(2)原式=32−4+23+1=−56.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)根据算术平方根、立方根的性质化简,再计算即可;(2)根据绝对值的性质化简,再合并即可.【解答】解:(1)原式=0.5+3+14 =334;(2)原式=(√3−√2)﹣(√3−2)﹣(√2−1)=√3−√2−√3+2−√2+1=3﹣2√2.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183. 【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:(1)原式=2+2+4+5=13;(2)原式=2−√3−12+3+√3+12=5.30.(2022春•博兴县期末)计算:(1)√1−89−√643+√−1273; (2)√2.56−√0.2163+|1−√2|.【分析】(1)原式利用算术平方根及立方根定义计算即可求出值;(2)原式利用算术平方根,立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:(1)原式=√19−√643+√−1273=13−4−13=﹣4;(2)原式=1.6﹣0.6+√2−1=√2.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简每一个绝对值,然后再进行计算即可解答.【解答】解:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273=﹣8×4+(﹣4)+14−3=﹣32﹣4+14−3 =﹣3834;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|=√2−1+√3−√2+2−√3+√5−2=√5−1.32.(2022春•忠县期末)计算:(1)√32+√−273+√49; (2)−14×√4+|√9−5|+√214+√−0.1253. 【分析】(1)利用算术平方根,立方根的意义化简运算即可;(2)注意各项的符号和运算法则.【解答】解:(1)原式=3﹣3+23=23,(2)原式=﹣1×2+5﹣3+32−12=﹣2+5﹣3+1=1.33.(2022春•天津期末)计算:(1)求式子中x的值:√x2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.【分析】(1)利用立方根的意义和平方根的意义解答即可;(2)利用二次根式的性质,立方根的意义,绝对值的意义解答即可.【解答】解:(1)∵√x2−243=1,∴x2﹣24=1,∴x2=25.∴x=±5.(2)原式=√3+3﹣(﹣2)﹣(2−√3)=√3+3+2﹣2+√3=3+2√3.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).【分析】(1)利用有理数的乘方法则,立方根的意义和平方根的意义化简计算即可;(2)利用二次根式的性质解答即可.【解答】解:(1)原式=﹣8×18−3×(−13)=﹣1﹣(﹣1)=0;(2)原式=3√3+9﹣3√3=9.35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).【分析】先计算开方及绝对值,再合并即可.【解答】解:(1)原式=2+34−2=34;(2)原式=0.5+3−√5−5+√5=﹣1.5.36.(2022春•綦江区期末)计算.(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.【分析】(1)原式利用乘方的意义,绝对值的代数意义,以及算术平方根、立方根定义计算即可求出值;(2)原式利用算术平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:(1)原式=﹣1+2√2+3﹣2=2√2;(2)原式=3+3−√5−4+1=3−√5.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;(2)求x 的值:(x +1)3=−278. 【分析】(1)先计算√(−1)23、√(−2)2,再化简绝对值,最后加减.(2)利用立方根的意义求出x .【解答】解:(1)原式=√13+|1−√2|+√4=1+√2−1+2=√2+2;(2)x +1=−√2783, x =−32−1,x =−52.38.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273+√(−3)2−√−13.【分析】(1)先化去绝对值号,再加减;(2)先求出27、﹣1的立方根及(﹣3)2的算术平方根,再加减.【解答】解:(1)原式=√6−√2+√2−1﹣3+√6=2√6−4;(2)原式=3+3+1=7.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√16−√273+(√13)2+√(−1)33=4﹣3+13+(﹣1)=13.(2)√3(√3−1)+|√2−√3|=√3×√3−√3+(√3−√2)=3−√3+√3−√2=3−√2.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2; (2)计算:4√3−2(1+√3)+|2−√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√81+√−273+√(−23)2 =9+(﹣3)+23=9﹣3+23 =203;(2)4√3−2(1+√3)+|2−√2|=4√3−2﹣2√3+2−√2=2√3−√2.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3;(2)(−√6)2×12+√−273+√62+82.【分析】(1)根据二次根式的性质,绝对值的性质,立方根的性质进行计算便可;(2)根据二次根式的性质,立方根的性质进行计算便可.【解答】解:(1)原式=94+√7−2−√−183 =94+√7−2+12=√7+34; (2)原式=6×12−3+10 =3﹣3+10=10.42.(2022春•海淀区校级期中)计算:(1)√25+√−643−|2−√5|+√(−3)2;(2)√2(2+√2)﹣2√2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘法,再算加减,即可解答.【解答】解:(1)√25+√−643−|2−√5|+√(−3)2=5+(﹣4)−√5+2+3=5﹣4−√5+2+3=6−√5;(2)√2(2+√2)﹣2√2=2√2+2﹣2√2=2.43.(2022春•洛龙区期中)计算和解方程:(1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x )2=8.【分析】(1)根据二次根式的性质,立方根的性质,绝对值的性质,合并同类二次根式的法则进行计算便可;(2)运用直接开平方法解方程便可.【解答】解:(1)原式=0.2﹣2−12+2−√3+2√3 =﹣0.3+√3;(2)(1﹣x )2=4,1﹣x =±2,∴x 1=﹣1,x 2=3.44.(2022春•随州期中)计算下列各式:①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|【分析】(1)利用算术平方根和立方根计算即可.(2)先利用绝对值的定义去绝对值,再合并运算.【解答】解:①√(−1)2+√14×(−2)2−√−643=1+12×4﹣(﹣4)=1+2+4=7.②|√3−√2|+|√3−√2|−|√2−1|=√3−√2+√3−√2−(√2−1)=√3−√2+√3−√2−√2+1=(√3+√3)−(√2+√2+√2)+1=2√3−3√2+1.45.(2022春•老河口市月考)计算(1)√16+√149−√−(−4);(2)√52−42−√62+82+√(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√16+√149−√−(−4)=4+17−2=157;(2)√52−42−√62+82+√(−2)2=3﹣10+2=﹣5.46.(2022春•渝北区月考)计算:(1)√−83−√9+(−1)2021+(−√2)2;(2)(−3)2+2×(√2−1)−|−2√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√−83−√9+(−1)2021+(−√2)2=﹣2﹣3+(﹣1)+2=﹣4;(2)(−3)2+2×(√2−1)−|−2√2|=9+2√2−2﹣2√2=7.47.(2022春•崇义县期中)计算:(1)√4+|﹣2|+√−643+(﹣1)2022;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√4+|﹣2|+√−643+(﹣1)2022=2+2﹣4+1=1;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2=3+5+7+2√2÷2=15+√2.48.(2022春•黄石期中)计算:(1)﹣(12)2−√2516−√−83;(2)|√2−√3|+|1−√2|+√3−(﹣1)2021.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)﹣(12)2−√2516−√−83=−14−54−(﹣2)=−32+2 =12.(2)|√2−√3|+|1−√2|+√3−(﹣1)2021=√3−√2+(√2−1)+√3−(﹣1)=√3−√2+√2−1+√3+1=2√3.49.(2022春•渑池县期中)计算:(1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.【分析】(1)首先计算开方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开立方和绝对值,然后计算除法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√214−√0.09+√(−3)2=32−0.3+3=4.2.(2)−43÷(−32)−√−83−(1−√9)+|1−√2|=﹣64÷(﹣32)﹣(﹣2)﹣1+3+(√2−1)=2+2﹣1+3+√2−1=5+√2.50.(2022春•江北区校级月考)计算:(1)√0.2163−√1916+5×√1100; (2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.【分析】(1)首先计算开平方和开立方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解(1)√0.2163−√1916+5×√1100=0.6−54+5×110=35−54+12=−320.(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2=√2−(﹣2)+(2−√3)+9+9=√2+2+2−√3+9+9=√2−√3+22.51.(2022春•三台县月考)计算.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先求出(x ﹣2)2的值;然后根据平方根的含义和求法,求出x ﹣2的值,进而求出x 的值即可.【解答】解:(1)﹣12022+√(−2)2−√643×√−27643+|√3−2| =﹣1+2﹣4×(−34)+(2−√3) =﹣1+2+3+2−√3=6−√3.(2)∵13(x ﹣2)2−427=0,∴(x ﹣2)2=49,∴x ﹣2=−23或x ﹣2=23, 解得:x =43或x =83.52.(2022春•天门校级月考)计算(1)|√5−2|+√25+√(−2)2+√−273;(2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2. 【分析】(1)原式利用绝对值的代数意义,算术平方根、立方根性质计算即可求出值;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可求出值.【解答】解:(1)原式=√5−2+5+2﹣3=√5+2;(2)原式=﹣1﹣(﹣8)×18−3×13+2÷2 =﹣1+1﹣1+1=0.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13;(2)|−√2|﹣(√3−√2)﹣|√3−2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)√22−√214+√78−13−√−13=2−32−12+1 =1;(2)|−√2|﹣(√3−√2)﹣|√3−2|=√2−√3+√2−(2−√3)=2√2−2.54.(2021春•涪城区校级期中)计算:(1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=7+4﹣2+54 =1014;(2)原式=5﹣(2−√3)+3−√5+√5=5﹣2+√3+3−√5+√5=6+√3.55.(2016秋•苏州期中)计算下列各题.(1)√0.16+√0.49−√0.81;(2)﹣16√0.25−4√1−653;(3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.【分析】(1)、(2)根据数的开方法则分别计算出各数,再根据实数的加减法则进行计算即可;(3)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(4)先根据数的开方法则及0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣4×(﹣4)=﹣8+16=8;(3)原式=73−43+512=1712;(4)原式=0.3×10﹣2=3﹣2=1.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x是﹣27的立方根,y是13的算术平方根,求x+y2+6的平方根.【分析】(1)直接利用二次根式的性质以及立方根的定义、绝对值的性质分别化简,进而合并得出答案;(2)直接利用立方根的定义以及算术平方根的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:(1)原式=2﹣5+2−√3+√3=﹣1;(2)∵x是﹣27的立方根,∴x=﹣3,∵y是13的算术平方根,∴y=√13,∴x+y2+6=﹣3+13+6=16,∴x+y2+6的平方根为:±4.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a+5的一个平方根是﹣3,−14b﹣a的立方根是﹣2,求√a+√b的值.【分析】(1)利用算术平方根的意义立方根的意义,绝对值的意义和二次根式的性质化简运算即可;(2)利用平方根和立方根的意义求得a,b的值,再将a,b的值代入计算即可.【解答】解:(1)原式=32−12−(3−√2)+2=1﹣3+√2+2 =√2;(2)∵实数a +5的一个平方根是﹣3,∴a +5=9,∴a =4.∵−14b ﹣a 的立方根是﹣2, ∴−14b ﹣a =﹣8, ∴−14b ﹣4=﹣8,∴b =16.∴√a +√b=√4+√16=2+4=6.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +c+d 5+e 2+√f 3的值.【分析】根据相反数,倒数,以及绝对值的意义求出c +d ,ab 及e 的值,代入计算即可.【解答】解:由题意可知:ab =1,c +d =0,e =±√2,f =64,∴e 2=(±√2)2=2,√f 3=√643=4,∴12ab +c+d 5+e 2+√f 3=12+0+2+4=612. 59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√x −2−√x +10y +√245y 3的值.【分析】根据平方根的定义,以及立方根的定义即可求得x ,y 的值,然后代入所求的代数式化简求值即可.【解答】解:∵(x ﹣7)2=121,∴x ﹣7=±11,则x =18或﹣4,又∵x ﹣2>0,即x >2.则x =18.∵(y +1)3=﹣0.064,∴y +1=﹣0.4,∴y =﹣1.4.则√x −2−√x +10y +√245y 3=√18−2−√18−10×1.4−√245×1.43=4﹣2﹣7=﹣560.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|; (2)解方程:25x 2﹣36=0;(3)已知√x +1+|y −2|=0,且√1−2z 3与√3z −53互为相反数,求yz ﹣x 的平方根.【分析】(1)利用算术平方根的意义,立方根的意义,二次根式的性质和绝对值的意义解答即可;(2)利用平方根的意义解答即可;(3)利用非负数的意义和相反数的意义求得x ,y ,z 的值,再将x ,y ,z 的值代入解答即可.【解答】解:(1)原式=12−(﹣0.5)+4﹣6 =12+0.5+4﹣6 =﹣1;(2)25x 2﹣36=0,∴x 2=3625.∴x 是3625的平方根, ∴x =±65. (3)∵√x +1+|y −2|=0,√x +1≥0,|y ﹣2|≥0,∴x +1=0,y ﹣2=0.∴x =﹣1,y =2.∵√1−2z 3与√3z −53互为相反数,∴1﹣2z +3z ﹣5=0.解得:z =4.∴yz ﹣x =8﹣(﹣1)=9.∵9的平方根为±3,∴yz ﹣x 的平方根为±3.。

