信号与系统实验报告实验一 信号与系统的时域分析

合集下载

信号与系统实验

信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。

2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。

二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。

)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。

滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。

通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。

2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。

系统的线性表现在可加性与齐次性上。

齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。

四、预习要求1、复习安全操作的知识。

2、学习或复习示波器的使用方法。

3、复习典型周期信号的波形及其性质。

4、复习线性系统、滤波器的性质。

5、撰写预习报告。

五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。

(2)测试信号源2的各种信号参数,并填入表1-2。

3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。

观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。

),并将相应数据计入表1-3中。

4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。

信号与系统测试报告

信号与系统测试报告

信号与系统测试报告在进行信号与系统测试时,我们主要关注信号的特性以及系统的响应。

通过测试,我们可以验证系统的性能是否符合设计要求,以及信号是否能够正确地传输和处理。

本次测试旨在评估系统的频率响应、时域响应和稳定性等方面的表现,以确保系统能够准确、稳定地工作。

我们对系统的频率响应进行了测试。

通过输入不同频率的信号,我们可以观察系统对不同频率信号的响应情况。

测试结果显示,系统在特定频率范围内表现良好,能够准确地传输信号并保持稳定。

然而,在高频率下系统的响应有所下降,需要进一步优化以提高高频响应能力。

我们对系统的时域响应进行了测试。

通过输入不同形状的信号,如方波、正弦波等,我们可以观察系统对信号的延迟、失真等情况。

测试结果显示,系统在时域上能够准确地响应输入信号,并且延迟较小,失真程度也较低。

这表明系统具有良好的时域特性,能够满足实际应用中的需求。

我们还对系统的稳定性进行了测试。

通过输入不同幅度的信号,我们可以观察系统的稳定性和抗干扰能力。

测试结果显示,系统在输入信号幅度较小的情况下表现稳定,但在输入信号幅度较大时出现了一定程度的失真。

这提示我们需要进一步优化系统的动态范围,以提高系统的稳定性和抗干扰能力。

综合以上测试结果,我们可以得出结论,系统在频率响应、时域响应和稳定性等方面表现良好,能够满足大多数实际应用的需求。

然而,仍有一些方面需要进一步优化,如提高高频响应能力、优化动态范围等。

通过持续的测试和优化,我们相信系统将能够更好地满足用户的需求,并在实际应用中发挥更大的作用。

总的来说,信号与系统测试是确保系统正常工作的重要环节。

通过不断测试和优化,我们可以提高系统的性能和稳定性,确保系统能够准确、稳定地传输和处理信号。

希望通过本次测试报告的分享,能够帮助更多的人了解信号与系统测试的重要性,促进系统技术的进步和发展。

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。

MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。

下面将介绍MATLAB在连续LTI系统时域分析中的应用。

首先,我们需要了解连续LTI系统的基本概念。

一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。

冲激响应是系统对单位冲激信号的响应。

在MATLAB中,可以使用impulse函数来生成单位冲激信号。

假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。

conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。

例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。

我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。

接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。

最后,得到了输出信号y(t)。

在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。

例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

时域分析实验报告

时域分析实验报告

时域分析实验报告时域分析实验报告引言:时域分析是一种常用的信号处理方法,通过观察信号在时间上的变化,可以得到信号的时域特性。

本实验旨在通过对不同信号进行时域分析,探究信号的频率、幅度和相位等特性,并研究信号在不同系统中的传输和变换过程。

一、实验目的1. 了解时域分析的基本原理和方法;2. 掌握使用示波器进行时域分析的操作技巧;3. 研究不同信号的时域特性,并分析其频率、幅度和相位等参数;4. 分析信号在不同系统中的传输和变换过程。

二、实验仪器和材料1. 示波器2. 信号发生器3. 电阻、电容、电感等元件4. 连接线三、实验步骤1. 将信号发生器输出的正弦信号连接到示波器的输入端,调节信号发生器的频率和幅度;2. 使用示波器观察信号的波形,并记录下波形的周期、幅度和相位等参数;3. 将信号发生器的输出信号经过一个电阻、电容或电感等元件,再连接到示波器的输入端,观察信号在不同系统中的变换过程;4. 根据观察到的波形和参数,分析信号在不同系统中的传输特性和变换规律。

