2013年溧水区二模中考数学试卷含答案 个性化作业
2014年南京市溧水中考数学二模试卷及答案[1]
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
(1)求y与t之间的函数关系式;
(2)请简单概括y随t的变化而变化的情况.
25.(8分)已知:如图,四边形ABCD为菱形,△ABD的外接圆⊙O与CD相切于点D,交AC于点E.
(1)判断⊙O与BC的位置关系,并说明理由;
(2)若CE=2,求⊙O的半径r.
26.(9分)
(1)探究规律:
已知:如图(1),点P为□ABCD内一点,△PAB、△PCD的面积分别记为S1、S2,□ABCD的面积记为S,试探究S1+S2与S之间的关系.
22.(本题8分)
解:设每次降价百分率为x,……………………………………1分
根据题意,得 =32.……………………………4分
解得x1=0.2,x2=0.8…………………………………………6分
当x1=0.2时,最后价格为 ,
第一次降价为 ,…………………………7分
当x2=0.8时,最后价格为:
,不合题意,舍去.
3.计算 的结果是()
A. B. C. D.
4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是()
A.0.264×107千米B.2.64×106千米C.26.4×105千米D.264×104千米
5.如图,△ABC中,D、E两点分别在AB、AC上,且AD=31,BD=29,
江苏省南京市溧水区中考数学二模试题
江苏省南京市溧水区2015年中考数学二模试题注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算a 2·a 4÷(-a 2)2的结果是( ▲ ) A .aB .a2C .-a2D .a32.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( ▲ )A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等3.如图,正方形ABCD 的边长为2,若a <AC <b ,其中a 、b 为两个连续的整数,则ab 的值为( ▲ ) A .2B .5C .6D .124.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m .将0.0000001用科学记数法表示为( ▲ ) A .0.1×10-7B .1×10-7C .0.1×10-6D .1×10-65.如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是( ▲ )6.小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其颗数3,6,9,12,…成为三角形数,类似地,图2中的4,8,12,16,… 称为正方形数.正面A. B. C.D.… …3 6 9 …4 8 12 …图1 图2下列数中既是三角形数又是正方形数的是( ▲ )A .2013B .2014C .2015D .2016二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.在函数y =12+x 中,自变量x 的取值范围是 ▲ .8.分解因式:x 3-x = ▲ .9.把抛物线2y x =-向左平移2个单位,再向下平移3个单位,所得抛物线的函数关系式为 ▲ .10.不等式组⎩⎪⎨⎪⎧2x ≥0,x+13> x 2的解集是 ▲ . 11.如图,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=3,则t 的值是 ▲ .12.将三边长为4,5,6的三角形(如图①)分别以顶点为圆心,截去三个半径均为1的扇形,则所得图形(如图②)的周长为___▲____.(结果保留π)13.如图,点P 为反比例函数y= 16x在第一象限图象上的动点,过点P 作x 轴的垂线,垂足为M ,则三角形OPM 的面积为_______▲_____.14.如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE .若△DEF 的面积为1,则平行四边形ABCD 的面积为 ▲ .15.图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为 ▲ .ACDE F(第14题)(第15题) (第16题)图①图②(第11题) (第12题) (第13题)16.如图,A 、B 、C 、D 依次为一直线上4个点,BC =2,△BCE 为等边三角形,⊙O 过A 、D 、E 三点,且∠AOD =120°.设AB =x ,CD =y ,则y 与x 的函数关系式为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6()0122cos 4514π-⎛⎫--++ ⎪⎝⎭o18.(6分)解方程:31–x = xx –1–5.19.(本题8分)如图,已知AB = DC ,AC = DB ,AC 与DB 交于点M .过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N .(1)求证:△ABC ≌△DCB ; (2)求证:四边形BNCM 是菱形.B CA DMN20.(8分)今年N 市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a = ▲ ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为 ▲ ; (3)求被调查的消费者平均每人年收入为多少万元?21.(7分)某中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A 、B 两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力. (1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B 处检测视力的概率.22.(8分)已知二次函数y =2x 2-4mx +m 2+2m (m 是常数) . (1)求该函数图像的顶点C 的坐标(用含m 的代数式表示); (2)当m 为何值时,函数图像的顶点C 在二、四象限的角平分线上?消费者打算购买住房面积统计图消费者年收入统计表23.(7分)如图,一艘轮船位于灯塔P的北偏东45°方向,距灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东35°方向上的B处.这时,轮船所在的B处距离灯塔P有多远?(精确到0.1海里)(参考数据: 2 ≈1.41, 3 ≈1.73,sin35°≈0.57,cos35°≈0.82,t a n35°≈0.70)A45︒P C35︒B24. (9分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.(1)用含x的代数式表示第二周旅游纪念品销售数量为▲个;(2)如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?25. (10分)某地突发一自然灾害.国家救援队立即派出甲、乙两个救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了▲小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?26.(8分)已知在Rt△ABC中,AC⊥BC,AD是∠BAC的角分线,以AB上的一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论;(3)若AC=3,BC=4,求⊙O的半径.ABD C27.(11分)在平面直角坐标系中,A点坐标是(0,6),M点坐标是(8,0).P是射线AM上一点,PB⊥x轴,垂足为B.设AP=a.(1)AM=▲;(2)如图,以AP为直径作圆,圆心为点C.若⊙C与x轴相切,求a的值;(3)D是x轴上一点,连接AD、PD.若△OAD∽△BDP,试探究满足条件的点D的个数(直接写出点D的个数及相应a的取值范围,不必说明理由).溧水区2015学年度九年级第二次调研测试数学参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分.)二、填空题(本大题共10小题,每小题2分,共20分.)7.x ≠-2 8.x (x +1)(x -1) 9.y = -(x+2) 2- 3. 10.0≤x <211.2912.9+π 13.8 14.12 15.32+3616.y =x 4三、解答题(本大题共11小题,共88分.)17.(6分)原式=42122++- …………………………………(每项得1分)4分 =323+ …………………………………………………………6分 18.(6分)解:方程的两边同乘(x ﹣1),得﹣3=x ﹣5(x ﹣1),………………………………………(3分) 解得x=2……………………………………………(5分) 检验,将x=2代入(x ﹣1)=1≠0,∴x=2是原方程的解.……………………………………………(6分)19.(8分)解:在△ABC 和△DCB 中,(1)∵AB = DC,AC = DB ,BC=CB …………………2分∴△ABC≌△DCB…………………………………3分 (2)∵CN∥BD、BN∥AC∴四边形BNCM 是平行四边形……………………5分∵△ABC≌△DCB ∴∠1=∠2 ………………………………………6分 ∴BM=CM …………………………………………7分 ∴四边形BNCM 是菱形. ………………………8分20.(8分)解:(1)a =30; ……………………………………………………………2分 补图正确 ……………………………………………………………4分(2)48%; ………………………………………………… ……………6分(3)96.71002258121030650105=⨯+⨯+⨯+⨯+⨯ ……………8分B CA DM N 1221.(7分)解:∵甲、乙、丙的检测有如下8种可能:……3分树状图:共有(AAA )、(AAB )、(ABA )、(ABB )(BAA )、(BAB )、(BBA )、(BBB )八种情况,且每种情况都是等可能的.∴(1)P (甲、乙、丙在同一处检测)=28=14; ……… 5分 (2)P (至少有两人在B 处检测)=48=12. ……… 7分 22.(8分)解:(1)由y =2x 2-4mx +m 2+2m=2(x 2-2mx)+m 2+2m ……………………………… 1分 =2(x -m)2-m 2+2m , ……………………………… 3分 得顶点C 的坐标为(m ,-m 2+2m). …………………… 4分(2)点C 坐标(m ,2m -m 2),由题意知,点C 在直线y=- x 上,………………………………………… 5分 则-m=2m -m 2,整理得m 2-3m=0, ……………………………… 6分 解得m=0或m=3;……………………………………………… 8分23. 解:根据题意,在Rt △ACP 中,PC =PA ·sin45°=100×22=50 2 .………………………………2分 在Rt △BCP 中,∠B =35°, ∵sin B =PC PB,……………………………………………………………4分 ∴PB =PC sin B =50 2 sin 35°≈70.50.57≈123.7. …………………………………6分A BA甲 BABA B A B AB AB乙 丙答:轮船所在的B处距离灯塔P约有123.7海里. ………………………7分24. (9分)解:(1)200+50x ………………………………………………2分(2)由题意得出:200×(10﹣6)+(10﹣x﹣6)(200+50x)+[(4﹣6)(600﹣200﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,………………6分整理得:x2﹣2x+1=0,………………………………………………7分解得:x1=x2=1,………………………………………………………8分∴10﹣1=9,答:第二周的销售价格为9元.………………………………………………9分25.(10分).解:(1)1.9;…………………………………………………2分(2)设直线EF的解析式为y乙=kx+b∵点E(1.25,0)、点F(7.25,480)均在直线EF上∴……………………………………………………………3分解得∴直线EF的解析式是y乙=80x﹣100;……………………4分∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6﹣100=380;∴点C的坐标是(6,380);……………………………………………5分设直线BD的解析式为y甲=mx+n;∵点C(6,380)、点D(7,480)在直线BD上,∴;解得;∴BD的解析式是y甲=100x﹣220;……………………6分∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270),∴甲组在排除故障时,距出发点的路程是270千米.………………………7分(3)符合约定;由图象可知:甲、乙两组第一次相遇后在B和D相距最远.在点B处有y乙﹣y甲=80×4.9﹣100﹣(100×4.9﹣220)=22千米<25千米…………8分在点D有y甲﹣y乙=100×7﹣220﹣(80×7﹣100)=20千米<25千米…………………9分∴按图象所表示的走法符合约定.………………………………10分26.(8分) (1)作出正确图形………………………………2分;(其中作出中垂线1分,作出圆1分)(2)相切……………………………………………………3分证明:连结OD,∵OA=OD,∴∠OAD=∠ODA∵AD是BAC的角平分线,则∠OAD=∠DAC,∴∠ODA=∠DAC (4)∵AC⊥BC,则∠DAC+∠ADC=90○,∴∠ODA+∠ADC=90○,即∠ODC=90○∴OD⊥BC,即BC是⊙O(3)设⊙O的半径为x,∵AC=3,BC=4,∵AC⊥BC,所以AB=5B又OD ⊥BC ,则OD//BC ,∴OD AC =BO AB ,即x 3 =5-x 5,……………6分 解得x=158 ,∴⊙O 的半径为158。
2013年江苏中考数学模拟试卷2(附答案)
A .C .D .B .2013年江苏中考数学模拟试卷二第Ⅰ卷 (选择题共24分一.选择题(本大题共8题,每题3分,共24分。
下列四个选项中,只有一个选项是符合题意的1.3-的倒数是(A .13B .13-C .3D .3-2.下列图形:其中是中心对称图形的个数为A.4B.3C.2D.13.淮安市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超过13000元,数13000用科学记数法可以表示为A. 41.310⨯B. 31310⨯C. 50.1310⨯D.213010⨯ 4.如图所示的几何体的主视图是5.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A .12cm 2B .96cm 2C .48cm 2D .24cm 26.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是 A.4B.6C.5D.107.已知a ,b 为实数,则解可以为– 2 < x < 2的不等式组是A.⎩⎨⎧>>11bx axB. ⎩⎨⎧<>11bx axC. ⎩⎨⎧><11bx axD. ⎩⎨⎧<<11bx ax8.如图,直线0(<=k kx y 与双曲线xy 2-=交于,(,,(2211y x B y x A 两点,则122183y x y x -的值为[来源:学科网ZXXK]A.-5B.-10C.5D.10[来源:学§科§网Z§X§X§K]第Ⅱ卷 (非选择题共126分二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡相应位置上........ 9.计算a 3·a 4的结果▲10.如图(十九,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。
南京市溧水区中考二模数学试题及答案
溧水区2012~2013学年度第二学期第二次调研测试九年级数学试卷注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上........,不能答在试卷上........ 一、选择题(本大题共有6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.以下关于8的说法,错误..的是( ▲ ) A .822=±B .8是无理数C .283<<D .822=2.数据7、8、9、10、6、10、8、9、7、10的众数是( ▲ )A .7B .8C .9D .103.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( ▲ )A .120°B .135°C .145°D .150°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( ▲ )A .100°B .105°C .108°D .110°5.点A 1、 A 2、 A 3、 …、 A n (n 为正整数)都在数轴上,点A 1在原点O 的左边,且A 1O =1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2013所表示的数为( ▲ ). A. -2013 B. 2013 C. -1007 D.10076.如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为( ▲ ) A .2π B .π C .32 D .4二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直1 234DC BA E第5题图第6题图 第3题图接填写在答题卡相应的位置........上) 7.不等式组⎩⎨⎧><2-1x x 的解集为 ▲ .8.方程x (x -1)=2(x -1)的解是 ▲ .9.若两个相似三角形的相似比为1:4,则它们的周长比为 ▲ . 10.等腰△ABC 的一个外角是80°,则其顶角的度数为 ▲ . 11.分解因式2x 2—4x +2的最终结果是 ▲ .12.把一次函数y =-2x +4的图象向左平移2个长度单位,新图象的函数表达式是 ▲ .13.已知二次函数c bx x y ++=2中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当0<x 1<1,2<x 2<3时,则1y ▲ 2y (填“>”或“<”).x …… 0 1 2 3 …… y……1-2-3-2……14.已知关于x 的方程422=+-x mx 的解是负数,则m 的取值范围为___ ___ ▲ ______. 15.如图,以数轴上的原点O 为圆心,6为半径的扇形中,圆心角∠AOB =90°,另一个扇形是以点P 为圆心,10为半径,圆心角∠CPD =60°,点P 在数轴上表示实数a ,如果两个扇形的圆弧部分(⌒AB 和⌒CD )相交,那么实数a 的取值范围是 ▲ .16.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = ▲ cm .三、解答题(本大题共12小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题6分)计算:()()022013812--+-18.(本题6分)先化简再求值:21(1+)11x x x ÷--,其中x 是方程022=-x x 的根. 第16题图A DBE C第15题图19.(本题6分)在如图所示的三个函数图像中,有两个函数图像能近似地刻画如下a 、b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校; 情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进. (1)情境a ,b 所对应的函数图像分别为▲ , ▲ .(填写序号) (2)请你为剩下的函数图像写出一个适合的情境.20.(本题6分)今年N 市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a = ▲ ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为 ▲ ;(3)求被调查的消费者平均每人年收入为多少万元?21.(本题6分)某商场“五一节”期间举办促销活动,顾客每购买一定金额的商品,即可获得一次摸奖机会,中奖的概率为0.5,该商场设计了一个摸奖方案:在一个不透明的口袋里放入红、白、黄三种颜色的球(除颜色外其余都相同),已放入消费者打算购买住房面积统计图年收入(万元) 5 6 1012 25 被调查的消费者数(人)1050a82消费者年收入统计表红球2个,黄球1个.若从中任意摸出一个球为红球即为中奖.(1)在口袋中还应放入几个白球?(2)在(1)的条件下,从袋中任意摸出一球,不放回,摇匀后再摸出一球,则两次都摸到红球的概率是多少?请列表或画树状图进行说明.22.(本题6分)如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN的数量关系,并证明你的结论.23.(本题6分)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过桥DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知BC =16km ,∠A =53°,∠B =30°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据:73.13≈,sin53°≈0.80,cos53°≈0.60)24.(本题8分)古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如22x ax b +=(a >0,b >0)的方程的图解法是:如图,以2a 和b 为两直角边作Rt △ABC ,再在斜边上截取BD= BC =2a,则AD 的长就是所求方B CA D MN53°30°D CE F BAACBD程的解.(1)请用含字母a 、b 的代数式表示AD 的长;(2)请利用你已学过的方程知识验证该图解法的正确性,并说说这种解法的遗憾之处.25.(本题8分)已知抛物线y =ax 2+bx 经过点A (3,3)和点P (t ,0) ,且t ≠ 0. (1) 若t =2,求a 、b 的值;(2) 若t >3,请判断该抛物线的开口方向.26.(本题8分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若34 DE ,∠D =45°. (1)求⊙O 的半径; (2)求图中阴影部分的面积.27.(本题10分)我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理. 当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x (元),年销售量为y (万件),年获利为W (万元).●AB DFPOC E(年利润=年销售总额―生产成本―投资成本) (1)直接写出y 与x 之间的函数关系式;(2)求第一年的年获利W 与x 之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是多少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?28.(本题12分)已知两个全等的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C =∠EFB =90º,∠E =∠ABC =30º,AB=DE =4. (1)若纸片△DEF 不动,把△ABC 绕点F 逆时针旋转30º时,连结CD ,AE ,如图2. ①求证:四边形ACDE 为梯形; ②求四边形ACDE 的面积.(2)将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,直接写出△ABC 恰有一边与DE 平行的时间.(写出所有可能的结果)AC F E(D )B图1GACFEDB图2G2013年溧水区初三第二次模拟试卷评分标准一、选择题(本大题共6小题,每小题2分,共计12分.)1.A 2.D 3.B 4.A 5.C 6.C 二、填空题(本大题共10小题,每小题2分,共计20分.)7.12-<<x 8.x=1、x =2 9.1:4 10.100° 11.2(x —1)2 12.y=-2x 13.> 14.m >-8且m ≠-4 15.4-8-<<x 16.8三、解答题(本大题共12小题,共计88分) 17.()()022009812--+-=122122-2-++……………………………………………………4分 =2……………………………………………………………………………6分 18.21(1+)11x x x ÷-- =()()1-x 1x x 1-x 11-x 1-x +÷⎪⎭⎫⎝⎛+……………………………………………3分 =x+1…………………………………………………………………………4分 方程022=-x x 的根是:x 1=0、x 1=2 ……………………………………………………………5分∵x 不能取0,∴当x 1=2时,原式=3…………………………………6分 19.(1)③、①(对1个得2分) …………………………………………4分(2)小芳离开家走了一段路程后来到一个报亭,在报亭读了一段时间报后,按原速回家了.(答案不唯一)……………………………………………………………6分 20.(1)a =30; ……………………………………………………………2分(2)48%;………………………………………………… ……………4分(3)96.71002258121030650105=⨯+⨯+⨯+⨯+⨯……………6分21.解:(1)设白球的个数有x 个.12x 2++=21……………………………………………………2分解得x =1.…………………………………………………………3分 答:白球的个数为1个; (2)白 白 白白P (两次摸到红球)=61…………………………………………………6分 22.如图,在△ABC 和△DCB 中, AC 与DB 交于点M .(1)∵AB = DC ,AC = DB ,BC=CB …………………2分∴△ABC ≌△DCB ………………………………………3分 (2)BN=CN理由:∵CN ∥BD 、BN ∥AC∴∠1=∠4、∠2=∠3…………………………………4分 ∵△ABC ≌△DCB∴∠1=∠2 ……………………………………………5分 ∴∠3=∠4∴BN=CN ………………………………………………6分 23.作DG ⊥AB 于G 、CH ⊥AB 于H 在Rt △BCH 中,Sin ∠B=CBCH,BC =16km ,∠B =30° ∴CH=8;………………………………………………………2分 cos ∠B=CBBH∴BH=83………………………………………3分 易得DG=CH=8 在△ADG 中,Sin ∠A=ADDG、DG=8 ∴AD=10、AG=6………4分 ∴(AD+DC+CB )-(AG+GH+HB )=20-83≈6.2…………6分 24.解:(1)∵∠C =90°,BC =2a,AC=b ∴AB=422a b +…………………………………………………………………3分22224422a ab a aAD b +-=+-=………………………………………5分 (2) 用求根公式求得:22142b a a x -+-= ;22242b a ax +-= …………7分正确性:AD 的长就是方程的正根。
2013-2014学年南京市溧水区九年级数学一模试卷
(1)求y2与x的函数关系式;
(2)若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人在骑行过程中可以用对讲机通话的时间.
