高等数学(A)考试大纲(2010年版)

合集下载

《高等数学A》考试大纲

《高等数学A》考试大纲

《高等数学A 》考试大纲总 要 求考生应按本大纲的要求,了解或理解高等数学中函数、极限和连续、一元函数微分学及其应用、一元函数积分学及其应用、向量代数与空间解析几何、多元函数微积分学及其应用、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。

本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。

内 容一、函数、极限和连续(一)函数1. 知识范围(1) 函数的概念:函数的定义、函数的表示法、分段函数 (2) 函数的简单性质:单调性、奇偶性、有界性、周期性 (3) 反函数:反函数的定义、反函数的图像 (4) 函数的四则运算与复合运算(5) 基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数(6) 初等函数 2. 考试要求(1) 理解函数的概念,会求函数的定义域、表达式及函数值,求分段函数的定义域、函数值,并会作出简单的分段函数图像。

(2) 理解和熟练掌握函数的单调性、奇偶性、有界性和周期性及判断所给函数的类别。

(3) 理解函数()x f y =与其反函数()x fy 1-=之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)理解和熟练掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)熟练掌握基本初等函数的概念。

(6) 理解初等函数的概念。

(7)掌握建立简单实际问题的函数关系式。

(二)极限1. 知识范围(1) 数列极限的概念:数列、数列极限的定义(2) 数列极限的性质:唯一性、有界性、四则运算定理、夹逼定理、单调有界数烈、极限存在定理(3) 函数极限的概念:函数在一点处极限的定义、左右极限及其与极限的关系、x 趋于无穷(-∞→+∞→∞→x x x ,,)时函数的极限、函数极限的几何意义(4) 函数极限的定理:唯一性定理、夹逼定理、四则运算定理(5) 无穷小量和无穷大量:无穷小量和无穷大量的定义、无穷小量和无穷大量的关系、无穷小量和无穷大量的性质、两个无穷小量阶的比较(6) 两个重要极限:1sin lim0=→x x x 、e x xx =⎪⎭⎫⎝⎛+∞→11lim 2. 考试要求(1) 理解极限的概念,了解极限的ε-N 、ε-δ定义,能根据极限概念分析函数的变化趋势。

2010年研究生数学考试大纲--数学一

2010年研究生数学考试大纲--数学一

年硕士研究生入学统一考试数学考试大纲数学一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为分,考试时间为分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 %线性代数概率论与数理统计 %四、试卷题型结构试卷题型结构为:单选题 小题,每题分,共分填空题 小题,每题分,共分解答题(包括证明题) 小题,共分高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系..了解函数的有界性、单调性、周期性和奇偶性..理解复合函数及分段函数的概念,了解反函数及隐函数的概念..掌握基本初等函数的性质及其图形,了解初等函数的概念..理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. .掌握极限的性质及四则运算法则..掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. .理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. .理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型..了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(’)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. .掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分..了解高阶导数的概念,会求简单函数的高阶导数..会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数..理解并会用罗尔()定理、拉格朗日()中值定理和泰勒()定理,了解并会用柯西()中值定理. .掌握用洛必达法则求未定式极限的方法..理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用..会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。