四、实验结果与分析1. 在观察正弦信号的时域波形时,我们可以发现信号的周期与信号发生器的频率有关,频率越高,周期越短;幅度与信号发生器的幅度设置有关,幅度越大,波形的振幅越大;相位则反映了信号的起始相位,可以通过示波器上的相位测量功能进行测量。

2. 当信号经过电阻、电容或电感等元件时,信号的波形和参数会发生变化。

例如,当信号经过电阻时,波形会变得衰减,幅度减小;当信号经过电容时,波形会发生相位移动,相位会发生改变;当信号经过电感时,波形会发生振荡,频率会发生改变。

3. 通过对不同系统中信号的观察和分析,我们可以得出不同系统对信号的影响规律。

例如,电阻对信号的影响主要体现在幅度的衰减上,电容和电感对信号的影响主要体现在相位和频率上。

这些规律对于电路设计和信号处理具有重要意义。

五、实验总结通过本次实验,我们深入了解了时域分析的原理和方法,并通过实际操作掌握了使用示波器进行时域分析的技巧。

信号与系统实验报告实验一 信号与系统的时域分析

信号与系统实验报告实验一 信号与系统的时域分析

实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MA TLAB求解LTI 系统响应,绘制相应曲线。

基本要求:掌握用MA TLAB描述连续时间信号和离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。

一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。

在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。

在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令一实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令tem()和plot()。

实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。

其基本原理分别如下:对一个模拟信号某(t)进行采样离散化某(n),为了不失真地从采样信号某(n)中恢复原始信号某(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2倍。

一个离散时间系统,输入信号为某(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[某(n)]。

(1)线性时不变(LTI)系统的输入输出关系可通过h(n)表示:y(n)=某(n)某h(n)=式中某表示卷积运算。

(2)LTI系统的实现可物理实现的线性时不变系统是稳定的、因果的。

这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:h(n)0,n0;nh(n)0在MATLAB语言中采用conv实现卷积运算,即:Y=conv(某,h),它默认从n=0开始。

常系数差分方程可以描述一个LTI系统,通过它可以获得系统的结构,也可以求信号的瞬态解。

利用MATLAB 自带的filter(),可以代替手工迭代运算求解系统的差分方程,求解的过程类似于对输入信号进行滤波处理。

三、实验内容1、试画出如下序列的波形(1)某(n)3(n3)(n2)2(n1)4(n1)2(n2)3(n3)(2)某(n)0.5R10(n)解:用MATLAB描述波形1(1)某=[3120-42-3];%矩阵输入某n=-3:1:3;%输入自变量n,以间隔为1从-3到3变化n实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令tem(n,某);%tem()函数绘制火柴杆图,注意n,某元素个数必须相等某label('n');%横坐标显示nylabal('某(n)');%纵坐标显示某(n)grid;%绘制网格1(2)n=0:9;某=0.5.^n;tem(n,某);某label('n');ylabel('某(n)');gri实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令2、用MATLAB计算序列{-201–13}和序列{120-1}的离散卷积,即计算某(n)2(n)(n2)(n3)3(n4)与h(n)(n)2(n1)(n3)解:用MATLAB描述波形。

信号实验报告 2

信号实验报告 2

信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。

二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验

信号与系统实验

实验一信号的时域描述一、实验目的1.学习利用Matlab工程软件实现信号的描述2.观察和掌握各种常用信号的波形3.通过仿真实验对连续和离散信号间的关系做深一步的理解二、原理说明在信号与系统课程中,对信号的时域分析一个重要的内容就是对信号进行描述,信号的数学描述和波形描述是实际中对信号进行分析经常要做的工作,对于简单的信号我们很容易可以得到它的这两种描述方法,但对于一些复杂或未知的信号,我们就必须借助于一定的工具对其进行分析。

三、预习要求1.常用信号的波形及数学描述2.奇异信号的定义四、内容及步骤几种常见信号的图形描述参考程序如下:clear, %清屏t0=0;tf=5;dt=0.005;t1=1.5;t=[t0:dt:tf]; %定义信号时间范围t=[t0:dt:tf]; st=length(t);n1=floor((t1-t0)/dt);%确定信号出现时刻x1=zeros(1,st); %定义信号x1并作出信号波形x1(n1)=1/dt;subplot(2,2,1),stairs(t,x1)axis([0,5,0,2/dt])x2=[zeros(1,n1-100),ones(1,st-n1+100)]; %定义信号x2并作出波形图subplot(2,2,3),stairs(t,x2)axis([0,5,0,1.1])t2=[-5:0.005:5]; %确定信号x3及x4及它们对应的时间范围x3=pi*sinc(t2);x4=exp(-t2);subplot(2,2,2),plot(t2,x3) %作图subplot(2,2,4),plot(t2,x4)1.输入以上程序,观察信号输出波形,写出各信号的表达式1.读懂程序,改变程序中信号的时间参数,观察信号波形的变化2.自己定义几种常见信号,编写程序,画出信号波形五、仪器设备计算机一台Matlab软件一套六、报告要求记录各输出波形,并说明所使用主要函数的功能及调用格式实验二信号的分解及合成一、实验目的1.学习利用Matlab工程软件实现信号的分解及合成2.通过仿真实验对信号的分解及合成有进一步的认识3.观察信号分解过程中的吉布斯现象二、原理说明连续时间周期信号当满足狄里赫利条件时,可以分解为正弦信号叠加的形式,即它是由不同的频率分量所合成;不同分量在原信号中所占比重不同,这也就是周期信号频谱的概念。

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告课程名称:信号与系统实验实验项目名称:连续信号的时域描述与运算专业班级:姓名:学号:完成时间:年月日一、实验目的1.通过绘制典型信号的波形,了解这些信号的基本特征。

2.通过绘制信号运算结果的波形,了解这些信号运算对信号所起的作用。

二、实验原理1.基于MATLAB的信号描述方法如果一个信号在连续时间范围内(除有限个间断点外)有定义,则称该信号为连续时间信号,简称为连续信号。

从严格意义上讲, MATLAB数值计算的方法并不能处理连续信号,但是可利用连续信号在等时间间隔点的采样值来近似表示连续信号,即当采样间隔足够小时,这些离散采样值能够被MATLAB处理,并且能较好地近似表示连续信号。

(1)向量表示法对于连续时间信号f(t),可以定义两个行向量f和t来表示,其中向量t是形如t=t1:Δt:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为终止时间,Δt为时间间隔;向量f为连续时间信号f(t)在向量t所定义的时间点上的采样值。

(2)符号运算表示法如果信号可以用一个符号表达式来表示,则可用ezplot命令绘制出信号的波形。

2.连续信号的基本运算(1)信号的相加与相乘信号的已知信号f1(t)、f2(t),信号相加和相乘记为f(t)=f1(t)+f2(t)f(t)=f1(t)·f2(t)(2)微分与积分对于连续时间信号,其微分运算是用diff函数来完成的。

其语句格式为:diff(function,’variable’,n);其中function表示需要进行求导运算的信号,或者被赋值的符号表达式;variable为求导运算的独立变量;n为求导的阶数,默认值为求一阶导数。

连续信号的积分运算用int函数来完成。

其语句格式为:int(function,’variable’,a,b);其中function表示被积信号,或者被赋值的符号表达式;variable为积分变量;a,b为积分上、下限,a和b省略时求不定积分。

实验一 时域离散信号与系统分析(实验报告)-2015

实验一 时域离散信号与系统分析(实验报告)-2015

《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。

2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。

3、学会离散信号及系统响应的频域分析。

4、学会时域离散信号的MATLAB 编程和绘图。

5、学会利用MATLAB 进行时域离散系统的频率特性分析。

二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。

(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。

4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。

ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。

4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。

其中位移点数n1在起点n0和终点n2之间任意可选。

自选3个入口参数产生杆图。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

信号与系统matlab实验线性时不变系统的时域分析(最新整理)

信号与系统matlab实验线性时不变系统的时域分析(最新整理)

答案
1. x n hn u n u n 4 ;
nx=0:9;x=ones(1,length(nx)); nh=0:4;h=ones(1,length(nh)); y=conv(x,h); % 下限=下限1+下限2 ny_min=min(nx)+min(nh); % 上限=上限1+上限2 ny_max=max(nx)+max(nh); ny=ny_min:ny_max; subplot(3,1,1);stem(nx,x); xlabel('n');ylabel('x(n)');axis([ny_min ny_max 0 max(x)]); subplot(3,1,2);stem(nh,h); xlabel('n');ylabel('h(n)');axis([ny_min ny_max 0 max(h)]); subplot(3,1,3);stem(ny,y); xlabel('n');ylabel('x(n)*h(n)');axis([ny_min ny_max 0 max(y)]);
到连续卷积的数值近似,具体算法如下:
y=conv(x,h)*dt
% dt 为近似矩形脉冲的宽度即抽样间隔
例 2-2:采用不同的抽样间隔 值,用分段常数函数近似 x t u t u t 1 与
h t sin t u t u t π 的 卷 积 , 并 与 卷 积 的 解 析 表 达 式
x(t)
h(t)
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t

信号与系统(连续系统的时域分析)实验报告1

信号与系统(连续系统的时域分析)实验报告1

信号与系统(连续系统的时域分析)实验报告1本次实验内容是关于连续信号和系统的时域分析,我将按照实验操作流程、实验结果、实验分析和实验总结四个方面进行本次实验报告。

实验操作流程:1、根据实验指导书,找到实验需要使用的硬件设备和软件平台。

3、进行连续信号的产生和输入,根据实验指导书中的要求,选择不同的信号类型,改变其频率、振幅、相位等参数。

5、通过实验软件平台对产生的信号和系统进行采样和采集,并进行大量的数据处理和分析。

6、根据实验结论和实验指导书中的要求,编写实验报告。

实验结果:在本次实验中,我成功产生了三种不同类型的连续信号,分别是正弦信号、方波信号和三角波信号,同时我也成功搭建了两种不同类型的连续系统,分别是低通滤波器和高通滤波器,随着不同的输入信号对系统的测试,产生了一系列不同的实验结果。

主要的实验结果如下:首先是正弦信号的生成和输入,通过改变其频率和幅值,观察到了信号的变化过程及其在系统中被处理的效果,在低通滤波器中,信号的频率被截止,经过系统后的信号相比于输入信号更加平滑;在高通滤波器中,信号的低频部分被丢弃,经过系统后的信号比输入信号更加尖锐。

其次是方波信号的生成和输入,由于方波信号富含基频及其谐波,我们可以在低通滤波器中观察到对基频和谐波的处理效果,在低通滤波器中,我们可以观察到基频及其谐波被通过,而高于截止频率的谐波则被丢掉;在高通滤波器中,方波信号的低频部分被丢掉,越高的谐波被通过,产生重音类的声音。

最后是三角波信号的生成和输入,我们发现三角波信号的频率变化相对于方波信号更加平缓,变化更加连续,因此在经过低通滤波器进行处理的时候,我们可以观察到频率更加平滑,而高通滤波器将产生一个类似于单谐波的效果,快速上升和下降的部分被丢掉,产生一个非常平滑的信号。

实验分析:通过本次实验,我们了解了连续信号和系统的时域分析方法,对不同类型的信号和系统有了更深入的了解,同时也提升了我们对实验平台的掌握能力和实际操作的经验。

系统的时域实验报告

系统的时域实验报告

系统的时域实验报告系统的时域实验报告一、引言时域实验是系统动态特性研究中的重要手段之一。

通过对系统的输入和输出信号进行时域分析,可以揭示系统的动态响应规律,并对系统进行性能评估和优化设计。

本实验旨在通过对某一系统的时域实验研究,探索系统的动态特性和性能指标。

二、实验目的1. 了解时域分析的基本原理和方法;2. 掌握系统的时域响应测量技术;3. 研究系统的动态特性和性能指标。

三、实验装置与方法1. 实验装置:系统输入信号发生器、系统输出信号采集器、计算机数据处理软件等;2. 实验方法:根据实验要求,设置系统的输入信号,采集系统的输出信号,并通过计算机软件进行数据处理和分析。

四、实验步骤1. 系统建模:根据实际情况,对系统进行数学建模,得到系统的传递函数或状态空间模型;2. 实验准备:将系统输入信号发生器与系统输出信号采集器连接,设置合适的参数;3. 实验测量:根据实验要求,设置不同的输入信号,采集系统的输出信号;4. 数据处理:将采集到的数据导入计算机软件中,进行时域分析和性能指标计算;5. 结果分析:根据实验结果,分析系统的动态特性和性能指标,得出结论。

五、实验结果与分析根据实验所得数据,通过计算机软件进行时域分析和性能指标计算,得到系统的动态响应曲线和相关参数。

通过对曲线的观察和分析,可以得出以下结论:1. 系统的时间常数:通过观察系统的动态响应曲线,可以确定系统的时间常数,即系统从初始状态到达稳定状态所需的时间。

时间常数越小,系统的响应速度越快。

2. 系统的超调量:超调量是指系统响应的最大偏离量与稳态值之间的差值。

通过观察系统的动态响应曲线,可以测量出系统的超调量。

超调量越小,系统的稳定性越好。

3. 系统的峰值时间:峰值时间是指系统响应曲线达到最大值所需的时间。

通过观察系统的动态响应曲线,可以测量出系统的峰值时间。

峰值时间越小,系统的响应速度越快。

4. 系统的上升时间:上升时间是指系统响应曲线从初始状态到达稳定状态所需的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。

掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。

二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。

一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。

在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。

在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。

但就是,还有一些信号的独立时间变量就是离散变化的,这种信号称为离散时间信号。

前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量就是不连续的,因此日收盘指数就是离散时间信号。

而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。

系统通常就是由若干部件或单元组成的一个整体(Entity)。

系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)与离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)与非因果系统(Noncausal system)、稳定系统(Stable system)与不稳定系统(Unstable system)、线性系统(Linear system)与非线性系统(Nonlinear system)、时变系统(Time-variant system)与时不变系统(Time-invariant system)等等。

然而,在信号与系统与数字信号处理中,我们所分析的系统只就是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就就是线性性与时不变性,通常称为线性时不变(LTI)系统。

1、信号的时域表示方法1、1将信号表示成独立时间变量的函数例如x(t)=sin(ωt) 与x[n]=n(0、5)n u[n]分别表示一个连续时间信号与一个离散时间信号。

在MA TLAB中有许多内部函数,可以直接完成信号的这种表达,例如:sin():正弦信号cos():余弦信号exp():指数信号1、2用信号的波形图来描述信号用函数曲线表示一个信号,图1、1就就是一个连续时间信号与一个离散时间信号的波形图。

图1、1 连续时间信号与离散时间信号的波形图1、3将信号用一个数据序列来表示对于离散时间信号,还可以表示成一个数的序列,例如:x[n]={、、、、, 0、1, 1、1, -1、2, 0, 1、3, …、}↑n=0在《信号与系统》与《数字信号处理》课程中,上述三种信号的描述方法就是经常要使用的。

2 用MATLAB仿真连续时间信号与离散时间信号在MATLAB中,无论就是连续时间信号还就是离散时间信号,MATLAB都就是用一个数字序列来表示信号,这个数字序列在MATLAB 中叫做向量(vector)。

通常的情况下,需要与时间变量相对应。

如前所述,MA TLAB 有很多内部数学函数可以用来产生这样的数字序列,例如sin()、cos()、exp()等函数可以直接产生一个按照正弦、余弦或指数规律变化的数字序列。

2、1连续时间信号的仿真程序Program1_1就是用MATLAB 对一个正弦信号进行仿真的程序,请仔细阅读该程序,并在计算机上运行,观察所得图形。

% Program1_1% This program is used to generate a sinusoidal signal and draw its plotclear, % Clear all variablesclose all, % Close all figure windowsdt = 0、01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')常用的图形控制函数axis([xmin,xmax,ymin,ymax]):图型显示区域控制函数,其中xmin 为横轴的显示起点,xmax 为横轴的显示终点,ymin 为纵轴的显示起点,ymax 为纵轴的显示终点。

有时,为了使图形具有可读性,需要在所绘制的图形中,加上一些网格线来反映信号的幅度大小。

MATLAB 中的grid on/grid off 可以实现在您的图形中加网格线。

grid on:在图形中加网格线。

grid off:取消图形中的网格线。

x = input(‘Type in signal x(t) in closed form:’)在《信号与系统》课程中,单位阶跃信号u(t) 与单位冲激信号δ(t) 就是二个非常有用的信号。

它们的定义如下0,0)(1)(≠==⎰∞-∞=t t dt t t δδ 1、1(a) ⎩⎨⎧≤>=0,00,1)(t t t u 1、1(b)这里分别给出相应的简单的产生单位冲激信号与单位阶跃信号的扩展函数。

产生单位冲激信号的扩展函数为:function y = delta(t)dt = 0、01;y = (u(t)-u(t-dt))/dt;产生单位阶跃信号的扩展函数为:% Unit step functionfunction y = u(t)y = (t>=0); % y = 1 for t > 0, else y = 0请将这二个MATLAB函数分别以delta 与u为文件名保存在work文件夹中,以后,就可以像教材中的方法使用单位冲激信号δ(t) 与单位阶跃信号u(t)。

2、2离散时间信号的仿真程序Program1_2用来产生离散时间信号x[n]=sin(0、2πn)。

% Program1_2% This program is used to generate a discrete-time sinusoidal signal and draw its plotclear, % Clear all variablesclose all, % Close all figure windowsn = -10:10; % Specify the interval of timex = sin(0、2*pi*n); % Generate the signalstem (n,x) % Open a figure window and draw the plot of x[n]title ('Sinusoidal signal x[n]')xlabel ('Time index n')请仔细阅读该程序,比较程序Program1_1与Program1_2中的不同之处,以便自己编程时能够正确使用这种方法方针连续时间信号与离散时间信号。

程序Program1_3用来仿真下面形式的离散时间信号:x[n]={、、、、, 0、1, 1、1, -1、2, 0, 1、3, …、}↑n=0% Program1_3% This program is used to generate a discrete-time sequence% and draw its plotclear, % Clear all variablesclose all, % Close all figure windowsn = -5:5; % Specify the interval of time, the number of points of n is 11、x = [0, 0, 0, 0, 0、1, 1、1, -1、2, 0, 1、3, 0, 0]; % Generate the signalstem(n,x,'、') % Open a figure window and draw the plot of x[n]grid on,title ('A discrete-time sequence x[n]')xlabel ('Time index n')由于在程序的stem(n,x,'、') 语句中加有'、'选项,因此绘制的图形中每根棒条线的顶端就是一个实心点。

如果需要在序列的前后补较多的零的话,可以利用函数zeros(),其语法为:zeros(1, N):圆括号中的1与N表示该函数将产生一个一行N列的矩阵,矩阵中的所有元素均为零。

利用这个矩阵与序列x[n]进行组合,从而得到一个长度与n相等的向量。

例如,当x[n]={ 0、1, 1、1, -1、2, 0, 1、3} 时,为了得到程序Program1_3中的序列,↑n=0可以用这个MATLAB语句x = [zeros(1,4) x zeros(1, 2)] 来实现。

相关文档
最新文档