(1)求证:△ABF≌△ECF;
(2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.
20.(9分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
B
A
B
C
C
B
二、填空题(本大题共10小题,每小题2分,共20分)
7.±3 8.9.x=110.5.7×10311.9
12.4.8 13.36 14.4 15.(3,0)、(-3,0)16.
三、解答题(本大题共11小题,共88分)
17.(本题6分)18.(本题6分)
∴BC1=BC,∠A1C1B=∠C=30°,…………1分
∴∠BC1C=∠C=3 0°,……………………2分
∴∠ CC1A1=60°;……………………………3分
(2)如图2,由(1)知:△A1C1B≌△ACB,
∴∠ADC=∠OCE=90°,
∴AD⊥DC.………………………………………………4分
江苏省南京市溧水区中考数学二模试卷
江苏省南京市溧水区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)肥皂泡的泡壁厚度大约是0.000 07mm,用科学记数法表示为()A.7×10﹣4B.7×10﹣5C.0.7×10﹣4D.0.7×10﹣5 2.(2分)下列计算正确的是()A.b5•b5=2b5B.(a n﹣1)3=a3n﹣1C.a+2a2=3a3D.(a﹣b)5(b﹣a)4=(a﹣b)9 3.(2分)数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为()A.3﹣a B.﹣3﹣a C.a﹣3D.a+34.(2分)估计介于()A.0.6与0.7之间B.0.7与0.8之间C.0.8与0.9之间D.0.9与1之间5.(2分)如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为()A.10B.9C.8D.76.(2分)如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A、P、E三点为顶点的直角三角形的个数为()A.2B.3C.4D.5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)5的算术平方根是;将写成负整数指数幂的形式是.8.(2分)计算的结果是.9.(2分)设x1x2是方程2x2+nx+m=0的两个根,且x1+x2=4,x1x2=3,则n =.10.(2分)在函数y=中,自变量x的取值范围是.11.(2分)方程=的解是.12.(2分)已知(x﹣y﹣3)2+|x+y+2|=0,则x2﹣y2的值是.13.(2分)若a m=6,a n=3,则a m+2n的值为.14.(2分)如图,过原点O的直线与反比例函数y1、y2的图象在第一象限内分别交于点A、B,且A为OB的中点.若点B的坐标为(8,2),则y1与x的函数表达式是.15.(2分)如图,在⊙O的内接五边形ABCDE中,∠B+∠E=215°,则∠CAD =°.16.(2分)如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是四边形内一点,若S 四边形AEOH =3,S四边形BFOE =4,S四边形CGOF =5,则S四边形DHOG= .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校为更好的开展“冬季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳长绳、踢毽子、背夹球、拔河共四类),并将统计结果绘制成如图不完整的频数分布表. 根据以上信息回答下列问题:最喜爱的趣味运动项目类型频数分布表: 项目类型 频数 频率 跳长绳 25 a 踢毽子 20 0.2 背夹球 b 0.4 拔河150.15(1)直接写出a = ,b = ;(2)利用频数分布表中的数据,在图中绘制扇形统计图(注明项目、百分比、圆心角);(3)若全校共有学生1200名,估计该校最喜爱背夹球和拔河的学生大约有多少人?20.(8分)如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,过点D作BA的平行线交AC于点O,过点A作BC的平行线交DO的延长线于点E,连接CE.(1)求证:四边形ADCE是菱形;(2)作出△ABC外接圆,不写作法,请指出圆心与半径;(3)若AO:BD=:2,求证:点E在△ABC的外接圆上.21.(8分)(1)小杨和小姜住在同一个小区,该小区到苏果超市有A、B、C三条路线.①求小杨随机选择一条路线,恰好是A路线的概率;②求小杨和小姜两人分别随机选择一条路线去苏果超市,恰好两人选择同一条路线的概率.(2)有4位顾客在超市中选购4种品牌的方便面.如果每位顾客从4种品牌中随机的选购一种,那么4位顾客选购同一品牌的概率是,至少有2位顾客选择的不是同一品牌的概率是(直接填字母序号)A.B.()3C.1﹣()3D.1﹣()3.22.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.23.(8分)新房装修后,甲居民购买家居用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:家居用品名称单价(元)数量(个)金额(元)挂钟30260垃圾桶15塑料鞋架40艺术字画a290电热水壶351b合计8280(1)直接写出a=,b=;(2)甲居民购买了垃圾桶,塑料鞋架各几个?(3)若甲居民再次购买艺术字画和垃圾桶两种家居用品,共花费150元,则有哪几种不同的购买方案?24.(8分)某种事物经历了加热,冷却两个联系过程,折线图DEF表示食物的温度y(℃)与时间x(s)之间的函数关系(0≤x≤160),已知线段EF表示的函数关系中,时间每增加1s,食物温度下降0.3℃,根据图象解答下列问题;(1)当时间为20s、100s时,该食物的温度分别为℃,℃;(2)求线段DE所表示的y与x之间的函数表达式;(3)时间是多少时,该食物的温度最高?最高是多少?25.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).26.(8分)已知二次函数y1=a(x﹣2)2+k中,函数y1与自变量x的部分对应值如表:x…1234…y…2125…(1)求该二次函数的表达式;(2)将该函数的图象向左平移2个单位长度,得到二次函数y2的图象,分别在y1、y2的图象上取点A(m,n1)B(m+1,n2),试比较n1与n2的大小.27.(11分)【问题探究】已知:如图①所示,∠MPN的顶点为P,⊙O的圆心O从顶点P出发,沿着PN 方向平移.(1)如图②所示,当⊙O分别与射线PM,PN相交于A、B、C、D四个点,连接AC、BD,可以证得△P AC∽△,从而可以得到:P A•P B=P C•P D.(2)如图③所示,当⊙O与射线PM相切于点A,与射线PN相交于C、D两个点.求证:P A2=PC•PD.【简单应用】(3)如图④所示,(2)中条件不变,经过点P的另一条射线与⊙O相交于E、F两点.利用上述(1),(2)两问的结论,直接写出线段P A与PE、PF之间的数量关系;当P A=4,EF=2,则PE=.【拓展延伸】(4)如图⑤所示,在以O为圆心的两个同心圆中,A、B是大⊙O上的任意两点,经过A、B两点作线段,分别交小⊙O于C、E、D、F四个点.求证:AC•AE=BD•BF.(友情提醒:可直接运用本题上面所得到的相关结论)江苏省南京市溧水区中考数学二模试卷参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.B;2.D;3.D;4.A;5.A;6.C;二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.;5﹣2;8.1﹣;9.﹣8;10.x≠﹣1;11.x=3;12.﹣6;13.54;14.y1=;15.35;16.4;三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.;18.;19.0.25;40;20.;21.B;C;22.;23.45;35;24.50;62;25.;26.;27.△PDB;PA2=PE•PF;6;。
2013年南京市溧水区中考二模数学试题
2013年南京市溧水区中考二模 数学试卷一、选择题(本大题共有6小题,每小题2分,共计12分.) 1..的是( ▲ ) A=±BC.23<D=2.数据7、8、9、10、6、10、8、9、7、10的众数是( ▲ )A .7B .8C .9D .103.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( ▲ )A .120°B .135°C .145°D .150°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是( ▲ )A .100°B .105°C .108°D .110°5.点A 1、 A 2、 A 3、 …、 A n (n 为正整数)都在数轴上,点A 1在原点O 的左边,且A 1O =1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2013所表示的数为( ▲ ). A. -2013 B. 2013 C. -1007 D.10076.如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为( ▲ )A .2πB .πC .32D .4 二、填空题(本大题共10小题,每小题2分,共20分)7.不等式组⎩⎨⎧><2-1x x 的解集为 ▲ .8.方程x (x -1)=2(x -1)的解是 ▲ .9.若两个相似三角形的相似比为1:4,则它们的周长比为 ▲ . 10.等腰△ABC 的一个外角是80°,则其顶角的度数为 ▲ . 11.分解因式2x 2—4x +2的最终结果是 ▲ .12.把一次函数y =-2x +4的图象向左平移2个长度单位,新图象的函数表达式是 ▲ .13.已知二次函数c bx x y ++=2中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当0<x 1<1,2<x 2<3时,则1y ▲ 2y (填“>”或“<”).12 34DC BA E 第5题图第6题图第3题图14.已知关于x 的方程422=+-x mx 的解是负数,则m 的取值范围为__ ▲__. 15.如图,以数轴上的原点O 为圆心,6为半径的扇形中,圆心角∠AOB =90°,另一个扇形是以点P 为圆心,10为半径,圆心角∠CPD =60°,点P 在数轴上表示实数a ,如果两个扇形的圆弧部分(⌒AB 和⌒CD )相交,那么实数a 的取值范围是 ▲ .16.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = ▲ cm . 三、解答题(本大题共12小题,共88分.) 17.(本题6分)计算: ()()022013812--+-18.(本题6分)先化简再求值:21(1+)11x x x ÷--,其中x 是方程022=-x x 的根.19.(本题6分)在如图所示的三个函数图像中,有两个函数图像能近似地刻画如下a 、b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校; 情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进. (1)情境a ,b 所对应的函数图像分别为 ▲ , ▲ .(填写序号) (2)请你为剩下的函数图像写出一个适合的情境.20.(本题6分)今年N 市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a = ▲ ,并补全统计图; (2)打算购买住房面积不小于100平方米的消费者人数占被调查消费者打算购买住房面积统计图消费者年收入统计表AD人数的百分比为 ▲ ;(3)求被调查的消费者平均每人年收入为多少万元?21.(本题6分)某商场“五一节”期间举办促销活动,顾客每购买一定金额的商品,即可获得一次摸奖机会,中奖的概率为0.5,该商场设计了一个摸奖方案:在一个不透明的口袋里放入红、白、黄三种颜色的球(除颜色外其余都相同),已放入红球2个,黄球1个.若从中任意摸出一个球为红球即为中奖.(1)在口袋中还应放入几个白球?(2)在(1)的条件下,从袋中任意摸出一球,不放回,摇匀后再摸出一球,则两次都摸到红球的概率是多少?请列表或画树状图进行说明.22.(本题6分)如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.23.(本题6分)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过桥DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知BC =16km ,∠A =53°,∠B =30°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km.参考数据:73.13≈,sin53°≈0.80,cos53°≈0.60)24.(本题8分)古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如22x ax b +=(a >0,b >0)的方程的图解法是:如图,以2a 和b 为两直角边作Rt △ABC ,再在斜边上截取BD= BC =2a,则AD 的长就是所求方程的解.(1)请用含字母a 、b 的代数式表示AD 的长;(2)请利用你已学过的方程知识验证该图解法的正确性,并说说这种解法的遗憾之处.B CA DM25.(本题8分)已知抛物线y =ax 2+bx 经过点A (3,3)和点P (t ,0) ,且t ≠ 0. (1) 若t =2,求a 、b 的值;(2) 若t >3,请判断该抛物线的开口方向.26.(本题8分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若34 DE ,∠D =45°. (1)求⊙O 的半径;(2)求图中阴影部分的面积.27.(本题10分)我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理. 当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x (元),年销售量为y (万件),年获利为W (万元).(年利润=年销售总额―生产成本―投资成本) (1)直接写出y 与x 之间的函数关系式;(2)求第一年的年获利W 与x 之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是多少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?B28.(本题12分)已知两个全等的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC 上,AB与EF交于点G.∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4.(1)若纸片△DEF不动,把△ABC绕点F逆时针旋转30º时,连结CD,AE,如图2.①求证:四边形ACDE为梯形;②求四边形ACDE的面积.(2)将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,直接写出△ABC恰有一边与DE平行的时间.(写出所有可能的结果))图1图2评分标准一、选择题(本大题共6小题,每小题2分,共计12分.)1.A 2.D 3.B 4.A 5.C 6.C 二、填空题(本大题共10小题,每小题2分,共计20分.)7.12-<<x 8.x=1、x =2 9.1:4 10.100° 11.2(x —1)2 12.y=-2x 13.> 14.m >-8且m ≠-4 15.4-8-<<x 16.8 三、解答题(本大题共12小题,共计88分) 17.()()022009812--+-=122122-2-++……………………………………………………4分=2……………………………………………………………………………6分 18.21(1+)11x x x ÷--=()()1-x 1x x 1-x 11-x 1-x +÷⎪⎭⎫ ⎝⎛+……………………………………………3分 =x+1…………………………………………………………………………4分方程022=-x x 的根是:x 1=0、x 1=2 ……………………………………………………………5分 ∵x 不能取0,∴当x 1=2时,原式=3…………………………………6分 19.(1)③、①(对1个得2分) …………………………………………4分(2)小芳离开家走了一段路程后来到一个报亭,在报亭读了一段时间报后,按原速回家了.(答案不唯一)……………………………………………………………6分20.(1)a =30; ……………………………………………………………2分(2)48%;………………………………………………… ……………4分(3)96.72258121030650105=⨯+⨯+⨯+⨯+⨯……………6分=21……………………………………………………2分3分P (两次摸到红球)=61…………………………………………………6分 22.如图,在△ABC 和△DCB 中, AC 与DB 交于点M .(1)∵AB = DC ,AC = DB ,BC=CB …………………2分 ∴△ABC ≌△DCB ………………………………………3分 (2)BN=CN理由:∵CN ∥BD 、BN ∥AC∴∠1=∠4、∠2=∠3…………………………………4分 ∵△ABC ≌△DCB∴∠1=∠2 ……………………………………………5分 ∴∠3=∠4∴BN=CN ………………………………………………6分B CA DMN12 3 4白 白 白白23.作DG ⊥AB 于G 、CH ⊥AB 于H 在Rt △BCH 中,Sin ∠B=CBCH,BC =16km ,∠B =30° ∴CH=8;………………………………………………………2分 cos ∠B=CBBH∴BH=83………………………………………3分 易得DG=CH=8 在△ADG 中,Sin ∠A=ADDG、DG=8 ∴AD=10、AG=6………4分 ∴(AD+DC+CB )-(AG+GH+HB )=20-83≈6.2…………6分24.解:(1)∵∠C =90°,BC =2a ,AC=b ∴AB=422a b +…………………………………3分2a AD ==………………………………………5分 (2)用求根公式求得:12a x =;22ax = …………7分正确性:AD 的长就是方程的正根。
2013年中考数学模拟试卷(二) 答题卡 答案(A3版)
2013年中考数学模拟试卷(二)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 某市1月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是【 】A .-2℃B .8℃C .-8℃D .2℃ 2. 下列四个图形中,既是轴对称图形又是中心对称图形的有【 】A .4个B .3个C .2个D .1个3. 某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是【 】 A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-= D .5(21)6x x += 4. 一次函数|1|y mx m =+-的图象过点(0,2),且y 随x 的增大而增大,则m =【 】 A .-1 B .3 C .1 D .-1或35. 如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是【 】BOA BAAA .正三角形B .正方形C .正五边形D .正六边形6. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y ) =(y ,x ),如f (2,3) = (3,2);②g (x ,y ) = (-x ,-y ),如g (2,3) =(-2,-3).按照以上变换有f (g (2,3)) =f (-2,-3) =(-3,-2),那么g (f (-6,7)) =【 】A .(7,6)B .(7,-6)C .(-7,6)D .(-7,-6) 7. 如图,等边△ABC 的周长为6π,半径为1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又 回到与AB 相切于点D 的位置,则⊙O 自转了【 】A .2周B .3周C .4周D .5周8. 如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD垂直于x 轴,点D 的坐标为(5,4),AD =2.若动点E ,F 同时从点O 出发,点E 沿折线OA -AD -DC 运动,到达C 点时停止;点F 沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度.设点E 运动x 秒时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象二、填空题(每小题3分,共21分)9. 有意义的x 的取值范围是_________.10. 如图,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF .将△ABE绕正方形的对角线交点O 按顺时针方向旋转到△BCF ,则旋转角的度数为_________.第10题图 第12题图 第13题图11. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程20x px q ++=有实数根的概率是_________.12. 如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB 的度数是 .13. 用一些大小相同的小正方体组成的几何体的左视图和俯视图如图所示,则组成这个几何体的小正方体最多可能有________个.14. 如图,□ABCD 的顶点A ,C 在双曲线11ky x=-上,B ,D在双曲线22ky x=上,122k k =(k 1>0),AB ∥y 轴,S □ABCD =24,则k 1=_________.15. 已知:在△ABC 中,AC =a ,AB 与BC 所在直线成45°角,AC 与BC 所在直线形成的夹(即cos C ),则AC 边上的中线长是_______________. 三、解答题(本大题共8小题,满分75分)16. (8分)已知x 是一元二次方程x 2-2x +1=0的根,求代数式235+2362x x x x x -⎛⎫÷- ⎪--⎝⎭的值.F17. (9分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:(1)把上面频数分布直方图补充完整,并计算:a =________,b =_________; (2)求该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1 000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?18. (9分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接 BM ,DN . (1)求证:四边形BMDN 是菱形; (2)若AB =4,AD =8,求MD 的长. 19. (9分)如图,四边形ABCD 是正方形,其中A (1,1),B (3,1),D (1,3).反比例函数m y x=(x >0)的图象经过对角线BD 的中点M ,与BC ,CD 的边分别交于点P ,Q .(1)直接写出点M ,C 的坐标; (2)求直线BD 的解析式;(3)线段PQ 与BD 是否平行?并说明理由.21. (10分)已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租 车方案,并求出最少租车费. 22. (10分)如图,在Rt △ABC 中,∠C =90°,AC =4cm ,BC =5cm ,点D 在BC 上,且CD =3cm .现有两个动点P ,Q 分别从点A 和点B 同时出发,其中点P 以1厘米/秒的速度沿AC 向终点C 运动;点Q 以1.25厘米/秒的速度沿BC 向终点C 运动.过点P 作PE ∥BC 交AD 于点E ,连接EQ .设动点运动时间为t 秒(>0t ).(1)连接PQ ,在运动过程中,不论t 取何值时,总有线段PQ 与线段AB 平行,为什么? (2)连接DP ,当t 为何值时,四边形EQDP 能成为平行四边形? (3)当t 为何值时,△EDQ 为直角三角形?23. (11分)已知抛物线y =ax 2+bx +c (a >0)的图象经过点B (12,0)和C (0,-6),对称轴为直线x =2.(1)求该抛物线的解析式.(2)点D 在线段AB 上,且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时两点的运动时间t (秒)和点Q 的运动速度;若不存在,请说明理由.(3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由.A B M NO DC /t2013年中考数学预测试卷(二)答题卡一、选择题(每小题3分,共24分)1.[A] [B] [C] [D]3.[A] [B] [C] [D]5.[A] [B] [C] [D]7.[A] [B] [C] [D]2.[A] [B] [C] [D]4.[A] [B] [C] [D]6.[A] [B] [C] [D]8.[A] [B] [C] [D]19.(9分)20.(9分)F2013年中考数学预测试卷(二)参考答案一、选择题:9. -1≤x ≤2 10. 90° 11. 1212. 30° 13.19 14.8 15.1010a a -或 三、解答题:16.一元二次方程的解为:x =1,原式=13(3)x x +,当1x =时,原式=112.17.(1)12,0.08;(2)68%;(3)120. 18.(1)证明略;(2)5.19.(1)(22)(33)M C ,,,;(2)4y x =-+;(3)平行,理由略. 20.(1)11.0;(2)45.6米. 21.(1)A :3吨,B :4吨;(2)方案一:A 型车9辆,B 型车1辆;方案二:A 型车5辆,B 型车4辆; 方案三:A 型车1辆,B 型车7辆.(3)最省钱的租车方案是方案三:A 型车1辆,B 型车7辆,最少租车费为940元.22.(1)略;(2)1;(3)531210或.23.(1)2116164y x x =--.(2)存在,运动时间t 为5秒,点Q 的速度为5.(3)存在,12345(13)(1(13(13M M M M M --+-,,,,,,,,.。
