12判别分析
判别分析
判别分析(discriminant analysis)什么是判别分析判别分析产生于20世纪30年代,是利用已知类别的样本建立判别模型,为未知类别的样本判别的一种统计方法。
近年来,判别分析在自然科学、社会学及经济管理学科中都有广泛的应用。
判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。
当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。
判别分析按照判别的组数来区分,可以分为两组判别分析和多组判别分析。
判别分析的方法判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。
根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。
费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。
选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。
对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。
贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。
它是对先验概率修正后的结果。
距离判别思想是根据各样品与各母体之间的距离远近作出判别。
即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。
例:世界经济统计研究(1995年)人文指数反映国家综合水平人文发展指数是联合国开发计划署于1990年5月发表的第一份《人类发展报告》中公布的。
12判别分析-鸢尾花
-2 -3 - 10 0 10
2 1
Function 1
Function 1
Disc.txt例子
• 下面是基于4个变量时分类结果表:
C l a s s i f i c a t i o n R e s u l tb s,c Predicted Group Membership GROUP 1.00 2.00 3.00 Total Original Count 1.00 30 0 0 30 2.00 2 27 1 30 3.00 0 0 30 30 % 1.00 100.0 .0 .0 100.0 2.00 6.7 90.0 3.3 100.0 3.00 .0 .0 100.0 100.0 a Cross-validated Count 1.00 30 0 0 30 2.00 2 27 1 30 3.00 0 0 30 30 % 1.00 100.0 .0 .0 100.0 2.00 6.7 90.0 3.3 100.0 3.00 .0 .0 100.0 100.0 a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case. b. 96.7% of original grouped cases correctly classified. c. 96.7% of cross-validated grouped cases correctly classified.
Canonical Discriminant Function Coefficients Function 1 IS SE SA PRR MS MSR CS (Cons tant) .035 3.283 .037 -.007 .068 -.023 -.385 -3.166 2 .005 .567 .041 .012 .048 .044 -.159 -4.384
关于判别分析的理解
关于判别分析的理解判别分析⼜称“分辨法”,是在分类确定的条件下,根据某⼀研究对象的各种特征值判别其类型归属问题的⼀种多变量统计分析⽅法。
其基本原理是按照⼀定的判别准则,建⽴⼀个或多个判别函数,⽤研究对象的⼤量资料确定判别函数中的待定系数,并计算判别指标。
据此即可确定某⼀样本属于何类。
当得到⼀个新的样品数据,要确定该样品属于已知类型中哪⼀类,这类问题属于判别分析问题。
判别分析,是⼀种统计判别和分组技术,就⼀定数量样本的⼀个分组变量和相应的其他多元变量的已知信息,确定分组与其他多元变量信息所属的样本进⾏判别分组。
要解决的问题:已知某种事物有⼏种类型,现在从各种类型中各取⼀个样本,由这些样本设计出⼀套标准,使得从这种事物中任取⼀个样本,可以按这套标准判别它的类型。
分类:根据判别中的组数,可以分为两组判别分析和多组判别分析;根据判别函数的形式,可以分为线性判别和⾮线性判别;根据判别式处理变量的⽅法不同,可以分为逐步判别、序贯判别等;根据判别标准不同,可以分为距离判别、Fisher判别、Bayes判别法等。
判别分析通常都要设法建⽴⼀个判别函数,然后利⽤此函数来进⾏批判,判别函数主要有两种,即线性判别函数(Linear Discriminant Function)和典则判别函数(Canonical Discriminate Function)。
线性判别函数是指对于总体,如果各组样品互相对⽴,且服从多元正态分布,就可建⽴线性判别函数。
典则判别函数是原始⾃变量的线性组合,通过建⽴少量的典则变量可以⽐较⽅便地描述各类之间的关系,例如可以⽤画散点图和平⾯区域图直观地表⽰各类之间的相对关系等。
建⽴判别函数的⽅法⼀般由四种:全模型法、向前选择法、向后选择法和逐步选择法。
1)全模型法是指将⽤户指定的全部变量作为判别函数的⾃变量,⽽不管该变量是否对研究对象显著或对判别函数的贡献⼤⼩。
此⽅法适⽤于对研究对象的各变量有全⾯认识的情况。
判别分析
19
本例中变量个数p=3,两类总体各有5个样品,即n1=n2 =5 ,有4个待判样品,假定两总体协差阵相等。 两组线性判别的计算过程如下: (1)计算两类样本均值
(2)计算样本协差阵,从而求出
20
类似地
经计算
21
(3)求线性判别函数W(X) 解线性方程组
得
22
(4)对已知类别的样品判别分类 对已知类别的样品(通常称为训练样品)用线性判别函 数进行判别归类,结果如下表,全部判对。
确定的原则是使两组间的区别最大,而使每个组内部的离 差最小,有了判别式后,对于一个新的样品,将它的p个 指标值代人判别式中求出 y 值,然后与判别临界值(或称 分界点(后面给出)进行比较,就可以判别它应属于哪一个 总体。
34
(2)判别函数的导出
假设有两个总体G1、G2,从第一个总体中抽取n1个样 品,从第二个总体中抽取n2个样品,每个样品观测p个 指标,列表如下:
判别分析与聚类分析不同。判别分析是在已知研究对 象分成若干类型(或组别)并已取得各种类型的一批已知样 品的观测数据,在此基础上根据某些准则建立判别式,然 后对未知类型的样品进行判别分类,对于聚类分析来说, 一批给定样品要划分的类型事先并不知道,正需要通过聚 类分析来给以确定类型的。
3
正因为如此,判别分析和聚类分析往往联合起来使用, 例如判别分析是要求先知道各类总体情况才能判断新样品 的归类,当总体分类不清楚时,可先用聚类分析对原来的 一批样品进行分类,然后再用判别分析建立判别式以对新 样品进行判别。 判别分析内容很丰富,方法很多。判别分析按判别的 组数来区分,有两组判别分析和多组判别分析;按区分不 同总体的所用的数学模型来分,有线性判别和非线性判别; 按判别时所处理的变量方法不同,有逐步判别和序贯判别 等。判别分析可以从不同角度提出问题,因此有不同的判 别准则,如马氏距离最小准则、Fisher准则、平均损失最 小准则、最小平方准则、最大似然准则、最大概率准则等 等,按判别准则的不同又提出多种判别方法。本部分介绍 四种常用的判别方法即距离判别法、Fisher判别法、 Bayes判别法和逐步判别法。 4
聚类分析与判别分析区别
表示
:
cos
!
ij
=
p
a
=
1
!
x
ia
x
ja
p
a
=
1
!
x
2
・
p
a
=
1
!
x
2
"
ia
ja
1
≤
cos
!
ij
≤
1
当
cos
!
ij
=1
,
说明两个样品
x
i
与
x
j
完全相似
;
cos
!
ij
接
近
1
,
说
明
两
个
样
品
x
i
与
x
j
相
似
密
切
;
cos
!
ij
=0
,
说明
x
i
与
x
j
完全不一样
;
cos
!