6.3 第2课时 实数的运算

6.3  第2课时 实数的运算

关键能力突破
核心素养应用
16.计算: (1) 25+3 -64+ (-2)2; (2)[2020 秋·岳麓区校级月考]-12 020+ (-2)2-3 27+|2- 3|. 解:(1)原式=5-4+2=3; (2)原式=-1+2-3+2- 3=- 3.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
17.计算下列各式的值: (1)| 6-2|+| 2-1|+|1- 2|-|3- 6|;
(2)- 0.25÷124× (-1)12+214+3.75× 6-(3 343+3 -1)× 6. 解:(1)原式= 6-2+ 2-1+ 2-1-(3- 6)=2 6+2 2-7; (2)原式=- 14÷116×1+214+334× 6-[7+(-1)]× 6=-12×16×1+6× 6- 6× 6=-8+6 6-6 6=-8.
(3)计算:
[ 1×2]+[ 2×3]+[ 3×4]+…+[ 2 020×2 021]
1 010
.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
解:(1)∵ 1=1, 4=2, 9=3,
∴当[ 1]≤[ x]<[ 4]时,[ x]=1;
当[ 4]≤[ x]<[ 9]时,[ x]=2,
∴[ 1]+[ 2]+[ 3]+…+[ 6]=1+1+1+2+2+2=9;
020=12×2
020×(1+2 1 010
020) =2
021.
返回
全效学习 课时提优
(2)原式=5×15-6×16-(-0.3)=0.3.
全效学习 课时提优
返回
基本知识必备
关键能力突破

6.3实数(课件)七年级数学下册(人教版)

6.3实数(课件)七年级数学下册(人教版)







-2
-1

●●
0
π
1
2



3
4
从图中可以看出,OO’的长是这个圆的周长π,所以点O’对应的数是π.
这样,无理数π可以用数轴上的点表示出来.
探究新知
人教版数学七年级下册
数轴上的点可以表示有理数,那它可以表示无理数吗,
你能在数轴上画出表示 的点吗?
2
-2
2-1
0
1
2
2
当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应
例1 (1)分别写出− 和π-3.14的相反数;
(2)指出− , −

��分别是什么数的相反数;

(3)求 −的绝对值;
(4)已知一个数的绝对值是 ,求这个数.
解:(1)因为
( 6) 6 ,-(π-3.14)=3.14-π,
所以, 6 ,π-3.14的相反数分别为 6 ,3.14-π.
人教版数学七年级下册
人教版数学七年级下册
第6.3 实数
学习目标
人教版数学七年级下册
1.理解无理数和实数的概念.
2.对实数进行分类,判断一个数是有理数还是无理数.
3.理解实数和数轴上的点一一对应.
4.掌握实数的运算法则及运算律.
情境引入
人教版数学七年级下册
探究
我们知道有理数包括整数和分数,请把下列分数写成
例题讲解
例2
人教版数学七年级下册
计算下列各式的值:
(1)( 3
2)
2; (2)3 3 2 3
解:
(1)( 3 2) 2

6.3 实数(2)ppt课件

6.3  实数(2)ppt课件

5 4)
2 (5 2 5)10 2 2 5==10 4 5
=18.94427191≈18.94
计算:
3 7 2 (结果保留 7 (1) 3个有效数字)
(2)
(3)

2 1
4个有效数字) 5 2 (结果保留 2


3 (精确到 2 0.01)
3) = 9 8 2 3 1 2 3 =
=-2.464101615≈-2.464
计算:
(1)
(2 )
4 18 (精确到0.01)
(结果保留3各有效数字) 2
(3) 3
10
( 精确到0.01) 7
典型例题
例2:计算
2 9 2 5 2



解:原式= 2 (9 2 =
实数的运算顺序
先算乘方和开方,再算乘除,最 后算加减。如果遇到括号, 则先进行 括号里的运算
典型例题
例1 计算:
(1)
8 9(精确到0.001)
3
(2) 9 2(4
3)
(结果保留4个有效数字)
解:(1) 8 3 9 = 0.748343301≈0.748 (2)9 2(4
6.3 实数(2)
合作学习
请同学们总结有理数的运算律和运算法则
1.交换律 : 加法 a+b=b+a 乘法a×b=b×a 2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a×(b×c) 3.分配律: a× (b+c)= a×b+ a×c 注:有理数的运算律和运算法则在实数范围内同样适用

6.3实数

6.3实数
实数与数轴上的点是一一对应的
0 1 2 3 4
每个实数都可以用数轴上的 一个点来表示;反过来,数轴上的每 一个点都表示一个实数.
即实数和数轴上点是一一对应的.
数轴上一个点
有一个实数
有一个实数 点 数轴上一个点数


随堂练习
判断: )
1.实数不是有理数就是无理数。(
2.无理数都是无限不循环小数。(
3
3 0.13

3
9
(3)整数集合:
(4)实数集合: 9
3
64
3

5

0. 6
3 4
9 3 0.13
在数轴上表示下列各数:
1 2 0 3 1 2 0 3
-3 -2 -1 0
3.6 3.6
1 2 3 4
有理数都可以用数轴上的点表示
探究
直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点由原点 到达O′,点O′的坐标是多少?
例如: ,