江苏省南京市溧水县中考数学二模试题(含解析)
江苏省南京市溧水县2015年中考数学二模试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算a2•a4÷(﹣a2)2的结果是()A.a B.a2C.﹣a2D.a32.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等3.如图,正方形ABCD的边长为2,若a<AC<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.124.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m.将0.0000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣7C.0.1×10﹣6D.1×10﹣65.如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.6.小明用棋子摆放成图形来研究数的规律,如图所示,图(1)中棋子摆成三角形,其颗数3,6,9,12,…称为三角形数;类似地,图(2)中4,8,12,16,…成正方形数,下列所给的四个数中既是三角形数又是正方形数的是()A.2013 B.2014 C.2015 D.2016二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量的取值范围是.8.分解因式:x3﹣x= .9.把抛物线y=﹣x2向左平移2个单位,再向下平移3个单位,所得抛物线的函数关系式为.10.不等式组的解集是.11.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.12.将三边长为4,5,6的三角形(如图①)分别以顶点为圆心,截去三个半径均为1的扇形,则所得图形(如图②)的周长为.(结果保留π)13.如图,点P为反比例函数y=在第一象限图象上的动点,过点P作x轴的垂线,垂足为M,则三角形OPM的面积为.14.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为.15.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.16.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:﹣(π﹣2)0+2cos45°+()﹣1.18.解方程:=﹣5.19.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.20.今年N市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a= ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为;(3)求被调查的消费者平均每人年收入为多少万元?21.光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.22.已知二次函数y=2x2﹣4mx+m2+2m(m是常数).(1)求该函数图象的顶点C的坐标(用含m的代数式表示);(2)当m为何值时,函数图象的顶点C在二、四象限的角平分线上?23.如图,一艘轮船位于灯塔P的北偏东45°方向,距灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东35°方向上的B处.这时,轮船所在的B处距离灯塔P有多远?(精确到0.1海里)(参考数据:≈1.41,≈1.73,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)24.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?25.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?26.已知在Rt△ABC中,AC⊥BC,AD是∠BAC的角分线,以AB上的一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O(不写作法,保留作图痕迹);(2)试判断直线BC与⊙O的位置关系,并证明你的结论;(3)若AC=3,BC=4,求⊙O的半径.27.在平面直角坐标系中,A点坐标是(0,6),M点坐标是(8,0).P是射线AM上一点,PB⊥x轴,垂足为B.设AP=a.(1)AM= ;(2)如图,以AP为直径作圆,圆心为点C.若⊙C与x轴相切,求a的值;(3)D是x轴上一点,连接AD、PD.若△OAD∽△BDP,试探究满足条件的点D的个数(直接写出点D的个数及相应a的取值范围,不必说明理由).2015年江苏省南京市溧水县中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算a2•a4÷(﹣a2)2的结果是()A.a B.a2C.﹣a2D.a3考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:首先根据同底数幂的乘法法则,求出a2•a4的值是多少;然后根据幂的乘方的运算方法,求出(﹣a2)2的值是多少;最后用a2•a4的值除以(﹣a2)2的值即可.解答:解:a2•a4÷(﹣a2)2=a6÷a4=a2故选:B.点评:(1)此题还考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).2.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等考点:作图—基本作图;平行线的判定.分析:由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.解答:解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.点评:此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.3.如图,正方形ABCD的边长为2,若a<AC<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.12考点:估算无理数的大小.分析:根据勾股定理计算出AC,再估算出的大小,即可解答.解答:解:在Rt△ABC中,AC=,∵,∴2,∴∵a<AC<b,∴a=2,b=3,∴ab=6.故选:C.点评:本题考查了估算无理数的大小,解决本题的关键是估算的大小.4.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m.将0.0000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣7C.0.1×10﹣6D.1×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000001=1×10﹣7.故选:B.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图是由五个完全相同的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最右边有一个正方形.故选D.点评:本题考查了三视图的知识,属于基础题,注意主视图是从物体的正面看得到的视图.6.小明用棋子摆放成图形来研究数的规律,如图所示,图(1)中棋子摆成三角形,其颗数3,6,9,12,…称为三角形数;类似地,图(2)中4,8,12,16,…成正方形数,下列所给的四个数中既是三角形数又是正方形数的是()A.2013 B.2014 C.2015 D.2016考点:规律型:图形的变化类.分析:归纳总结得到图1与图2中的规律,用n表示出各自的规律,得到既是三角形数又是正方形数的规律,即可找出判断.解答:解:根据题意得:图1的规律为3n(n≥1,且n为正整数);图2中的规律为4n,(n≥1,且n为正整数),∴既是三角形数又是正方形数的是12n,∵2016÷12=168,∴既是三角形数又是正方形数的是2016.故选:D.点评:此题考查了规律型:数字和图形的变化类,弄清题中的规律是解本题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.在函数中,自变量的取值范围是x≠﹣2 .考点:函数自变量的取值范围.专题:计算题.分析:根据分式的意义,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+2≠0,解得:x≠﹣2.故答案为x≠﹣2.点评:本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.分解因式:x3﹣x= x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解答:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.9.把抛物线y=﹣x2向左平移2个单位,再向下平移3个单位,所得抛物线的函数关系式为y=﹣(x+2)2﹣3 .考点:二次函数图象与几何变换.专题:几何变换.分析:先根据顶点式得到抛物线y=﹣x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标为(﹣2,﹣3),然后根据顶点式写出新抛物线解析式.解答:解:抛物线y=﹣x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣3),所以所得抛物线的函数关系式为y=﹣(x+2)2﹣3.故答案为y=﹣(x+2)2﹣3.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.不等式组的解集是0≤x<2 .考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.解答:解:,由②得﹣x>﹣2,即x<2;故不等式的解集为:0≤x<2.故答案为:0≤x<2.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.考点:解直角三角形;坐标与图形性质.分析:过点A作AB⊥x轴于B,根据正切等于对边比邻边列式求解即可.解答:解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为:.点评:本题考查了锐角三角函数的定义,过点A作x轴的垂线,构造出直角三角形是利用正切列式的关键,需要熟记正切=对边:邻边.12.将三边长为4,5,6的三角形(如图①)分别以顶点为圆心,截去三个半径均为1的扇形,则所得图形(如图②)的周长为9+π.(结果保留π)考点:弧长的计算;三角形内角和定理.分析:先计算三段弧的长度,再用三角形的周长减去6,把结果加起来即可得到答案.解答:解:三段弧的长度=π,三角形的周长=4+5+6=15,图②的周长=π+15﹣6=9+π,故答案为9+π.点评:本题考查了弧长的计算以及三角形的内角和定理,解题关键是掌握弧长公式l=.13.如图,点P为反比例函数y=在第一象限图象上的动点,过点P作x轴的垂线,垂足为M,则三角形OPM的面积为8 .考点:反比例函数系数k的几何意义.分析:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变,由此可得出答案.解答:解:根据反比例函数k的几何意义可得:S△OPM=k=8.故答案为:8.点评:此题考查了反比例函数的几何意义,属于基础题,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.14.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为12 .考点:相似三角形的判定与性质;平行四边形的性质.分析:求出CE=3DE,AB=2DE,求出=,=,根据平行四边形的性质得出AB∥CD,AD∥BC,推出△DEF∽△CEB,△DEF∽△ABF,求出=()2=,=()2=,求出△CEB的面积是9,△ABF的面积是4,得出四边形BCDF的面积是8,即可得出平行四边形ABCD的面积.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵CD=2DE,∴CE=3DE,AB=2DE,∴=,=,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△DEF∽△CEB,△DEF∽△ABF,∴=()2=,=()2=,∵△DEF的面积为1,∴△CEB的面积是9,△ABF的面积是4,∴四边形BCDF的面积是9﹣1=8,∴平行四边形ABCD的面积是8+4=12,故答案为:12.点评:本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.15.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体.专题:压轴题;数形结合.分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.16.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=(x>0).考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:数形结合.分析:连接AE,DE,根据同弧所对的圆周角等于圆心角的一半,求得∠AED=120°,然后求得△ABE∽△ECD.根据相似三角形的对应边对应成比例即可表示出x与y的关系,从而不难求解.解答:解:连接AE,DE,∵∠AOD=120°,∴为240°,∴∠AED=120°,∵△BCE为等边三角形,∴∠BEC=60°;∴∠AEB+∠CED=60°;又∵∠EAB+∠AEB=∠EBC=60°,∴∠EAB=∠CED,∵∠ABE=∠ECD=120°;∴△ABE∽△ECD,∴=,即=,∴y=(x>0).故答案为:y=(x>0).点评:此题主要考查学生圆周角定理以及对相似三角形的判定与性质及反比例函数的实际运用能力.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:﹣(π﹣2)0+2cos45°+()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用负指数幂法则计算,即可得到结果.解答:解:原式=2﹣1+2×+4=3+3.点评:此题考查了实数的运算,涉及的知识有:零指数幂,负指数幂,二次根式的化简,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.解方程:=﹣5.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1),得﹣3=x﹣5(x﹣1),解得x=2(5分)检验,将x=2代入(x﹣1)=1≠0,∴x=2是原方程的解.(6分)点评:本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.考点:菱形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB 可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.解答:解:(1)∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形.点评:此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.20.今年N市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a= 30 ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为48% ;(3)求被调查的消费者平均每人年收入为多少万元?考点:频数(率)分布直方图;加权平均数.专题:计算题.分析:(1)根据共发放100份问卷,并全部收回,结合表格中数据得出a的值即可;(2)根据条形统计图得出打算购买住房面积不小于100平米的人数,即可得出打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比;(3)利用(1)中所求结合加权平均数求法得出即可.解答:解:(1)根据题意得出:10+50+8+2+a=100,解得:a=30;条形图中:100到120之间的数据为:100﹣4﹣36﹣12﹣20=28,如图所示:(2)∵打算购买住房面积不小于100平米的人数为:28+20=48(人),∴打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为:×100%=48%;(3)被调查的消费者平均每人年收入为:(5×10+50×6+30×10+12×8+25×2)÷100=7.96(万元),答:被调查的消费者平均每人年收入为7.96万元.故答案为:30;48%.点评:此题主要考查了加权平均数以及频数分布直方图的应用,根据已知得出a的值是解题关键.21.光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.考点:列表法与树状图法.分析:(1)根据检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力可以利用列表法列举出所有可能即可求出;(2)根据图表求出即可.解答:解:∵甲、乙、丙的检测情况,有如下8种可能:A B1 甲乙丙2 甲乙丙3 甲丙乙4 甲乙丙5 乙甲丙6 乙丙甲7 丙甲乙8 甲乙丙∴(1)P(甲、乙、丙在同一处检测)==;(2)P(至少有两人在B处检测)==.点评:此题主要考查了列表法求概率,此题是中考中新题型,列举时一定注意不能漏解.22.已知二次函数y=2x2﹣4mx+m2+2m(m是常数).(1)求该函数图象的顶点C的坐标(用含m的代数式表示);(2)当m为何值时,函数图象的顶点C在二、四象限的角平分线上?考点:二次函数的性质.分析:(1)根据顶点坐标(﹣,)直接计算即可;(2)根据点C坐标,点C在直线y=﹣x上,即使横纵坐标互为相反数,计算即可得出答案.解答:解:(1)由y=2x2﹣4mx+m2+2m=2(x2﹣2mx)+m2+2m=2(x﹣m)2﹣m2+2m,得顶点C的坐标为(m,﹣m2+2m);(2)点C坐标(m,2m﹣m2),由题意知,点C在直线y=﹣x上,则﹣m=2m﹣m2,整理得m2﹣3m=0,解得m=0或m=3;所以当m为0或3时,函数图象的顶点C在二、四象限的角平分线上.点评:本题考查了二次函数的性质,主要利用了顶点坐标的公式,是基础题,熟练的把二次函数解析式转化为顶点式解析式是解题的关键.23.如图,一艘轮船位于灯塔P的北偏东45°方向,距灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东35°方向上的B处.这时,轮船所在的B处距离灯塔P有多远?(精确到0.1海里)(参考数据:≈1.41,≈1.73,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)考点:解直角三角形的应用-方向角问题.分析:在Rt△ACP中,根据PC=PA•sin45°,求出PC,在Rt△BCP中,根据sin∠B=,求出PB即可.解答:解:根据题意,在Rt△ACP中,PC=PA•sin45°=100×=50,在Rt△BCP中,∠B=35°,∵sin∠B=,∴PB==≈≈123.7.答:轮船所在的B处距离灯塔P约有123.7海里.点评:此题考查了解直角三角形的应用,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.24.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?考点:一元二次方程的应用.专题:销售问题.分析:根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.解答:解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.点评:此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键.25.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?考点:一次函数的应用.专题:压轴题;阅读型;图表型.分析:(1)由于线段AB与x轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B的坐标是解答(2)题的关键,这就需要求得直线EF和直线BD的解析式,而EF过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C的纵坐标,又因点D(7,480),这样就可求出CD即BD的解析式,从而求出B 点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处时,x=4.9,求出此时的y乙﹣y甲,在点D有x=7,也求出此时的y甲﹣y乙,分别同25比较即可.解答:解:(1)1.9;(2)设直线EF的解析式为y乙=kx+b,∵点E(1.25,0)、点F(7.25,480)均在直线EF上,∴,解得∴直线EF的解析式是y乙=80x﹣100;∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6﹣100=380;∴点C的坐标是(6,380);设直线BD的解析式为y甲=mx+n;∵点C(6,380)、点D(7,480)在直线BD上,∴;解得;∴BD的解析式是y甲=100x﹣220;∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,270),∴甲组在排除故障时,距出发点的路程是270千米.。
江苏省南京市溧水区2013~2014学年中考数学二模调研测试卷及答案
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
1.计算-1+2的值是(▲)
A.-3 B.-1 C.1 D.3
2.不等式组的解集是(▲)
A.x>-B.x<-C.x≤1 D.-<x≤1
3.计算 的结果是(▲)
A. B. C. D.
4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是(▲)
17.(6分)解方程组
18.(6分)计算:÷-.
19.(8分)已知:如图,△ABC≌△CAD.
(1)求证:四边形ABCD为平行四边形;
(2)若AE、CF分别平分∠CAD、∠ACB,且∠CFB=∠B,求证:四边形AECF为菱形.
20.(9分)以下是某省2013年教育发展情况有关数据:
全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.
22.(8分)某市为了解决市民看病难的问题,决定下调药品的价格.现将某种原价为200元的药品,经过连续两次降价后,价格控制在100~140元范围内.若两次降价相同的百分率,且已知第二次下降了32元,试求第一次降了多少元.
23.(8分)某数学兴趣小组,利用树影测量树高.如图(1),已测出树AB的影长AC为12m,并测出此时太阳光线与地面成30°夹角.