ij
接近
0
,
说
明
x
i
与
x
j
差别大。把所有两两样品的相似系数都
通过聚类分析可以达到简化数据的目的
,
将
众多的样品先聚集成比较好处理的几个类别或子
集
,
然后再进行后续的多元分析。
比如在回归分析
中
,
有时不对原始数据进行拟合
,
而是对这些子集
的中心作拟合
,
可能会更有意义。又比如
,
为了研
究不同消费者群体的消费行为特征
,
判别分析的基本原理
判别分析的基本原理和模型一、判别分析概述 (一)什么是判别分析判别分析是多元统计中用于判别样品所属类型的一种统计分析方法,是一种在已知研究对象用某种方法已经分成若干类的情况下,确定新的样品属于哪一类的多元统计分析方法。
判别分析方法处理问题时,通常要给出用来衡量新样品与各已知组别的接近程度的指标,即判别函数,同时也指定一种判别准则,借以判定新样品的归属。
所谓判别准则是用于衡量新样品与各已知组别接近程度的理论依据和方法准则。
常用的有,距离准则、Fisher 准则、贝叶斯准则等。
判别准则可以是统计性的,如决定新样品所属类别时用到数理统计的显著性检验,也可以是确定性的,如决定样品归属时,只考虑判别函数值的大小。
判别函数是指基于一定的判别准则计算出的用于衡量新样品与各已知组别接近程度的函数式或描述指标。
(二)判别分析的种类按照判别组数划分有两组判别分析和多组判别分析;按照区分不同总体的所用数学模型来分有线性判别分析和非线性判别分析;按照处理变量的方法不同有逐步判别、序贯判别等;按照判别准则来分有距离准则、费舍准则与贝叶斯判别准则。
二、判别分析方法 (一)距离判别法1.基本思想:首先根据已知分类的数据,分别计算各类的重心,即分组(类)均值,距离判别准则是对于任给一新样品的观测值,若它与第i 类的重心距离最近,就认为它来自第i 类。
因此,距离判别法又称为最邻近方法(nearest neighbor method )。
距离判别法对各类总体的分布没有特定的要求,适用于任意分布的资料。
2.两组距离判别两组距离判别的基本原理。
设有两组总体B A G G 和,相应抽出样品个数为21,n n ,n n n =+)(21,每个样品观测p 个指标得观测数据如下,总体A G 的样本数据为:()()()()()()()()()A x A x A x A x A x A x A x A x A x p n n n p p 111212222111211该总体的样本指标平均值为:()()()A x A x A x p 21,总体B G 的样本数据为:()()()()()()()()()B x B x B x B x B x B x B x B x B x p n n n p p 222212222111211该总体的样本指标平均值为:()()()B x B x B x p 21,现任取一个新样品X ,实测指标数值为X =(p x x x ,,,21 ),要求判断X 属于哪一类?首先计算样品X 与A G 、B G 两类的距离,分别记为()A G X D ,、()B G X D ,,然后按照距离最近准则判别归类,即样品距离哪一类最近就判为哪一类;如果样品距离两类的距离相同,则暂不归类。
判别分析
第9章判别分析判别分析是一种常用的统计分析方法。
判别分析是根据观察或测量到若干变量值,判断研究对象如何分类的方法。
例如,我们积累了某种病虫害各种发生状态的若干历史资料样本),希望从中总结出分类的规律性(即判别公式,在以后的工作中遇到新的发生状态(样本)时。
只要根据总结出来的判别公式判断它所属的类就行了。
动物、植物分类等都可以用判别分析来解决。
进行判别分析必须已知观测对象的分类和若干表明观测对象特征的变量值。
判别分析就是要从中筛选出能提供较多信息的变量并建立判别函数,使得利用推导出的判别函数对观测量判别其所属类别时的错判率最小。
判别函数一般形式是: Y = a1X1+a2X2+a3X3...+a n X n其中: Y为判别分数(判别值);X1,X2,X3:…Xn为反映研究对象特征的变量,a1、a2、a3…an为各变量的系数,也称判别系数。
可以看出我们这里所讲的是线性判别函数。
SPSS 对于分为m类的研究对象,建立m个线性判别函数。
对于每个个体进行判别时,把测试的各变量值代入判别函数,得出判别分数,从而确定该个体属于哪一类。
或者计算属于各类的概率,从而判断该个体属于哪—类。
还可建立标准化和未标准化的典则判别函数。
SPSS提供的判别分析过程是Discriminant过程。
[例子9-1]表9-1 浙江北部地区1950~1982年小麦赤霉病发生程度与气象因子数据表X1 X2 X3 X4 X5 y14.3 107.3 140.0 105.3 6.9 146.5 129.1 154.1 91.3 11.9 143.0 143.1 83.9 157.4 13.0 271.2 280.5 82.5 317.4 13.9 3.7 69.3 145.6 69.5 11.3 1123.9 297.3 64.6 307.2 13.7 385.4 115.4 39.4 144.7 11.1 138.4 77.3 94.6 143.2 13.9 279.6 96.8 85.4 99.0 9.6 233.4 74.7 129.5 103.4 9.9 148.1 95.9 155.3 92.0 10.5 17.7 116.3 158.2 148.1 15.1 18.9 225.3 104.2 195.5 13.8 134.8 150.7 165.0 124.6 11.9 144.4 147.2 88.3 158.7 12.7 274.2 232.7 94.1 154.6 13.5 3.1 80.9 148.8 81.3 11.0 1119.6 208.0 70.9 217.8 13.8 394.0 130.2 49.2 176.2 11.0 232.9 83.6 115.3 135.7 13.8 265.5 88.1 126.9 102.5 9.7 131.3 59.3 105.1 82.9 10.0 152.3 93.3 173.7 91.2 10.0 17.2 98.2 154.3 120.7 15.0 15.3 245.8 100.4 200.2 13.7 1128129浙江北部地区1950~1982年小麦赤霉病发生程度与气象因子研究,总结出上年12月将与(x1)、上年10月下旬至11月中旬和当年1~2月总降雨(x2)、上年10月下旬至11月上旬日照时数(x3)、上年10月下旬至12月中旬和当年2月总雨量(x4)以及当年3月中旬平均高文(x5)等5个因子,并将赤霉病情分为轻中重三级(y ,分别用1、2、3表示)。
第十二讲-1 判别分析
8
检验建模数据变量的变异在类间是否齐性?
• 协方差的Box‘s M检验
表3 Test Results
Box's M
10.859
F
A p pro x.
1.508
df1
6
df2
2613.311
Sig.
.172
Tests null hy pothesis of equal population cov ariance matrices.
方程中系数c为判别系数,c1, c2…… cm,
5
4.判别分析的条件
• 自变量和因变量间的关系符合线性假定; • 因变量的取值是独立的; • 所有自变量组间方差相等; 使条件用:• 自变量间不存在多重共线性; • 自变量为连续变量或者有序分类变量; • 组间协方差相等; • 自变量服从多元正态分布。
判别分析就是要从中筛选出能够提供较多信息的变量并建立 判别函数,使得利用推导出的判别函数对观测量判别其所 属类别时的判错率最小。
SPSS对于分为m类的研究对象,建立m个线性判别函数。对于 每个个体进行判别时,把测试的各变量值代入判别函数, 得出判别分数,或者计算属于各类的概率,从而确定该个 体属于哪一类。还建立标准化和未标准化的判别函数。
本例p>0.05,满足齐性条件. 9
5.判别分析方法的基本步骤
1.确定研究目的和问题:确定研究要得到什么信息, 收集指标与建立判别分析目的一致(从专业考虑);
2.检查适用:确定数据资料类型是否合适,确定验证 样本和分析样本的比例(3:7),判别分析的基本条 件;
3.建立判别函数(方程) 4.规定判别(分类)准则,判别新个体为某类 5.评价判别方程的效果:自身验证,外部数据验证等 6.解释模型结果 7.应用模型进行预测
第5章判别分析
第5章判别分析判别分析(discriminantanalysis)是在已知样品分类的前提下,将给定的新样品按照某种分类准则判入某个类中,它是研究如何将个体“归类”的一种统计分析方法.这里的判别规则通常是以已有的数据资料或者现有的部分样品数据作为所谓的“训练样本”建立起来的,并用来对未知类别的新样品进行判别.这种统计方法在实际中很常用,例如医生在掌握了以往各种病症(如肺炎、肝炎、冠心病、糖尿病等)指标特点的情况下,根据一个新患者的各项检查指标来判断该病人有哪类病症;又如在天气预报中,利用已有的一段时期某地区每天气象的记录资料(阴晴雨、气温、风向、气压、湿度等),建立一种判别准则来判别(预报)明天或未来多天的天气状况;再如研究人员依照国家划分不同地区经济类型的数量标准,根据某个地区的GDP、人均收入、消费水平等相关指标判断该地区属于哪一种经济类型等.当然,我们要求判别规则在某种意义下是最优的,例如样品距所属类别的距离最短,或样品归属某个类别的概率最大,或错判平均损失最小等.判别分析与聚类分析的主要区别在于:作聚类分析时,人们事先并不知道所讨论的样品应该分成几类,完全根据样品数据的具体情况来确定;而作判别分析时,样品的分类事先已经明确,需要做的主要工作是利用训练样本建立判别准则,对新样品所属类别进行判定.判别分析的方法很多,本章主要介绍常用的三种,即距离判别、Fisher判别和Bayes判别,并介绍它们在R中的实现过程.5.1 距离判别5.1.1 距离距离是判别分析中的基本概念,距离判别法根据一个样品与各个类别距离的远近对该样品的所属类别进行判定.第4章中列举了六种距离,其中常用的是欧氏距离和马氏距离.