2
,
2 1
2)像 7 ,
3, 12 的数是无理数。
想一想:凡是带有根号的数都是无理 数吗?
3) 有一定的规律,但不循环的无限小
数都是无理数。
例如:
0.1010010001…〔两个1之间依次多1个0〕 —234.232232223…〔两个3之间依次多1个2〕
0.12345678910111213 …〔小数部分有相
3.无理数都是无限小数。(


4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×) 6.两个无理数之积不一定是无理数。( 7.两个无理数之和一定是无理数。(× ) 8.数轴上的任何一点都可以表示实数。(

人教版数学七年级下册6.3《实数》优秀教学案例

人教版数学七年级下册6.3《实数》优秀教学案例
2.运用启发式教学法,引导学生发现实数的性质,培养学生的问题解决能力。
3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”

喜德县第一中学七年级数学下册第六章实数6.3实数第2课时实数的运算法则教案新版新人教版7

喜德县第一中学七年级数学下册第六章实数6.3实数第2课时实数的运算法则教案新版新人教版7

第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.典型例题:平行线的特征例1 两条直线被第三条直线所截,则( )A .同位角必相等B .内错角必相等C .同旁内角必互补D .同位角不一定相等例2 解答下列问题:①如果一个角的两边分别平行于另一角的两边,则这两个角( )A .相等B .互补C .相等或互补D .这两个角无数量关系②已知:(如图所示),则不正确的是:( )A .21∠=∠ ,∴43∠=∠B .52∠=∠ ,∴76∠=∠C .︒=∠+∠18085 ,∴21∠=∠D .︒=∠+∠18043 ,∴21∠=∠例3 如图,︒=∠︒=∠70,60,//BAE C CD AB ,求x ∠的度数.例4 如图:︒=∠651,//,//3221l l l l ,求2∠的度数.例5 如图,已知直线b a //,直线︒=∠1051,//d c ,求32∠∠、的度数.例6 试说明平行于同一条直线的两条直线平行.例7 如图,AD ABC ADC ,18021,︒=∠+∠∠=∠为FDB ∠的平分线,试说明BC 为DBE ∠的平分线.例8 潜望镜中的两个镜子MN 和PQ 是互相平行(如图)放置的,光线AB 经镜面反射时,43,21∠=∠∠=∠,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?参考答案例1 分析:这题是考查学生审题是否仔细,概念是否清楚,可举例说明.如图,直线A.b 被直线c 所截,显然同位角21∠≠∠,内错角32∠≠∠,同旁内角︒≠∠+∠18042,故A.B.C 均不正确.只有两平行直线被第三条直线所截,才有同位角必相等,内错角必相等,同旁内角必互补.故选D .例2 解析:①应选C (如图所示)②选D .A .21∠=∠ ,∴b a //,∴43∠=∠正确B .52∠=∠ ,∴b a //,∴76∠=∠正确C .︒=∠+∠18085 ,∴b a //,∴21∠=∠D .不正确,不能推出21∠=∠例3 分析:由CD AB //,可得︒=∠+∠180BAC C ,从而求出x ∠的度数.解:因为CD AB //,所以︒=∠+∠180BAC C ,即1806070=++x所以50=x ,答:x ∠等于50°.说明:平行线的特征必须是在两条直线平行的前提下,才存在后面的结论,所以在应用两条直线平行的特征时,必须先找到平行这个条件.例4 分析:由21//l l ,可得32∠=∠,由32//l l 可得31∠=∠,所以有21∠=∠,故求出2∠.解:因为21//l l ,所以32∠=∠;又因为32//l l ,所以13∠=∠;所以︒=∠=∠=∠65132.答:2∠是65°.说明:这是应用两条直线平行,内错角相等这一结论,在应用时应注意找出结论存在的条件.例5 分析:这里要利用平行线的条件弄清321∠∠∠、、与直线d 之间的关系才能解决问题.解:b a // (已知),∴12∠=∠(两直线平行,内错角相等).︒=∠1051 (已知),∴︒=∠1052(等量代换).d c // (已知),∴23∠=∠(两直线平行,同位角相等).∴︒=∠1053(等量代换).例6 分析:如图,3231//,//l l l l ,画直线a 截321,,l l l ,得3,2,1∠∠∠,则有32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .解:作3231//,//l l l l ,直线a 截321,,l l l ,得3,2,1∠∠∠. 因为3231//,//l l l l ,所以32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .即平行于同一直线的两条直线平行.说明:(1)这类通过单纯文字给出的题,我们在说明时应先根据题意画出图形;(2)该题既用到了平行线的特征,也用到了两直线平行的条件;在应用时我们要注意二者的区别.例7 解:︒=∠+∠18021 (已知),而︒=∠+∠18032(补角意义),∴31∠=∠(同角的补角相等).∴CF AE //(同位角相等,两直线平行).∴︒=∠+∠180C ABC (两直线平行,同旁内角互补).又ABC ADC ∠=∠(已知),∴︒=∠+∠180C ADC (等量代换).∴BC AD //(同旁内角互补,两直线平行).∴65,4∠=∠∠=∠A (两直线平行,同位角、内错角相等).又CF AE // (已证),∴7∠=∠A (两直线平行,内错角相等).∴74∠=∠(等量代换).又AD 为FDB ∠的平分线(已知),∴76∠=∠(角平分线的意义).∴54∠=∠(等量代换).∴BC 为DBE ∠的平分线.例8 解析:光线CD AB //,PQ MN // (已知)∴32∠=∠(两直线平行,内错角相等)又43,21∠=∠∠=∠ (已知)∴4321∠+∠=∠+∠∴65∠=∠(平角定义)∴CD AB //(内错角相等,两直线平行)【知识与技能】1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.【过程与方法】1.渗透“化归”的思想.2.培养学生观察、分析、概括及逻辑思维能力.【情感态度】培养言必有据的思维能力和良好的思维品质.【教学重点】理解和应用等式的性质.【教学难点】应用等式的性质把简单的一元一次方程化成“x=a”.一、情境导入,初步认识用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.【教学说明】第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、思考探究,获取新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按教科书第81页图3.1-1的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.3.表示:问题1你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?在学生观察图3.1-2时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3你能再举几个运用等式性质的例子吗?如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于:“5元=买1支钢笔的钱;2元=买1本笔记本的钱.5元+2元=买1支钢笔的钱+买1本笔记本的钱.3×5元=3×买1支钢笔的钱.”问题4方程是含有未知数的等式,我们怎样运用上面等式的性质来解方程呢?我们来看一下教科书第82页例2中的第(1)、(2)题.通过分析,我们知道所谓“解方程”,就是要求出方程的解“x=?”因此我们需要把方程转化为“x=a(a为常数)”的形式.设问1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:两边减7,得:x+7-7=26-7,x=19.设问2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和步骤.【归纳结论】由上面的问题我们可以看出,利用等式的性质解简单的一元一次方程的步骤一般分为两步:一是在方程两边同时加或减同一个数或式子,使一元一次方程左边是未知项,右边是常数;二是方程左右两边同时乘未知数的系数的倒数,使未知项系数化为1,从而求出方程的解.如:(1)x+a=b,解法:方程两边同时减去a,得x=b-a. (2)ax=b(a≠0),解法:方程两边同时除以a,得x=b/a.(3)ax+b=c(a≠0),解法:方程两边同时减去b,再同时除以a,得x=c ba.【教学说明】归纳结论过程中,教师可向学生阐述以下两点:(1)方程是含有未知数的等式,故可利用等式的性质求解,求解过程实质是等式变形为x=a的过程.(2)通过将所求结果代入方程的左右两边的方法,可以检验所求结果是否正确,这一点在下面的例题中我们会讲到.三、典例精析,掌握新知例1利用等式的性质,在括号内填上适当的数或式子,并说明等号成立的依据:【分析】根据等式的性质1或性质2,在方程两边同时加上或减去相同的数或式子;或同乘一个数,或除以同一个不为0的数,结果仍相等.解:(1)根据等式的性质1,等式两边都减去3,得x=1.(2)根据等式的性质2,等式两边都乘2,得x=6.(3)根据等式的性质1,等式两边都减去2a,得5a=-3.再根据等式的性质2,等式两边都除以5,得a=-3/5.(4)根据等式的性质1,等式两边都减去73y,得-2y=-4.再根据等式的性质2,等式两边都除以-2,得y=2.例2小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元. 例3利用等式的性质解方程:(1)0.5-x=3.4(2)-13x-5=4【教学说明】先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.5-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?然后给出解答:解:两边减0.5,得0.5-x-0.5=3.4-0.5化简,得-x=2.9,两边同乘-1,得:x=-2.9.教师提醒学生注意:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗?在学生解答后再点评.教师向学生提问:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.试一试教材第83页练习.在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,你能列出方程吗?解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,得80×3.5+1.5x=355.化简,得280+1.5x=355,两边减280,得280+1.5x-280=355-280,化简,得1.5x=75,两边同除以1.5,得x=50.答:用余下的布还可以做50套儿童服装.【教学说明】对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解,也就是把实际问题转化为数学问题.问题:我们如何才能判断求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x=50是方程的解.试一试你能检验一下x=-27是不是方程-13x-5=4的解吗?四、运用新知,深化理解3.七年级(3)班有18名男生,占全班人数的45%,求七年级(3)班的学生人数.【教学说明】这些题目较简单,教师让学生口答上述题目,并给予评讲.五、师生互动,课堂小结让学生进行小结,主要从以下几个方面去归纳:1.等式的性质有哪几条?用字母怎样表示?字母代表什么?2.解方程的依据是什么?最终必须化为什么形式?3.在字母与数字的乘积中,数字因数又叫做这个式子的系数.1.布置作业::从教材习题3.1中选取.2.完成练习册中本课时的练习.本课时教学要重视学生思维的多角度培养,教师对教材中的实际问题要直观演示,指导学生观察图形,从实验中归纳结论,并用实验验证.对发现的结论用文字、数学语言分别表达出来.突出对等式性质的理解和应用,在解方程时,要求说明每一步变形的依据,解题后及时小结.扎实做到这些,可为后面教与学打下坚实基础.。