江苏省南京市溧水区2013年中考数学二模试卷(解析版)
某某省某某市溧水区2013年中考数学二模试卷一、选择题(本大题共有6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(2分)(2013•溧水县二模)以下关于的说法,错误的是()A.=±2B.是无理数C.2<<3 D .=2考点:估算无理数的大小;算术平方根.分析:根据算术平方根的定义以及数的分类和估算无理数的大小方法以及二次根式的化简即可得到问题答案.解答:解:A、=2≠±2,故该选项错误;B、开方开不尽,所以是无理数,故该选项正确;C、因为<<,所以2<<3,故该选项正确;D、=2,计算正确,故该选项正确;故选A.点评:本题考查了算术平方根的定义以及数的分类和估算无理数的大小方法以及二次根式的化简.2.(2分)(2006•某某)数据7、9、8、10、6、10、8、9、7、10的众数是()A.7B.8C.9D.10考点:众数.专题:应用题.分析:根据众数的定义,找数据中出现最多的数即可.解答:解:数字10出现了3次,为出现次数最多的数,故众数为10.故选D.点评:本题考查了众数的概念.众数是数据中出现次数最多的数.3.(2分)(2011•某某)把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°考点:平行线的性质.分析:由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.解答:解:在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°﹣∠1=45°(三角形的内角和定理),∴∠4=180°﹣∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.点评:此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.4.(2分)(2009•某某)如图,∠1、∠2、∠3、∠4是五边形ABCD的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°考点:多边形内角与外角.分析:利用邻补角的定义,先求出∠ADE的外角,再利用多边形的内角和公式求∠AED的度数即可.解答:解:根据五边形的内角和公式可知,五边形ABCDE的内角和为(5﹣2)×180°=540°,根据邻补角的定义可得∠EAB=∠ABC=∠BCD=∠CDE=180°﹣70°=110°,所以∠AED=540°﹣110°×4=100°.故选D.点评:本题考查了多边形的内角和公式和邻补角的定义.多边形的内角和为:180°(n﹣2).5.(2分)(2013•溧水县二模)点A1、A2、A3、…、A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;点A4在点A3的右边,且A4A3=4;…,依照上述规律,点A2013所表示的数为()A.﹣2013 B.2013 C.﹣1007 D.1007考点:规律型:数字的变化类.分析:先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.解答:解:根据题意分析可得:点A1,A2,A3,…,A n表示的数为﹣1,1,﹣2,2,﹣3,3,…依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;当n为偶数时,A n+1=﹣A n﹣1;∵2013+1=2014,2014÷2=1007,所以点A2013所表示的数为﹣1007.故选C.点评:此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.(2分)(2013•溧水县二模)如图,∠ACB=60°,半径为2的⊙O切BC于点C,若将⊙O 在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.2πB.4πC.2D.4考点:切线的性质;角平分线的性质;解直角三角形.分析:连接O′C,O′B,O′D,OO′,则O′D⊥BC.因为O′D=O′B,O′C平分∠ACB,可得∠O′CB=∠ACB=×60°=30°,由勾股定理得BC=2.解解:当滚动到⊙O′与CA也相切时,切点为D,答:连接O′C,O′B,O′D,OO′,∵O′D⊥AC,∴O′D=O′B.∵O′C平分∠ACB,∴∠O′CB=∠ACB=×60°=30°.∵O′C=2O′B=2×2=4,∴BC===2.故选C.此题主要考查切线及角平分线的性质,勾股定理等知识点,属中等难度题.点评:二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)7.(2分)(2013•溧水县二模)不等式的解集为﹣2<x<1 .解一元一次不等式.考点:根据不等式组的求解方法,求解即可.分析:解解:∵答:在数轴上表示为:∴﹣2<x<1.点评:此题考查了不等式组的解集.可以借助于数轴,利用数形结合的思想求解.8.(2分)(2013•溧水县二模)方程x(x﹣1)=2(x﹣1)的解是x1=1,x2=2 .考点:解一元二次方程-因式分解法;因式分解-提公因式法.专题:计算题;因式分解.分析:移项得到x(x﹣1)﹣2(x﹣1)=0,分解因式得出(x﹣1)(x﹣2)=0,推出x﹣1=0,x﹣2=0,求出方程的解即可.解答:解:x(x﹣1)=2(x﹣1),x(x﹣1)﹣2(x﹣1)=0,(x﹣1)(x﹣2)=0,x﹣1=0,x﹣2=0,x1=1,x2=2,故答案为:x1=1,x2=2.点评:本题主要考查对解一元二次方程﹣因式分解法,解一元一次方程,因式分解﹣提公因式法等知识点的理解和掌握,把一元二次方程转化成一元一次方程是解此题的关键.9.(2分)(2013•溧水县二模)若两个相似三角形的相似比为1:4,则它们的周长比为1:4 .考相似三角形的性质.点:分析:由两个相似三角形的相似比为1:4,根据相似三角形周长的比等于相似比,即可求得答案.解答:解:∵两个相似三角形的相似比为1:4,∴它们的周长比为:1:4.故答案为:1:4.点评:此题考查了相似三角形的性质,比较简单,注意掌握相似三角形周长的比等于相似比定理的应用是解此题的关键.10.(2分)(2013•溧水县二模)等腰△ABC的一个外角是80°,则其顶角的度数为100°.考点:等腰三角形的性质.分析:等腰三角形的一个外角等于80°,则等腰三角形的一个内角为100°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.解答:解:一个等腰三角形的一个外角为80°,则等腰三角形的一个内角为100°,当100°为顶角时,其他两角都为40°、40°;当100°为底角时,三角形内角和大于180°,故不符合题意.所以等腰三角形的顶角100°.故答案为:100°.点评:本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.11.(2分)(2013•溧水县二模)因式分解:2x2﹣4x+2.考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a ﹣b)2.解答:解:2x2﹣4x+2 =2(x2﹣2x+1)=2(x﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.(2分)(2013•溧水县二模)把一次函数y=﹣2x+4的图象向左平移2个长度单位,新图象的函数表达式是y=﹣2x .考点:一次函数图象与几何变换.分析:直接根据“左加右减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,将一次函数y=﹣2x+4的图象向左平移2个单位长度,所得图象的解析式为y=﹣2(x+2)+4,即y=﹣2x.故答案为y=﹣2x.点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.(2分)(2013•溧水县二模)已知二次函数y=x2+bx+c中函数y与自变量x之间的部分对应值如下表所示,点A(x1,y1)、B(x2,y2)在函数图象上,当0<x1<1,2<x2<3时,则y1>y2(填“>”或“<”).x …0 1 2 3 …y … 1 ﹣2 ﹣3 ﹣2 …考点:二次函数图象上点的坐标特征.分析:由二次函数图象的对称性知,图表可以体现出二次函数y=ax2+bx+c的对称轴和开口方向,然后由二次函数的单调性解答.解答:解:根据图表知,当x=1和x=3时,所对应的y值都是﹣2,∴抛物线的对称轴是直线x=2,又∵当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小,∴该二次函数的图象的开口方向是向上;∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故答案是:y1>y2.点评:本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键.14.(2分)(2013•溧水县二模)已知关于x的方程=4的解是负数,则m的取值X围为m>﹣8且m≠﹣4 .考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为负数列出关于m的不等式,求出不等式的解集即可得到m的X围.解解:分式方程去分母得:2x﹣m=4x+8,答:解得:x=﹣m﹣4,根据题意得:﹣m﹣4<0,且﹣m﹣4≠﹣2,解得:m>﹣8且m≠﹣4.故答案为:m>﹣8且m≠﹣4.点评:此题考查了分式方程的解,方程的解即为能使方程左右两相等的未知数的值.15.(2分)(2013•溧水县二模)如图,以数轴上的原点O为圆心,6为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,10为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如果两个扇形的圆弧部分(和)相交,那么实数a的取值X围是﹣8<a<﹣4 .考点:圆与圆的位置关系;实数与数轴.分析:两扇形的圆弧相交,介于D、A两点重合与C、B两点重合之间,分别求出此时PD的长,PC的长,确定a的取值X围.解答:解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===8,此时P点坐标为a=﹣8,则实数a的取值X围是﹣8≤a≤﹣4.故答案为:﹣8≤a≤﹣4.点评:本题考查了圆与圆的位置关系,实数与数轴的关系.关键是找出两弧相交时的两个重合端点.16.(2分)(2013•溧水县二模)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,求BC.考点:相似三角形的判定与性质;等腰三角形的性质;等边三角形的性质.分析:首先延长ED交BC于M,延长AD交BC于N,过点D作DF∥BC,交BE于F,易得:△EFD∽△EBM,又由AB=AC,AD平分∠BAC,根据等腰三角形的性质,即可得AN⊥BC,BN=,又由∠EBC=∠E=60°,可得△BEM与△EFD为等边三角形,又由直角三角形中,30°角所对的直角边是斜边的一半,即可求得MN与BM的值,继而求得答案.解答:解:延长ED交BC于M,延长AD交BC于N,过点D作DF∥BC,交BE于F,可得:△EFD∽△EBM,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4cm,∵∠DNM=90°,∠DMN=60°,∴∠NDM=30°,∴NM=DM=2cm,∴BN=BM﹣MN=6﹣2=4(cm),∴BC=2BN=8(cm).点评:此题考查了相似三角形的判定与性质、等边三角形的判定与性质以及直角三角形的性质.此题难度较大,解题的关键是准确作出辅助线,求得△BEM与△EFD为等边三角形,然后由等边三角形的性质求线段的长.三、解答题(本大题共12小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(2013•溧水县二模)计算:(﹣1)2+﹣(﹣2013)0.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:根据完全平方公式、零指数幂的意义得到原式=2﹣2+1+2﹣1,然后合并即可.解答:解:原式=2﹣2+1+2﹣1 =2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.18.(6分)(2013•溧水县二模)先化简再求值:(1+)÷,其中x是方程x2﹣2x=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:首先正确将分式的分子与分母进行因式分解,进而进行分式的通分、约分,并准确代值计算.解答:解:原式=(+)÷,=x+1;方程x2﹣2x=0的根是:x1=0、x1=2,∵x不能取0,∴当x1=2时,原式=2+1=3.点评:本题考查了分式的化简求值,解题的关键是正确化简所给分式.19.(6分)(2012•某某)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是③、①(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.考点:函数的图象.专压轴题;推理填空题;开放型.题:分析:(1)根据图象,一段一段的分析,再一个一个的排除,即可得出答案;(2)把图象分为三部分,再根据离家的距离进行叙述,即可得出答案.解答:解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故答案为:③,①.(2)情境是小芳离开家不久,休息了一会儿,又走回了家.点评:主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,但是一道比较容易出错的题目.20.(6分)(2013•溧水县二模)今年N市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:请你根据以上信息,回答下列问题:(1)求出统计表中的a= 30 ,并补全统计图;(2)打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为48% ;(3)求被调查的消费者平均每人年收入为多少万元?考点:频数(率)分布直方图;加权平均数.专题:计算题.分析:(1)根据共发放100份问卷,并全部收回,结合表格中数据得出a的值即可;(2)根据条形统计图得出打算购买住房面积不小于100平米的人数,即可得出打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比;(3)利用(1)中所求结合加权平均数求法得出即可.解答:解:(1)根据题意得出:10+50+8+2+a=100,解得:a=30;条形图中:100到120之间的数据为:100﹣4﹣36﹣12﹣20=28,如图所示:(2)∵打算购买住房面积不小于100平米的人数为:28+20=48(人),∴打算购买住房面积不小于100平方米的消费者人数占被调查人数的百分比为:×100%=48%;(3)被调查的消费者平均每人年收入为:(5×10+50×6+30×10+12×8+25×2)÷100=7.96(万元),答:被调查的消费者平均每人年收入为7.96万元.故答案为:30;48%.点评:此题主要考查了加权平均数以及频数分布直方图的应用,根据已知得出a的值是解题关键.21.(6分)(2013•溧水县二模)某商场“五一节”期间举办促销活动,顾客每购买一定金额的商品,即可获得一次摸奖机会,中奖的概率为0.5,该商场设计了一个摸奖方案:在一个不透明的口袋里放入红、白、黄三种颜色的球(除颜色外其余都相同),已放入红球2个,黄球1个.若从中任意摸出一个球为红球即为中奖.(1)在口袋中还应放入几个白球?(2)在(1)的条件下,从袋中任意摸出一球,不放回,摇匀后再摸出一球,则两次都摸到红球的概率是多少?请列表或画树状图进行说明.考点:列表法与树状图法.专题:计算题.分析:(1)设应放的白球为x个,根据题意列出关于x的方程,求出方程的解得到x的值,即为白球的个数;(2)列表得出所有等可能的情况数,找出两次都为红球的情况数,即可求出所求的概率.解解:(1)设白球的个数有x个,答:根据题意得:=,解得:x=1,经检验x=1是分式方程的解,且符合题意,则应放白球的个数为1个;(2)列表如下:红红黄白红﹣﹣﹣(红,红)(黄,红)(白,红)红(红,红)﹣﹣﹣(黄,红)(白,红)黄(红,黄)(红,黄)﹣﹣﹣(白,黄)白(红,白)(红,白)(黄,白)﹣﹣﹣所有等可能的情况有12种,其中两次摸到红球的情况有2种,则P(两次摸到红球)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(6分)(2009•某某)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作∥BD,过点B作BN∥AC,与BN 交于点N,试判断线段BN与的数量关系,并证明你的结论.考点:菱形的判定;全等三角形的判定.专题:证明题;压轴题;探究型.分析:(1)由SSS可证△ABC≌△DCB;(2)BN=,可先证明四边形BM是平行四边形,由(1)知,∠MBC=∠MCB,可得BM=CM,于是就有四边形BM是菱形,则BN=.解答:(1)证明:如图,在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB;(4分)(2)解:据已知有BN=.证明如下:∵∥BD,BN∥AC,∴四边形BM是平行四边形,(6分)由(1)知,∠MBC=∠MCB,∴BM=CM(等角对等边),∴四边形BM是菱形,∴BN=.(9分)点评:此题主要考查全等三角形和菱形的判定.23.(6分)(2013•溧水县二模)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B 地.已知BC=16km,∠A=53°,∠B=30°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据:,sin53°≈0.80,cos53°≈0.60)考点:解直角三角形的应用.分析:作DG⊥AB于G,CH⊥AB于H,分别在Rt△ADG和Rt△BCE中,分别求出AG、BH的长度,然后求出(AD+DC+CB)﹣(AG+GH+HB)即可.解答:解:作DG⊥AB于G,CH⊥AB于H,则四边形CDGH为矩形,∴GH=CD,在Rt△BCH中,∵sin∠B=,BC=16km,∠B=30°,∴CH=8,cos∠B=,∴BH=8,易得DG=CH=8,在△ADG中,∵sin∠A=,DG=8,∴AD=10,AG=6,∴(AD+DC+CB)﹣(AG+GH+HB)=20﹣8≈6.2(km).答:现在从A地到达B地可比原来少走6.2km.点评:本题考查了解直角三角形的应用,解答本题的关键是根据所给的角的度数构造直角三角形,然后解直角三角形,难度一般.24.(8分)(2013•溧水县二模)古希腊数学家丢番图(公元250年前后)在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:如图,以和b为两直角边作Rt△ABC,再在斜边上截取BD=,则AD的长就是所求方程的解.(1)请用含字母a、b的代数式表示AD的长.(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.考点:解一元二次方程-公式法.专题:计算题.分析:(1)先根据勾股定理求得AB的长,再求AD的长.(2)正确性:形象直观;遗憾之处:图解法不能表示方程的负根.解答:解:(1)∵∠C=90°,BC=,AC=b,∴AB=,∴AD=﹣=;(2)用求根公式求得:;(2分)正确性:AD的长就是方程的正根.遗憾之处:图解法不能表示方程的负根.(2分)点评:本题考查了一元二次方程的解法﹣公式法,解一元二次方程的方法有:直接开平方法、公式法、配方法、因式分解法,要根据方程的特点进行选择即可.25.(8分)(2013•溧水县二模)已知抛物线y=ax2+bx经过点A(3,3)和点P(t,0),且t≠0.(1)若t=2,求a、b的值;(2)若t>3,请判断该抛物线的开口方向.考点:二次函数的性质.分析:(1)将t=2代入,即可得出A,P两点坐标,进而利用二元一次方程组的解法得出即可;(2)首先整理出关于t的一元二次方程,利用t≠0,得出at+(1﹣3a)=0,整理得a(t﹣3)=﹣1,进而求出即可.解答:解:(1)由题意得:,解得:;(2)由题意得:由①得b=1﹣3a,将其代入②得:at2+(1﹣3a)t=0.∵t≠0,∴at+(1﹣3a)=0,整理得a(t﹣3)=﹣1,∵t>3,∴t﹣3>0,∴a<0,∴该抛物线的开口向下.点评:此题主要考查了二次函数的性质以及二元一次方程组的解法等知识,利用一元二次方程的解分析得出是解题关键.26.(8分)(2010•某某)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF 与半径OB 相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.考点:扇形面积的计算;线段垂直平分线的性质;解直角三角形.分析:(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.解答:解:(1)∵直径AB⊥DE,∴CE=DE=.∵DE平分AO,∴CO=AO=OE.又∵∠OCE=90°,∴sin∠CEO==,∴∠CEO=30°.在Rt△COE 中,OE===2.∴⊙O的半径为2.(2)连接OF.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=×π×22=π.∵∠EOF=2∠D=90°,OE=OF=2,∴S Rt△OEF=×OE×OF=2.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣2.此题综合考查了垂径定理和解直角三角形及扇形的面积公式.点评:27.(10分)(2013•溧水县二模)我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理.当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x(元),年销售量为y(万件),年获利为W (万元).(年利润=年销售总额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利W与x之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?考点:二次函数的应用;一元二次方程的应用.专题:应用题.分析:(1)销售量是用20万件减去因价格上涨而导致销量减小的量,据此可以列出函数关系式.(2)根据条件,求出二次函数解析式,从中找出最值以及相应的自变量X围.(3)根据两年的总盈利为1490万元列出一元二次方程求解即可.解答:解:(1)y=20﹣=﹣0.1x+30;(2)W=(x﹣40)(﹣0.1x+30)﹣18002+34x﹣3000=﹣0.1(x﹣170)2﹣110…(5分)∵不论x取何值,﹣0.1(x﹣170)2≤0,∴W=﹣0.1(x﹣170)2﹣110<0,即:不论销售单价定为多少,该公司投资的第一年肯定是亏损∵100<x≤200∴当x=170时,第一年最少亏损110万元.(3)依题意得(x﹣40)(﹣0.1x+30)﹣110=1490解之得x1=140 x2=200∵k=﹣0.1<0,∴y随x增大而减小,∴要使销量最大,售价要最低,即x=140元;点评:此题考查了二次函数的应用,为数学建模题,借助二次函数及一元二次方程解决实际问题.28.(12分)(2013•溧水县二模)已知两个全等的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)若纸片△DEF不动,把△AB C绕点F逆时针旋转30°时,连结CD,AE,如图2.①求证:四边形ACDE为梯形;②求四边形ACDE的面积.(2)将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,直接写出△ABC恰有一边与DE平行的时间.(写出所有可能的结果)考点:几何变换综合题.分析:(1)①求出∠FOD=∠ACB=90°,推出AC∥DE,根据梯形判定推出即可;②求出FO,求出BO,求出梯形高CO,根据梯形面积公式求出即可;(2)当t=3时,AC∥DE,当t=12时,BC∥DE,当t=15时,AB∥DE、当t=21时,AC∥DE、当t=30时,BC∥DE,当t=33时,AB∥DE.解答:(1)①证明:如图2,∵∠BFD=30°、∠EDF=60°,∴∠FOD=90°=∠ACB,∴AC∥BD,且AC≠BD,∴四边形ACDE为梯形;②解:BC交DE于O,在Rt△FDO中,FD=2,∠OFD=30°∴FG=,而CF=2﹣2∴CG=3﹣2,∴S四边形ACDE=×(2+4)×(3﹣2)=9﹣6;(2)解:△ABC恰有一边与DE平行的时间是:3、12、15、21、30、33.点评:本题考查了勾股定理,梯形的性质和判定,三角形的内角和定理,旋转的性质的应用,主要考查学生综合运用性质进行推理和计算的能力.。