设和是两个随机向量,有相同的协方差矩阵Σ,则α与y之间的马氏距离定义为:(5.1)特别地,当∑=I时,马氏距离就是通常的欧氏距离.在判别分析中,马氏距离更常用,这是因为欧氏距离对每一个样品同等对待,将样品x的各分量视作互不相关,而马氏距离考虑了样品数据之间的依存关系,从绝对和相对两个角度考察样品,消除了变量单位不一致的影响,更具合理性.这里以二维情形下一个简单的图形做直观的解释:如图5-1所示,设大椭圆和小椭圆分别表示两个总体G₁和G₂的置信度均为1-α的置信区域,尽管样品x到总体G₂的欧氏距离比到总体G₁的欧氏距离更短,但x却包含在总体G₁的置信椭圆内,同时位于总体G₂的置信椭圆外,说明若用马氏距离这种“标准化”距离来度量的话,样品x到总体G₁的距离更近,应该把样品x判入总体G₁.图5-1欧氏距离与马氏距离的选择示意图5.1.2 两个总体的距离判别设有两个总体G₁和G₂,其均值分别为μ₁和μ₂,有相同的协方差矩阵Σ,对于给定的一个样品x,要判断它属于哪一个总体.如果将样品x到两个总体G₁和G₂的距离d(x,G₁)和d(x,G₂)分别规定为x与μ(i=1,2)的马氏距离,那么,直观的方法i是分别计算样品x到两个总体G₁和G₂的马氏距离d(x,μ₁)和d(x,μ₂),再根据这两个距离的大小来判断x的归属:当d(x,μ₁)<d(x,μ₂)时,判x属于总体G₁;当d(x,μ₁)>d(x,μ₂)时,判α属于总体G₂;当d(x,μ₁)=d(x,μ₂)时,x可以属于总体G₁和G₂中的任何一个,通常把x判入总体G₁.因此判别准则可描述为:由于马氏距离与马氏距离的平方等价,为方便起见,以下考虑两个马氏距离的平方的差(5.2)令,并记(5.3)于是判别准则等价于这个判别准则取决于W(x)的值,通常称W(x)为判别函数,由于它是x的线性函数,又称其为线性判别函数,称a为判别系数.线性判别函数W(x)使用最方便,在实际中应用也最广泛.特别地,当p=1,G₁和G₂的分布分别为N(μ₁,o²)和N(μ₂,o²),μ₁,μ2,o²均为已知,且μ₁<μ₂时,则判别系数为,判别函数为.判别准则为:在实际应用中,总体的均值和协方差矩阵一般是未知的,可由样本均值和样本协方差矩阵分别进行估计.设是来自总体G₁的样本,是来自总体G₂的样本,μ₁和μ₂的一个无偏估计分别为:协方差矩阵Σ的一个联合无偏估计为:式中,此时,判别函数为,其中.这样,判别准则为:应该注意,当μi≠μz,Z₁≠Z₂时,我们仍可采用式(5.2)的变式作为判别函数,即(5.4)它是x的二次函数,相应的判别规则为:最后要强调的就是作距离判别时,μ₁和μ₂要有显著的差异才行,否则判别的误差较大,判别结果没有多大意义.【例5.1】已知某种昆虫的体长和翅长是表征性别的两个重要体形指标,根据以往观测值,雌虫的体型标准值为,雄虫的体型标准值,它们的共同的协方差矩阵为.现捕捉到这种昆虫一只,测得它的体长和翅长分别为7.2和5.6,即,试判断这只昆虫的性别.解:由已知条件,可由式(5.3)计算得所以可判断这只昆虫是一只雄虫.在R中可编写一个简单的程序计算W(x)(注意W(x)=[d²(x,μ₂)-d²(x,μ₁)]/2).>W2equal=function(x,mu1,mu2,S){(mahalanobis(x,mu2,S)-mahalanob is(x,mu1,S))/2}>mu1=c(6,5);mu2=c(8,6);S=matrix(c(9,2,2,4),nrow=2);x=c(7.2,5.6 )>W2equal(x,mu1,mu2,S)[1]-0.053125所以应判断这只昆虫是一只雄虫.若又捕捉到另一只同类昆虫,其体长和翅长数据为,则可继续计算如下:>x=c(6.3,4.9>W2equal(x,mu1,mu2,S)[1]0.225应将其判断为一只雌虫.当雌虫和雄虫的协方差矩阵不相同时,可由式(5.4)来计算W*(x),再根据计算结果作出判别.假定雌虫和雄虫总体数据对应的协方差矩阵分别为和那么可编写R程序如下:>W2unequal=function(x,mu1,mu2,S1,S2){mahalanobis(x,mu2,S2)-mah alanobis(x,mu1,S1)}>mu1=c(6,5);mu2=c(8,6);S1=matrix(c(9,2,2,4),nrow=2);S2=matrix( c(6,22,3),nrow=2)>x=c(7.2,5.6>W2unequal(x,mu1,mu2,S1,S2)[1]-0.07696429这里仍然用了最初那只昆虫的体长和翅长数据,结果仍然判断它是一只雄虫.两总体的距离判别还可使用自编程序“DDA2.R”,用法参见本章附录1.5.1.3 多个总体的距离判别设有k个总体G₁,G₂,…,Gk ,其均值和协方差矩阵分别是μ₁,μ₂,…,μg和Σ₁,Σ₂,…,Σk,而且Σ₁= Σ₂= … = Σk = Σ.对于一个新的样品x,要判断它来自哪个总体.该问题与两个总体的距离判别问题的解决思路一样,计算新样品x到每一个总体的距离,即式中,.故可以取线性判别函数为:相应的判别规则为:与二维情形类似,当μ₁,μ₂,…,μk和Σ均未知时,可以通过相应的样本均值和样本协方差矩阵来替代.另外,各总体的协方差矩阵Σ₁,Σ₂,…,Σk,不完全相同时也可以仿照二维情形讨论(参阅参考文献[10]).多总体的距离判别可使用本章附录所给出的R程序“DDAM.R”,使用方法可参见本章附录2后的说明.5.2 Fisher判别Fisher于1936年提出了该判别法,这是判别分析中奠基性的工作.该方法的主要思想是通过将多维数据投影到一维直线上,使得同一类别(总体)中的数据在该直线上尽量靠拢,不同类别(总体)的数据尽可能分开.从方差分析的角度来说,就是组内变差尽量小,组间变差尽量大.然后再利用前面的距离判别法来建立判别准则.Fisher判别法属于确定性判别法,有线性判别、非线性判别和典型判别等多种常用方法.以下主要介绍线性判别法.5.2.1两总体Fisher判别先考虑有两个总体G₁和G₂的情形,判别法的思想是将高维空间中的点投影到一维直线y上,使得由总体G₁和G₂产生的y尽可能分开,在此基础上再利用前面的距离判别法来建立判别准则.我们用一个简单的图形(见图5-2)来说明其原理.如图5-2所示,二维平面上有两类点,小圆点属于总体G₁,大圆点属于总体G₂,按照原来的横坐标x₁和纵坐标x₂,很难将它们区分开,但若把它们都投影到直线y上,则它们的投影点明显分为两组,同类的点聚集在一起,容易区分;又若把它们投影到与直线y垂直的直线上,则它们的投影点混杂在一起,难以分开.可见,投影直线的选取不一样,数据点的分类效果就大不相同,这提示我们要去寻找分类效果最好的投影直线y,使得在该投影直线上,同一类别的点的投影点尽量靠拢,不同类别的点的投影点尽量分开.显然,直线y是x₁和x₂的线性组合,即y=c₁x₁+c₂x₂.一般,在p维情况下,x的线性组合为:(5.5)图5-2投影直线选取示意图式中,a为p维实向量.设总体G₁和G₂的均值分别为μ₁和μ₂,它们有共同的协方差矩阵Σ,那么线性组合的均值为:(5.6)方差为:(5.7)显然,使得μ1y 与μ2y的距离越大的线性组合越好,所以考虑比值(5.8)现在的问题简化为:如何选取a,使得式(5.8)达到最大.定理5.1设x为p维随机向量,,当(c≠0为常数)时,式(5.8)达到最大.特别地,当c=1时,线性函数(5.9)称为Fisher线性判别函数(证明略).取(5.10)在μ₁≠μ₂的条件下,容易证明,于是可得Fisher判别准则如果记,则判别准则等价于需要指出的是:当总体的均值和协方差矩阵未知时,通常用样本均值和样本协方差矩阵来估计.设和,分别是来自总体G₁和G₂的样本,就可以分别用和估计μ₁和μ₂,用来估计Σ,这里.5.2.2多总体Fisher判别如果变量很多或有多个总体,通常要选择若干个投影,即若干个判别函数来进行判别.设有k个总体G₁,G ₂,…,Gx,它们有共同的协方差矩阵Σ,均值分别为μ₁,μ₂,…,μk,令(5.11)考虑p维随机向量x的线性组合,a为p维实向量,则均值和方差分别为:(5.12)注意到(5.13)考虑比值(5.14)问题等价于:如何选择a,使得式(5.14)达到最大.为了方便起见,设.定理5.2设λ₁,λ₂,…,λs(λ₁≥λ₂≥…≥λs>0)为Σ-¹G的s个非零特征值,s≤min(k-1,p),e₁,e₂,…,e为相应的特征向量且满足,那么当a₁=e₁s时,式(5.14)达到最大,称为第一判别函数,而a₂=e₂是在约束条件之下使得式(5.14)达到最大值的解,称为第二判别函数,如此下去,as =es是在约束条件之下使得式(5.14)达到最大值的解,称为第s个判别函数(证明略).当总体的均值和协方差矩阵未知时,通常用样本均值和样本协方差矩阵来估计,与两总体的Fisher判别方法类似,也可以建立多个总体的Fisher判别准则,但形式比较复杂,这里不再讨论.【例5.2】在R软件的内置档案中自带了著名的鸢尾花(iris)数据,该数据框有5列:Sepal.Length(花萼长度),Sepal.Width(花萼宽度),Petal.Length(花瓣长度),Petal.Width(花瓣宽度)和Species(品种).品种又分为setosa(刚毛鸢尾花),versicolor(变色鸢尾花)和virginica(弗吉尼亚鸢尾花).每个品种各有50行,即数据框共有150行.