【素养目标】人教版数学七年级下册6.3.2实数的大小比较与运算 教案(表格式)

【素养目标】人教版数学七年级下册6.3.2实数的大小比较与运算 教案(表格式)

第2课时垂线段【对应训练】1.比较大小:(填“>”“<”或“=”)(1)√5−12>12;(2)-√10<-3.1. 2.将-2,13,0,√3,-π与图中数轴上标有字母的各点对应起来,并用“<”连接这些数解:-2对应点B ,13对应点D ,0对应点C ,√3对应点E ,-π对应点A .由图可知-π<-2<0<13<√3.探究点2实数的运算与近似计算1.实数的运算性质(1)当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算. (2)在进行实数的运算时,有理数的运算法则及运算性质等同样适用. ①交换律:加法a +b =b +a 乘法a ×b =b ×a ②结合律:加法(a +b )+c =a +(b +c ) 乘法(a ×b )×c =a ×(b ×c ) ③分配律:a ×(b +c )=a ×b +a ×c例1(教材P56例2)计算下列各式的值:(1)(√3+√2)-√2;(2)3√3+2√3. 解:(1)(√3+√2)-√2=√3+(√2-√2)(加法结合律) =√3+0=√3; (2)3√3+2√3 =(3+2)√3(分配律)=5√3.2.求实数的近似值在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.注意:近似计算的计算过程中所取的近似值要比题目要求的精确度多取一位小数,在取最终结果时再精确到要求的数位.师生活动(2)原式≈0.866-3.142+2.34≈0.06. 例3计算下列各式的值:(1)√3(√3+√2)+3(√2-√3);(2)√273+√2(√2−1√2)−|√2-3|.解:(1)原式=√3×√3+2√3+3√2-3√3 =3+3√2-√3; (2)原式=3+√2(√2−1√2)−|√2-3|=3+2-1-3+√2 =(3+2-1-3)+√2 =1+√2.【对应训练】计算: (1)|√5-2|+√9+√(−2)2-√−273; (2)√614-√2.25-√3(√3+1√3);(3)|√3-√2|+|√3-√2|-|√2-1|.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:实数的大小1.实数的大小比较任意两个实数都可以进行大小比较,正实数大于0,0大于负实数.两个负实数进行比较时,绝对值大的反而小.数轴上右边的实数恒大于数轴上左边的实数. 两个正无理数进行比较时,若根指数相同,被开方数越大则无理数越大;若根指数不同,则可利用无理数的估算比较大小.例1 a ,b 是实数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列,正确的是( A )A.a <-b <b <-aB.a <b <-b <-aC.a <-b <-a <bD.-b <a <b <-a分析:先根据a ,b 在数轴上对应点的位置判断出其符号及相对大小,进而可得出结论. 解析:由图可知,a <0<b ,|b |<|a |,所以0<b <-a ,a <-b <0,所以a <-b <b <-a .故选A.2.实数的运算运算顺序同有理数,先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.运算律也同样适用.对无理数进行计算时,只有根指数与被开方数相同的两个无理数才能进行加减,计算方法与合并同类项类似,根指数与被开方数不变,把它前面的数进行加减.例2计算:(1)√16+√−273×√(−3)2-√643;(2)|1-√2|+√2(√2-1)+√273. 分析:(1)先求出算术平方根及立方根,然后化简绝对值,最后计算加减即可. (2)先去括号,然后化简绝对值与立方根,最后进行加减计算. 解:(1)原式=4+(-3)×3-|-4|=4-9-4=-9; (2)原式=√2-1+2-√2+3=4.例1已知√5的整数部分是a ,小数部分是b ,则ab 的值为2√5-4.分析:只需首先对√5估算出大小,从而求出其整数部分a ,再进一步表示出其小数部分b 即可解决问题.解析:因为4<5<9,所以2<√5<3.所以a =2,b =√5-2,故ab =2×(√5-2)=2√5-4.故答案为2√5-4.例2已知实数a ,b ,c 在数轴上的位置如图,化简|a -c |-|a -b |+|b +c|的结果是( A ) A.2a -2b -2c B.a +b -c C.a -b -c D.-2a -2b +2c照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.教学反思本节课以练习为主,讲解为辅,先提出问题,在学习的过程中边学边练,借助复习旧知类比学习新知,最后再解决问题,帮助学生形成知识的迁移,使学生体会“数由有理数扩充到实数的过程中体现出来的一致性”,为学好实数的运算打下基础.教学中,让学生通过具体的运算感知运算法则和运算律,培养学生严谨务实、一丝不苟的学习态度.在涉及用计算器求近似值时,一定要注意题目中的精确度.解析:由数轴可得c<a<0<b,且|b|<|c|,则a-c>0,a-b<0,b+c<0,那么|a-c|-|a-b|+|b+c|=a-c+(a-b)-(b+c)=a-c+a-b-b-c=2a-2b-2c.故选A.。

6.3 实数 人教版数学七年级下册重难点专项练习(含答案)

6.3 实数 人教版数学七年级下册重难点专项练习(含答案)

6.3《实数》重难点题型专项练习考查题型一实数的分类典例1.下列各数中:,3.1415926,,(每两个2中间依次增加1个0),,,无理数的个数有( )个.A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的概念进行辨别、分类.【详解】解:,3.1415926,是有理数,,(每两个2中间依次增加1个0),是无理数,所有数字中无理数的个数有3个,故选:C.【点睛】此题考查了无理数的定义,关键是掌握无限不循环小数叫做无理数.变式1-1.下列四个数中,不是无理数的是()A.B.C.D.【答案】C【分析】根据无理数的概念,即无理数是无限不循环小数,常见的无理数有含的最简式子,开不尽方的二(三)次根式,特殊结果的数(如:),由此即可求解.【详解】解:选项,是无理数,不符合题意;选项,是开不尽方的二次根式,是无理数,不符合题意;选项,是分数,是有理数,符合题意;选项,是开不尽方的三次根式,是无理数,不符合题意.故选:.【点睛】本题主要考查无理数的概念,掌握无理数的概念,识记常见的无理数形式是解题的关键.变式1-2.(2022春·山东威海·七年级校联考阶段练习)下列各数,,,,其中无理数的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的分类和无理数的定义:无限不循环小数解答即可.【详解】解:在,,,,中,有理数是:,,共2个;无理数是:,,,共3个.故选:C.【点睛】本题考查了实数的分类和无理数的定义,属于基础题型,熟练掌握基本知识是解题关键.变式1-3.(2020春·浙江绍兴·七年级校考期中)下列实数中,有理数是()A.πB.C.D.6.101001000(两个“1”之间依次多一个“0”)【答案】B【分析】直接根据有理数的定义判断即可.【详解】解:,只有B是有理数,故选B.【点睛】本题考查了有理数的定义、实数的分类,熟练掌握有理数的定义是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.考查题型二实数的绝对值典例2.(2022春·陕西西安·七年级西安市铁一中学校考期中)的绝对值是( )A.B.C.5D.【答案】A【分析】根据绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即可求解.【详解】故选:A.【点睛】本题主要考查了实数的绝对值,掌握绝对值的性质是解题的关键.变式2-1.实数﹣2,,0,﹣5中绝对值最大的数是( )A.﹣2B.C.0D.﹣5【答案】D【分析】根据绝对值的性质以及正实数和0的大小比较即可求解.【详解】∵且,∴所给的几个数中,绝对值最大的数是.故选:D.【点睛】此题主要考查了实数大小比较的方法以及绝对值的性质,要熟练掌握.变式2-2.(2022·湖北黄石·统考中考真题)的绝对值是()A.B.C.D.【答案】B【分析】根据绝对值的意义求解即可.【详解】解:∵>1,∴||=,故选:B.【点睛】本题考查绝对值,估算无理数,熟练掌握一个正数的绝对值是它的本身,一个负数的绝对值是它的相反相数,0的绝对值中0是解题的关键.变式2-3.(2022秋·湖北十堰·七年级统考期末)实数-的绝对值是()A.B.-C.D.【答案】A【分析】根据绝对值的意义:负数的绝对值等于它的相反数,即可求解.【详解】解:实数-的绝对值是,故选:A.【点睛】本题考查绝对值,熟练掌握绝对值的意义是解题的关键.考查题型三实数的相反数典例3.(2022·河南洛阳·统考一模)实数的相反数是( )A.3B.C.D.【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:实数的相反数是.故选:B.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.变式3-1.的相反数是()A.B.C.D.【答案】C【分析】根据相反数的定义求解即可.【详解】解:∵的相反数是,故选C.【点睛】本题考查了相反数的定义,解决本题的关键是掌握其定义:只有符号不同的两个数互为相反数.变式3-2.(2022秋·江西宜春·七年级统考阶段练习)的相反数是()A.B.3.5C.D.【答案】A【分析】根据相反数的定义求解即可.【详解】解:的相反数是,故选:A.【点睛】本题考查实数与相反数,理解相反数的定义是正确解答的关键.变式3-3.的相反数是()A.2B.-2C.4D.-4【答案】B【分析】先化简,再求解相反数即可.【详解】解:的相反数是.故选:B【点睛】本题考查的是算术平方根的含义,相反数的含义,掌握“求解一个数的算术平方根与相反数”是解本题的关键.考查题型四实数与数轴典例4.(2022春·广东惠州·七年级校考期末)如图是实数a,b,c,d在数轴上的对应点的位置,则正确的结论是( )A.B.C.D.【答案】C【分析】根据数轴上点的位置关系,可得,,,的大小,根据有理数的运算,绝对值的性质,可得答案.【详解】解:由数轴上点的位置,得.A、,故A不符合题意;B、,故B不符合题意;C、,,,故C符合题意;D、,故D不符合题意;故选:C.【点睛】本题考查了实数与数轴,利用数轴上点的位置关系得出,,,的大小是解题关键.变式4-1.(2020春·浙江绍兴·七年级校考期中)已知实数在数轴上的位置如图所示,下列式子中成立的是()A.B.C.D.【答案】D【分析】先根据数轴求出a和b的关系,再判断即可.【详解】由数轴可知:,,可得即,故选D.【点睛】本题考查了用数轴比较数的大小,能够根据数轴找到a和b的关系是解题的关键.变式4-2.(2022春·北京房山·七年级统考期末)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )A.B.C.D.【答案】C【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【详解】解:由数轴上点的位置,得,A.,故A不符合题意;B.,故B不符合题意;C.∵,∴,故C符合题意;D.,故D不符合题意;故选:C.【点睛】本题考查了实数与数轴以及绝对值,观察数轴,逐一分析四个选项的正误是解题的关键.变式4-3.(2022春·广东深圳·七年级校考期中)实数,,,在数轴上对应点的位置如图所示,正确的结论是( )A.B.C.D.【答案】D【分析】观察数轴,找出,,,四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【详解】解:根据数轴,,,,,A.∵,,∴,故此选项不符合题意;B.∵,,∴,故此选项不符合题意;C.∵,,∴,故此选项不符合题意;D.∵,∴,又∵,∴,故此选项符合题意.故选:D.【点睛】本题考查实数与数轴,绝对值,实数的大小比较,数轴的特征.一般来说,当数轴方向朝右时,右边的数总比左边的数大.观察数轴,利用所学知识逐一分析四个选项的正误是解题的关键.考查题型五实数的大小比较典例5.实数a,b在数轴上的位置如图所示,把a,b,,按照从小到大的顺序排列正确的是( )A.B.C.D.【答案】C【分析】先求解,再根据,及,互为相反数的特点,分别在数轴上描出:a,b,,,结合数轴可得答案.【详解】解:∵,则,根据,及,互为相反数的特点,分别在数轴上描出:a,b,,如下图:∴,故选:C.【点睛】本题考查了实数与数轴的相关知识,相反数的含义,化简绝对值,做题关键要掌握数轴上的点表示的数的特点.变式5-1.三个数,,的大小顺序是()A.B.C.D.【答案】B【分析】根据实数比较大小的方法求解即可.【详解】解:,∴,故选:B【点睛】本题考查了无理数大小的估算及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.变式5-2.(2020·贵州遵义·统考一模)在数,,,0中,最小的一个是()A.2B.C.D.0【答案】C【分析】根据实数的大小比较即可求解.【详解】解:∵,∴最小的一个是,故选:C【点睛】本题考查了实数的大小比较,掌握实数的大小比较的方法是解题的关键.变式5-3.(2022秋·重庆铜梁·七年级校考期中)下列各数中最小的数是()A.3B.C.-πD.-3【答案】C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵−π<−3<<3,∴所给的各数中,最小的数是−π.故选:C.【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.考查题型六无理数的估算典例6.(2022秋·重庆渝中·七年级重庆巴蜀中学校考阶段练习)估算:的值在( )A.到之间B.到之间C.到之间D.到之间【答案】B【分析】先估算出的值的范围,然后再估算出的值的范围,即可解答.【详解】解:,,,的值在与之间,故选:B.【点睛】本题考查了估算无理数的大小,熟练掌握完全平方数是解题的关键.变式6-1.(2022秋·广东肇庆·七年级校考期中)估算的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】C【分析】根据估算无理数的大小解答即可.【详解】解:∵,∴,即在7和8之间,故选:C.【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.变式6-2.(2022秋·重庆云阳·七年级校考阶段练习)估计的值在( )A.5和6之间B.4和5之间C.3和4之间D.2和3之间【答案】C【分析】先判断,从而可得,从而可得答案.【详解】解:,,,故C正确.故选:C.【点睛】本题主要考查的是无理数的估算,掌握“无理数的估算方法”是解本题的关键.变式6-3.(2022秋·湖南邵阳·七年级校考期中)如图,数轴上有A,B,C,D四点,则所表示的数与最接近的是()A.点A B.点B C.点C D.点D【答案】D【分析】根据二次根式的性质和无理数的估算方法求出的范围即可得到答案.【详解】解:由题意可得,∵,∴,∴,∴D点离得近一些,故选D.【点睛】本题考查实数在数轴上的位置及无理数的估算,解题的关键是根据根式的性质求出其取值范围.考查题型七无理数的整数部分和小数部分典例7.(2022·云南昆明·云大附中校考模拟预测)若的整数部分为,小数部分为,则的值为______.【答案】【分析】无理数是无限不循环小数,包括整数部分和小数部分,由此即可求解.【详解】解:∵,∴,∴,,∴,故答案是:.【点睛】本题主要考查无理数的估算的运算,掌握无理数是无限不循环小数,包括整数部分和小数部分并理解其表示形式是解题的关键.变式7-1.(2022春·浙江杭州·七年级杭州市十三中教育集团(总校)校考期中)已知的整数部分是x,小数部分是y,则_____.【答案】【分析】根据算术平方根的定义估算无理数的大小,确定x、y的值,再代入计算即可.【详解】解:,而,∴,∴的整数部分,小数部分,∴,故答案为:.【点睛】本题考查估算无理数的大小,掌握算术平方根是正确解答的前提.变式7-2.(2021春·浙江杭州·七年级校考期中)已知m,n分别是的整数部分和小数部分,那么的值是______.【答案】12【分析】首先求出m和n的值,然后代入求解即可.【详解】∵∴,∴的整数部分为4,的小数部分为∴,∴.故答案为:12.【点睛】此题考查了估算无理数的大小,解答本题的关键利用“夹逼法”得出,求出m,n的值,难度一般.变式7-3.(2022春·浙江宁波·七年级宁波市第十五中学校考期中)已知的整数部分是的小数部分是,则_____.【答案】【分析】估计和的范围即可确定,的值,进而求得的值.【详解】解:∵,∴的整数部分是,,∵的整数部分是的小数部分是,∴,,∴,故答案为:【点睛】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.考查题型八与实数有关的规律的探究典例8.(2022春·四川内江·七年级校考阶段练习)若干个数,第一个数记为,规定运算:,,,,…,按上述方法计算:当时,的值等于()A.B.C.D.3【答案】D【分析】把代入计算,得出规律:的值每三个一循环,而2022÷3=674,则,即可得出答案.【详解】解:当时,则,,,,…由此可知,的值每三个一循环,∵2022÷3=674,∴,故选:D.【点睛】本题考查数式运算规律型,通过计算观察发现规律是解题的关键.变式8-1.(2022春·甘肃兰州·七年级校考期中)求的值,可令,则,因此2S﹣S=22017﹣1,S=22017﹣1.参照以上推理,计算的值为( )A.42020﹣1B.42020﹣4C.D.【答案】C【分析】设,然后可以得到4S,再作差变形,即可得到所求式子的值【详解】解:设,则4,∴4S﹣S=42020﹣4,∴3S=42020﹣4,∴S=,即的值为.故选:C.【点睛】本题考查有理数的混合运算,解题的关键是找出其中的规律,利用错位相减法求解.变式8-2.(2021春·湖南永州·七年级校考期中)已知=3 ,10,,……观察以上计算过程,寻找规律计算的值为( )A.56B.54C.52D.50【答案】A【分析】根据题意,得出对于来讲,等于一个分式,其中分母是从1到的个数相乘,分子是从开始乘,乘个连续自然数数.【详解】解:,,,.故选:A.【点睛】此题主要考查了数字的变化规律,解题的关键是利用已知得出分子与分母之间的规律,利用规律进行求解.变式8-3.(2022春·福建三明·七年级统考期中)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22022的末位数字是( ).A.2B.4C.6D.8【答案】B【分析】观察发现此列数的末尾数是2,4,8,6的循环,据此规律可推断22022的尾数.【详解】解:观察21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,发现尾数是2,4,8,6的循环,∵2022÷4=505……2,∴22022的尾数是循环中的第2个数,即为4,∴22022的尾数是4,故选:B.【点睛】本题考查了数字的规律问题,根据题意找出末位数的规律是解答此题的关键.考查题型九新定义下的实数运算典例9.(2022春·福建漳州·七年级统考期中)我们规定:,例如:,则的值为()A.B.C.D.【答案】D【分析】根据代入相应数字即可计算出的值.【详解】解:,,故选:D.【点睛】本题考查有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.变式9-1.(2022春·山东菏泽·七年级统考期中)定义运算,例如,则的值为()A.7B.17C.20D.23【答案】A【分析】根据新运算的定义以及有理数的混合运算的运算方法,求出的值是多少即可.【详解】解:∵,∴故选:A【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.变式9-2.(2022秋·山西吕梁·七年级统考期中)用“”表示一种新运算:对于任意正实数•,例如10•21=,那么的运算结果为()A.13B.7C.4D.5【答案】C【分析】根据新运算的定义计算即可.【详解】解:∵•,∴======4,故选:C.【点睛】本题考查新定义,算术平方根,理解运用新运算是解题的关键.变式9-3.(2022秋·广西钦州·七年级统考期末)对任意两个实数a,b定义两种运算:a⊕b,a⊗b ,并且定义运算顺序仍然是先做括号内的,例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,[(﹣2)⊕3] ⊗2=2,那么(⊕2)⊗的值为( )A.2B.C.3D.3【答案】B【分析】根据定义新运算方法,直接代入数据计算即可.【详解】解:∵,∴⊕2=,∵=3>,∴(⊕2) ⊗=.故答案为B.【点睛】本题考查了实数大小比较以及代数式求值,其中掌握实数的大小比较是解答本题的关键.考查题型十实数的混合运算典例10.(2020秋·浙江台州·七年级校考期中)计算:(1);(2).【答案】(1)(2)【分析】(1)根据实数的混合运算,二次根式的运算即可求解;(2)根据二次根式,三次根式的运算,绝对值的性质即可求解.【详解】(1)解:.(2)解:.【点睛】本题主要考查实数的混合运算,掌握求一个数的算术平方根,求一个数的立方根及实数的混合运算法则是解题的关键.变式10-1.(2022秋·重庆渝中·七年级重庆巴蜀中学校考阶段练习)实数的计算:(1);(2).【答案】(1)(2)【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【详解】(1)解:(2).【点睛】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.变式10-2.计算:(1)(2)【答案】(1)(2)【分析】(1)根据二次根式,三次根式的性质化简,再根据实数的混合运算即可求解;(2)根据乘方运算,绝对值性质,二次根式的性质,三次根式的性质化简,再根据实数的运算即可求解.【详解】(1)解:,故答案为:.(2)解:,故答案为:.【点睛】本题主要考查二次根式,三次根式的性质,绝对值的性质,幂的运算,实数的混合运算,掌握二次根式,三次根式的性质,实数的混合运算是解题的关键.变式10-3.计算(1)(2)【答案】(1)(2)【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.【详解】(1)解:原式;(2)解:原式.【点睛】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.。