南京市中考溧水区数学二模含答案
南京市中考溧水区数学二模含答案The latest revision on November 22, 20202017~2018学年度第二次调研测试九年级数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题卡..相应位置....上)1.计算:(-5)×2-(-4)的结果是( ▲ )(A )-14 (B )-6 (C )14 (D )6 2.分式xx -3有意义,则x 的取值范围是( ▲ )(A )x ≠3 (B )x ≠0 (C )x >3 (D )x >0 3.如图,PA 、PB 分别与圆O 相切于A 、B 两点,C 为圆上一点,∠P =70°,则∠C =( ▲ )(A )60° (B )55° (C )50° (D )45°4.如图,点D 、E 分别为△ABC 的边AB 、CB 的中点,记△BDE 的面积为S 1,四边形ADEC 的面积为S 2,则S 1∶S 2=( ▲ )(A )1∶4 (B )1∶3 (C )1∶2 (D )1∶1(第5题)(第3题)ACBDE(第4题)5.如图,在平行四边形ABCD 中,AC 、BD 是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是( ▲ )(A )∠BAC =∠ACB (B )∠BAC =∠ACD (C )∠BAC =∠DAC (D )∠BAC =∠ABD6.已知二次函数y =ax 2+bx 的图象如下图所示,则一次函数y =ax +b 的图象是(A ) (B ) (C) (D )二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.-8的立方根是 ▲ . 8.计算:(-2x 2y )3= ▲ .9.因式分解:a 3-ab 2= ▲ .10.如图,⊙O 的半径为2cm , AB 是⊙O 的弦,∠AOB =90°,图中阴影部分的2.11的城市交通地图上,某条道路的长为17cm ,则这条道路的实际长度用科学记数法.....表示为 ▲ m . 12.如图,两个同心圆,小圆半径为2,大圆半径为4,一直线与小圆相切,交大圆于A 、B 两点,则AB 的长为 ▲ .13.如图,△OAB 与△OCD 是以坐标原点O 为位似中心的位似图形,位似比为1:3(第12题)(第10题)14.如图,反比例函数y 1=2x与一次函数y 2=kx +b 的图象交于A 、B 两点,其中点A 的横坐标为-2,B 点的纵坐标为2,则k -b = ▲ . 15.如图,在四边形ABCD 中,BA =BD =BC ,∠ABC =80°,则∠ADC =▲ °. 16.已知函数y =1x 2+1,下列关于它的图象与性质,正确的是 ▲ .(写出所有正确的序号)①函数图象与坐标轴无交点; ②函数图象关于y 轴对称; ③y 随x 的增大而减小; ④函数有最大值1.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题8分)(1)解方程xx -1-31-x =2; (2)解不等式组⎪⎨⎪⎧2-3(x -5)≥52x -43<x -1.▲ ;(2)现从某校九年级学生中随机抽取n 名男生进行体质评价,评价结果统计如下:体质评价结果扇形统计图图1图2明显消瘦评价结果①抽查的学生数n = ▲ ;图2中a 的值为 ▲ ;②图1中,体质评价结果为“正常”的所在扇形圆心角为 ▲ °; (3)若该校九年级共有男生480人,试估计该校九年级体质评价结果为“过重”或“肥胖”的男生人数.19.(本小题8分)不透明的口袋中装有大小、形状完全相同的2个白球 ,a 个红球. (1)若从中任意摸出1个球,“是白球”的概率为25,则a = ▲ .(2)在(1)的条件下,从中任意摸出2个球 ,求“两个球的颜色相同”的概率.20.(本小题8分)如图,平行四边形ABCD 中,E 为AB 边上一点,DE =DC ,点F 为线段DE 上一点,满足∠DFC =∠A ,连结CE . (1)求证:AD =FC ;(2)求证:CE 是∠BCF 的角平分线.21.(本小题8分)如图,MN 为一电视塔,AB 是坡角为30°的小山坡(电视塔的底部N 与山坡的坡脚A 在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A 处测得塔顶M 的仰角为45°;沿着山坡向上行走40m 到达C 处,此时测得塔顶M 的仰角为30°,请求出电视塔MN 的高度.(参考数据:2≈,3≈,结果保留整数)22.(本小题8分)张师傅驾驶某种型号轿车从甲地去乙地,该种型号轿车每百公里油耗为10升(每行驶100公里需消耗10升汽油).途中在加油站加了一次油,加油前,根据仪表盘显示,油箱中还剩4升汽油.假设加油前轿车MN(第21题)(第20题)以80公里/小时的速度匀速行驶,加油后轿车以90公里/小时的速度匀速行驶(不计加油时间),已知油箱中剩余油量y (升)与行驶时间t (小时)之间的函数关系如图所示.(1) 加油前,该轿车每小时消耗汔油 ▲ 升;加油后,该轿车每小时消耗汔油 ▲ 升;(2)求加油前油箱剩余油量y (升)与行驶时间t (小时)之间的函数表达式;(3)求张师傅在加油站加了多少升汽油.23.(本小题6分)尺规作图:如图,点A 为直线l 外一点.求作⊙O ,使⊙O 经过点A 且与直线l 相切于点B .(保留作图痕迹,不写作法)24.(本小题8分)某商店经销甲、乙两种商品,现有如下信息:信息1:甲商品的零售单价比乙商品的零售单价少1元;信息2:按零售单价购买甲商品3件和乙商品2件,共付了12元. 请根据以上信息,解答下列问题: (1)分别求甲、乙两种商品的零售单价;(2)该商店平均每天卖出甲、乙两种商品各500件,经调查发现,两种商品零售单价每降元,甲种商品每天可多销售30件,乙种商品每天可多销售20件,商店决定把两种商品的零售单价均下降m (0<m <1)元.在不考虑其他因素的条件下,当m 为多少时,商店每天销售甲、乙两种商品的销售额之和为2500元B Al(第23题)小时(第22题)25.(本小题8分)如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径,OD ⊥AB ,与AC 交于点E ,∠D =2∠A . (1)求证:CD 是⊙O 的切线; (2)求证:DE =DC ;(3)若OD =5,CD =3,求AC 的长.26.(本小题9分)如图,抛物线y =ax 2+32x +c (a ≠0)与x 轴交于点A ,B 两点,其中A (-1,0),与y 轴交于点C (0,2).27(1)复习时,小明与小亮、数学老师交流了自己的两个见解,并得到了老师的认可:A(第25题)①可以假定正方形的边长AB =4a ,则AE =DE =2a ,DF =a ,利用“两边分别成比例且夹角相等的两个三角形相似”可以证明△ABE ∽△DEF ;请结合提示写出证明过程.②图中的相似三角形共三对,而且可以借助于△ABE 与△DEF 中的比例线段来证明△EBF 与它们相似.证明过程如下:(2)交流之后,小亮尝试对问题进行了变化,在老师的帮助下,提出了新的问题,请你解答:已知:如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC .(AB >AE )①求证:△AEF ∽△ECF ;②设BC =2,AB =a ,是否存在a 值,使得△AEF 与△BFC 相似.若存在,请求出a 的值;若不存在,请说明理由.2017~2018学年度第二次质量调研测试九年级数学评分标准7.-2; 8.-8x 6y 3; 9.a (a +b ) (a -b ); 10.π-2; 11.×104;12.43; 13.(3,-3); 14.0; 15.140; 16.②④.A B CDE F(第27题)三、解答题17.(8分)(1)解:去分母,得x+3=2(x-1). (1)分解得x=5.…………………………3分经检验:x=5时,x-1≠0所以,x=5是原方程的解.………………………4分(2)解:解不等式①,得x≤4,…………………………5分解不等式②,得x>-1,……………………………6分在数轴上表示这两个不等式的解集:………………7分∴原不等式组的解集为:-1<x≤4...................8分18.(8分)(1)过重 (2)分(2)①60,5 …………………………………4分②96°………………………………6分(3)480×(40%+20%)=288(人)…………………………7分答:该校体质监测结果为“过重”或“肥胖”的男生人数为288人.......8分19.(8分)(1)3; (2)分(2)记两个白球分别为白1、白2,三个红球分别为红1、红2、红3.……3分则所有基本事件:(白1、白2)、(白1、红1)、(白1,红2)、(白1,红3)、(白2、红1)、(白2、红2)、(白2、红3)、(红1、红2)、(红1、红3)、(红2、红3)共有10种等可能的情况 (5)分记事件“两个球的颜色相同”为A,事件A包括4个基本事件:(白1、白2) (红1、红2)、(红1、红3)、(红2、红3) …6分∴P(A)=25……7分即从中任意摸出个球,两个球颜色相同的概率为25. (8)分20.(8分)证明:(1)∵四边形ABCD平行四边形,∴AB∥CD.∴∠AED=∠FDC,……1分又∵∠A =∠DFC ,DE =CD .∴ △ADE ≌△FCD (AAS ).……………3分 ∴AD =FC ………………………………4分 (2)∵ △ADE ≌△FCD ∴AE =FD , ∵BE =AB -AE ,EF =DE -DF , ∵四边形ABCD 平行四边形,∴AB =DC ,又∵DE =DC ,AD =FC ,∴BE =FE , CF =CB又∵CE =CE .∴ △CEF ≌△CEB (SSS ). ……………7分 ∴∠FCE =∠BCE∴CE 是∠BCF 的角平分线. …………8分21.(8分)解:过点C 作CE ⊥AN 于点E , CF ⊥MN 于点F .……1分在△ACE 中,AC =40m ,∠CAE =30°∴CE =FN =20m ,AE =203m ………3分设MN =x m ,则AN =x m .FC =3x m ,在RT △MFC 中MF =MN -FN =MN -CE =x -20FC =NE =NA +AE =x +20 3 ∵∠MCF =30° ∴FC =3MF , 即x +203=3( x -20) ………6分解得:x =4033-1=60+203≈95m …………7分答:电视塔MN 的高度约为95m . ………………8分22.(8分)解:(1)8;9 ……………………·2分 (2)由题意知t =0时,y =28 ……·3分设函数表达式为y =kt +b由题意知⎩⎪⎨⎪⎧b =28,k +b =20,解得k =-8,b =28所以函数表达式为y =-8t +28…………………5分(3)当y =4时,求得t =3,所以a =3 …………6分b =34+(5-3)×9=52 …………7分 所以b -4=52-4=48所以张师傅在加油站加油48升. ………8分23.(6分)作AB 的垂直平分线. ………………………2分过点B 作直线l 的垂线交AB 的垂直平分线于点O .……4分 以点O 为圆心,OB 长为半径作⊙O .…………………6分24.(8分)解(1)设甲、乙两种商品的零售单价分别为x 元、y 元.………1分(第20题)(第21题)由题意得:⎩⎪⎨⎪⎧x =y -1,3x +2y =12. (2)分解得:⎩⎪⎨⎪⎧x =2,y =3. (3)分答:甲、乙两种商品的零售单价分别为2元、3元. (4)分(2)由题意得:(2-m )(500+错误!×30)+(3-m )(500+错误!×20)=2500 ……6分解得:x 1=,x 2=0(舍去) ……7分 答:m =时,商店每天销售甲、乙两种商品的销售额为2500元……8分25.(8分)证明:(1)连接OC .在⊙O 中,OA =OC ,∴∠ACO =∠A ,故∠COB =2∠A . ………1分 又∵∠D =2∠A , ∴∠D =∠COB .又∵OD ⊥AB ,∴∠COB +∠COD =90°.∴∠D +∠COD =90°.即∠DCO =90°.……………2分 即OC ⊥DC ,又点C 在⊙O 上,∴CD 是⊙O 的切线. ………………………3分 (2)∵∠DCO =90°,∴∠DCE +∠ACO =90°.又∵OD ⊥AB ,∴∠AEO +∠A =90°.又∵∠A =∠ACO ,∠DEC =∠AEO ,∴∠DEC =∠DCE ……………………4分∴DE =DC . ………………………5分(3)∵∠DCO =90°,OD =5,DC =3, ∴OC =4, …………6分 ∴AB =2OC =8,又DE =DC ,OE =OD -DE =2 在△AOE 与△ACB 中, ∠A =∠A ,∠AOE =∠ACB =90° ∴△AOE ∽△ACB ,∴OE CB =AO AC ,设AC =x ,则BC =x2…………7分 在△ABC 中,AC 2+BC =AB 2,求得x =1655 所以AC 的长为1655.………………………8分 26.(9分)解:(1)将A (-1,0)、 C (0,2)代入y =ax 2+32x +c (a ≠0)A得:a=-12,c=2y=-12x2+32x+2 ……………………2分当y=0时,x1=-1,x2=4,故B(4,0) …………………3分(2)①设直线BC的函数表达式为y=kx+b,将B(4,0)、 C(0,2)代入得:y=-12x+2,…………4分EF=FG-GE=-12m2+32m+2-(-12m+2)=-12m2+2m …………7分② 2 …………9分27.(本小题9分)(1)①证明:假定正方形的边长AB=4a,则AE=DE=2a,DF=a,在正方形ABCD中,∠A=∠D=90°.AB DE =AEDF=2,∠A=∠D=90°.…………2分∴△ABE∽△DEF.…………3分(2)①证明:∵∠D=90°,∴∠D EC+∠DCE=90°∵EF⊥EC,∴∠D EC+∠AEF=90°∴∠AEF=∠DCE,又因为∠A=∠D=90°∴△AEF∽△DEC …………4分∴ABED=BEEF,∵AE=ED,∴ABAE=BEEF,即ABBE=AEEF,∵∠A=∠BEF=90°∴△AEF∽△EFC.…………6分②由题意得:AE=DE=1,由△AEF∽△DCE得:AF=1a,故BF=a-1a.…………7分若△AEF∽△BFC则AEBF=AFBC,此时a无解;………8分若△AEF∽△BCF则AEBC=AFBF,此时a=3.AB CDEFAB CDEF所以,当a=3时,△AEF与△BFC相似.…………9分。
2013 年中考数学模拟试卷参考答案
1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)
2013年溧水区数学一模试卷
第 1 页 共 9 页溧水区2013年初三中考第一次模拟测试卷数 学 试 卷注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上........,不能答在试卷上........ 一、选择题(本大题共有6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1. 下面的数中,与2-的和为0的是 ( ▲ )A .2B .2-C .21 D . 21- 2. 一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为( ▲ )A .56.510-⨯B .66.510-⨯C .76.510-⨯D .66510-⨯3. 下列运算正确的是( ▲ )A .328-= B .()23-=9- C2= D .020=4. 以下问题,不适合用全面调查的是( ▲ )A .了解全班同学每周体育锻炼的时间B .黄河三角洲中学调查全校753名学生的身高C .学校招聘教师,对应聘人员面试D .鞋厂检查生产的鞋底能承受的弯折次数 5. 在反比例函数(0)ky k x=<的图像上有两点(1-,1y ),(41-,2y ),则21y y -的值是( ▲ )A .正数B .非正数C .负数D .非负数6. 小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其颗数3,6,9,12,…成为三角形数,类似地,图2中的4,8,12,16,… 称为正方形数.下列数中既是三角形数又是正方形数的是( ▲ )A.2010B.2012C.2014D.2016… …3 6 9 …4 8 12 …图1 图2第 2 页 共 9 页二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置........上) 7. 写出一个比3-大的无理数:__▲_____. 8. 分解因式:822-x = ▲ .9. 甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是2甲S =0.90,2乙S =1.22,2丙S =0.43,2丁S =1.68,在本次射击测试中,成绩最稳定的是 ▲ (填甲、乙、丙、丁).10. 在等腰△ABC 中,∠C=90°,则cos A = ▲ . 11. 方程组326x y x y +=⎧⎨-=⎩的解为 ▲ .12. 如图,在△ABC 中,AB=AD=DC ,∠BAD =20°,则∠C = ▲ .13. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 ▲ mm . 14. 已知一次函数b kx y +=的图象过点),(11y x 、),(22y x ,且112=-x x 时,212-=-y y ,则k = ▲ .15. 如图,用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是 ▲ cm .16. 如图,在平面直角坐标系中,A 、B 为正比例函数x y 3=图象上的两点,且OB =2,ABP在y 轴上,△BP A 是以∠B 为顶角的等腰三角形,则 OP 的长为 ▲ .第15题图第13题图第12题图第 3 页 共 9 页三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(1)解不等式:7)1(68)2(5+-<+-x x ;(2)若(1)中的不等式的最小整数解是方程32=-ax x 的解,求a 的值.18.(6分)先化简,再求代数式的值:1)1212(2-÷-+-+a a a a a ,其中︒+-=60tan )1(2013a .19.(8分)如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时) (1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以51.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.20.