解:先读取iris数据,再用程序包MASS中的线性判别函数lda()作判别分析,R程序如下:>data(iris)>irisSepal.Length Sepal.Width Petal.LengthPetal.Width Species1 5.1 3.5 1.4 0.2setosa2 4.9 3.0 1.4 0.2setosa......50 5.0 3.3 1.4 0.2setosa51 7.0 3.2 4.7 1.4versicolor52 6.4 3.2 4.5 1.5versicolor......100 5.7 2.8 4.1 1.3 versicolor101 6.3 3.3 6.0 2.5 virginica102 5.8 2.7 5.1 1.9 virginica......150 5.9 3.0 5.1 1.8 virginica>attach(iris) #把数据变量的名字放入内存,这样能直接使用各列数据>library(MASS) #加载MASS程序包,这是必须的,否则找不到1da()函数>1d=lda(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.Wi dth)#也可以用命令iris.lda=lda(iris[,1:4],iris[,5]),注意第5列是品种,取作因变#量y>1dCall:lda(Species~Sepal.Length+Sepal.Width+Petal.Length+Petal.WidthPriorprobabilitiesofgroups:setosa versicolor virginica0.3333333 0.3333333 0.3333333Groupmeans:Sepal.Length Sepal.Width Petal.LengthPetal.Widthsetosa 5.006 3.428 1.4624.260Versicolor 5.936 2.770 4.2601.326Virginica 6.588 2.974 5.5522.026Coefficientsoflineardiscriminants:LD1 LD2Sepal.Length 0.8293776 0.02410215Sepal.Width 1.5344731 2.16452123Petal.Length -2.2012117 -0.93192121Petal.Width -2.8104603 2.83918785Proportionoftrace:LD1 LD20.9912 0.0088以上输出中包括lda()所用的公式、先验概率、各组均值向量、第一及第二线性判别函数的系数、两个判别式对区分各总体贡献的大小等.可以在R中使用help(lda)查看该函数的详细用法.需要指出的是,R中有内置函数predict(),可以对原始数据进行回判分类,从而可以将lda()的输出结果与原始数据真正的分类进行对比,考察误差的大小.R程序及结果如下:>Z=predict(ld)>newG=Z$class>cbind(Species,newG,Z$x) #Z$x给出了Z中两个判别函数相应的值Species new GLD1 LD21 1 1 8.0617998 0.3004206212 1 1 7.1286877 -0.786660426 ......70 2 2 -1.0904279 -1.62658349671 2 3 -3.7158961 1.04451442172 2 2 -0.9976104 -0.490530602 ......83 2 2 -0.8987038 -0.90494003484 2 3 -4.4984664 -0.88274991585 2 2 -2.9339780 0.027379106133 3 3 -6.8001500 0.580895175134 3 2 -3.8151597 -0.942985932 135 3 3 -5.1074897 -2.130589999 ......149 3 3 -5.8861454 2.345090513150 3 3 -4.6831543 0.332033811 这里Species是原始类别,newG是回判类别,LD1和LD2分别是第一和第二线性判别函数的值.我们还可以用table()函数来列表比较,R程序及结果如下:>tab=table(newG,Species)>tabSpeciesnewG setosa versicolor virginicasetosa 50 0 0Versicolor 0 48 1virginica 0 2 49由结果可以看出,对150个原始数据的预测中,只有3个错误,误差率为2%,其中有2朵versicolor鸢尾花(71号和84号)被误认为是virginica鸢尾花,有1朵virginica鸢尾花(134号)被误认为是versicolor鸢尾花.5.3 Bayes判别上面讲的几种判别分析方法计算简单,易于操作,比较实用.但是这些方法也有明显的不足之处.一是判别方法与总体各自出现的概率的大小无关;二是判别方法与错判之后所造成的损失无关.Bayes判别法就是为了解决这些问题而提出的一种判别方法,它假定对研究对象已经有了一定的认识,这种认识可以用先验概率来描述,当取得样本后,就可以利用样本来修正已有的先验概率分布,得到后验分布,再通过后验分布进行各种统计推断.Bayes判别法属于概率判别法,判别准则是以个体归属某类的概率最大或错判总平均损失最小为标准.5.3.1两总体的Bayes判别设有两个总体G₁和G₂,它们的概率密度函数分别为f₁(x)与f₂(x),其中x是一个p维随机向量,Ω为x的所有可能取值构成的样本空间,R₁为x的根据某种规则被判入总体G₁的取值全体的集合,那么R₂=Ω-R₁就为x的根据同样规则被判入总体G₂的取值全体的集合.设样本α来自总体G₁(形式记为x∈G₁),但被判入总体G₂的概率为:又记x来自总体G₂(形式记为x∈G₂),但被判入总体G₁的概率为:类似地,x来自总体G₁被判入G₁,来自总体G₂被判入G₂的概率可分别记为:又设总体G₁和G₂出现的先验概率(priorprobabilities)分别为p₁和pz,且p ₁+p₂=1,于是同理假设L(j|i)(i,j=1,2)表示x来自总体Gi而被误判入总体Gj引起的损失,显然有L(1|1)=L(2|2)=0,将上述误判概率与误判损失结合起来,可以定义所谓的平均误判损失(expected cost of misclassification,ECM)为:(5.15)一个合理的判别选择是极小化ECM.可以证明(见参考文献[10]):极小化ECM 所对应的样本空间2的划分为:(5.16)因此,可以将式(5.16)作为Bayes判别的判别准则.当两总体服从正态分布时,设,可分两种情形讨论.若Σ₁=Σ₂=Σ,则两总体的密度函数为:此时式(5.16)等价于(5.17)式中(5.18)(5.19)由此可见,对于两正态分布总体的Bayes判别,其判别式(5.17),(5.18)和(5.19)可以看成两总体距离判别的推广,当p₁=pz,L(1|2)=L(2|1)时,β=ln1=0,这正是距离判别,这里的W(x)也与两总体距离判别的W(x)完全一致,参见式(5.3).若Σ₁≠Σ₂,可仿照上面对式(5.16)作推广,参见参考文献[12].5.3.2多总体的Bayes判别从上面的讨论可知,Bayes判别的本质就是寻找一种适当的判别准则,使得平均误判损失ECM达到最小.在两总体情形下,由式(5.15)可知,若假设所有错判损失相同,即设L(2|1)=L(1|2)=C,那么要ECM尽量小,相当于要p₁P(1|1)+p₂P(2|2)尽量大,这有助于理解多总体Bayes判别所用的判别准则.设有k个总体G₁,G₂,…,Gx,其各自的分布密度函数为f(x),f2(x),…,fk(x),相应的先验概率分别为p₁,p₂,…,pk,并假设所有的错判损失相同,对待判样品x,相应的判别准则为:(5.20)以下只对G₁,G₂,…,Gk均为正态总体,即进行讨论.当k个总体的协方差矩阵都相同,即时,总体Gi 的密度函数为:计算函数在计算过程中,协方差矩阵Σ可用其估计式代替.当k个总体的协方差矩阵不全相同时,总体Gj的密度函数为:则相应计算函数在计算过程中,协方差矩阵Σj可用其估计式代替.判别准则式(5.20)等价于【例5.3】(数据文件为eg5.3)表5-1是某气象站预报有无春旱的数据资料,x₁和x₂是两个综合性预报因子.表中给出了有春旱的6个年份数据和无春旱的8个年份数据.它们的先验分布用各组数据出现的比例(6/14,8/14)来估计,并假设误判损失相等,试用Bayes判别法对数据进行分析.表5-1某气象站有无春旱的数据资料解:先在eg5.3中选取G,x1,x₂三列数据,然后复制,回到R命令窗口中输入如下命令后再确定,就可将复制的数据读入R.R程序及结果如下:>d5.3=read.table("clipboard",header=T)>attach(d5.3)>library(MASS)>1d=1da(G~x1+x2,prior=c(6,8)/14)>1dCall:lda(G~x1+x2,prior=c(6,8)/14)Prior probabilities of groups:1 20.4285714 0.5714286#若先验概率未知,可以先设为均匀分布,即prior=c(0.5,0.5) Groupmeans:x1 x21 25.31667 -2.4166672 22.02500 -1.187500Coefficients of linear discriminants:LD1x1 -0.6312826x2 1.0020661再用函数predict()对原始数据进行回判分类,并与lda()的输出结果进行对比,R程序及结果如下:>Z=predict(1d)>newG=Z$class>cbind(G,newG,Z$x)#Z$x为判别函数的值G newG LD11 1 1 -1.14755452 1 1 -1.10648313 1 1 -3.28592944 1 2 -0.22668045 1 1 -1.68965906 1 1 -3.89116217 2 2 1.85959468 2 2 1.4737896......13 2 2 1.358561514 2 2 1.7002528>tab=table(G,newG)>tabnewgG 1 21 5 12 0 8>sum(diag(prop.table(tab)))[1] 0.9285714程序输出说明,第一组样本中只有第4号样本被误判入第二组,第二组样本回判全部正确,回判符合率为92.857%.我们还可以用命令Z$post计算后验概率:>Z$post1 21 0.9386546174 6.134538e-022 0.9303445828 6.965542e-023 0.9999448424 5.515761e-05......13 0.0038092358 9.961908e-0114 0.0012325974 9.987674e-015.4案例分析与R实现案例5.1(数据文件为case5.1)表5-2中列出了1994年我国30个省、直辖市、自治区影响各地区经济增长差异的制度变量数据,分为两组.其中,x₁为经济增长率(%);x₂为非国有化水平(%);x₃为开放度(%);x₄为市场化程度(%).借助R 软件,分别用两总体的距离判别法、Fisher判别法和Bayes判别法进行判别分析,并对江苏、安徽和陕西三个待判地区作出判定.(注:样本号为28,29,30的待判样品的类别先暂定为2,待实际判别分析后再确定,这样做的好处是录入和处理数据较为方便.)表5-2 1994年我国30个省、直辖市、自治区影响各地经济增长差异的制度变量数据解:(1)距离判别法.要读入Excel数据,先在case5.1中选取数据区域D1:H31(注意:要连待判数据一起选),然后复制,回到R命令窗口中输入如下命令后再确定,就可将复制的数据读入R.然后把本章附录中两总体距离判别程序“DDA2.R”放到当前工作目录下,再载入R并执行,还可以用var(classG1)和var(classG2)分别计算两个训练样本的协方差矩阵,结果发现它们明显不相等.R程序及结果如下:>case5.1=read.table("clipboard",header=T) #将已复制到剪贴板中的数据读入R>attach(case5.1) #把数据变量名字放入内存>classG1=case5.1[1:11,2:5] #选取训练样本1>classG2=case5.1[12:27,2:5] #选取训练样本2>newdata=case5.1[28:30,2:5] #选取待测样本用于后面判定>source("DDA2.R") #载入自编程序DDA2.R>DDA2(classG1,classG2) #执行程序DDA2.R1 2 ... 8 9 10 11 12 13 (24)25 26 27blong 1 1 ... 1 1 2 1 2 2 (2)2 2 2回代判别的结果说明只有第10号样本“广西”被错判入第二组,判别符合率为26/27=96.3%.最后对江苏、安徽和陕西三个样本进行判定(样本号为28,29,30),数据已包含在newdata中,R程序为:>DDA2(classG1,classG2,newdata)#对待判样本newdata进行判定1 2 3blong 1 2 2输出结果第一行中的1,2,3分别表示江苏、安徽和陕西三个待测样本(样本号为28,29,30),判别结果是江苏被判入第一组,安徽和陕西均被判入第二组.(2)Fisher判别法也是先要读入数据,在case5.1中选取数据区域D1:H28(注意:这里不选待判数据,因为lda()函数要使用已有的各列数据作为变量来建立判别模型),然后复制,回到R命令窗口中输入如下命令后再确定,就可将复制的数据读入R.R 程序及结果如下:>case5.1=read.table("clipboard",header=T)>attach(case5.1)>library(MASS)>1d=1da(G~x1+x2+x3+x4)>ldCalllda(G~x1+x2+x3+x4)Prior probabilities of groups:1 20.4074074 0.5925926Groupmeans:x1 x2 x3 x41 15.73636 65.02818 25.149091 74.3502 11.56250 40.10625 9.228125 58.105Coefficients of linear discriminants:LD1x1 -0.06034498x2 -0.01661878x3 -0.02532111x4 -0.08078449以上输出结果中包括lda()所用的公式、先验概率、各组均值向量、第一线性判别函数的系数.再用predict()函数对原始数据进行回判分类,将lda()判别的输出结果与原始数据真正的分类进行对比.R程序及结果如下:>Z=predict(ld) #预测判定结果>nevG=Z$class #新分类>cbind(G,newG,Z$x) #合并原分类、新分类及判别函数值G newG LD11 1 1 -0.636598122 1 1 -0.85792242....9 1 1 -3.8115753710 1 2 0.1086677611 1 1 -0.65403492....26 2 2 2.2650082627 2 2 1.52288285>tab=table(G,newG) #原分类和新分类列表比较>tabnevGG 1 21 10 12 0 1>sum(diag(prop.table(tab))) #计算判别符合率[1] 0.962963可见,只有第一组中的第10号样品“广西”被错判入第二组,与距离判别法结果一致.还可以用命令sum(diag(prop.table(tab)))计算判别符合率.最后对三个待判样本进行判定.先要读入待判样本数据,在case5.1中选取待判样本数据区域D1:H31(注意:要连待判数据一起选),然后复制,回到R命令窗口中输入如下命令后再确定,将复制的数据读入R.在其基础上选取待判样本数据.R程序及结果如下:>case5.1=read.table("clipboard",header=T)>newdata=case5.1[28:30,2:5] #选取待判样本用于下面判别>predict(ld,newdata=newdata)$class[1] 1 2 2Levels: 1 2$posterior1 228 0.87303785 0.126962229 0.48273895 0.517261130 0.01957491 0.9804251$xLD128 -1.187448129 -0.348841830 1.2655298说明:由$class可以看出28号样本被判人第一组,29,30号样本被判入第二组,结果与距离判别法一致;$x给出了线性判别函数的值.(3)Bayes判别法Bayes判别法和Fisher判别法类似,不同的是在使用函数lda()时要输入先验概率.它们的先验概率用各组数据出现的比例(11/27,16/27)来估计(默认情形),并假设误判损失相等.同Fisher判别法的分析过程一样,先复制数据,读入R,具体操作及结果如下:>case5.1=read.table("clipboard",header=T)>attach(case5.1)>library(MASS)>1d=lda(G~x1+x2+x3+x4,prior=c(11/27,16/27))>ldCall:lda(G~x1+x2+x3+x4,prior=c(11/27,16/27))Prior probabilities of groups:1 20.4074074 0.5925926Groupmeans:x1 x2 x3 x41 15.73636 65.02818 25.149091 74.3502 11.56250 40.10625 9.228125 58.105Coefficients of linear discriminants:LD1x1 -0.06034498x2 -0.01661878x3 -0.02532111x4 -0.08078449>Z=predict(ld)>newG=Z$class>cbind(G,newG,Z$x)G newG LD11 1 1 -0.636598122 1 1 -0.85792242....9 1 1 -3.8115753710 1 2 0.1086677611 1 1 -0.65403492....26 2 2 2.2650082627 2 2 1.52288285>tab=table(G,newG)>tabnewGG 1 21 10 12 0 16>sum(diag(prop.table(tab))[1] 0.962963判别结果与距离判别法、Fisher判别法一致.另外,Bayes判别法对三个样本数据的判别过程和判定结果也与Fisher判别法相同.习题5.1在定理5.1的假设下,证明:当μ₁≠μ₂时,有μ₁y-μ₂>0及μ2y-μy<0成立.5.2(数据文件为ex5.2)根据经验,今天的湿温差x₁和气温差x₂是预报明天下雨或不下雨的两个重要因子,试就表5-3中的数据建立Fisher线性判别函数进行判别.又设今天测得x₁=8.1,x₂=2.0,问:应该预报明天是雨天还是晴天?表5-3 雨天和晴天的湿温差x₁和气温差x₂续前表5.3(数据文件为ex5.3)某企业生产的产品,其造型、性能和价位及所属级别如表5-4所示.试利用表中数据,使用Fisher判别法和Bayes判别法进行判别分析.表5-4 某企业产品的造型、性能、价位及级别等指标序号造型性能价位级别13342872286577337775614164379153446841617556827487851286562692944796021037542731188874531256733631338567631477288435.4(数据文件为ex5.4)在研究砂基液化问题中,选了七个因子.今从已液化和未液化的地层中分别抽了12个和23个样本,其中1类表示已液化类,2类表示未液化类.试用距离判别法对原来的35个样本进行回代分类并分析误判情况.