6.3实数

6.3实数

有理数集合
无理数集合
把下列各数分别填在相应的集合中;
3.1415926
√7

0.6
22 7
-8
√36

— √3
3
0

0.191191119…
每相邻两个9之间依次多一个1
有理数集合
无理数集合
把下列各数填入相应的集合内:
0.13
3
9
3
5
64 0 . 6

3 4
0
9
3
(1)有理数集合:{
6 2 1 2 3 6
这节课我们学习了什么?
6.3实数(1) 1. 无理数:无限不循环小数。 2. 无理数的常见形式: (1)开方开不尽的数; (2)圆周率 ,以及一些含有 的数; (3)有规律但不循环的无限小数 3. 实数与数轴的关系:一一对应。


课堂检测
判断快枪手——看准最快最准!
1.实数不是有理数就是无理数。( 2.无理数都是无限不循环小数。( 3.带根号的数都是无理数。( ×) 4.无理数都是无限小数。( )
) )
5.无理数一定都带根号。( × )
判断题 ①有理数都可以用数轴上的点表示; ②无理数都可以用数轴上的点表示; ③任意两个有理数之间都有有理数, 因此,有理数可以铺满整个数轴; ④任意两个无理数之间都有无理数, 因此,无理数可以铺满整个数轴; ⑤没有最小的有理数; ⑥没有最小的无理数; ⑦没有绝对值最小的有理数; ⑧没有绝对值最小的无理数;
3 = 3.0 9 ~ 0.81 ~ 11
3 - = -0.6 5
11 ~ ~ 0.12 90
47 = 5.875 8
5~ ~ 0.5 9

6.3实数 (3)

6.3实数 (3)

6.3实数教学目标1、了解无理数及实数的概念,并会对实数进行分类.2、知道实数与数轴上的点具有一一对应关系.3、学会使用计算器探求将有理数化为小数形式的规律.4、学会使用计算器估算无理数的近似值.5、学会使用计算器计算实数的值.1、通过计算器探求将有理数化为小数形式的规律,使学生经历观察、猜想、实验等数学活动过程,培养学生数学探究能力和归纳表达能力.2、在使用计算器估算和探究的过程中,使学生学会用计算器探究数学问题的方法.3、经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.4、经历对实数进行分类,发展学生的分类意识.解决问题1、通过无理数的引入,使学生对数的认识由有理数扩充到实数.2、通过计算器对无理数近似值的估算和对实数计算,使学生发展实践能力.3、在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1、通过计算器探求将有理数化为小数形式的规律,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2、通过了解数系扩充体会数系扩充对人类发展的作用.3、敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.重点了解无理数和实数的概念,以及实数的分类;会用计算器计算实数.难点对无理数的认识.教学流程安排活动流程图活动内容和目的活动1 通过对有理数探究,激发进一步学习的欲望.通过用计算器计算有理数和研究有理数的规律,得出对数的进一步研究的重要性,引出本节课要研究的课题.活动2 通过对数的归纳辨析,引出无理数和实数的概念,并对实数进行分类. 使学生了解无理数和实数的概念,学会对实数的分类,活动3 通过教师演示和学生活动,建立实数与数轴上的点的一一对应. 通过在数轴上找到表示的点,认识无理数可以用数轴上的点表示,理解实数与数轴上的点建立一一对应的关系.教学过程设计问题与情境师生行为设计意图[活动[活动1]通过对有理数探究,激发进一步学习的欲望.问题:(1)利用计算器,把下列有理数3,- , , , , 转换成小数的形式,你有什么发现?(2)我们所学过的数是否都具有问题(1)中数的特征,即是否都是有限小数和无限循环小数? 教师提出问题(1).教师引导学生观察计算结果,得出任何一个整数或整数比即有理数都可以写成有限小数或无限循环小数的形式.教师提出问题(2).学生回顾思考,通过学生对有理数的再认识,师生共同归纳无理数是无限不循环小数,从而得出无理数既不是整数也不是分数的结论.活动1中,教师应关注:(1)学生通过实际计算实现有理数到小数的转化,激发进一步学习无理数的欲望;(2)学生了解无理数的主要特征. 计算器是将有理数转化为小数的主要计算工具,通过组织学生的计算活动,发现规律,并与学过的无限不循环小数作对比,为学习无理数概念作准备.通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣,培养学生初步的发现能力.注重新旧知识的连贯性,使学生体会到学习的内容是融会贯通的。

人教版数学七年级下册6.3《实数》教学设计3

人教版数学七年级下册6.3《实数》教学设计3

人教版数学七年级下册6.3《实数》教学设计3一. 教材分析人教版数学七年级下册 6.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统地认识和理解。

本节课的主要内容是实数的分类,实数与数轴的关系,以及实数的运算性质。

教材通过丰富的例题和练习题,帮助学生掌握实数的概念,提高学生的数学思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数和无理数有了初步的认识。

但是,对于实数的系统理解和运用,还存在一定的困难。

因此,在教学过程中,教师需要从学生的实际出发,循序渐进地引导学生理解和掌握实数的概念和性质。

三. 教学目标1.了解实数的概念,掌握实数的分类和实数与数轴的关系。

2.掌握实数的运算性质,能够熟练地进行实数的运算。

3.培养学生的数学思维能力,提高学生解决问题的能力。

四. 教学重难点1.实数的分类和实数与数轴的关系。

2.实数的运算性质。

五. 教学方法1.采用问题驱动法,引导学生主动探究实数的概念和性质。

2.利用数轴辅助教学,帮助学生直观地理解实数与数轴的关系。

3.运用例题和练习题,巩固学生对实数的理解和运用。

六. 教学准备1.教学课件:制作课件,包括实数的分类、实数与数轴的关系、实数的运算性质等内容。

2.练习题:准备一些有关实数的练习题,用于巩固学生的学习成果。

3.数轴:准备数轴教具,用于辅助教学。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,引出实数的概念。

2.呈现(15分钟)呈现实数的分类,讲解实数与数轴的关系,以及实数的运算性质。

通过例题和练习题,让学生直观地理解实数的概念和性质。

3.操练(15分钟)让学生在课堂上进行实数的运算练习,巩固学生对实数的理解和运用。

4.巩固(10分钟)通过练习题,巩固学生对实数的理解和运用。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)引导学生运用实数的概念和性质解决实际问题,提高学生解决问题的能力。

6.3.1+实数的概念+教案-2023-2024学年人教版数学七年级下册

6.3.1+实数的概念+教案-2023-2024学年人教版数学七年级下册

第1课时实数的概念教学设计课题实数的概念授课人素养目标1.理解无理数的概念,会判断一个数是否为无理数.2.理解有理数和无理数的概念,会把实数进行分类.3.理解实数与数轴的关系,并进行相关运用.4.理解实数范围内的相反数、绝对值的意义.教学重点 1.理解无理数的概念,会判断一个数是否为无理数.2.理解有理数和无理数的概念,会把实数进行分类.教学难点理解实数与数轴的关系,并进行相关运用.教学活动教学步骤师生活动活动一:复习回顾,问题引入设计意图学生回忆有理数及无限不循环小数的概念,为学习实数做铺垫.【回顾导入】请同学们回顾下面这两个问题:什么是有理数?有理数怎样分类?什么是无限不循环小数?无限不循环小数都有哪些形式?答:小数位数无限,且小数部分不循环的小数叫做无限不循环小数.很多数的平方根和立方根都是无限不循环小数.【教学建议】教师指定学生代表作答.活动二:问题引入,探究新知设计意图通过探究有理数的形式引入无理数的概念,将数系扩充至实数,达到整体认识,形成知识迁移.探究点1实数的概念及分类(教材P53探究)我们知道有理数包括整数和分数,请把下列分数写成小数的形式,你有什么发现?答:我们发现,上面的分数都可以写成有限小数或无限循环小数的形式,即问题1任何有限小数或无限循环小数都可以化为分数吗?为什么?答:可以.因为如果把整数看成小数点后是0的小数,那么任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数,即可以化为分数(整数可以看作分母为1的分数).【教学建议】学生交流讨论,自主探究,教师归纳、订正.先通过复习有理数的概念,再经过类比学习的方法引入无理数的概念,体会两者之间的区别,最后给出实数的概念,层层设问,发展学生的自学意识.教学步骤师生活动设计意图通过具体实例,让学生直观感受无理数可用数轴上的点表示,从而深化扩展到实数与数轴上的点的一一对应关系.问题2我们学过的所有数都能化成这种形式吗?若不能,请举例说明.答:不能.如√2,√3这样的无限不循环小数.概念引入:无限不循环小数又叫做无理数.常见的无理数的形式有:①开方开不尽的数,如√2,-√33等;②π及含π的式子,如π,2+π等;③结构特殊且不循环的小数,如1.01001000100001…(相邻的两个1之间依次多一个0).概念引入:有理数和无理数统称实数.问题3仿照有理数的分类,你能对实数进行分类吗?【对应训练】1.下列说法正确的是(D )A.正实数和负实数统称为实数B.正数、0和负数统称为有理数C.带根号的数和分数统称为实数D.无理数和有理数统称为实数2.把下列各数分别填入相应的大括号中:探究点2 实数与数轴上的点的对应关系我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点表示出来呢?(1)(教材P54探究)如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?注意强调:无限小数既可能是有理数,也可能是无理数,因为无限小数有无限循环和无限不循环两种形式.实数分类时类比有理数的分类,让学生尝试分类,体会无理数的特征.在自主探究的过程中,发展学生的类比思想和分类思想.分类原则是不重不漏,且有时分类的数会同时属于多个集合,此时更应注意不要漏写.【教学建议】学生在讨论合作的基础上动手操作,教师利用多媒体课件进行动态演示,并对学生讨论交流的结果进行总结.教学步骤师生活动设计意图通过具体练习使学生体会到相反数和绝对值的意义同样适合于实数.答:从图中可以看出,OO′的长是这个圆的周长π,所以点O′对应的数是π.(2)如图,以单位长度为边长画一个正方形,以原点为圆心,正方形对角线长为半径画弧,与正半轴的交点就表示√2,与负半轴的交点就表示-√2.为什么?答:在学习算术平方根的估算时,我们知道,用两个面积为1的小正方形剪拼成一个面积为2的大正方形,这个大正方形的边长就是小正方形的对角线长,因此图中正方形的对角线长是√2.所以以原点为圆心,以小正方形的对角线为半径画弧,与数轴的两个交点分别表示数√2,-√2.事实上,每一个无理数都可以用数轴上的一个点表示出来.总结:当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.【对应训练】1.教材P56练习第1题.2.如图,面积为5的正方形ABCD的顶点A在数轴上,且点A表示的数为1,若点E在数轴上(点E在点A左侧),且AD=AE,则点E所表示的数为(D )A.√5B.-√5C.-√5-1D.-√5+1探究点3实数的相反数、绝对值思考(教材P54思考)(1)√2的相反数是-√2,-π的相反数是π,0的相反数是0;(2)|√2|=√2,|-π|=π,|0|=0.你能得出实数的相反数和绝对值的意义吗?相反数的意义:数a的相反数是-a,这里a表示任意一个实数.绝对值的意义:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.注意使学生感受在数的范围扩充到实数后,有理数与数轴上的点不是一一对应的,而实数才是.【教学建议】教师可引导学生通过复习有理数的相反数、绝对值,类比得出实数的相反数、绝对值.教师只需引导,以学生为主体,讨论交流,发展学由上可知,有理数关于相反数和绝对值的意义同样适合于实数. 例1(教材P55例1)(1)分别写出-√6,π-3.14的相反数;(2)指出-√5,1-√33各是什么数的相反数;(3)求√−643的绝对值;(4)已知一个数的绝对值是√3,求这个数. 解:(1)因为-(-√6)=√6,-(π-3.14)=3.14-π,所以,-√6,π-3.14的相反数分别为√6,3.14-π.(2)因为-(√5)=-√5,-(√33-1)=1-√33,所以,-√5,1-√33分别是√5,√33-1的相反数.(3)因为√−643=−√64 3= -4,所以|√−643| = |-4| = 4.(4)因为|√3|=√3,|-√3|=√3,所以绝对值为√3的数是3或-√3. 【对应训练】1~2.教材P56练习第2~3题. 3.填表:生认知的类比迁移能力.应使学生明确,在数的范围扩充至实数后,数的绝对值的最小值依然是0,因为绝对值都是非负实数.活动三:重点突破,综合探究 设计意图 强化巩固对于实数与数轴上的点的一一对应关系的理解,并能在实践中灵活运用,解决综合类型题目.例2如图,数轴上A ,B 两点表示的数分别为√2和5.1,则A ,B 两点之间表示整数的点共有( C ) A.6个 B.5个 C.4个 D.3个 【对应训练】如图,在数轴上点A 表示数a ,点B 表示数b ,且a ,b 满足|a +3|+(b -6)2=0.(1)点A 表示的数为 -3,点B 表示的数为6; (2)若点C 表示的数的绝对值为√2,求点C 到点B 的距离.解:若点C 表示的数的绝对值为√2,则点C 表示的数为√2或-2, 当点C 表示的数为√2时,点C 到点B 的距离为6-√2; 当点C 表示的数为-√2时,点C 到点B 的距离为6+√2. 【教学建议】学生分组交流,讨论作答.鼓励学生动手操作,画图描点,有助于厘清思路.此类题目较好地将知识进行了综合,并有一定的拓展,能培养学生大胆尝试、勇于探索的精神,提高学生的思维能力.活动四:随堂训练,课堂总结【随堂训练】随堂训练见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:什么是无理数?什么是实数?实数怎么分类?数轴上的点与什么数是一一对应的?实数的相反数、绝对值的意义是什么? 【知识结构】1.实数分类的注意事项:对实数分类时,应先对某些数进行化简,然后根据最后结果进行分类.例如,√25=5,它既是整数,也是自然数,更是有理数,应根据其性质将它填入符合的集合里,可能会同属于多个集合,这样才能做到不重不漏.另外,填入集合的数必须是原数,即√25,而不是化简后得到的5.2.数轴上的点与实数的关系:【作业布置】1.教材P57习题6.3第1,2,3,7,9题.2.相应课时训练.教学步骤师生活动板书设计教学反思本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数,在此基础上,明确了实数与数轴上的点的一一对应的关系,并指出求相反数和绝对值的方法在实数范围内同样适用.学习中要求学生结合有理数理解实数的有关概念,同时要注意两个地方:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数.解题时注意:①关于数轴原点对称即为求该数的相反数;②数轴上两点之间的距离即为求两点所表示的实数的差的绝对值.例如图,数轴上A,B两点表示的数分别是-1和√3,点B关于点A的对称点为C,求点C所表示的实数.分析:首先结合数轴和已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.解:因为数轴上A,B两点表示的数分别为-1和√3,所以点B到点A的距离为1+√3.则点C到点A的距离也为1+√3.设点C表示的实数为x,则点A到点C的距离为-1-x,所以-1-x=1+√3,所以x=-2-√3.所以点C所表示的实数为-2-√3.例1如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)实数m的值是2-√2;(2)求|m+1|+|m-1|的值;(3)在数轴上还有C,D两点分别表示实数c和d,且有|2c+d|与√d2−16互为相反数,求2c-3d的平方根.解:(2)因为m=2-√2,则m+1>0,m-1<0,所以|m+1|+|m-1|=m+1+1-m=2.(3)因为|2c+d|与√d2−16互为相反数,所以|2c+d|+√d2−16=0,所以|2c+d|=0,且√d2−16=0,所以c=-2,d=4,或c=2,d=-4.①当c=-2,d=4时,2c-3d=-16,无平方根;②当c=2,d=-4时,2c-3d=16,所以2c-3d的平方根为±4.综上,2c-3d的平方根为±4.例2如图①是由8个同样大小的立方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长;(3)把正方形ABCD放到数轴上,如图②,使得点A与表示-1的点重合,那么点D在数轴上表示的数为-1-√2.分析:(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小立方体的棱长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A表示的数减去边长即可得解.解:(1)设魔方的棱长为x,则x3=8,所以x=2.(2)因为棱长为2,所以魔方的每个面的面积为22=4.=2.易知正方形ABCD的面积为42所以正方形ABCD的边长为√2.。

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。

本节内容是整个初中数学的重要基础,对学生来说是全新的概念。

教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。

但实数是一个全新的概念,与有理数有很大的区别。

学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。

因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。

三. 教学目标1.了解实数的定义,掌握实数的性质和运算。

2.能够运用实数解决实际问题,提高解决问题的能力。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.实数的定义和性质。

2.实数的运算。

五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。

2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。

六. 教学准备1.准备相关的生活实例,用于导入新课。

2.准备PPT,展示实数的性质和运算。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。

进而引出实数的概念,让学生对实数有一个直观的认识。

2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。

主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。

3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。

可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。

6.3第二课时 实数的有关概念与运算

6.3第二课时 实数的有关概念与运算

◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶

6.3-实数(教案)

6.3-实数(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实数的基本概念、分类、性质和运算规则。同时,我们也通过实践活动和小组讨论加深了对实数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我发现实数这一章节对于学生来说确实存在一些难度。首先,实数的概念及其分类,尤其是无理数的理解,对学生来说是一个挑战。在授课过程中,我尽量用生动的例子和实际操作来帮助学生理解这些抽象的概念。例如,通过测量圆的周长和直径来感受π这个无理数,让学生认识到无理数在生活中的实际应用。
在讲授新课的过程中,我注重理论与实际相结合,让学生了解实数的性质和运算规则。我发现,运用案例分析和小组讨论的方式,能够激发学生的学习兴趣,帮助他们更好地理解实数的运算。但同时,我也注意到在实数运算这一部分,部分学生仍然存在困难,尤其是在处理含有无理数的运算时。因此,我打算在接下来的教学中,增加一些有针对性的练习,帮助学生巩固实数运算的知识。
-举例:有理数如分数、整数,无理数如π、√2,强调无理数不能表示为两个整数的比。
b.实数的性质及运算规则:掌握实数的性质,如封闭性、可交换性、结合律等,以及实数的四则运算规则,特别是无理数参与的运算。
-举例:讲解实数运算中,如何处理含有无理数的情况,如√2与√3的和、差、积、商的运算。
c.二次根式与实数的关系:理解二次根式是实数的一种特殊表达形式,掌握二次根式的化简方法,并将其与实数性质相结合。
a.理解实数与数轴的对应关系,Fra bibliotek立数学模型b.运用实数知识解决实际问题,培养数学建模素养

6.3 实数

6.3  实数

邻两个3之间依次多1个1),-π,
25

1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
(来自《点拨》)
知1-讲
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5,
∴ 25 是有理数.∵ 1 是分数,∴ 1 是有理
(来自《典中点》)
知2-练
正实数:{ 0.32,1 3
,3.14·,
8,
1 2
, 0.101 001 000 1
…(相邻两个1之间0的个数逐次加1),3 9 ,…};
实数:{ -7,0.32,1
. ,3.14,0 ,
8 ,1
,0.101 001
3
2
000 1…(相邻两个1之间0的个数逐次加1),
3 9 ,- ,…}. 2
(来自《点拨》)
总结
知4-讲
数轴上两点间的距离的求法: 数轴上两点间的距离等于表示这两点的数之
差的绝对值.
(来自《点拨》)
知4-练
1 请将图中数轴上标有字母的各点与下列实数对应
起来: 2, 1.5, 5, , 3.
解:A表示-1.5,B表示 2 ,C表示 5,
D表示3,E表示π.
(来自《教材》)
知2-练
. 1 【2017·长沙】下列实数中,为有理数的是( D )
A. 3
B.π
C. 3 2
D.1
2 下列说法正确的是( D )
A.正实数和负实数统称实数
B.正数、零和负数统称有理数
C.带根号的数和分数统称实数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3.2实数 第二课时教案
刘琴
教学目标:
1、进一步理解无理数与实数的概念,会求一个实数的相反数和绝对值;
2、能进行算。

简单的实数四则运算和近似计算;
教学重点:求一个实数的相反数绝对值及实数四则运
教学难点:实数四则运算。

教学过程:
一、复习引入:有理数的一些概念和运算性质运算律:
1、相反数:有理数a 的相反数是a -。

2、绝对值:当a ≥0时,a a =,当a ≤0时,a a -=。

3、运算律和运算性质:有理数之间可以进行加、减、乘、除(除数不为0)、乘方、非负数的开平方、任意数的开立方运算,有理数的运算中还有交换律、结合律、分配律。

二、实数的运算:
1.实数的相反数:数a 的相反数是a -。

2.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.
3、实数之间可以进行加、减、乘、除(除数不为0)、乘方、非负实数的开方运算,还有任意实数的开立方运算,在进行实数的运算中,交换律、结合律、分配律等运算性质也适用。

三、应用:
例1、(1)求364-的绝对值和相反数;
(2)已知一个数的绝对值是3,求这个数。

解:(1)因为4643-=-,所以44643=-=--,4)4(643=--=--
(2)因为33,33=-=,所以绝对值为3的数是3或3-。

例2、计算下列各式的值:
(1)2)23(-+; (2)3233+。

分析:运用加法的结合律和分配律。

解:(1)303)2_2(32)23(=+=+=-+;
(2)353)23(3233=+=+
例3、计算:
(1)π+5 (精确到01.0)
(2)23⋅ (结果保留3个有效数字)
解:(1)38.5142.3236.25≈+≈+π;
(2)45.2414.1732.123≈⨯≈⋅。

四、随堂练习:
1、计算:
(1)2624-; (2))23(3+;
(3)3253+-; (4)23)5
4(198-+--。

2、计算:
(1)322-(精确到0.01);
(2)π-+3422
5、 (精确到十分位)
0.01)
④a a π-
a π<<)(精
确到0.01)
5、已知实数a b c 、、在数轴上的位置如下,化简
a b a b +++
6、已知a 、b 、c a b b c +++ 五、课堂小结
1、实数的运算法则及运算律。

2、实数的相反数和绝对值的意义
六、布置作业
课本P57习题6.3第5、6、7题;
c a O b c
a O b。

相关文档
最新文档