(6分)如图,ABC ∆是边长为4的等边三角形,将ABC ∆沿直线BC 向右平移,使B 点与C 点重合,得到DCE ∆,连结BD ,交AC 于F . (1)猜想BD 与DE 的位置关系,并证明你的结论; (2)求BDE ∆的面积S .第19题图A第20题图CEDF第 4 页 共 9 页21.(7分)甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a 、b 、c ,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张. (1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果; (2)求三位同学中至少有一人抽到自己制作卡片的概率.22.(7分)如图,点A 、B 、C 分别是⊙O 上的点,∠B =60°,AC=3,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC .(1)判断AP 与⊙O 的位置关系,并说明理由; (2)求PD 的长.23.(8分)某长方体包装盒的展开图如图所示.如果包装盒的表面积为1462cm ,求这个包装盒的体积.24.(8分)如图,小敏、小亮从A ,B 两地观测空中C 处一个气球,分别测得仰角为30°和60°,A ,B 两地相距100 m.当气球沿与BA 平行地飘移10秒后到达C ′处时,在A 处测得气球的仰角为45°.(1)求气球的高度(结果精确到0.1m); (2)求气球飘移的平均速度(结果保留3个有效数字).第22题图长宽高14cm13cm第24题图25.(10分)在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与.B.港的距离....为y(km),y与x的函数关系如图所示.(1)图中点P的坐标为(0.5,0),请解释该点坐标所表示的实际意义;a▲;(2)填空:A、C两港口间的距离为▲km,当0<x≤0.5时,y与x的函数关系式为:▲;当0.5<x≤a时,y与x的函数关系式为:▲;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为24km,求该海巡船能接受到该信号的时间有多长?(4)请你根据以上信息,针对A岛,就该海巡船航行的“路程”,提出一个问题,并写出解答过程.P26.(10分)某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.(1)求顾客一次至少买多少件,才能以最低价购买?(2)写出当一次出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?第 5 页共9 页第 6 页 共 9 页27.(10分)如图,菱形ABCD 中,对角线AC 、BD 交于点O ,点P 在对角线BD 上运动(B 、D 两点除外),线段P A 绕点P 顺时针旋转m °()1800<<m ,得线段PQ .(1)若点Q 与点D 重合,请在图中用尺规作出点P 所处的位置(不写作法,保留作图痕迹); (2)若点Q 落在边CD 上,且∠ADB =n °. ①探究m 与n 之间的数量关系;②若点P 在线段OB 上运动,PQ=QD ,求n 的取值范围.(在备用图中探究)D B AOC 第27题图DBAOC 第27题备用图DBAO第27题备用图2013年溧水区初三第一次模拟试卷评分标准一、选择题(本大题共6小题,每小题2分,共计12分.)1.A;2.B;3.C;4.D;5.C;6.D.二、填空题(本大题共10小题,每小题2分,共计20分.)7. 答案不唯一,如- 、、π等;8. ;9.丙;10. ;11. ;12.40°;13.8等;14.-2;15. ;16. 或.三、解答题(本大题共11小题,共计88分)17.解:……………………………(4分)(2)…………………………………(8分)18. 解:化简得……………………………(3分)由……………………………(5分)原式= ……………………………(6分)19.解:(1)该样本的数据的众数为52,中位数为52;……………………………(2分)(2)千米/时…………(4分)(3)不能。
南京市溧水区2013年中考数学一模试卷
南京市溧水区2013年中考数学一模试卷一、选择题(本大题共有6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(2分)(2013•溧水区一模)下面的数中,与﹣2的和为0的是()A.2B.﹣2 C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.点评:此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出方程.2.(2分)(2013•溧水区一模)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000065=6.5×10﹣6;故选:B.点评:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2分)(2013•溧水区一模)下列运算正确的是()A.B.(﹣3)2=﹣9 C.2﹣3=8 D.20=0考点:零指数幂;有理数的乘方;算术平方根;负整数指数幂.专题:计算题.分析:分别根据算术平方根、有理数的平方、负整数指数幂及0指数幂的运算法则进行计算即可.解答:解:A、∵22=4,∴=2,故本选项正确;B、(﹣3)2=9,故本选项错误;C、2﹣3==,故本选项错误;D、20=1,故本选项错误.故选A.点评:本题考查的是算术平方根、有理数的平方、负整数指数幂及0指数幂的运算,熟知以上运算法则是解答此题的关键.4.(2分)(2013•溧水区一模)以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.黄河三角洲中学调查全校753名学生的身高C.学校招聘教师,对应聘人员面试D.鞋厂检查生产的鞋底能承受的弯折次数考点:全面调查与抽样调查.分析:根据全面调查与抽样调查的特点对各选项分析判断后利用排除法求解.解答:解:A、了解全班同学每周体育锻炼的时间,宜用全面调查,故本选项错误;B、黄河三角洲中学调查全校753名学生的身高,不是很难做到,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、鞋厂检查生产的鞋底能承受的弯折次数,具有破坏性,不适合全面调查,故本选项正确.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(2分)(2013•溧水区一模)在反比例函数的图象上有两点(﹣1,y1),,则y1﹣y2的值是()A.负数B.非正数C.正数D.不能确定考点:反比例函数图象上点的坐标特征.分析:反比例函数:当k<0时,该函数图象位于第二、四象限,且在每一象限内,y 随x的增大而增大.解答:解:∵反比例函数中的k<0,∴函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大;又∵点(﹣1,y1)和均位于第二象限,﹣1<﹣,∴y1<y2,∴y1﹣y2<0,即y1﹣y2的值是负数,故选A.点评:本题考查了反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.6.(2分)(2013•溧水区一模)小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是()A.2010 B.2012 C.2014 D.2016考点:规律型:图形的变化类.专题:压轴题;规律型.分析:观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项熟记进行判断即可得解.解答:解:∵3,6,9,12,…称为三角形数,∴三角数都是3的倍数,∵4,8,12,16,…称为正方形数,∴正方形数都是4的倍数,∴既是三角形数又是正方形数的是12的倍数,∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,∴2016既是三角形数又是正方形数.故选D.点评:本题是对数字变化规律的考查,根据题目信息判断出既是三角形数又是正方形数是12的倍数是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)7.(2分)(2013•溧水区一模)写出一个比﹣3大的无理数是如等(答案不唯一).考点:实数大小比较.专题:开放型.分析:根据这个数即要比﹣3大又是无理数,解答出即可.解答:解:由题意可得,﹣>﹣3,并且﹣是无理数.故答案为:如等(答案不唯一)点评:本题考查了实数大小的比较及无理数的定义,任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.8.(2分)(2013•溧水区一模)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(2分)(2013•溧水区一模)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是=0.90,=1.22,=0.43,=1.68,在本次射击测试中,成绩最稳定的是丙(填甲、乙、丙、丁).考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,找出方差最小的即可.解答:解:∵=0.90,=1.22,=0.43,=1.68,∴>>>>,∴成绩最稳定的是丙;故答案为:丙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.(2分)(2013•溧水区一模)在等腰△ABC中,∠C=90°,则cosA=.考点:特殊角的三角函数值.分析:根据等腰三角形的性质可得∠A=45°,继而可得出cosA的值.解答:解:∵∠C=90°,△ABC是等腰直角三角形,∴∠A=∠B=45°,∴cosA=.故答案为:.点评:本题考查了等腰直角三角形的性质与特殊角的三角函数值,熟练记忆一些特殊角的三角函数值是解答本题的关键,11.(2分)(2013•溧水区一模)方程组的解为.考点:解二元一次方程组.专题:计算题.分析:利用①+②可消除y,从而可求出x,再把x的值代入①,易求出y.解答:解:,①+②,得3x=9,解得x=3,把x=3代入①,得3+y=3,解得y=0,∴原方程组的解是.故答案是.点评:本题考查了解二元一次方程组,解题的关键是掌握加减法消元的思想.12.(2分)(2013•溧水区一模)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.考点:三角形的外角性质;三角形内角和定理.分析:先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.解答:解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.点评:本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.13.(2分)(2013•溧水区一模)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为8mm.考点:垂径定理的应用;勾股定理.专题:探究型.分析:先求出钢珠的半径及OD的长,连接OA,过点O作OD⊥AB于点D,则AB=2AD,在Rt△AOD中利用勾股定理即可求出AD的长,进而得出AB的长.解答:解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.故答案为:8.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.(2分)(2013•溧水区一模)已知一次函数y=kx+b的图象过点(x1,y1)、(x2,y2),且x2﹣x1=1时,y2﹣y1=﹣2,则k=﹣2.考点:一次函数图象上点的坐标特征.专题:探究型.分析:分别把点(x1,y1)、(x2,y2)代入一次函数y=kx+b,再把两式相减,根据x2﹣x1=1时,y2﹣y1=﹣2即可得出结论.解答:解:∵一次函数y=kx+b的图象过点(x1,y1)、(x2,y2),∴,②﹣①得,y2﹣y1=k(x2﹣x1),∵x2﹣x1=1时,y2﹣y1=﹣2,∴﹣2=k×1,即k=﹣2.故答案为:﹣2.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.15.(2分)(2013•溧水区一模)如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是4cm.考点:圆锥的计算.专题:计算题.分析:先利用弧长公式得到圆心角为120°,半径为6cm的扇形的弧长=4π,根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,则可计算出圆锥的底面圆的半径为2,然后根据勾股定理可计算出圆锥的高.解答:解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故答案为4.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥的底面圆的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.16.(2分)(2013•溧水区一模)如图,在平面直角坐标系中,A、B为正比例函数图象上的两点,且OB=2,AB=.点P在y轴上,△BPA是以∠B为顶角的等腰三角形,则OP的长为+1或﹣1.考点:一次函数综合题.分析:根据B为正比例函数图象上的点,且OB=2,求出B点的坐标,设P点坐标为(0,a),由题意,△BPA是以∠B为顶角的等腰三角形,则BP=PA,列出关于a的一元二次方程,求出a的值,OP的长即可求出.解答:解:设B点的坐标为(m,n),∵B为正比例函数图象上的点,且OB=2,∴,解得:或(舍去),∴点B的坐标为(1,),设P点坐标为(0,a),由题意,∵△BPA是以∠B为顶角的等腰三角形,∴BP=PA,∴=|AB|=,整理得(a﹣)2=1,解得a=+1或﹣1,则OP的长为+1或﹣1,故答案为+1或﹣1.点评:本题主要考查一次函数的综合题,解答本题的关键是求出B点的坐标,解答此题还要注意△BPA是以∠B为顶角的等腰三角形,此题容易出现错误,希望同学们审题时候要注意.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)(2013•溧水区一模)(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.考点:解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.分析:(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;(2)根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.解答:解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3(2)由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.点评:本题考查了解一元一次不等式、一元一次方程的解以及一元一次不等式的整数解.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.(6分)(2013•溧水区一模)先化简,再求代数式的值.,其中a=(﹣1)2013+tan60°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:将括号内的部分通分,再将除法转化为乘法即可约分化简,然后将a的值代入即可.解答:解:原式=[+]•=•=•=,∵a=(﹣1)2013+tan60°=﹣1+,∴原式==.点评:本题考查了分式的化简求值、特殊角的三角函数值,熟悉因式分解及通分约分是解题的关键.19.(8分)(2013•溧水区一模)如图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时)(1)找出该样本数据的众数和中位数;(2)计算这些车的平均速度;(结果精确到0.1)(3)若某车以50.5千米/时的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.考点:条形统计图;加权平均数;中位数;众数.专题:图表型.分析:(1)根据众数的定义,找出车辆数最多的即为众数,先求出车辆数的总数,再根据中位数的定义解答;(2)根据加权平均数的计算方法列式计算即可得解;(3)与中位数相比较,大于中位数则是比一半以上车的速度快,否则不是.解答:解:(1)该样本数据中车速是52的有8辆,最多,所以,该样本数据的众数为52,样本容量为:2+5+8+6+4+2=27,按照车速从小到大的顺序排列,第13辆车的车速是52,所以,中位数为52;(2)≈52.4千米/时;(3)不能,因为由(1)知样本的中位数为52,所以可以估计该路段的车辆大约有一半的车速要快于52千米/时,该车的速度是50.5千米/时,小于52千米/时,所以不能说该车的速度要比一半以上车的速度快.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,也考查了平均数、中位数、众数的认识.20.(6分)(2013•溧水区一模)如图,△ABC是边长为4的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连结BD,交AC于F.(1)猜想BD与DE的位置关系,并证明你的结论;(2)求△BDE的面积S.考点:等边三角形的性质;勾股定理;平移的性质.专题:计算题.分析:(1)BD与DE垂直,理由为:由平移及等边三角形的性质得到BC=CD,∠BCD=120°,利用等腰三角形的性质及内角和定理求出∠CBD=30°,而∠E=60°,确定出∠BDE为直角,即可得证;(2)由∠CBD为30°,得到BF为角平分线,利用三线合一得到BF垂直于AC,F为AC的中点,在直角三角形BCF中,由BC与CF长,利用勾股定理求出BF的长,继而确定出BD的长,由平移的性质得到DE=AC,即可求出三角形BDE的面积.解答:解:(1)垂直,理由为:由平移的性质得:AB=AC=BC=CE=CD=DE,∠E=∠DCE=∠ABC=60°,∴∠DCB=120°,又BC=CD,∴∠CBD=∠CDB=30°,∴∠BDE=90°,∴BD⊥DE;(2)∵∠CBD=30°,即BF为角平分线,AB=BC,∴F为AC中点,即FC=2,BF⊥AC,在Rt△BFC中,根据勾股定理得:BF=2,∵BC=CD,CF⊥BD,∴F为BD中点,∴DB=2BF=4,则S△BDE=•DB•DE=×4×4=8.点评:此题考查了等边三角形的性质,勾股定理,以及平移性质,熟练掌握等边三角形的性质是解本题的关键.21.(7分)(2013•溧水区一模)甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.考点:列表法与树状图法.分析:此题可以采用列举法求概率,要注意不重不漏;此题需要三步完成,可以采用树状图法,注意此题为不放回实验;此题也可认为两步完成,因为确定了甲乙,也就确定了丙,所以也可采用列表法求概率.解答:解:(1)列表或画树状图表示三位同学抽到卡片的所有可能结果如下:甲 a a b b c c乙 b c a c a b丙 c b c a b a(2)如图可知,三位同学抽到卡片的所有可能的结果共有6种,所以三位同学中有一人抽到自己制作的卡片有3种,有三人抽到自己制作的卡片有1种.所以,三位同学中至少有一人抽到自己制作卡片有4种,8分所以,三位同学中至少有一人抽到自己制作的卡片的概率为:.10分点评:此题考查的是用列表法或树状图法或列举法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;列举法要注意做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)(2013•溧水区一模)如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD 是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.考点:切线的判定;圆周角定理;解直角三角形.分析:(1)首先连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线;(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长.解答:(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥AP,∴AP是⊙O的切线,(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC•tan30°=3×=,∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°=30°,∴∠P=∠PAD,∴PD=AD=.点评:此题考查了切线的判定、圆周角定理、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.23.(8分)(2013•溧水区一模)某长方体包装盒的展开图如图所示.如果包装盒的表面积为146cm2,求这个包装盒的体积.考点:一元一次方程的应用;几何体的表面积;几何体的展开图.分析:先根据表面积求出长方体的高,再根据长方体的体积公式计算出其值就可以了.解答:解:设高为xcm,则长为(13﹣2x)cm,宽为(14﹣2x)cm.由题意,得[(13﹣2x)(14﹣2x)+(14﹣2x)x+x(13﹣2x)]×2=146,解得:x1=2,x2=﹣9(舍去)∴长为:13﹣2x=9cm,宽为:5cm.长方体的体积为:9×5×2=90cm3.答:这个包装盒的体积为90cm3.