表5-5 砂基液化原始分类数据编号类别x1 x2 x3 x4 x5 x6 x71 1 6.6 39 1.0 6.0 6 0.12 202 1 6.6 39 1.0 6.0 12 0.12 203 1 6.1 47 1.0 6.0 6 0.08 124 1 6.1 47 1.0 6.0 12 0.08 125 1 8.4 32 2.0 7.5 19 0.35 756 1 7.2 6 1.0 7.0 28 0.30 307 1 8.4 113 3.5 6.0 18 0.15 758 1 7.5 52 1.0 6.0 12 0.16 409 1 7.5 52 3.5 7.5 6 0.16 4010 1 8.3 113 0.0 7.5 35 0.12 180续前表编号类别T1 T2 Z3 Z4 T5 Z6 T711 1 7.8 172 1.0 3.5 14 0.21 4512 1 7.8 172 1.5 3.0 15 0.21 4513 2 8.4 32 1.0 5.0 4 0.35 7514 2 8.4 32 2.0 9.0 10 0.35 7515 2 8.4 32 2.5 4.0 10 0.35 7516 2 6.3 11 4.5 7.5 3 0.20 1517 2 7.0 8 4.5 4.5 9 0.25 3018 2 7.0 8 6.0 7.5 4 0.25 3019 2 7.0 8 1.5 6.0 1 0.25 3020 2 8.3 161 1.5 4.0 4 0.08 7021 2 8.3 161 0.5 2.5 1 0.08 7022 2 7.2 6 3.5 4.0 12 0.30 3023 2 7.2 6 1.0 3.0 3 0.30 3024 2 7.2 6 1.0 6.0 5 0.30 3025 2 5.5 6 2.5 3.0 7 0.18 1826 2 8.4 113 3.5 4.5 6 0.15 7527 2 8.4 113 3.5 4.5 8 0.15 7528 2 7.5 52 1.0 6.0 6 0.16 4029 2 7.5 52 1.0 7.5 8 0.16 4030 2 8.3 97 0.0 6.0 5 0.15 18031 2 8.3 97 2.5 6.0 5 0.15 18032 2 8.3 89 0.0 6.0 10 0.16 18033 2 8.3 56 1.5 6.0 13 0.25 18034 2 7.8 172 1.0 3.5 6 0.21 4535 2 7.8 283 1.0 4.5 6 0.18 455.5(数据文件为ex5.5)表5-6是某金融机构客户的个人资料.对一个金融机构来说,对客户信用度的了解至关重要,因为利用这些资料,可以挖掘出许多重要的信息,建立客户的信用度评价体系.所选8个指标:x₁为月收入;x₂为月生活费支出;x₃是虚拟变量,住房的所有权属于自己的为“1”,租用的为“0”;x₄为目前工作的年限;x₅为前一个工作的年限;x₆为目前住所的年限;x₇为前一个住所的年限;x₈为家庭赡养的人口数;G为信用度级别,信用度最高为“5”,信用度最低为“1”.试对表5-6中的数据进行Fisher判别分析;又若一位新客户的8个指标分别为(2500,1500,0,3,2,3,4,1),试对该客户的信用度进行评价.表 5-6某金融机构客户的个人信用度评价数据序号x1 x2 x3 x4 x5 x6 x7 x8 G1 1000 3000 0 0.1 0.3 0.1 0.3 4 12 3500 2500 0 0.5 0.5 0.5 2 1 13 1200 1000 0 0.5 0.5 1 0.5 3 14 800 800 0 0.1 15 1 3 1续前表序号x1 x2 x3 x4 x5 x6 x7 x8 G5 3000 2800 0 1 2 3 4 3 16 4500 3500 0 8 2 10 1 5 27 3000 2600 1 6 1 3 4 2 28 3000 1500 0 2 8 6 2 5 39 850 425 1 3 3 25 25 1 310 2200 1200 1 6 3 1 4 1 311 4000 1000 1 3 5 3 2 1 412 7000 3700 1 10 4 10 1 4 413 4500 1500 1 6 4 4 9 3 414 9000 2250 1 8 4 5 3 2 515 7500 3000 1 10 3 10 3 4 516 3000 1000 20 5 15 10 1 517 2500 700 10 5 15 5 3 55.6(数据文件为ex5.6)为了研究中小企业的破产模型,选定4个经济指标:x₁为总负债率(现金收益/总负债);x₂为收益性指标(纯收入/总财产);x₃为短期支付能力(流动资产/流动负债);x₄为生产效率性指标(流动资产/纯销售额).对17个破产企业(1类)和21个正常运行企业(2类)进行了调查,得如下资料(见表5-7).试对表5-7中的数据进行Bayes判别分析并对8个待判样品类别进行判定.表5-7 中小型企业破产模型经济指标续前表附录附录1(两总体G₁和G₂距离判别的R程序“DDA2.R”)DDA2<-function(TrnG1,TrnG2,TstG=NULL,var.equal=FALSE){if(is.null(TstG)==TRUE)TstG<-rbind(TrnG1,TrnG2)if(is.vector(TstG)==TRUE)TstG<-t(as.matrix(TstG))elseif(is.matrix(TstG)!=TRUE)TstG<-as.matrix(TstG)if(is.matrix(TrnG1)!=TRUE)TrnG1<-as.matrix(TrnG1)if(is.matrix(TrnG2)!=TRUE)TrnG2<-as.matrix(TrnG2);nx<-nrow(TstGblong<-matrix(rep(0,nx),nrow=1,byrow=TRUE,dimnames=list("blong ",1:nx))mu1<-colMeans(TrnG1);mu2<-colMeans(TrnG2)if(var.equal==TRUE||var.equal==T){S<-var(rbind(TrnG1,TrnG2))w<-mahalanobis(TstG,mu2,S)-mahalanobis(TstG,mu1,S)}else{S1<-var(TrnG1);S2<-var(TrnG2)w<-mahalanobis(TstG,mu2,S2)-mahalanobis(TstG,mu1,S1)}for(iin1:nx){if(w[i]>0)blong[i]<-1elseblong[i]<-2}blong在该程序中,输入变量TrnG1和TrnG2分别表示来自总体G₁和G₂的训练样本,其输入格式是数据框或矩阵(样本按行输入);输入变量TstG是待测样本,其输入格式是数据框、矩阵(样本按行输入)或向量(一个待测样本).如果不输入TstG(默认值),则待测样本为两个训练样本之和,即计算训练样本的回判情况.输入变量var.equal是逻辑变量,var.equal=TRUE表示两个总体的协方差矩阵相同,否则(默认值)为不同.函数的输出是由“1”和“2”构成的一维矩阵,“1”表示待测样本属于G₁类,“2”表示待测样本属于G₂类.当两总体样本协方差矩阵相同时,该程序的使用命令为:DDA2(classG1,classG2,var.equal=TRUE).当两总体样本协方差矩阵不相同时,该程序的使用命令为:DDA2(classG1,classG2),附录2(多总体距离判别的R程序“DDAM.R”)DDAM<-function(TrnX,TrnG,TstX=NULL,var.equal=FALSE){if(is.factor(TrnG)==FALSE){mx<-nrow(TrnX);mg<-nrow(TrnG)TrnX<-rbind(Trnx,TrnG)TrnG<-factor(rep(1:2,c(mx,mg)))}if(is.null(TstX)==TRUE)TstX<-TrnXif(is.vector(TstX)==TRUE)TstX<-t(as.matrix(TstX))elseif(is.matrix(TstX)!=TRUE)TstX<-as.matrix(TstX)if(is.matrix(TrnX)!=TRUE)TrnX<-as.matrix(TrnX)nx<-nrow(TstX)blong<-matrix(rep(0,nx),nrow=1,dimnames=list("blong",1:nx))g<-length(levels(TrnG))mu<-matrix(0,nrow=g,ncol=ncol(Trnx))for(iin1:g)mu[i,]<-colMeans(TrnX[TrnG==i,])D<-matrix(0,nrow=g,ncol=nx)if(var.equal==TRUE|var.equal==T){for(iin1:g)D[i,]<-mahalanobis(Tstx,mu[i,],var(TrnX))}else{for(iin1:g)D[i,]<-mahalanobis(Tstx,mu[i,],var(Trnx[TrnG==i,]))}。
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学
多元统计分析智慧树知到课后章节答案2023年下浙江工商大学浙江工商大学第一章测试1.在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,可以解决下面哪几方面的问题。
()A:简化系统结构、探讨系统内核 B:进行数值分类,构造分类模型 C:变量之间的相依性分析 D:构造预测模型,进行预报控制答案:简化系统结构、探讨系统内核;进行数值分类,构造分类模型;变量之间的相依性分析;构造预测模型,进行预报控制2.只有调查来的才是数据。
()A:对 B:错答案:错3.以下都属于大数据范畴。
()A:行车轨迹 B:交易记录 C:问卷调查 D:访谈文本答案:行车轨迹;交易记录;问卷调查;访谈文本4.只要是数据,就一定有价值。
()A:对 B:错答案:错5.统计是研究如何搜集数据,如何分析数据的学问,它既是科学,也是艺术.()A:错 B:对答案:对第二章测试1.考虑了量纲影响的距离测度方法有()。
A:欧氏距离 B:Minkowski距离 C:马氏距离 D:切比雪夫距离答案:马氏距离2.不具有单调性的系统聚类方法有()。
A:离差平方和法 B:最短距离法 C:中间距离法 D:重心法 E:类平均距离法答案:中间距离法;重心法3.聚类分析是研究分类问题的一种多元统计分析方法。
()A:对 B:错答案:对4.聚类分析是有监督学习。
()A:错 B:对答案:错5.动态聚类法的凝聚点可以人为主观判别。
()A:对 B:错答案:对第三章测试1.判别分析是通过对已知类别的样本数据的学习、构建判别函数来最大程度区分各类,Fisher判别的准则要求()。
A:各类之间各个类内部变异尽可能大B:各类之间和各类内部变异尽可能小 C:各类之间变异尽可能大、各类内部变异尽可能小D:各类之间变异尽可能小、各类内部变异尽可能大答案:各类之间变异尽可能大、各类内部变异尽可能小2.常用判别分析的方法有()。
A:逐步判别法 B:贝叶斯判别法 C:费舍尔判别法 D:距离判别法答案:逐步判别法;贝叶斯判别法;费舍尔判别法;距离判别法3.较聚类分析,判别分析是根据已知类别的样本信息,对新样品进行分类。
判别分析(共27张PPT)
w11 w12 w1 p w1r
w
21
w22
w2p
w2r
Qw=
w
p1
w p2 w pp
w
pr
wr1 wr 2 wrp wrr
使其中虚线左上部分便是只含 p 个变量的模型中的
类内离均差平方和矩阵Q( p ),而整个矩阵则是含p+1
w
个变量的模型中的类内离均差平方和矩阵Q ( p 1) 。
第12章 判别分析Discrimination Analysis
判别分析
:从反映个体性质各个侧面的P个变量出发,通过
定量分析,最终将其判归某一已知总体,从而将 对个体的研究置于更为广泛的总体研究背景上。
各种判别分析都是按照某种判别原则(视判别方
法不同而不同),在e
对变量进行剔除和引进的方法 差异显著地大于类内差异呢?还需进行测验。
第三节 逐步判别分析方法
Stepwise Discrimination Analysis
Wilk’s Λ统计量 何分类”、“某一个事例(或样品)属于那一类”等问题是并不知晓;
如果已知将原应属于Gi的样品误判为属于Gj所造成
第二节 贝叶斯判别分析
|Q | |Q |w 设叶X斯,判Y别是法从的均判值别向函量数为)μ,,协按方判差别阵函为数wΣ值的的总大体小G来中抽取的两个样品,定义X,Y之间的马氏距离平方为:
= ──── =── 用 F 测验可以检验增长是否显著。
|Q +Q | |Q | h 第与五多步 元、回如归果分有析待相判似数,据在,进将行其判代别入分,析并时判,别并e归不类是。
统计量为p,增加一个变
量 (x ) 后的 Bayes Discrimination Analysis
聚类分析及判别分析案例
一、案例背景随着现代人力资源管理理论的迅速开展,绩效考评技术水平也在不断提高。
绩效的多因性、多维性,要求对绩效实施多标准大样本科学有效的评价。
对企业来说,对上千人进展多达50~60个标准的考核是很常见的现象。
但是,目前多标准大样本大型企业绩效考评问题仍然困扰着许多人力资源管理从业人员。
为此,有必要将当今国际上最流行的视窗统计软件SPSS应用于绩效考评之中。
在分析企业员工绩效水平时,由于员工绩效水平的指标很多,各指标之间还有一定的关联性,缺乏有效的方法进展比拟。
目前较理想的方法是非参数统计方法。
本文将列举某企业的具体情况确定适当的考核标准,采用主成分分析以及聚类分析方法,比拟出各员工绩效水平,从而为企业绩效管理提供一定的科学依据。
最后采用判别分析建立判别函数,同时与原分类进展比拟。
聚类分析二、绩效考评的模型建立1、为了分析某企业绩效水平,按照综合性、可比性、实用性和易操作性的选取指标原那么,本文选择了影响某企业绩效水平的成果、行为、态度等6个经济指标(见表1)。
2、对某企业,搜集整理了28名员工2021年第1季度的数据资料。
构建1个28×6维的矩阵(见表2)。
3、应用SPSS数据统计分析系统首先对变量进展及主成分分析,找到样本的主成分及各变量在成分中的得分。
去结果中的表3、表4、表5备用。
表 5成份得分系数矩阵a成份1 2Zscore(X1) .227Zscore(X2) .228Zscore(X3) .224Zscore(X4) .177Zscore(X5) .186 .572Zscore(X6) .185 .587提取方法 :主成份。
构成得分。
a. 系数已被标准化。
4、从表3中可得到前两个成分的特征值大于1,分别为3.944和1.08,所以选取两个主成分。
根据累计奉献率超过80%的一般选取原那么,主成分1和主成分2的累计奉献率已到达了83.74%的水平,说明原来6个变量反映的信息可由两个主成分反映83.74%。
应用统计学判别分析【精选】
判别函数得 分
-.56509 -.89817 -.59642 -1.02182 .25719 .34253 .27925 1.24010
判别为1的概 率
.69479 .80234 .70620 .83420 .35312 .32005 .34442 .09012
判别的为2 概率
.30521 .19766 .29380 .16580 .64688 .67995 .65558 .90988
2019年9月12日星期四
重庆交通大学管理学院
06:17:32
Loa n R e cord N umbe r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16
17
Yrs a t Yrs a t Yrs a t Yrs a t
Monthly Monthly H ome Pre se nt Pre vious Pre se nt Pre vious N o. of
.11
3.27
.55
.05
2.25
.33
.07
4.பைடு நூலகம்4
.63
.05
4.45
.69
.05
2.52
.69
.02
2.05
.35
.08
2.35
.40
.07
1.80
.52
.05
2.17
.55
-1.01
2.50
.58
-.03
.46
.26
.07
2.61
.52
-.09
3.01
.47
.09
1.24
.18
.11
4.29
判别分析-实例-PPT
n2组数据为非购买者(B) 由已知变量X1,X2,将n1+n2=n组数据分成两大类; 购买者(A)—— X1i (A), X2i (A) (I=1,2,…,n1)
非购买者(B)—— X1 j (B), X2 j (B) (j=1,2,…,n2)
例:样本A,舒张血压为75mmHg,血浆胆固醇为150mg%, 分别代入方程后
G1=1.12364*75+0.21222*150-72.60310=43.5029
G2=0.94031*75+0.16755*150-49.34373=46.31202
由于G1小于G2,所以样本A判为正常人组(G=2)。
大家好
19
6、计算判别指标
y 1
C1
X
1
1
C2
X
1
2
C3
X
1
3
0.216928.29 0.01820 6.42 0.05604 6.00
2.251533
y 2
C1
X
2
1
C2
X
2
2
C3
X
2
3
0.21692 3.20 0.01820 3.80 0.05604 4.00
0.987464
判别指标为
大家好
35
大家好
36
大家好
37
大家好 待判样品
38
大家好
39
大家好
40
大家好
41
大家好
42
大家好
43
大家好
44
大家好
45
大家好
46
判别分析——精选推荐
判别分析实际意义判别分析于聚类分析的功能差不多,区别在于,聚类分析之前,没有⼈知道具体的是怎么分的类,分了哪⼏⼤类。
⽽判别分析是已经把类别给分好,要做的是把没有分好类的数据观测,按照之前分好的类再进⾏分类。
这⾥不同于⽣活中常见的分类先有具体的分类逻辑(这⾥叫做判别函数)。
所以判别分的难点在于先由分好类的数据观测找到⼀个或者多个判别函数,然后对未进⾏分类的观测按照该判别公式进⾏分类。
进⾏判别分析需要满⾜的条件是:①每⼀个判别变量都不能是其他判别变量的线性组合②各个判别变量之间具有多元正态分布,即控制N-1个变量为固定值时,第N个变量满⾜正态分布③满⾜②条件时,使⽤参数法计算判别函数,否则使⽤⾮参数法计算判别函数。
判别分析⽅法距离判别法:D2(X)=(X-µ)2/σ2马⽒距离(⼴义平⽅距离):W(X)=D B2(X)-D A2(X)BAYES判别法:有先验概率,再有后验概率,最后还有错判概率FISHER判别法:投影法判别分析的实现PROC DISCRIM、PROC CANDISC 、PROC STEPDISC过程步实现PROC DISCRIM可以处理满⾜多元正态分布,也可以不满⾜该条件都可以处理。
若满⾜多元正态分布,则可以计算出⼀次或者⼆次的判别函数(在组间⽅差不相等的情况下)。
PROC CANDISC是专门进⾏典型判别分析的过程,基于分析数值变量(类似于主成分分析结果)。
能计算出最能描述组间差异的典型变量,然后结果仅给出典型变量和得分数据,后续要由PROC DISCRIM完成。
PROC STEPDISC逐步判别分析。
最有效的找出体现不同类别的变量。
DATA CARS_TYPES CARS_TEST;SET SASHELP.CARS;BY MAKE TYPE;WHERE TYPE IN("SUV","Sedan","Sports");IF FIRST.TYPE THEN DO;IF ORIGIN IN ("USA","Europe")THEN OUTPUT CARS_TYPES;ELSE OUTPUT CARS_TEST;END;RUN;PROC DISCRIM DATA=CARS_TYPES TESTDATA=CARS_TEST METHOD=NORMALPOOL=TEST DISTANCE LIST TESTOUT=CARS_RESULT;CLASS TYPE;VAR WEIGHT WHEELBASE LENGTH MPG_CITY ENGINESIZE;RUN;分析的数据集是CARS_TYPES,即是根据此数据集的分类结果找到判别函数(可能是⼀次函数,也可能是⼆次函数),然后⽤从待分类的数据集,的观测⽤该判别函数进⾏分类,进⽽得出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判别分析(discriminant analysis)