《高等数学A》考试大纲

《高等数学A》考试大纲

《高等数学A》考试大纲一、考试目的《高等数学 A》考试旨在考查学生对高等数学的基本概念、基本理论和基本方法的掌握程度,以及运用所学知识解决问题的能力。

通过考试,检验学生的数学素养和逻辑思维能力,为后续课程的学习和未来的科学研究、工程实践打下坚实的数学基础。

二、考试内容(一)函数、极限与连续1、理解函数的概念,掌握函数的表示法,会求函数的定义域、值域。

2、掌握函数的单调性、奇偶性、周期性和有界性。

3、理解极限的概念,掌握极限的四则运算法则和两个重要极限。

4、理解无穷小量和无穷大量的概念,掌握无穷小量的比较方法。

5、掌握函数连续的概念,会判断函数的连续性和间断点的类型。

(二)一元函数微分学1、理解导数的概念,掌握导数的几何意义和物理意义,会求平面曲线的切线方程和法线方程。

2、掌握基本初等函数的导数公式,导数的四则运算法则和复合函数的求导法则。

3、掌握隐函数和参数方程所确定的函数的导数。

4、了解高阶导数的概念,会求函数的二阶导数。

5、理解函数的微分概念,掌握微分的运算法则和一阶微分形式不变性。

6、掌握罗尔定理、拉格朗日中值定理和柯西中值定理,会用中值定理证明相关问题。

7、掌握利用导数判断函数的单调性、极值、凹凸性和拐点的方法,会求函数的最大值和最小值。

(三)一元函数积分学1、理解原函数和不定积分的概念,掌握不定积分的基本公式和运算法则。

2、掌握换元积分法和分部积分法。

3、理解定积分的概念,掌握定积分的性质和几何意义。

4、掌握牛顿莱布尼茨公式,会计算定积分。

5、掌握定积分的换元积分法和分部积分法。

6、了解反常积分的概念,会计算反常积分。

7、掌握利用定积分求平面图形的面积、旋转体的体积和曲线的弧长。

(四)向量代数与空间解析几何1、理解向量的概念,掌握向量的线性运算、数量积和向量积。

2、掌握空间直角坐标系,会求空间两点间的距离。

3、掌握平面和直线的方程,会求平面与平面、平面与直线、直线与直线的夹角。

4、掌握常见的二次曲面的方程和图形。

《高等数学》目录与2010数三大纲对照的重点

《高等数学》目录与2010数三大纲对照的重点

《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。

要大量做题。

☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题。

要大量做题。

●─大纲中没有明确要求,但对做题和以后的学习有帮助。

要能看懂,了解其思路和结论。

▲─超出大纲要求。

第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。

2010普通高考数学考纲.pptx

2010普通高考数学考纲.pptx

5 创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的 数学 知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的"观察、猜测、抽象、概括、证明",是发现问题和解决 问 题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
考试内容: 向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平 面两点间的距离.平移.
考试要求: 1 理解向量的概念,掌握向量的几何表示,了解共线向量的概念. 2 掌握向量的加法和减法. 3 掌握实数与向量的积,理解两个向量共线的充要条件. 4 了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. 5 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问 题, 掌握向量垂直的条件. 6掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式. 2. 集合、简易逻辑
2 对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识 想结 合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科的整体意义和思想价值立意,注重 通 性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.
3 对数学能力的考查,强调"以能力立意",就是以数学知识为载体,从问题入手,把握学科的整体意义, 用统 一的数学观点组织材料.侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识 迁移 到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

2010年高考考试大纲(课程标准实验版):数学(理)

2010年高考考试大纲(课程标准实验版):数学(理)

2010年高考考试大纲(课程标准实验版):数学(理)2010年高考考试大纲(课程标准实验版):数学(理)Ⅰ考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容。

数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养.数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对中学的基础知识、基本技能的掌握程度,要考查对数学思想方法和数学本质的理解水平,要考查进入高等学校继续学习的潜能。

一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。

各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次。

(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。

(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

2010全国卷数学(大纲版)

2010全国卷数学(大纲版)

D.54 种
故选:B. 【点评】本试题主要考查三角函数图象的平移.平移都是对单个的 x 来说的.
第 4页(共 12页)
8.(5 分)△ABC 中,点 D 在边 AB 上,CD 平分∠ACB,若 = , = ,| |=1,| |=2,则 =
()
A. +
B. +
C. +
D. +
【考点】9B:向量加减混合运算.菁优网版权所有
【考点】7C:简单线性规划.菁优网版权所有 【专题】31:数形结合. 【分析】先根据约束条件画出可行域,设 z=2x+y,再利用 z 的几何意义求最值,只需求出直线 z=2x+y
过可行域内的点 B 时,从而得到 m 值即可. 【解答】解:作出可行域,作出目标函数线, 可得直线与 y=x 与 3x+2y=5 的交点为最优解点, ∴即为 B(1,1),当 x=1,y=1 时 zmax=3. 故选:C.
2010 年全国统一高考数学试卷(理科)(大纲版Ⅱ)
一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1.(5 分)复数( )2=( )
A.﹣3﹣4i 2.(5 分)函数
B.﹣3+4i
C.3﹣4i 的反函数是( )
D.3+4i
A.y=e2x﹣1﹣1(x>0) C.y=e2x﹣1﹣1(x∈R)
A.向左平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向右平移 个长度单位
【考点】HJ:函数 y=Asin(ωx+φ)的图象变换.菁优网版权所有 【专题】1:常规题型. 【分析】先将 2 提出来,再由左加右减的原则进行平移即可. 【解答】解:y=sin(2x+ )=sin2(x+ ),y=sin(2x﹣ )=sin2(x﹣ ),

2010年研究生数学考试大纲--数学一

2010年研究生数学考试大纲--数学一

2010年硕士研究生入学统一考试数学考试大纲--数学一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。

2010年高考理科数学大纲-1

2010年高考理科数学大纲-1

2010年高考理科数学大纲/理科数学考试大纲-1Ⅰ。

考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ。

考试要求《普通高等学校招生全国统一考试大纲(理科·2010年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修Ⅱ的教学内容,作为理工农医类高考数学科试题的命题范围。

数学科的考试,按照"考查基础知识的同时,注重考查能力"的原则,确立以能力立意命题的指导思想,将知识、能力与素质的考查融为一体,全面检测考生的数学素养。

数学科考试要发挥数学作为基础学科的作用,既考查中学数学的知识和方法,又考查考生进入高校继续学习的潜能。

一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法。

对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次。

(1)了解:要求对所列知识的含义及其背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它。

(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。

(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。

2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。

《高等数学》A学位考试大纲(工科)

《高等数学》A学位考试大纲(工科)

成人高等教育《高等数学》学位课程考试大纲成人工学各专业(本科)一、课程的性质和任务高等数学课程是成人高等教育工学本科各专业的一门必修的重要基础理论课。

它为学生学习后继课程,从事工程技术和科学研究工作,以及进一步获得近代科学技术知识奠定必要的数学基础。

通过本课程的学习,应使学生掌握高等数学的基本概念、基本理论和基本运算技能。

还要通过各个教学环节,逐步培养学生的抽象概括能力、逻辑推理能力、自学能力、运算能力及综合运用所学知识分析问题和解决问题的能力。

二、教学基本要求(一)函数、极限、连续1、理解函数的概念。

2、了解函数的有界性、单调性、奇偶性和周期性。

3、了解反函数的概念。

理解复合函数的概念。

4、熟悉基本初等函数的性质及其图形。

5、会建立简单实际问题中的函数关系。

6、了解极限的概念(对于给出ε求N、X或δ不作要求)。

7、了解左、右极限的概念。

掌握极限存在的必要充分条件。

8、知道极限的一些基本性质,掌握极限的四则运算法则。

9、掌握两个极限存在准则(单调有界准则和夹逼准则)和两个重要极限。

10、了解无穷小、无穷大的概念及其相互关系。

掌握无穷小的性质和无穷小的比较。

会用等价无穷小代换求极限。

11、理解函数在一点连续的概念。

了解间断点的概念。

会判断分段函数在分段点处的连续性。

12、掌握初等函数的连续性及在闭区间上连续函数的性质(最大值、最小值定理和介值定理)。

(二)一元函数微分学1、解导数和微分的概念。

了解导数和微分的几何意义,掌握函数的可导性与连续性之间的关系。

2、掌握导数和微分的运算法则及导数的基本公式。

掌握微分形式不变性。

3、了解高阶导数的概念。

掌握求初等函数的一阶、二阶导数的方法。

会求简单函数的n阶导数。

4、会求隐函数的一阶、二阶导数及由参数方程所确定的函数的一阶、二阶导数。

5、理解罗尔(Rolle)定理、拉格朗日(Lagrange)定理、柯西(CauChy)定理和泰勒(Taylor)定理。

会用中值定理证明有关的等式和不等式。

Orhsmc2010考研数学一大纲Word版

Orhsmc2010考研数学一大纲Word版

七夕,古今诗人惯咏星月与悲情。

吾生虽晚,世态炎凉却已看透矣。

情也成空,且作“挥手袖底风”罢。

是夜,窗外风雨如晦,吾独坐陋室,听一曲《尘缘》,合成诗韵一首,觉放诸古今,亦独有风韵也。

乃书于纸上。

毕而卧。

凄然入梦。

乙酉年七月初七。

-----啸之记。

2010年硕士研究生入学统一考试数学考试大纲--数学一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。

2010年高考全国数学 文 考纲 课程标准实验版

2010年高考全国数学 文 考纲 课程标准实验版

2010年高考全国数学文考纲课程标准实验版2010年高考考试大纲(课程标准实验版):数学(文)Ⅰ考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。

高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容.数学科的考试,按照"考查基础知识的同时,注重考查能力"的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养.数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对中学的基础知识、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考查进入高等学校继续学习的潜能.一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称新课程标准)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.(3)掌握:要求对所列的知识内容能够推导证明,能够利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换.对图形的主要包括有图想图和无图想图两种,是空间想像能力高层次的标志.(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互了解的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某一观点或作出某项结论.抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程.推理既包括演绎推理,也包括合情推理.论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.(6)应用意识:能综合运用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的"观察、猜测、抽象、概括、证明",是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.4.考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在了解,包括各部分知识的纵向了解和横向了解,要善于从本质上抓住这些了解,进而通过分类、梳理、综合,构建数学试卷的结构框架.(1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在了解和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度.(3)对数学能力的考查,强调"以能力立意",就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化;对运算求解能力的考查主要是算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是运用概率统计的基本方法和思想解决实际问题的能力。

Ccodnph2010数学考研大纲-数一

Ccodnph2010数学考研大纲-数一

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。

2010年考研数学大纲内容数一考试科目高等数学、线性代数、概率论与数理统计试卷结构一、试卷满分及答题时间试卷满分为150分,考试时间为180分钟二、内容比例高等数学约56%线性代数约22%概率论与数理统计约22%三、题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分试卷结构的变化2010年大纲与2009年大纲比较1.内容比例无变化2.题型结构无变化高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →=, 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.本章考查焦点1.极限的计算及数列收敛性的判断2.无穷小的性质二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。

heteax2010考研数学一大纲

heteax2010考研数学一大纲

-+懒惰是很奇怪的东西,它使你以为那是安逸,是休息,是福气;但实际上它所给你的是无聊,是倦怠,是消沉;它剥夺你对前途的希望,割断你和别人之间的友情,使你心胸日渐狭窄,对人生也越来越怀疑。

—罗兰2010年硕士研究生入学统一考试数学考试大纲--数学一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高 等 数 学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x xx →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(A)考试大纲(2010年版)试点高校网络教育部分公共基础课全国统一考试,旨在遵循网络教育应用型人才的培养目标,针对从业人员继续教育的特点,重在检验学生掌握基础知识的水平及应用能力,以全面提高现代远程高等学历教育的教学质量。

高等数学课程是现代远程教育试点高校网络教育实行全国统一考试的部分公共基础课之一。

该课程的考试是一种基础水平检测性考试,考试大纲的内容是按照这一要求设计的,课程教学应按照课程教学大纲的要求进行。

本考试合格者应达到与成人高等教育本科相应的高等数学课程要求的基本水平。

考试对象教育部批准的现代远程教育试点高校网络教育学院和中央广播电视大学“人才培养模式改革和开放教育试点”项目中自2004年3月1日(含3月1日)以后入学的本科层次学历教育的学生,应参加网络教育部分公共基础课全国统一考试。

高等数学(A)考试大纲适用于数学类专业的高中起点本科学生。

考试目标高等数学是高等院校数学类专业学生必修的基础课程之一,是培养学生运算能力、抽象概括问题的能力、逻辑推理能力、综合运用所学知识分析和解决问题能力的课程,是学生学习后继课程和进一步获得近代科学技术知识的必备基础。

本课程的考试目标是考查学生的高等数学的基本概念、基本理论、基本方法和常用的运算技能,并以此检测学生分析问题和解决问题的能力。

本大纲对内容的要求由低到高。

对概念和理论分为“了解、理解”两个层次,对方法和运算分为“会、掌握、熟练掌握”三个层次。

考试内容与要求一、函数、极限、连续(一)函数1.考试内容函数的概念及表示法,分段函数,反函数,复合函数,隐函数,由参数方程所确定的函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。

2.考试要求(1)理解函数的概念。

了解函数的表示法,会求函数的定义域。

(2)理解函数的有界性、奇偶性、周期性、单调性。

(3)理解分段函数、反函数、复合函数、隐函数和由参数方程所确定的函数的概念。

(4)掌握基本初等函数的性质和图像,理解初等函数的概念。

(二)极限1.考试内容数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及等价无穷小,极限的四则运算,两个重要极限:2.考试要求(1)理解数列极限和函数极限(含左极限、右极限)的概念。

了解函数在一点处极限存在的充分必要条件。

(2)会求数列极限。

会求函数的极限。

(3)掌握极限的性质和四则运算法则。

(4)了解无穷小和无穷大的概念、无穷小的性质、无穷小和无穷大的关系、等价无穷小的概念,会用等价无穷小求极限。

(5)掌握利用两个重要极限求极限的方法。

(三)连续1.考试内容函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(有界性定理,最值定理和介值定理)。

2.考试要求(1)理解函数连续性的概念(含左连续、右连续)。

会求函数的间断点。

(2)掌握连续函数的四则运算法则。

(3)理解复合函数、反函数和初等函数的连续性。

(4)掌握闭区间上连续函数的性质(有界性定理,最值定理和介值定理)。

二、一元函数微分学(一)导数与微分1.考试内容导数与微分的定义,左导数与右导数,导数的几何意义,函数的可导性、可微性与连续性的关系,导数与微分的四则运算,导数与微分的基本公式,复合函数、隐函数和由参数方程所确定的函数的导数,高阶导数。

2.考试要求(1)理解导数的概念及其几何意义。

了解左导数与右导数的概念。

(2)理解函数可导性、可微性与连续性的关系。

(3)会求平面曲线上一点处的切线方程和法线方程。

(4)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法。

(5)会求隐函数和由参数方程所确定的函数的导数。

(6)了解高阶导数的概念。

会求简单函数的高阶导数。

(7)了解微分的概念,会求函数的微分。

(二)微分中值定理及导数的应用1.考试内容微分中值定理(罗尔定理、拉格朗日中值定理),洛必达法则,函数单调性的判别,函数的极值和最值,函数图形的凹凸性、拐点。

2.考试要求(1)了解罗尔定理、拉格朗日中值定理。

(2)熟练掌握用洛必达法则求“00”、“∞∞”、“0∞ ”、“∞−∞”型未定式极限的方法。

(3)掌握利用导数判断函数单调性的方法。

(4)理解函数极值的概念。

掌握求函数的极值与最值的方法,并会求解简单的应用问题。

(5)会判断平面曲线的凹凸性。

会求平面曲线的拐点。

三、一元函数积分学(一)不定积分1.考试内容原函数与不定积分的概念,不定积分的基本性质,不定积分的基本公式,不定积分的换元积分法与分部积分法。

(1)理解原函数与不定积分的概念。

掌握不定积分的基本性质。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分的第一类换元法,掌握不定积分的第二类换元法(仅限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(二)定积分1.考试内容定积分的概念与基本性质,定积分的几何意义,变上限积分所定义的函数,牛顿-莱布尼茨公式,定积分的换元法与分部积分法,定积分的应用(平面图形的面积、旋转体的体积),广义积分。

2.考试要求(1)理解定积分的概念。

了解定积分的几何意义。

掌握定积分的基本性质。

(2)理解变上限积分所定义的函数,会求其导数。

(3) 熟练掌握牛顿-莱布尼茨公式。

(4)熟练掌握定积分的换元法与分部积分法。

(5)会应用定积分计算在直角坐标系下的平面图形的面积和旋转体的体积。

(6)了解广义积分的概念。

会计算无穷区间上有界函数的广义积。

四、多元函数微积分(一)多元函数微分学1.考试内容多元函数的概念,二元函数的几何意义,二元函数的极限和连续性,二元函数的偏导数,二阶偏导数、全微分,复合函数与隐函数的偏导数,,二元函数的极值。

2.考试要求(1)了解多元函数的概念。

了解二元函数的几何意义。

了解二元函数的极限与连续性的概念。

(2)理解偏导数的概念。

了解全微分的概念。

会求二元函数的一阶、二阶偏导数会求二元函数的全微分。

(3)掌握复合函数一阶偏导数的求法。

(4)会求由方程所确定的隐函数的一阶偏导数。

(5)掌握二元函数极值存在的必要条件,了解二元函数极值存在的充分条件。

会求二元函数的极值。

(二)二重积分1.考试内容二重积分的概念与性质、,二重积分的计算法。

2.考试要求(1)了解二重积分的概念与基本性质、几何意义。

(2)掌握在直角坐标系下二重积分的计算方法。

(3) 会用二重积分计算曲顶柱体的体积。

五、级数(一)数项级数1.考试内容数项级数的概念,级数的收敛与发散,级数的基本性质,几何级数和p-级数。

(1)理解数项级数的概念,理解级数收敛与发散的概念,了解级数的基本性质。

(2)掌握几何级数和p-级数收敛的条件。

(二)幂级数1.考试内容幂级数的概念,幂级数的收敛半径和收敛区间,初等函数的幂级数展开。

2.考试要求(1)了解幂级数的概念.(2)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。

(3)掌握的关于x的幂级数展开,并会用它们将一些简单的函数间接展开成关于x的幂级数。

试卷结构与题型一、试卷分数满分100分。

二、试题类型全部为选择题,在推导和演算的基础上对选项做出选择。

每套试卷为20小题,每小题均为5分,其中“二选一”10道题,“四选一”10道题。

“二选一”对命题做“正确”或“不正确”的选择。

“四选一”在四个备选答案中选出一个符合题目要求的答案,包括对运算结果的选择、对运算过程正确性的判定等多种形式。

三、题型比例“二选一”50%,“四选一”50%。

四、试题难度试题按其难度分为容易题、中等题和较难题,其分值比例约为5∶4∶1。

五、试题内容比例一元函数微积分(含函数与极限)约70%,多元微积分约20%,级数约10%。

考试方式与时间考试方式:闭卷笔试(不准使用计算器)。

考试时间:90分钟。

高等数学A (样卷)试卷说明:考试时间:90分钟。

满分:100分。

一、选择题(二选一)(本大题共10个小题,每小题5分,满分50分)。

二、选择题(四选一)(本大题共10个小题,每小题5分,满分50分)。

一、选择题(二选一)。

对于每小题给出的命题,认为正确请选A ,认为不正确请选B (本大题共10个小题,每小题5分,满分50分)。

1.函数()22,0,32,0,x x x f x x x ⎧+<=⎨+≥⎩ 则()00f =. A .正确 B .不正确2.1x =是函数()311f x x =-的间断点.A .正确B .不正确3.函数()f x 在(),a b 内连续,则()f x 在(),a b 内的每一点处都有极限.A .正确B .不正确4.定积分114300d d x x x x >⎰⎰. A .正确 B .不正确5.()3sin f x x x =-是有界函数.A .正确B .不正确6.极限232lim 323x x x →∞+=+. A .正确 B .不正确7.设函数tan y x =,则微分4d 2d x y x π==.A .正确B .不正确8.设(,)z f x y =在点00(,)x y 处可微分,则(,)z f x y =在点00(,)x y 必定连续.A .正确B .不正确9.不定积分(sin )d cos x x x C '=+⎰.A .正确B .不正确10.级数1n n u ∞=∑收敛,但2121()n n n u u ∞-=+∑未必收敛. A .正确 B .不正确二、选择题(四选一)。

在每小题给出的四个选项中,只有一项符合题目要求,请给出正确选项(本大题共10个小题,每小题5分,满分50分)。

11.由洛必达法则极限2212lim1xx xx→+--121lim2xxx→+= (1) 12lim2x→= (2)上述运算()A.第(1)步正确,第(2)步不正确B.第(1)步正确,第(2)步也正确C.第(1)步不正确,第(2)步正确D.第(1)步不正确,第(2)步也不正确12.设函数()243y x=+,则ddyx=().A.()843x+ B.()443x+ C.()243x+ D.43x+13.设323z x y xy=+,则zx∂=∂().A.2233x y xy+ B.2233x y y+C.3223x y xy+ D.3223x y xy+14.设函数()313f x x x=-,则1x= ( ).A.是()f x的驻点且为极大值点B.是()f x的驻点且为极小值点C.是()f x的驻点但不是极值点D.不是()f x的驻点15.不定积分()313dx x-=⎰().A.()41134x C--+ B.()41134x C-+C . ()411312x C --+D . ()411312x C -+ 16.定积分20cos d 1sin x x xπ=+⎰( ). A . 1ln 22- B . ln 2- C . 1ln 22 D . ln 217.函数2256106z x y x y =+-++的驻点是( ). A .(3,1) B .(3,1)-C .(3,1)-D .(3,1)--18.曲线3(2)1y x =-+在区间(,2)-∞,(2,)+∞内分别为( ).A .凹的和凹的B .凹的和凸的C .凸的和凸的D .凸的和凹的19.设积分区域D 是由曲线3y x =,1y =,0x =围成,则二重积分(,)d Df x y σ⎰⎰可化为( ).A . 1100d (,)d x f x y y ⎰⎰B .3100d (,)d x x f x y y ⎰⎰C .3110d (,)d x x f x y y ⎰⎰D .3110d (,)d x y f x y x ⎰⎰ 20.幂级数121(1)(1)n n n x n +∞=-+∑的收敛区间(不考虑端点)为( ). A .(2,0)- B .(1,1)-C .(0,2)D .(2,2)-高等数学A (样卷)参考答案一、选择题(二选一)(满分50分,每小题5分)1.B 2.A 3.A 4.B 5.B6.A 7.A 8.A 9.B 10.B二、选择题组(四选一)(满分50分,每小题5分)11.A 12.A 13.B 14.B 15.C16.D 17.B 18.D 19.C 20.A。

相关文档
最新文档