点评:本题考查了列一元二次方程解实际问题的运用,一元二次方程的额解法的运用,几何体的表面积的运用,几何体的体积公式的运用.24.(8分)(2013•溧水区一模)如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100m.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°.(1)求气球的高度(结果精确到0.1m);(2)求气球飘移的平均速度(结果保留3个有效数字).考点:解直角三角形的应用-仰角俯角问题.分析:(1)分别过C、C′作AB的垂线,设垂足为D、E;在Rt△ACD和Rt△BCD中,利用所给角的三角函数分别用BD表示出CD,联立两式即可求出CD、BD的长.(2)直角梯形ADCC′中,已知了BD、AB的长,即可求出AD的长;而AE的长可在Rt△ABC′中利用已知角的三角函数求出,即可得出ED、CC′的长,也就得出了气球10秒漂移的距离,根据速度=路程÷时间,即可得解.解答:解:(1)作CD⊥AB,C′E⊥AB,垂足分别为D,E.∵CD=BD•tan60°,CD=(100+BD)•tan30°,∴(100+BD)•tan30°=BD•tan60°,∴BD=50m,CD=50≈86.6m.∴气球的高度约为86.6m;(2)∵BD=50m,AB=100m,∴AD=150m.又∵AE=C′E=50m,∴DE=150m﹣50m≈63.4m.∴气球飘移的平均速度约为63.4÷10=6.34米/秒.点评:解直角梯形可以通过作高线转化为解直角三角形和矩形的问题.25.(10分)(2013•溧水区一模)在一条直线上依次有A、B、C三个海岛,某海巡船从A 岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.(1)图中点P的坐标为(0.5,0),请解释该点坐标所表示的实际意义;(2)填空:A、C两港口间的距离为120km,a=2;当0<x≤0.5时,y与x的函数关系式为:y=﹣60x+30;当0.5<x≤a时,y与x的函数关系式为:y=60x﹣30;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为24km,求该海巡船能接受到该信号的时间有多长?(4)请你根据以上信息,针对A岛,就该海巡船航行的“路程”,提出一个问题,并写出解答过程.考点:一次函数的应用.分析:(1)根据到B岛的距离为0可知点P表示达到B岛;(2)A、C两港口间的距离等于A、C到B岛的距离之和;先根据速度=路程÷时间求出船的速度,然后再根据时间=路程÷速度列式计算即可求出a的值;根据与B港的距离等于A、B两港间的距离减去船行驶的距离,列式整理即可;根据路程=速度×时间列式整理即可得解;(3)求出船距离B港24km时的时间,然后相减即可得解;(4)出发1小时距离A港的距离.解答:解:(1)P点坐标的意义为:该海巡船出发0.5 h后,到达B岛;(2)30+90=120千米,船的速度为:=60千米/小时,a=120÷60=2;当0<x≤0.5时,y=﹣60x+30,当0.5<x≤2时,y=60(x﹣0.5)=60x﹣30,即y=60x﹣30;(3)由﹣60x+30=24,得:x=0.1,由60x﹣30=24,得,x=0.9,0.9﹣0.1=0.8小时,所以,该海巡船能接受到该信号的时间为0.8小时;(4)答案不唯一:例如,该海巡船1小时弧距离A岛有多少路程?把x=1代入y=60x﹣30得,y=60﹣30=30千米.故答案为:120,2;y=﹣60x+30,y=60x﹣30.点评:本题考查的是用一次函数解决实际问题,本题主要利用了路程、速度、时间三者之间的关系,难度不大.26.(10分)(2013•溧水区一模)某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20﹣10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.(1)求顾客一次至少买多少件,才能以最低价购买?(2)写出当一次出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?考点:二次函数的应用.分析:(1)设顾客一次至少购买x件,则超过了(x﹣10)件,每件就应该减少0.1(x﹣10)元,就可以建立等式为60﹣0.1(x﹣10)=55,求出其解就可以了;(2)根据利润=(每件售价﹣每件进价)×数量建立等式就可以表示出y与x之间的函数关系式;(3)先将y与x之间的关系变为顶点式,求出抛物线的对称轴,根据抛物线的性质就可以求出最大利润的数量,从而可以确定最低售价.解答:解(1)设顾客一次至少购买x件,由题意,得60﹣0.1(x﹣10)=55,解得:x=60;(2)由题意,得当10<x≤60时,y=[60﹣0.1(x﹣10)﹣50]x﹣1.6x=﹣0.1x2+9.4x;当x>60时,y=(55﹣50﹣1.6)x=3.4x.(3)∵当10<x≤60时,y=﹣0.1x2+9.4x∴y=﹣0.1(x﹣47)2+220.9,∵a=﹣0.1<0,∴抛物线的开口向下,对称轴是x=47,∴在对称轴的左侧y随x的增大而增大,∴x=47时,利润y有最大值,而超过47时,利润y反而随x的增大而减少.要想卖的越多赚的越多,即y随x的增大而增大,∴二次函数性质可知,x≤47,∴当x=47时,最低售价应定为60﹣0.1(47﹣10)=56.3元.点评:本题考查了列一元一次方程解实际问题的运用,利润=(每件售价﹣每件进价)×数量的运用,二次函数的解析式的运用,顶点式的运用,在解答时求出利润的解析式是关键,灵活运用解析式解决问题是难点.27.(10分)(2013•溧水区一模)如图,菱形ABCD中,对角线AC、BD交于点O,点P 在对角线BD上运动(B、D两点除外),线段PA绕点P顺时针旋转m°(0<m<180),得线段PQ.(1)若点Q与点D重合,请在图中用尺规作出点P所处的位置(不写作法,保留作图痕迹);(2)若点Q落在边CD上,且∠ADB=n°.①探究m与n之间的数量关系;②若点P在线段OB上运动,PQ=QD,求n的取值范围.(在备用图中探究)考点:四边形综合题.分析:(1)根据垂直平分线的性质和作法作出AD的垂直平分线即可;(2)①利用旋转的性质得出PC=PQ,再利用菱形的性质得出∠3=∠PAD,进而求出∠PAD+∠PQD=180°,得出即可;②利用PQ=QD,得出∠PAD=∠PCQ=∠PQC=2∠CDB=2n°,进而利用∠BCD≥∠3≥∠ACD,得出180﹣2n≥2n≥90﹣n,求出即可.解答:解:(1)如图1所示:作AD的垂直平分线,交BC于点P.(2)①如图2,连接PC.由PC=PQ,得∠3=∠4.由菱形ABCD,得∠3=∠PAD.所以得∠4=∠PAD,而∠4+∠PQD=180°.所以∠PAD+∠PQD=180°.所以m+2n=180.②解法一:∵PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=2n°.而点P在线段BO上运动,∴∠BCD≥∠3≥∠ACD,∴180﹣2n≥2n≥90﹣n,∴30≤n≤45.解法二:由PQ=QD,可得∠QPD=∠1,又∵∠1=∠2,∴∠QPD=∠2,∵点P在线段OB上运动,∴∠ABC≤∠APQ且∠APQ≤90°+∠2(或∠ABC≤∠APQ≤90°+∠2)即(2n≤180﹣2n≤90+n)∴30≤n≤45.点评:此题主要考查了垂直平分线的性质和菱形的性质以及外角的性质等知识,熟练利用相关知识得出对应角的关系是解题关键.。
2013年中考数学模拟试题及参考答案
2013年中考数学模拟试题及参考答案新世纪教育网精选资料 版权全部 @新世纪教育网2013 年中考数学模拟考试数学试题一、选择题 (本大题共有 8 小题,每题 2 分,共 16 分.在每题所给出的四个选项中,恰有一项为哪一项切合题目要求的,请将正确选项前的字母代号填涂在答题卡 相应地点 上)... ....1. -2 的相反数是A.-2B.2C. -1D.1222.已知两圆的半径分别为6 和 4,圆心距为 7,则两圆的地点关系是 A .订交B.内切C.外切D .内含3.以下计算中,正确的选项是()A . a 22a 2 3a 4 B . 2x 3x 2 2 x 5C . 2a 2 3 8a 5D . 6x 2 m 2 x m3x 24.以下漂亮的图案,既是轴对称图形又是中心对称图形的个数是A .1个B .2 个C .3个D .4个5.以下说法正确的选项是 A .若甲组数据的方差S 甲2 0.01,乙组数据的方差 S 乙2 0.1,则乙组数据比甲组数据稳固B .为认识全国中学生的心理健康状况,应当采纳普查的方式C .一组数据 6,8, 7, 8, 8, 9, 10 的众数和中位数都是 8D .一个游戏的中奖概率是1,则做10 次这样的游戏必定会中奖106.下边四个几何体中,左视图是四边形的几何体共有A.1 个B.2个C.3个D.4个7.以下图, 在方格纸上成立的平面直角坐标系中, 将△ ABO O绕点 按顺时针方向旋转 90°,得△ABO ,则点 A 的坐标为A .( 3,1)B .( 3, 2)C .( 2, 3) D.( 1, 3)yBC 24yC 13CA2 -- D版权所B 有B 2新世纪教育网 中国最大型、最专业的中小学教育资源门户网站。
新世纪教育网1B1@-3 -2 -10123xoA 1A 2 xA2013年中考数学模拟试题及参考答案新世纪教育网精选资料 版权全部 @新世纪教育网8.在平面直角坐标系中,正方形 ABCD 的地点以下图,点 A 的坐标为( 1,0),点 D 的坐标为( 0, 2).延伸 CB 交 x 轴于点 A 1,作正方形 A 1B 1C 1C ;延伸 C 1B 1 交 x 轴于点 A 2,作正方 形 A 2B 2C 2C 1, 按这样的规律进行下去,第 2011 个正方形的面积为()A . 5 ( 3)2010B . 5 (9)2011C . 5 ( 9)2009D . 5 ( 3)402024 42二、填空题 (本大题共有 10 小题,每题3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应地点 上)....... 9.昨年冬天的某一天,学校一室内温度是 8 ℃,室外温度是 2 ℃,则室内外温度相差▲℃ .10.国家游泳中心“水立方”是北京 2008 年奥运会场馆之一,它的外层膜的睁开面积约为260 000 平方米,将 260 000 用科学记数法表示应为 ▲平方米.11.五边形的内角和为▲度.12.已知反比率函数的图象经过点 A ( 6, -1),请你写出该函数的表达式 ▲ .13.已知二元一次方程组2x 3y 8 y 的值为 ▲ .x 2y ,则 x5x 314.不等式组的解集是 ▲ .2x 1≥ 015.在如图的甲、乙两个转盘中,指针指向每一个数字的时机是均等的.当同时转动两个转 盘,停止后指针所指的两个数字表示两条线段的长,假如第三条线段的长为 5,那么这三条线段能构成三角形的概率为_____▲ ____.BCyA· AOB (第 15 题)(第 16 题)OC x(第 18 题)16. 如图,点 A 、B 、C 在 ⊙ O 上,若 ∠BAC = 24°,则 ∠BOC =°.题)17.已知圆锥的底面半径是 3cm ,母线长为 6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保存 π)新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。
江苏省南京市溧水区中考数学二模试卷(含解析)
2016年江苏省南京市溧水区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,是中心对称图形的是()A.B.C.D.2.计算(﹣3x)2的结果是()A.6x2B.﹣6x2C.9x2D.﹣9x23.若△ABC∽△A′B′C′,AB=2,A′B′=4,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:14.无理数a满足:2<a<3,那么a可能是()A. B.C.2.5 D.5.把如图中的三棱柱展开,所得到的展开图是()A.B.C. D.6.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.﹣5的绝对值是______,4的算术平方根是______.8.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为______.9.若二次根式有意义,则x的取值范围是______.10.某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24,这组数据的中位数是______.11.反比例函数y=的图象过点P(2,6),那么k的值是______.12.如图,过正五边形ABCDE的顶点A作直线AF∥CD,则∠EAF的度数为______°.13.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=______cm.14.已知圆心角为150°的扇形面积是15πcm2,则此扇形的半径为______.15.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买______瓶甲饮料.16.如图,抛物线C1是二次函数y=x2﹣10x在第四象限的一段图象,它与x轴的交点是O、A1;将C1绕点A1旋转180°后得抛物线C2;它与x轴的另一交点为A2;再将抛物线C2绕A2点旋转180°后得抛物线C3,交x轴于点A3;如此反复进行下去…,若某段抛物线上有一点P,则a=______.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程:x2﹣3x﹣4=0.18.化简,求值:÷﹣1,其中a=﹣.19.如图,在四边形ABCD中,AB=AD,CB=CD,点F是AC上一点,连结BF,DF.(1)证明:△ABF≌△ADF;(2)若AB∥CD,试证明四边形ABCD是菱形.20.甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,他们通过抽签来决定演唱顺序,(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.21.我区积极开展“体育大课间”活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?22.据报道,溧水到南京的轻轨将于2017年建成通车.通车前,客运汽车从溧水到南京南站的路程约为50km;通车后,轻轨从溧水到南京南站的路程比原来缩短5km.预计,轻轨的平均速度是客运汽车的平均速度的1.5倍,轻轨的运行时间比客运汽车的运行时间要缩短15min,试求轻轨的平均速度.23.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)24.已知二次函数y=x2+mx+m﹣5(m是常数).(1)求证:不论m为何值,该函数的图象与x轴一定有两公共点;(2)若该二次函数的图象过点(0,﹣3),则将函数图象沿x轴怎样平移能使抛物线过原点?25.某水电站兴建了一个最大蓄水容量为12万米3的蓄水池,并配有2个流量相同的进水口和1个出水口.某天从0时至12时,进行机组试运行.其中,0时至2时打开2个进水口进水;2时,关闭1个进水口减缓进水速度,至蓄水池中水量达到最大蓄水容量后,随即关闭另一个进水口,并打开出水口,直至12时蓄水池中的水放完为止.若这3个水口的水流都是匀速的,水池中的蓄水量y(万米3)与时间t(时)之间的关系如图所示,请根据图象解决下列问题:(1)蓄水池中原有蓄水______万米3,蓄水池达最大蓄水量12万米3的时间a的值为______;(2)求线段BC、CD所表示的y与t之间的函数关系式;(3)蓄水池中蓄水量维持在m万米3以上(含m万米3)的时间有3小时,求m的值.26.已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.27.我们定义:有一组对角相等而另一组对角不相等的四边形叫做“等对角四边形”.(1)已知:四边形ABCD是“等对角四边形”,∠A=70°,∠B=80°.求∠C、∠D的度数.(2)如图1,在Rt△ACB中,∠C=90°,CD为斜边AB边上的中线,过点D作DE⊥CD交AC 于点E,求证:四边形BCED是“等对角四边形”.(3)如图2,在Rt△ACB中,∠C=90°,AC=4,BC=3,CD平分∠ACB,点E在AC上,且四边形CBDE为“等对角四边形”,则线段AE的长为______.2016年江苏省南京市溧水区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.2.计算(﹣3x)2的结果是()A.6x2B.﹣6x2C.9x2D.﹣9x2【考点】幂的乘方与积的乘方.【分析】根据积的乘方进行计算即可.【解答】解:(﹣3x)2=9x2,故选C.3.若△ABC∽△A′B′C′,AB=2,A′B′=4,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1【考点】相似三角形的性质.【分析】根据相似三角形的面积之比等于相似比的平方,可以直接求出结果.【解答】解:∵△ABC∽△A′B′C′,相似比为2:4=1:2,∴,故选C4.无理数a满足:2<a<3,那么a可能是()A. B.C.2.5 D.【考点】估算无理数的大小.【分析】在A,B,C,D中无理数为A,D,再估算,的范围,即可解答.【解答】解:∵,,∴无理数a可能是,故选:B.5.把如图中的三棱柱展开,所得到的展开图是()A.B.C. D.【考点】几何体的展开图.【分析】根据三棱柱的概念和定义以及展开图解题.【解答】解:根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱.把图中的三棱柱展开,所得到的展开图是B.故选:B.6.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,)B.(,)C.(,)D.(,4)【考点】坐标与图形变化-旋转.【分析】过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.﹣5的绝对值是 5 ,4的算术平方根是 2 .【考点】算术平方根;绝对值.【分析】根据绝对值、算术平方根,即可解答.【解答】解:﹣5的绝对值是5,4的算术平方根2,故答案为:5,2.8.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为 1.09×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10900=1.09×104.故答案为:1.09×104.9.若二次根式有意义,则x的取值范围是x≥2 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.10.某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24,这组数据的中位数是29 .【考点】中位数.【分析】首先将数据按从小到大排列,进而找出最中间求出答案.【解答】解:数据从小到大排列为:24,24,29,30,33,则最中间为:29,故这组数据的中位数是:29.故答案为:29.11.反比例函数y=的图象过点P(2,6),那么k的值是12 .【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k即可算出k的值.【解答】解:∵反比例函数y=的图象过点P(2,6),∴k=2×6=12,故答案为:12.12.如图,过正五边形ABCDE的顶点A作直线AF∥CD,则∠EAF的度数为36 °.【考点】多边形内角与外角.【分析】首先连接BE,易得AF∥BE∥CD,又由正五边形ABCDE,可求得∠BAE的度数,继而求得∠FAE的度数.【解答】解:连接BE,∵五边形ABCDE是正五边形,∴∠BAE=108°,AB=AE,∴∠AEB=∠ABE=36°,∵BE∥CD,AF∥CD,∴BE∥AF,∴∠FAE=∠AEB=36°.故答案为:36.13.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD= 8 cm.【考点】垂径定理;勾股定理.【分析】根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.【解答】解:由垂径定理,AC=AB=12cm.由半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.14.已知圆心角为150°的扇形面积是15πcm2,则此扇形的半径为6cm .【考点】扇形面积的计算.【分析】利用扇形面积公式直接代入求出r即可.【解答】解:∵扇形的圆心角为150°,它的面积为15πcm2,∴设扇形的半径为:r,则:15π=,解得:r=6.故答案为:6cm.15.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 3 瓶甲饮料.【考点】一元一次不等式的应用.【分析】首先设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小宏最多能买3瓶甲饮料.故答案为:3.16.如图,抛物线C1是二次函数y=x2﹣10x在第四象限的一段图象,它与x轴的交点是O、A1;将C1绕点A1旋转180°后得抛物线C2;它与x轴的另一交点为A2;再将抛物线C2绕A2点旋转180°后得抛物线C3,交x轴于点A3;如此反复进行下去…,若某段抛物线上有一点P,则a= 24 .【考点】二次函数图象与几何变换.【分析】先通过解方程x2﹣10x=0得到A1(10,0),则OA1=10,利用旋转的性质得A1A2=A2A3=10,由于2010=10×201,则可判断P在抛物线C202上,由于抛物线C202的开口向下,与x轴的两交点坐标为,则可求出抛物线C201的解析式为y=﹣(x﹣2010)(x﹣2020),然后把P代入可计算出a的值.