• 判别分析和聚类分析有何不同? 判别分析和聚类分析有何不同? • 在聚类分析中,人们一般事先并不知 在聚类分析中 , 道应该分成几类及哪几类, 道应该分成几类及哪几类 , 全根据数 据确定。 据确定。 • 在判别分析中 , 至少有一个已经明确 在判别分析中, 知道类别的“训练样本” 知道类别的 “ 训练样本 ” , 并利用该 样本来建立判别准则, 样本来建立判别准则 , 并通过预测变 量来为未知类别的观测值进行判别了。 量来为未知类别的观测值进行判别了 。
8.4 判别分析
12.1 判别分析
(discriminant analysis)
• 某些昆虫的性别只有通过解剖才能够判别 • 但雄性和雌性昆虫在若干体表度量上有些 综合的差异。 综合的差异。人们就根据已知雌雄的昆虫 体表度量( 体表度量(这些用作度量的变量亦称为预 测变量)得到一个标准, 测变量)得到一个标准,并以此标准来判 别其他未知性别的昆虫。 别其他未知性别的昆虫。 • 这样虽非100%准确的判别至少大部分是对 这样虽非100% 100%准确的判别至少大部分是对 而且用不着杀生。 的,而且用不着杀生。此即判别分析
判别分析例子
• 数据 数据disc.txt:企图用一套打分体系来描 企图用一套打分体系来描 绘企业的状况。 绘企业的状况 。 该体系对每个企业的 一些指标(变量)进行评分。 一些指标(变量)进行评分。 • 指标有 企业规模 ( is)、 服务 指标有:企业规模 企业规模( ) 服务(se)、雇 、 员工资比例(sa)、利润增长 员工资比例 、利润增长(prr)、市场 、 份额(ms)、 市场份额增长 份额 、 市场份额增长(msr)、 流动 、 资金比例(cp)、资金周转速度 资金比例 、资金周转速度(cs)等. 等 • 另外 , 有一些企业已经被某杂志划分 另外, 为上升企业、稳定企业和下降企业。 为上升企业、稳定企业和下降企业。
• 具体的判别公式(SPSS输出),由一张分类函数表给出: 具体的判别公式( 输出) 由一张分类函数表给出: 输出
Classification Function Coefficients GROUP 1.00 2.00 3.00 IS .118 .338 .554 SE .770 21.329 41.616 SA .345 .542 .811 PRR .086 .029 -.001 MS .355 .743 1.203 MSR .368 .173 .081 CS 7.531 5.220 2.742 (Constant) -57.521 -53.704 -96.084 Fisher's linear discriminant functions
Disc.sav数据 Disc.sav数据
1. 根据距离判别的思想
• Disc.txt数据有 个用来建立判别标准 或判 数据有8个用来建立判别标准 数据有 个用来建立判别标准(或判 别函数)的 预测 变量,另一个 预测)变量 另一个(group)是类别 别函数 的(预测 变量 另一个 是类别 • 每一个企业的打分在这 个变量所构成的 每一个企业的打分在这8个变量所构成的 个变量所构成的8 维空间中是一个点。这个数据在8维空间有 维空间中是一个点。这个数据在 维空间有 90个点, 个点, 个点 • 由于已知所有点的类别 , 可以求得每个类 由于已知所有点的类别, 型的中心。 这样只要定义了距离, 型的中心 。 这样只要定义了距离 , 就可以 得到任何给定的点( 企业) 得到任何给定的点 ( 企业 ) 到这三个中心 的三个距离。 的三个距离。
F1 = −3.166 + 0.035 x1 + 3.283 x2 + 0.037 x3 − 0.007 x4 + 0.068 x5 − 0.023 x6 − 0.385 x7 F 2 = −4.384 + 0.005 x1 + 0.567 x2 + 0.041x3 + 0.012 x4 + 0.048 x5 + 0.044 x6 − 0.159 x7
-4
-3
-2
-1
0
1
2
3
-4
-2
0
2
4 6 Fisher判别法的数学
3.逐步判别法 逐步判别法
(仅仅是在前面的方法中加入变量选择的功能 仅仅是在前面的方法中加入变量选择的功能) 仅仅是在前面的方法中加入变量选择的功能
• 有时,一些变量对于判别并没有什么作用,为了 有时,一些变量对于判别并没有什么作用, 得到对判别最合适的变量,可以使用逐步判别。 得到对判别最合适的变量,可以使用逐步判别。 一边判别,一边选择判别能力最强的变量, 即,一边判别,一边选择判别能力最强的变量, • 这个过程可以有进有出。一个变量的判别能力的 这个过程可以有进有出。 判断方法有很多种, 主要利用各种检验, 判断方法有很多种 , 主要利用各种检验 , 例如
前面说过,投影的重要性是和特征值的贡献率有关。该表 前面说过,投影的重要性是和特征值的贡献率有关。 说明第一个函数的贡献率已经是99%了 , 而第二个只有 说明第一个函数的贡献率已经是 了 1%。当然 , 二维图要容易看一些 。 投影之后 , 再根据各 。 当然,二维图要容易看一些。投影之后, 点的位置远近算出具体的判别公式( 输出) 点的位置远近算出具体的判别公式(SPSS输出): 输出
1. 根据距离判别的思想
• 最简单的办法就是 某点离哪个中心 最简单的办法就是:某点离哪个中心 距离最近,就属于哪一类。 距离最近,就属于哪一类。 • 一个常用距离是Mahalanobis距离。 距离。 • 用来比较到各个中心距离的数学函 数称为判别函数(discriminant function). • 这种根据远近判别的思想,原理简 这种根据远近判别的思想, 直观易懂。 单,直观易懂。为判别分析的基础
• • • •
Fisher判别法 先进行投影) 判别法(先进行投影 2. Fisher判别法 先进行投影 Fisher判别法就是一种先投影的方法。 判别法就是一种先投影的方法。 判别法就是一种先投影的方法 考虑只有两个(预测 变量的判别问题。 预测)变量的判别问题 考虑只有两个 预测 变量的判别问题。 假定只有两类。 假定只有两类 。 数据中的每个观测值 是二维空间的一个点。见图。 是二维空间的一个点。见图。 这里只有两种已知类型的训练样本。 这里只有两种已知类型的训练样本 。 一类有38个点 个点(用 表示),另一类有 一类有 个点 用“o”表示 另一类有 表示 另一类有44 个点(用 个点 用“*”表示 。按原来变量 横坐 ”表示)。按原来变量(横坐 标和纵坐标),很难将这两种点分开。 标和纵坐标 ,很难将这两种点分开。
判别分析例子
• 希望根据这些企业的上述变量的打分 及其已知的类别(三个类别之一: group-1代表上升,group-2代表稳定, 代表上升, 代表稳定, 代表上升 代表稳定 group-3代表下降 找出一个分类标准, 代表下降)找出一个分类标准 代表下降 找出一个分类标准, 以对尚未被分类的企业进行分类。 以对尚未被分类的企业进行分类。 • 该数据有 个企业 ( 90个观测值 ) , 该数据有90个企业 个企业( 个观测值 个观测值) 其中30个属于上升型 个属于上升型, 个属于稳定 其中 个属于上升型 , 30个属于稳定 个属于下降型。 型 , 30个属于下降型 。 这个数据就是 个属于下降型 一个“训练样本” 一个“训练样本”。
Canonical Discriminant Function Coefficients Function 1 IS SE SA PRR MS MSR CS (Constant) .035 3.283 .037 -.007 .068 -.023 -.385 -3.166 2 .005 .567 .041 .012 .048 .044 -.159 -4.384
Disc.txt例子 例子
• 利用 利用SPSS软件的逐步判别法淘汰了不显著的流动资金 软件的逐步判别法淘汰了不显著的流动资金 比例(cp),还剩下七个变量。用x1,x2, x3, x4,x5, x6, x7分别 比例 ,还剩下七个变量。 表示标准化后的变量is, , , 表示标准化后的变量 , se,sa,prr,ms,msr,cs, , , , , 得 到 两 个 典 则 判 别 函 数 ( Canonical Discriminant Function Coefficients): )
-4
-3
-2
-1
0
1
2
3
-4 -2 0 2 4 6
Fisher判别法 先进行投影) 判别法(先进行投影 2. Fisher判别法 先进行投影 • 于是就寻找一个方向 , 即图上的虚线 于是就寻找一个方向, 方向, 方向 , 沿该方向朝和这个虚线垂直的 一条直线进行投影会使得这两类分得 最清楚。 可以看出, 最清楚 。 可以看出 , 如果向其他方向 投影,判别效果不会比这个好。 投影,判别效果不会比这个好。 • 有了投影之后 , 再用前面讲到的距离 有了投影之后, 远近的方法得到判别准则。 远近的方法得到判别准则 。 这种先投 影的判别方法就是Fisher判别法。 判别法。 影的判别方法就是 判别法
这两个函数实际上是由Fisher判别法得到的向两个方向 判别法得到的向两个方向 这两个函数实际上是由 的投影。 这两个典则判别函数的系数是下面的SPSS输 的投影 。 这两个典则判别函数的系数是下面的 输 出得到的: 出得到的:
Disc.txt例子 例子
• 根据这两个函数,从任何一个观测值(每个观测值 根据这两个函数,从任何一个观测值( 都有7个变量值 都可以算出两个数。 个变量值) 都有 个变量值 ) 都可以算出两个数 。 把这两个数 目当成该观测值的坐标, 这样数据中的150个观测 目当成该观测值的坐标 , 这样数据中的 个观测 值就是二维平面上的150个点 。 它们的点图在下面 个点。 值就是二维平面上的 个点 图中。 图中。