【解答】解:当y=0时,x2﹣10x=0,解得x1=10,x2=0,则A1(10,0)所以OA1=10,所以A1A2=A2A3=10,而2010=10×201,∴P在抛物线C202上,抛物线C202的开口向下,与x轴的两交点坐标为,所以抛物线C201的解析式为y=﹣(x﹣2010)(x﹣2020),当x=2016时,y=﹣=24,即a=24.故答案为24.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程:x2﹣3x﹣4=0.【考点】解一元二次方程-因式分解法.【分析】先把方程化为两个因式积的形式,再求出x的值即可.【解答】解:∵原方程可化为:(x+1)(x﹣4)=0,∴x+1=0或x﹣4=0,解得,x1=4,x2=﹣1.18.化简,求值:÷﹣1,其中a=﹣.【考点】分式的化简求值.【分析】先算除法,再算减法,最后把x的值代入进行计算即可.【解答】解:原式=•﹣1=﹣1=﹣.当a=﹣时,则原式=﹣2.19.如图,在四边形ABCD中,AB=AD,CB=CD,点F是AC上一点,连结BF,DF.(1)证明:△ABF≌△ADF;(2)若AB∥CD,试证明四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)首先得出△ABC≌△ADC(SSS),进而利用全等三角形的性质得出∠BAC=∠DAC,再证明△ABF≌△ADF(SAS);(2)利用平行线的性质得出∠BAC=∠DCA,进而得出AB=DC,再利用平行的判定方法得出答案.【解答】(1)证明:在△ABC和△ADC中∵,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中∵,∴△ABF≌△ADF(SAS);(2)解:∵AB∥CD,∴∠BAC=∠DCA,∵∠BAF=∠ADC,∴∠DAC=∠DCA,∴AD=DC,由(1)得:AB=DC,∴四边形ABCD是平行四边形,∵AB=AD,∴平行四边形ABCD是菱形.20.甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,他们通过抽签来决定演唱顺序,(1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.【考点】列表法与树状图法.【分析】(1)由甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,直接利用概率公式求解即可求得答案;(2)利用列举法可得:出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,继而可求得答案.【解答】解:(1)∵甲、乙、丙三位歌手进入“我是歌手”冠、亚、季军决赛,∴甲第一位出场的概率为;(2)∵出场情况为:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲共6种情况,∴甲比乙先出场的情况有:甲乙丙,甲丙乙,丙甲乙,∴甲比乙先出场的概率为: =.21.我区积极开展“体育大课间”活动,引导学生坚持体育锻炼,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步.D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调査,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)己知该校有2000人,请根据样本估计全校最喜欢足球的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用整体1减去A,C、D所占的百分比,即可求出B所占的百分比,再用B所占的百分比乘以360°即可得出答案;(2)根据C所占的百分比与所给的人数,求出总人数,再用总人数乘以B所占的百分比,从而补全图形;(3)根据D所占的百分比乘以总人数即可得出全校最喜欢足球的人数.【解答】解:(1)样本中最喜欢B项目的人数百分比是1﹣44%﹣28%﹣8%=20%,其所在扇形图中的圆心角的度数是20%×360°=72°;(2)总人数是8÷8%=100(人),B的人数是:100×20%=20(人),如图:;(3)根据题意得:2000×28%=560(人),答:全校最喜欢足球的人数是560人.22.据报道,溧水到南京的轻轨将于2017年建成通车.通车前,客运汽车从溧水到南京南站的路程约为50km;通车后,轻轨从溧水到南京南站的路程比原来缩短5km.预计,轻轨的平均速度是客运汽车的平均速度的1.5倍,轻轨的运行时间比客运汽车的运行时间要缩短15min,试求轻轨的平均速度.【考点】分式方程的应用.【分析】等量关系为:轻轨的运行时间比客运汽车的运行时间要缩短15分钟=小时,把相关数值代入列出方程,解方程即可.【解答】解:设客运汽车的平均速度是xkm/h,则轻轨的平均速度是1.5xkm/h.根据题意,得:﹣=,解得:x=80.经检验,x=80是原方程的解.1.5x=120;答:轻轨的平均速度为120km/h.23.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)【考点】解直角三角形的应用.【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】解:(1)由題意得,在Rt△ADC中,AD===24≈36.33(米),在Rt△BDC中,BD===8,则AB=AD﹣BD=16;(2)不超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,∵小于45千米/小时,∴此校车在AB路段不超速.24.已知二次函数y=x2+mx+m﹣5(m是常数).(1)求证:不论m为何值,该函数的图象与x轴一定有两公共点;(2)若该二次函数的图象过点(0,﹣3),则将函数图象沿x轴怎样平移能使抛物线过原点?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)框将函数问题转化为方程问题,然后证明△>0即可;(2)将点(0,﹣3)代入可求得m的值,从而得到抛物线的接下来,然后再求得抛物线与x轴的交点坐标,然后可确定出平移的方向和距离.【解答】解:(1)令y=0得关于x的一元二次方程:x2+mx+m﹣5=0,则△=b2﹣4ac=m2﹣4(m ﹣5)=m2﹣4m+20=(m﹣2)2+16.∵不论m为何值,(m﹣2)2≥0,∴(m﹣2)2+16>0.∴不论m为何值,一元二次方程x2+mx+m﹣5=0一定有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴一定有两公共点.(2)∵函数图象过点(0,﹣3),∴m﹣5=﹣3,m=2,∴二次函数表达式为y=x2+2x﹣3,∵令y=0得:x2+2x﹣3=0解得:x1=1,x2=﹣3.∴函数的图象与x轴的两个交点为:(1,0)和(﹣3,0).∴将函数图象沿x 轴向右平移3个单位或向左平移1个单位就能使抛物线过原点.25.某水电站兴建了一个最大蓄水容量为12万米3的蓄水池,并配有2个流量相同的进水口和1个出水口.某天从0时至12时,进行机组试运行.其中,0时至2时打开2个进水口进水;2时,关闭1个进水口减缓进水速度,至蓄水池中水量达到最大蓄水容量后,随即关闭另一个进水口,并打开出水口,直至12时蓄水池中的水放完为止.若这3个水口的水流都是匀速的,水池中的蓄水量y(万米3)与时间t(时)之间的关系如图所示,请根据图象解决下列问题:(1)蓄水池中原有蓄水 4 万米3,蓄水池达最大蓄水量12万米3的时间a的值为 6 ;(2)求线段BC、CD所表示的y与t之间的函数关系式;(3)蓄水池中蓄水量维持在m万米3以上(含m万米3)的时间有3小时,求m的值.【考点】一次函数的应用.【分析】(1)根据函数图象可以得到蓄水池中原有蓄水的体积,由2个流量相同的进水口和图象可以求得a的值;(2)根据函数图象可以分别求得线段BC、CD所表示的y与t之间的函数关系式;(3)由题意可知,BC上的函数值和CD上的函数值相等,且分别对应的时间差值为3,从而可以求得m的值.【解答】解:(1)由图象可知,蓄水池中原有蓄水4万米3,蓄水池达最大蓄水量12万米3的时间a的值为:2+(12﹣8)÷()=6,故答案为:4,6;(2)∵B(2,8),C(6,12),设直线BC的函数关系式为y=k1x+b1,由题意,得解得:即直线BC所对应的函数关系式为y=x+6(2≤x≤6),∵C(6,12),D(12,0),设直线CD的函数关系式为y=k2x+b2,由题意,得解得:即直线CD所对应的函数关系式为y=﹣2x+24(6≤x≤12);(3)设在BC上蓄水量达到m万米3的时间为t,则在CD上蓄水量达到m万米3的时间为(t+3)h,由题意,得t+6=﹣2(t+3)+24,解得:t=4,∴当 t=4时,y=4+6=10即m的值是10.26.已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【考点】切线的判定.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.27.我们定义:有一组对角相等而另一组对角不相等的四边形叫做“等对角四边形”.(1)已知:四边形ABCD是“等对角四边形”,∠A=70°,∠B=80°.求∠C、∠D的度数.(2)如图1,在Rt△ACB中,∠C=90°,CD为斜边AB边上的中线,过点D作DE⊥CD交AC 于点E,求证:四边形BCED是“等对角四边形”.(3)如图2,在Rt△ACB中,∠C=90°,AC=4,BC=3,CD平分∠ACB,点E在AC上,且四边形CBDE为“等对角四边形”,则线段AE的长为1或.【考点】四边形综合题.【分析】(1)根据“等对角四边形”的定义,当四边形ABCD是“等对角四边形”时,可分两种情况进行讨论:①若∠A=∠C,∠B≠∠D,则∠C=70°,再利用四边形内角和定理求出∠D;②若∠B=∠D,∠A≠∠C,则∠D=80°,再利用四边形内角和定理求出∠C;(2)根据直角三角形斜边上的中线等于斜边的一半得出AD=DB=DC,由等边对等角得出∠DCB=∠B,再由∠B+∠ACD=∠DCB+∠ACD=90°,∠CED+∠ACD=90°,利用同角的余角相等得出∠CED=∠B,又∠ECB≠∠EDB,根据“等对角四边形”的定义,即可证明四边形BCED是“等对角四边形”;(3)根据“等对角四边形”的定义,当四边形CBDE为“等对角四边形”时,可分两种情况进行讨论:①若∠B=∠DEC,∠BCE≠∠BDE,根据AAS证明△CDE≌△CDB,利用全等三角形对应边相等得出EC=BC=3,那么AE=AC﹣EC=1;②若∠BCE=∠BDE=90°,∠B≠∠DEC,先利用勾股定理求出AB==5,再根据角平分线定理得出==,求出AD=AB=,再证明△ADE∽△ACB,根据相似三角形对应边成比例即可求出AE.【解答】(1)解:①若∠A=∠C,∠B≠∠D,则∠C=70°,∠D=360°﹣70°﹣70°﹣80°=140°;②若∠B=∠D,∠A≠∠C,则∠D=80°,∠C=360°﹣80°﹣80°﹣70°=130°;(2)证明:如图1,在Rt△ABC中,∵CD为斜边AB边上的中线,∴AD=DB=DC,∴∠DCB=∠B,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠B+∠ACD=90°.∵DE⊥CD,∴∠CED+∠ACD=90°,∴∠CED=∠B,且∠ECB≠∠EDB,∴四边形BCED是“等对角四边形”;(3)解:①若∠B=∠DEC,∠BCE≠∠BDE,如图2.在△CDE与△CDB中,,∴△CDE≌△CDB,∴EC=BC=3,∴AE=AC﹣EC=4﹣3=1;②若∠BCE=∠BDE=90°,∠B≠∠DEC,如图3.∵在Rt△ACB中,∠C=90°,AC=4,BC=3,∴AB===5,∵CD平分∠ACB,∴==,∴AD=AB=.在△ADE与△ACB中,,∴△ADE∽△ACB,∴=,即=,∴AE=.综上所述,线段AE的长为1或.故答案为1或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1 的解集为 2 x -
▲ ▲
. .
8.方程 x(x-1)=2(x-1)的解是
9.若两个相似三角形的相似比为 1:4,则它们的周长比为 10.等腰△ABC 的一个外角是 80° ,则其顶角的度数为 11.分解因式 2x —4x+2 的最终结果是
2
▲ ▲ . .
.
▲
12.把一次函数 y=-2x+4 的图象向左平移 2 个长度单位,新图象的函数表达式是 . y2 (填“ ”或“ ”) 2 -3 3 -2 „„ „„
(2)请你为剩下的函数图像写出一个适合的情境. 20.(本题 6 分)今年 N 市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房
面积这两项内容进行了随机调查,共发放 100 份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计 图: 消费者年收入统计表 年收入(万元) 被调查的消费者数 (人) 5 10 6 50 10 12 8 25 2
E
E
A
A
G
B
G
F D
C
F
图1
B (D)
C
图2
2013 年溧水区初三第二次模拟试卷评分标准
一、选择题(本大题共 6 小题,每小题 2 分,共计 12 分. ) 1.A 2.D 3.B 4.A 5.C 6.C 13.
二、填空题(本大题共 10 小题,每小题 2 分,共计 20 分. )
7. 2 x 1 8. x=1、 x=2 9. 4 1: 8 14.m -8 且 m≠-4 15. - x -4
24.(本题 8 分)古希腊数学家丢番图(公元 250 年前后)在《算术》中就提到了一元二次方程问题,不过当时古希 腊人还没有寻求到它的求根公式, 只能用图解等方法来求解. 在欧几里得的 《几何原本》 中, 形如 x ax b (a>0,
2 2
b>0)的方程的图解法是:如图,以 所求方程的解.
22.(本题 6 分)如图,在△ABC 和△DCB 中,AB = DC,AC = DB,AC 与 DB 交于点 M. (1)求证:△ABC≌△DCB ; (2)过点 C 作 CN∥BD,过点 B 作 BN∥AC,CN 与 BN 交于点 N,试判断线段 BN 与 CN 的数量关系,并证明你的结 A D 论. M
5 10 50 6 30 10 12 8 25 2 7.96 „„„„„6 分 100
21.解:(1)设白球的个数有 x 个.
▲
.
13.已知二次函数 y x 2 bx c 中函数 y 与自变量 x 之间的部分对应值如下表所示,点 A( x1 , y1 ) 、 B( x2 , y2 ) 在函数 图象上,当 0<x1<1,2<x2<3 时,则 y1 x y „„ „„ 0 1 ▲ 1 -2
14.已知关于 x 的方程
个性化教案
(内部资料, 存档保存, 不得外泄)
海豚教育个性化作业
编号:
溧水区 2012~2013 学年度第二学期第二次调研测试 九年级数学试卷
注意事项: 1.答卷前将答卷纸上密封线内的项目填写清楚. 2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上,不能答在试卷上. ........ ....... 一、选择题(本大题共有 6 小题,每小题 2 分,共计 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求 .... 的,请将正确选项的序号填涂在答题卡上) 1.以下关于 8 的说法,错误的是( ▲ ) .. A. 8 2 2 B. 8 是无理数 C. 2 8 3 D. 8 2 2
2.数据 7、8、9、10、6、10、8、9、7、10 的众数是( ▲ ) A.7 B.8 C.9 D.10
3.把一块直尺与一块三角板如图放置,若∠1=45° ,则∠2 的度数为( ▲ ) A.120° B.135° C.145° D E 1 第 3 题图 A 2 第 5 题图 B 第 6 题图 4 C 3 D.150°
1 x ) 2 x 1 x 1
=
1 x x -1 „„„„„„„„„„„„„„„„„3 分 x - 1 x - 1 x 1x - 1
=x+1„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 分 方程 x 2 x 0 的根是:
2
x1=0、x1=2 „„„„„„„„„„„„„„„„„„„„„„„5 分 ∵x 不能取 0,∴当 x1=2 时,原式=3„„„„„„„„„„„„„6 分 19.(1)③ 、① (对 1 个得 2 分) „„„„„„„„„„„„„„„„4 分 (2)小芳离开家走了一段路程后来到一个报亭,在报亭读了一段时间报后,按原速回家了. 答案不唯 ( 一)„„„„„„„„„„„„„„„„„„„„„„„6 分 20.(1) a =30; „„„„„„„„„„„„„„„„„„„„„„„2 分 (2)48%;„„„„„„„„„„„„„„„„„„„ „„„„„4 分 (3)
6.如图,∠ACB=60○,半径为 2 的⊙O 切 BC 于点 C,若将⊙O 在 CB 上向右滚动,则当滚动到⊙O 与 CA 也相切时, 圆心 O 移动的水平距离为( A.2π B.π ▲ ) C. 2 3 D.4
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分,不需写出解答过程,请把答案直接填写在答题卡相应的位置 ........ 上) 7.不等式组
2x m 4 的解是负数,则 m 的取值范围为___ ___ ▲ ______. x2
15.如图,以数轴上的原点 O 为圆心,6 为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点 P 为圆心,10 为半 ⌒ ⌒ 径,圆心角∠CPD=60°,点 P 在数轴上表示实数 a ,如果两个扇形的圆弧部分( AB 和 CD)相交,那么实数 a 的取 值范围是 ▲ . A E D B 第 15 题图 第 16 题图 C
2 1 8 2013
2
0
18.(本题 6 分)先化简再求值: (1+
1 x 2 ) 2 ,其中 x 是方程 x 2 x 0 的根. x 1 x 1
19.(本题 6 分)在如图所示的三个函数图像中,有两个函数图像能近似地刻画如下 a、b 两个情境:
情境 a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校; 情境 b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进. (1)情境 a,b 所对应的函数图像分别为 ▲ , ▲ .(填写序号)
B N
C
23. (本题 6 分)如图所示,A、B 两地之间有一条河,原来从 A 地到 B 地需要经过桥 DC,沿折线 A→D→C→B 到达, 现在新建了桥 EF,可直接沿直线 AB 从 A 地到达 B 地.已知 BC=16km,∠A=53° ,∠B=30° .桥 DC 和 AB 平行,则
现在从 A 地到达 B 地可比原来少走多少路程? (结果精确到 0.1km.参考数据: 3 1.73 ,sin53°≈0.80,cos53°≈0.60) A 53° D C E F 30° B
a a 和 b 为两直角边作 Rt△ABC,再在斜边上截取 BD= BC= ,则 AD 的长就是 2 2
(1)请用含字母 a、b 的代数式表示 AD 的长; (2)请利用你已学过的方程知识验证该图解法的正确性,并说说这种解法的遗憾之处. C
B
D
Aห้องสมุดไป่ตู้
25.(本题 8 分)已知抛物线 y=ax2+bx 经过点 A(3,3)和点 P (t,0) ,且 t ≠ 0. (1) 若 t=2,求 a、b 的值; (2) 若 t >3,请判断该抛物线的开口方向.
26.(本题 8 分)如图,AB 是⊙O 的直径,弦 DE 垂直平分半径 OA,C 为垂足,弦 DF 与半径 OB 相交于点 P,连结 EF、EO,若 DE 4 3 ,∠D=45° . (1)求⊙O 的半径; (2)求图中阴影部分的面积. A C O
●
D
P B F
E
27.(本题 10 分)我区的某公司,用 1800 万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知 生产这种产品每件还需成本费 40 元. 经过市场调研发现: 该产品的销售单价, 需定在 100 元到 200 元之间为合理. 当 单价在 100 元时,销售量为 20 万件,当销售单价超过 100 元,但不超过 200 元时,每件新产品的销售价格每增加 10 元,年销售量将减少 1 万件;设销售单价为 x(元) ,年销售量为 y(万件) ,年获利为 W(万元). (年利润=年销售总额―生产成本―投资成本) (1)直接写出 y 与 x 之间的函数关系式; (2)求第一年的年获利 W 与 x 之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏 损的,最小亏损是多少? (3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为 1490 万 元,且使产品销售量最大,销售单价应定为多少元?
三、解答题(本大题共 12 小题,共计 88 分) 17.
10. 100° 16.8
2 11. x—1) ( 2
12. y=-2x
2 1 8 2009
2
0
= 2 - 2 2 1 2 2 1„„„„„„„„„„„„„„„„„„„„4 分 =2„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 分 18. (1+
16.如图,在△ABC 中,AB=AC,D、E 是△ABC 内两点,AD 平分∠BAC,∠EBC=∠E=60° ,若 BE=6cm,DE=2cm, 则 BC= ▲ cm.
三、解答题(本大题共 12 小题,共 88 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题 6 分)计算: