恩瑞克米拉莱斯PPT参考资料来源

合集下载

Marrachech课文总结PPT课件

Marrachech课文总结PPT课件
shows the unsanitary conditions of the city, poor
…the taxis and the camels… modern transportation transportation
the old and backward
…wailing a short chant… hack an oblong hole …dump the body…fling over it a little of the dried-up earth quick speed and simple burying procedure
Dickens, Dali and Others (1946)
Nineteen Eighty-Four (1949)
Shooting an elephant (1950)
4
Exposition: describing things or telling people principle
three description orders :time order, space order and logic
Are they really…? Do they …? Or are they … ?
rhetorical questions added force to author’s denunciation(谴责)
They rise out of the earth, they sweat and starve…
It is the colonial empires that make the people so poor. Empires are built up by treating the people in the colonies like animals. (by not treating the people in the colonies as human beings).

The elaborate structure of spider silk

The elaborate structure of spider silk

[Prion 2:4, 154-161; October/November/December 2008]; ©2008 Landes BioscienceBiomaterials, having evolved over millions of years, often exceed man-made materials in their properties. Spider silk is one outstanding fibrous biomaterial which consists almost entirely of large proteins. Silk fibers have tensile strengths comparable to steel and some silks are nearly as elastic as rubber on a weight to weight basis. In combining these two properties, silks reveal a toughness that is two to three times that of synthetic fibers like Nylon or Kevlar. Spider silk is also antimicrobial, hypoallergenic and completely biodegradable.This article focuses on the structure-function relationship of the characterized highly repetitive spider silk spidroins and their conformational conversion from solution into fibers. Such knowedge is of crucial importance to understanding the intrinsic properties of spider silk and to get insight into the sophisticated assembly processes of silk proteins. This review further outlines recent progress in recombinant production of spider silk proteins and their assembly into distinct polymer materials as a basis for novel products.PrefaceSpider silk has attracted human interest for thousands of years,1-3 mostly due to its toughness and ductility, but also because spider silk seems not to cause inflammation and allergic reactions. Therefore spider silk has been employed for hunting and fishing as well as for bandages.1In nature, spiders use their silk for several applications such as for webs, wrapping of prey, protection of their offspring and as a lifeline which ensures their safe escape from predators (Fig. 1A). The variety of uses for silk among spiders is much larger than among insects like silk-worms (see chapter 8), which use their silk often for making cocoons.Catching Prey in Mid-FlightCurrently, more than 34,000 different spider species are known and roughly 50% thereof use webs to catch prey. Further, more than130 different shapes of spider webs are known. Among the most studied webs are the so-called orb webs which consist of several different types of silk as shown for the European garden spider Araneus diadematus (Fig. 1A and B).4Frame and radii of orb webs are made of strong and rather rigid silk. The underlying proteins (typically two different types) are produced in the major ampullate glands and therefore silk fibers made of these proteins are named MA silk. This particular silk is further used by spiders as a lifeline (or roping thread) which has to be ready at hand to escape predators—it is therefore always dragged, hence the nickname “dragline silk.” The capture spiral of an orb web comprises fibers of only one type of protein which is produced in the flagelliform (Flag) gland of spiders. Flag silk is highly elastic (up to 300%) and perfectly dissipates the impact energy of prey. For example, a typical honey bee with a body weight of 120 mg and a maximum flight velocity of about 3.1 m/s crashes into a spider’s web with a kinetic energy of approx. 0.55 mJ.5 Flag silk with dia-meters of only 1–5 μm can sufficiently withstand that (on this scale) massive impact. The enormous resilience of these threads is crucial for catching and holding prey which is sometimes even bigger than the spider itself.In addition to MA and Flag silk, orb weaving spiders utilize two further silks for constructing webs. Silk fibers made of proteins produced in the minor ampullate gland are used to build an auxil-iary spiral. This temporary spiral stabilizes the body of the web and provides a template for the capture spiral.6 Connections between Flag and MA silk (the web scaffolding connection joints) and attachment of the web frame to the substratum (trees, undergrowth, masonry…) are made of a sophisticated silk cement consisting of proteins produced in the piriform gland.7Importantly, Flag silk is not sticky. To retain prey in the web, addi-tional glue is applied around the capture threads.8 Evolutionarily, the first adhesive was a special silk fiber which was hackled by comb-like devices, cribella, on the spider’s hind legs in order to achieve a maximum surface area. The adhesive properties of cribellate silk are mainly based on a large sum of van-der-Waals forces provided by huge surface areas similar to the adhesion principle of gecko feet, where an extremely large surface area is provided by nano hairs on the toes.9,10 Although an excellent adhesive, hackling of silk consumes a huge amount of time and energy. Thus, another type of spiders, ecri-bellate spiders, developed a different strategy of gluing. Specific silk threads are covered with a sticky aqueous layer containing organic*Correspondence to: Thomas Scheibel; Universität Bayreuth; Fakultät für angew. Naturwissenschaften; Lehrstuhl für Biomaterialien; Universitätsstr. 30; Bayreuth 95447 Germany; Email: thomas.scheibel@uni-bayreuth.de Submitted: 11/20/08; Accepted: 11/20/08Previously published online as a Prion E-publication:/journals/prion/article/7490ReviewThe elaborate structure of spider silkStructure and function of a natural high performance fiberLin Römer and Thomas Scheibel*Universität Bayreuth; Fakultät für angew. Naturwissenschaften; Lehrstuhl für Biomaterialien; Bayreuth, GermanyKey words: biomimetics, biotechnology, protein folding, protein assembly, spinningFigure 1. (A) Schematic overview of dif-ferent types of spider silk as produced by female orb weaving spiders such as the European garden spider Araneus diade-matus. (B) Electronmicrographs of natural spider silk taken from an orb web of Araneus diadematus. The various mor-phologies of the distinct silk types can be easily depicted. The inset shows the smooth surface of MA silk.molecules, salts, fatty acids and small glycoproteins which are produced in the aggregate gland of spiders.11,12 Recently, it was proposed that the wet glue also contains small peptides which are thought to function as metal chelators.8The presence of metal ions might contribute to the inhibition of microbial growth on silk threads which is crucial to protecting the web or preventing damage to developing eggs. Wet glue is more energy- and time-efficient (compared to the cribellate system) and is there-fore used by the majority of today’s spiders.The Structure of Spider SilkPrimary structure. Spider silk primarily consists of proteins that possess large quantities of nonpolar and hydrophobic amino acids like glycine or alanine, but for example, no or only very little tryptophan.4,13,14 In comparison to common cellular enzymes, it is evident that silk proteins exhibit a quite aberrant amino acid composition (Fig. 2A). Furthermore, spider silk proteins contain highly repetitive amino acid sequences, especially in their large core domain (Fig. 2B).The repetitive sequences often account for more than 90% of the whole spider silk protein and are composed of short polypeptide stretches of about 10–50 amino acids. These motifs can be repeated more than a hundred times within one individual protein. Each poly-peptide repeat therefore has distinct functional features resulting in the outstanding mechanical properties of spider silk threads.15MA and Flag silks contain up to four typical oligo-peptide motifs which are repeated several times: [I] (GA)n/(A)n, [II]Figure 2. (A) Amino acidcomposition of three com-mon proteins in comparison to spider silk. (B) Model of the hierarchical structure of a MA silk protein. For example, Araneus diade-matus Fibroin-3 (ADF3) has a highly repetitive core domain flanked by two nonrepetitive domains (ami-noterminal domain: NR N; carboxyterminal domain: NR c). The aminoterminal domain also comprises a secretion signal sequence to allow protein export.(C) Amino acid motifs of silk proteins. The different amino acid motifs present in MA and Flag silk are cor-related with their putative structure and their impact on the final properties of the thread. Although the function of the nonrepetitive parts is not fully understood, it is thought that these parts play a role in triggering the assembly of spider silks.based on the areas with low electron density, which are characterized by amorphous structures with few defined elements of secondary or supersecondary structure.40,41 Such arrangement closely resembles that of protein hydrogels.42 Upon tensile loading, the hydrogel-like areas can partially deform, contributing to the elasticity and flex-ibility of the thread.Different types of silk reveal different structural distributions (e.g., different compositions of crystalline- and hydrogel-parts). MA silk which is used for constructing the frame of the web contains a high amount of crystalline (β-sheet) structures. In contrast, the much more flexible Flag silk consists almost exclusively of amorphous hydrogel-like regions. Thus, the correlation between the structure and function of individual spider silk proteins becomes evident. However, in the future more detailed analysis is necessary to characterize the structure-function relationship of individual spider silk proteins.The Assembly of Spider SilkStarting with a highly concentrated spinning dope… As described above, assembly does not commence with globular folded protein monomers, but with mainly intrinsically unfolded proteins at extremely high concentrations.43 Several mechanisms are thought to be necessary to gain and maintain the high silk protein concentrations (up to 50% w/v)44 in the gland, including lyotropic liquid crystallinity, glycosylation of the outer surface of the folded silk proteins and phase separation induced by a polyol or by a phospholipid surfactant.45 Starting with an almost entire random coil structure in the gland, silk proteins rapidly assemble upon passage through the spinning duct and the silk structure becomes water-insoluble (Fig. 4).46 The tightly controlled assembly behavior requires bi-stable folding of the involved protein and precise control of the environmental conditions in the spinning duct (e.g., pH, ionic concentration, water content).GPGGX/GPGQQ, [III] GGX (X = A, S or Y) and [IV] “spacer” sequences which contain charged amino acids (Fig. 2C).16,17 Structural analysis revealed that oligopeptides with the sequence (GA)n /(A)n tend to form α-helices in solution and β-sheet structures in assembled fibers.18,19 The structures acquired by oligopeptides with the sequences GPGGX/GPGQQ and GGX have not yet been identified. Several studies describe these regions to adopt amorphous rubber-like structures,20,21 whereas others suggest formation of a 31-helical structure.18 Flagelliform silk, typically rich in GPGGX and GGX motifs, preferably folds into β-turn structures resulting in a right-handed β-spiral helix upon stacking (13, 14, 30).16,22Apart from the repetitive core domain, nonrepetitive regions are located at the protein’s termini.23 These nonrepetitive terminal domains of the proteins are crucial for the assembly of spider silk proteins into fibers. The regions comprise approx. 100–200 amino acids and show—in contrast to the repetitive core—well defined secondary and tertiary structures in solution.24,25 Due to conserved cysteine residues, these domains can establish intermolecular disul-fide bonds and are thus able to stabilize dimers and multimers under oxidizing conditions. Therefore, these domains are thought to initiate and specify assembly of silk proteins.26-28 Several carboxy-terminal nonrepetitive sequences of different silks and spiders have been identified, revealing a high sequence homology amongst these domains.24,29,30However, only one full length sequence of a Flag silk protein from Nephila clavipes covering both termini has been identified so far. Further, only recently the first full length sequence of MA silk from the black widow spider has been reported.31In contrast to the Flag silk gene, both analyzed MA silk genes lack introns consisting instead of unusually large exons (>9,000 bp of coding sequence). The large exons might be a result of gene dupli-cation processes during evolution. Additionally, genes with shorter introns generally show a higher expression rate than genes with large introns 32—and spider silks are highly expressed throughout the life-time of the spider.The primary structure of spider silk proteins shows a specific hydro-phobicity pattern with alternating hydrophilic and hydrophobic blocks in their core domains. Such amphiphilic composition is reminiscent of surfactants or biological membranes and, in the case of spider silks, is thought to be crucial for phase separation during the spinning process (see below).33-35 Additionally, the unusual amphiphilic pattern might be responsible for formation of micelles postulated as intermediate structures during thread assembly (see below).36Quaternary structure and protein stability. After secretion from the silk glands, silk proteins are in aqueous solution and lack consid-erable secondary or tertiary structure.37 Particularly in their repetitive core domains, however, the long repetitive sequences permit weak but numerous intra- and intermolecular interactions between neigh-boring domains and proteins upon passage through the spinning duct. These interactions result in the formation of secondary, tertiary and quaternary structure. Roentgen diffraction analysis of the final structure of MA silk threads led to the identification of areas of high electron density embedded in areas with low electron density (Fig. 3).2,3,38 In a postulated model of this structure, the high elec-tron density regions comprise crystalline sub-structures with high β-sheet content.39 These sub-structures are thought to be responsible for the mechanical strength of the silk thread. The elasticity of silk isFigure 3. Schematic structure of spider MA silk. The thread is composed of small crystalline b -sheet rich subunits (see close-ups) which are embedded into an amorphous structure. The crystalline and noncrystalline parts are covalently connected, ensuring the coexistence of strength and ductility. Diameters of MA threads depend on species, but also on age, weight and state of health of a specific individual.which triggers the formation of β-pleated structures with numerous intra- and interchain hydrogen bonds.46T wo theories on the mechanism of silk fiber assembly have been proposed.36,37,47 One is based on the crystal-line alignment of the underlying proteins in the laminar flow inside the spinning duct (Fig. 4). Monomers or disulfide-linked multimers pass the spinning duct at very high concentrations. The alignment in one direc-tion together with the high concentration results in a liquid-crystalline like behavior of the spinning dope. The proposed liquid crystalline state is the basis for the formation of intermolecular interactions like van-der-Waals forces and hydrogen bonds between neighboring molecules.37 Upon further loss of solvent the confor-mational conversion is finalized and a silk fiber can be drawn out of the spinning duct.In the second model, silk proteins first assemble into small micelles with a diameter of approx. 100–200 nm due to their amphiphilic properties inside the spinning dope.36 A multitude of these micelles form globules with diameters in the micrometer range (Fig. 4). Shear forces, which arise during passage through the spinning duct, force these globules into an elongated shape finally leading to fiber formation.Mechanical properties of spider silk. The mostoutstanding property of spider silk is its maximal resil-ience. Distinct spider silk threads are able to absorbthree-times more energy than for example Kevlar, oneof the sturdiest materials on a weight-to-weight basis(Table 1).39 It is interesting to note that syntheticmaterials typically show a higher stiffness and strength compared to natural fibers, whereas natural fibers tend to be more elastic. Synthetic carbon fibers, for example,have a yield point at approx 4 GPa. This is more than five timeshigher than the best insect silk. The elasticity of carbon fibers, on theother hand, is only marginal. As soon as a carbon fiber is elongated more than 1 percent or bent to a certain degree it will instantly break. Spider silk shows a well-balanced combination of strength and elas-ticity and therefore mechanically outperforms other natural fibers as well as synthetic threads under certain circumstances.48In addition to its outstanding resilience, MA silk shows a torsionalshape memory that prevents the spider from twisting and turningduring its descent on a MA silk thread.49,50 Interestingly, MA silkneeds no extra stimulus for total recovery after being turned from itsinitial position. Instead, it scarcely oscillates after twisting because of its high damping coefficient. Spider silk also shows a high supercon-traction rate.51,52 Absorption of water leads to shrinkage and tightens the thread. This process is important to ensure the rigidity of the spider’s web during its lifetime and is thought to be caused by the organization and arrangement of individual silk proteins.53,54Spider silk vs insect silk. Spider silk is often compared to insect silk, preferably taken from the silkworm Bombyx mori. The commer-cially available silkworm silk is reeled from cocoons of caterpillar pupae. This process has only been slightly optimized over centuries and is highly cost-efficient. MA spider silk can be obtained by manually drawing the silk thread out of the spinning wart of immo-bilized spiders. However, this process is only suitable for MA silkPhase transition in the spinning duct: two theories. Successfulsilk assembly is based on extending, aligning and packaging of indi-vidual silk proteins in the laminar flow inside the spinning duct. Hydrophobic residues (typically polyalanines of the repetitive core region) align upon multimerization initiated by the terminal domains and additionally by shear forces in the spinning duct. These polyala-nine segments thereby expose an increasingly hydrophobic surface Figure 4. Model of the silk spinning process. The highly concentrated spider silk protein solution is secreted and stored inside the spinning gland. Upon initiation of thread forma-tion, the solution is directed through a narrow ion exchange channel, in which a phaseseparation process takes place. Mechanical drawing of the silk thread (hind legs/gravity) results in rapid assembly of the silk fiber. Two theories exist concerning the molecular process inside the spinning duct. The first theory supports a liquid-crystalline behavior of the silk proteins, whereas the other theory favors a micellar organization of the proteins, before elongation (through laminar force) finally leads to thread assembly.Table 1 M echanical properties of natural and synthetic fibers (taken from refs. 34 and 47)Material Density Strength Elasticity Toughness[g cm -3] [Gpa] [%] [MJ m -3]MA silk* 1.3 1.1 27 180Flag silk* 1.3 0.5 270 150Insect silk # 1.3 0.6 18 70Nylon 6.6 1.1 0.95 18 80Kevlar 49 1.4 3.6 2.7 50Carbon fiber 1.8 4 1.3 25Steel 7.8 1.5 0.8 6*European garden spider Araneus diadematus . #Silkworm Bombyx mori .easily modifiable baculovirus selectively infects insect cells. Partial cDNAs comprising the known carboxyterminal repetitive and nonre-petitive sequences of the two MA proteins of Araneus diadematus , ADF3 and ADF4, were cloned into the baculoviral genome. The recombinant virus was then used to infect insect cell lines (e.g., sf9 cells of the fall armyworm Spodoptera frugiperda or high five cells of the cabbage looper Trichopulsia ni ). During cytoplasmic production, spider silk either remained soluble or assembled into solid fibers—depending on the type of MA silk protein.48,64 A great advantage of the baculovirus expression system, in comparison to expression in mammalian cells, is the relatively easy culturing process and the potential to easily modify the expression conditions.48 For large scale production, however, the Baculovirus system might be too inefficient and too expensive.The difficulties encountered made it evident that a direct trans-formation of original silk genes and silk fragments is not the method of choice for recombinant spider silk protein production. To achieve stable production with efficient yields, i.e., by bacterial hosts, the spider genes must be adapted to the bacterial codon usage. T o this end, genes coding for spider silk-like proteins were generated using a cloning strategy which is based on a combination of synthetic DNA modules and PCR-amplified authentic gene sequences.28 This approach includes the carboxyterminal nonrepetitive regions present in all MA silks and the codon-optimized repetitive regions. Using a seamless cloning technique, a controlled combination of engineered modules as well as of authentic gene fragments without generation of unwanted gaps or artifacts inside the coding sequence is possible.65 Employing this strategy, it was possible to dramatically increase the expression yields.66 The modular system further enabled the produc-tion of special engineered proteins with tailor-made properties for experimental analysis.Artificial spinning of spider silk. Due to the availability of recombinant spider silk proteins, scientists will be able to analyze the assembly of spider silk threads in a functional in vitro spinning process in the near future. This process has to ensure that the gener-ated silk fiber resembles natural silk in its microstructure, chemical composition and mechanical properties (Fig. 4).46To adapt the sophisticated spinning machinery of spiders, several aspects have to be taken into account. Importantly, besides the protein composition of the spinning dope and the phase separation process in the spinning duct, several mechanical parameters play critical roles in silk assembly. In nature, spiders draw the thread with the hind legs (or by the force of gravity in case of roping) out of the spinning wart.15,36,37 This drawing process has been copied in the laboratory by forced silking of captive spiders. Analysis of the silking process revealed that spinning speeds range from 0.1 to 400 mm per second. Interestingly, large differences in resilience, ductility and thread diameters were reported depending on spinning speed and temperature.55 It was shown that silks produced at higher reeling speeds have a slightly higher yield point, but are less extensible and weaker than silks spun at lower speeds.Several attempts have been made to spin recombinant spider silk proteins for scientific purposes. At first wet-spinning processes were employed with promising results.67,68 Using silicon micro-spinnerets several meters of insect or spider silk fibers could be produced. Although the wet-spun silks visually resembled natural ones, their diameter was up to ten times bigger than naturally occurring silks(and not for the other spider silks), it is time consuming and highly expensive, especially since most spiders are cannibals, rendering farming costly.The differences between insect and spider silks are evident on all levels, from the molecules involved to the structural arrangement of the proteins to the mechanical properties of the thread. On a molec-ular level, insect silk comprises a large amount of sericin-proteins, which are absent in spider silk. The proteins which are responsible for the fibrillar structure (so-called fibroins in insect silk) are, in contrast to spider silk spidroins, composed of light and heavy chain counter-parts. Mechanically, silkworm silk is much weaker and less extensible as compared to for example MA silk of spiders.55,56 Interestingly, depending on spinning conditions, silkworm silk is either strong or elastic, whereas spider silk combines both properties.57Although the mechanical properties of both types of silk crucially depend on spinning conditions, it is primarily the proteins involved that make the real difference. Therefore, techniques have long been sought to recombinantly produce and engineer natural spider silk proteins.Mimicking NatureRecombinant spider silk. Several biotechnological methods for recombinantly producing spider silk proteins have been analyzed during the last decades, since recombinant production of sufficient amounts of silk proteins is essential for understanding their structure and their assembly behavior.48 Due to the highly repetitive character of individual spider silk molecules it is quite complicated to deter-mine the complete cDNA sequence of a silk gene. As mentioned above only limited information about complete silk genes is available. Sequencing of repetitive proteins often gives incorrect or unreliable results, providing little information on gene size or the number of repeat units in particular.The first attempt to obtain recombinant spider silk proteins was the direct transformation of original or fragmented silk genes into bacterial hosts. Bacteria, however, were not suitable for this task due to the large size of the genes.58 Recombinant production of spider silk proteins in bacteria has been further complicated by the different codon usage of spiders compared to bacteria.14 Thus, eukaryotic expression systems like the yeast Pichia pastoris were tested as expres-sion hosts.59 Here, problems occurred during protein purification rather than during the production process. Similar problems were encountered upon attempts to use plants (such as potato or tobacco) as transgenic expression host, however, such systems are still under consideration since they appear to be attractive for larger scale productions.60Other expression systems for the direct transformation of spider silk genes/fragments have also been used during the last decades. The most prominent one is the expression of spider silk in the milk glands of transgenic goats by the Canadian company Nexia Biotechnologies. Although this technique initially produced promising results, the concentration of soluble protein in the milk was found to be low and the proteins could not be efficiently purified for thorough analysis.61 T ests were also performed in mammalian cell lines with comparable results.62Finally, insect cells which are phylogeneticaly closely related to that of spiders were employed using the baculovirus expression system.63,64 This particular system benefits from the fact that theIn vitro spider silk is further able to self-assemble into small nano-fibrils upon incubation in potassium phosphate buffer for several days at room temperature.74,75 The resulting fibrils are structurally comparable to amyloid fibrils.Taken together, analyzing the structure-function relationship of spider silk proteins in the near future will not only unravel the “secrets” behind the extreme toughness of silk threads, but will also help to engineer and design novel polymeric materials which are inspired by nature. The direct control of silk assembly will enable scientists to manufacture tailor-made spider silk materials with outstanding properties whose diversity cannot be achieved by conventional materials.AcknowledgementsWe thank John Hardy and Eileen Lintz for critical comments on the manuscript. This work was supported by the DFG (SCHE 603/4-3).NoteThis manuscript has been previously published: Römer L, Scheibel T. The elaborate structure of spider silk; Structure and function of a natural high performance fiber. In: Fibrous Proteins. Scheibel, T ed. Austin: Landes Bioscience, 2008; 121–129.References1. Gerritsen VB. An airbus could tiptoe on spider silk. Protein Spotlight 2000; 24:1-2.2. Kaplan D, Adams WW, Farmer B, Viney C. Silk polymers: material science and biotechnol-ogy. 1st ed. Washington DC: ACS Symposium Series 1993.3. Fraser RD, MacRae TP . Conformation in Fibrous Proteins. 1st ed. New York: AcademicPress 1973.4. Vollrath F . Strength and structure of spiders’ silks. J Biotechnol 2000; 74:67-83.5. Nentwig W. Why do only certain insects escape from a spider’s web? Oecologica 1982;53:412-7.6. Zschokke S. The influence of the auxiliary spiral on the capture spiral in Araneus diadema-tus Clerck (Araneidae). Bull Br Arachnol Soc 1993; 9:167-73.7. Gosline JM, DeMont EM, Denny MW. The structure and properties of spider silk.Endeavour 1986; 10:37-43.8. Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, et al. Analysis of aque-ous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 2007; 46:3294-303.9. Gao H, Yao H. Shape insensitive optimal adhesion of nanoscale fibrillar structures. ProcNatl Acad Sci USA 2004; 101:7851-6.10. Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices.Proc Natl Acad Sci USA 2003; 100:10603-6.11. Townley MA, Tillinghast EK, Neefus CD. Changes in composition of spider orb web stickydroplets with starvation and web removal and synthesis of sticky droplet compounds. J Exp Biol 2006; 209:1463-86.12. Vollrath F , Tillinghast EK. Glycoprotein glue beneath a spider web’s aqueous coat.Naturwissenschaften 2005; 78:557-9.13. Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP , et al.Spider silk proteins—mechanical property and gene sequence. Zoolog Sci 2005; 22:273-81.14. Xu M, Lewis RV. Structure of a protein superfiber: spider dragline silk. Proc Natl Acad SciUSA 1990; 87:7120-4.15. Lewis RV. Spider silk: Ancient ideas for new biomaterials. Chem Rev 2006; 106:3762-74. 16. Hayashi CY, Lewis RV. Evidence from flagelliform silk cDNA for the structural basis ofelasticity and modular nature of spider silks. J Mol Biol 1998; 275:773-84.17. Hayashi CY, Lewis RV. Spider flagelliform silk: Lessons in protein design, gene structureand molecular evolution. Bioessays 2001; 23:750-6.18. van Beek JD, Hess S, Vollrath F , Meier BH. The molecular structure of spider dragline silk:folding and orientation of the protein backbone. Proc Natl Acad Sci USA 2002; 99:10266-71.19. Simmons AH, Michal CA, Jelinski LW. Molecular orientation and two-component natureof the crystalline fraction of spider dragline silk. Science 1996; 271:84-7.20. Gosline JM, Denny MW, DeMont EM. Spider silk as rubber. Nature 1994; 309:551-2. 21. Termonia Y. Monte Carlo diffusion model of polymer coagulation. Phys Rev Lett 1994;72:3678-81.22. Becker N, Oroudjev E, Mutz S, Cleveland JP , Hansma PK, Hayashi CY, et al. Molecularnanosprings in spider capture-silk threads. Nat Mater 2003; 2:278-83.23. Scheibel T. Protein fibers as performance proteins: new technologies and applications. CurrOpin Biotechnol 2005; 16:427-33.leading to worse mechanical properties than found in natural silk fibers. Other attempts using special postspinning techniques yielded silks with even larger diameters.62,69 Until now, even the best mechanical properties obtained by artificial spinning techniques are much lower than that of natural dragline silks.68Exceeding nature—proteins as polymer materials. Spiders mainly employ silk as linear thread. However, spider silk proteins have much more potential, because they can assemble in all three dimensions to build distinct macroscopic structures (Fig. 5). Nowadays, several attempts are underway to employ silk proteins as biopolymer for novel materials.For example, silk films can be made from a diluted spider silk solution.70,71 A silk protein solution is poured onto a surface and the solvent (e.g., water) is allowed to evaporate. During the evaporation process, the silk proteins assemble on the surface and form a sturdy, transparent film. The films can be manufactured with thickness from few nanometers to several micrometers sharing different chemical and mechanical characteristics, depending on the choice of solvent and environmental conditions. Although silk films themselves cannot fulfill the role of model systems for the assembly behavior of all spider silk proteins, they give valuable insights into secondary and tertiary structure formation of these proteins under laboratory condi-tions. Analysis confirmed that MA proteins are intrinsically unfolded while in aqueous solution. Upon film formation, the proteins rapidly switch to a helical structure. Post treatment of the films with organic solvents like methanol resulted in further rearrangements of protein structure, increasing the β-sheet content dramatically.71-73Figure 5. Possible shapes of spider silk. In nature, spider silk proteins are exclusively converted into silk threads. However, in vitro it is possible to transform silk proteins in other two- or three-dimensional shapes. The figure shows images of a capsule, a sphere, a thread and nano-fibrils (all electron microscopy), as well as a hydrogel and a film (photograph) made by recom-binantly produced engineered spider silk protein.35,42,48,71。

LaRésiliencePPT课件

LaRésiliencePPT课件

• Rutter (1990): rôle positif des différences individuelles d.ans la réponse d’une personne au stress et à l’adversité.
• Fonagy (1993): développement normal dans des conditions difficiles.
risques • focus sur la santé • ressources limitées
2020/10/13
8
Quelles en sont les caractéristiques?
• Quatre niveaux de résilience: • individuelle • familiale • communautaire • sociétaire
2020/10/13
• Introspection
• genre et âge
• sentiment d’utilité
• capacitéde se projetter dans l’avenir
• bon sens de l’identité
• orientation spirituelle
• locus de contrôle
interne
10
Facteurs de résilience individuelle
• habilités de résolution de problèmes
• autonomie
• capacitéde se distancer face àun environnement perturbé
• Résistance versus vulnérabilité • Facteurs protecteurs versus facteurs de

瑞恩的井精品ppt课件(北师大版六年级语文上册课件)PPT、优质教学课件

瑞恩的井精品ppt课件(北师大版六年级语文上册课件)PPT、优质教学课件

两年以后的夏天,一个酷热的早晨,八 岁的瑞恩跟妈妈来到干旱的乌干达。汽车是 进一座村庄,道路两旁站着五千多名儿童, 他们兴奋地叫着:“瑞恩!瑞恩!”并且有 节奏地拍起手。瑞恩羞怯地向他们挥手。村 里的长者带他来到一口井边,井座在鲜花的 包围中,上面刻着:“瑞恩的井——为了这 个痛苦的社会。”他还看到了井边的菜园、 山羊。他和当地的孩子们一起跳舞、欢呼。 这一天晚上,瑞恩一直默默地对自己说: “我希望非洲每个人都能喝上干净的水。”
瑞恩的井
(1)瑞恩是谁? (2)瑞恩怎么会有一口井的?(为什么
这口井是瑞恩的?) (3)这口井在哪里?……
一些非洲的孩子住在条件很差的草棚 里,由于没有足够的食物和饮用水,又缺 医少药,许多儿童在饥饿、疾病中等待死 亡。
概括文章主要内容
瑞恩 井
终于
两年以后的夏天,一个酷热的早晨,八 岁的瑞恩跟妈妈来到干旱的乌干达。汽车驶 进一座村庄,道路两旁站着五千多名儿童, 他们兴奋地叫着:“瑞恩!瑞恩!”并且有 节奏地拍起手。瑞恩羞怯地向他们挥手。村 里的长者带他来到一口井边,井座在鲜花的 包围中,上面刻着:“瑞恩的井——为了这 个痛苦的社会。”他还看到了井边的菜园、 山羊。他和当地的孩子们一起跳舞、欢呼。
教学难点:揣摩人物的特点,体会课文的表达方法。 课前准备:课前了解旧社会封建家庭的生活方式,了解文中提到 的动物; 多媒体图片;网络教室。 课时安排:2课时 教学过程:
第一课时 一、直接导入,激发兴趣 1、介绍朋友:今天老师给同学们介绍一个新朋友,他叫闰土。 板书: 闰土(出示课文插图) 2、打招呼:与朋友初次见面,谁能与闰土打个招呼?指名说(过 渡: 看来同学们都会打招呼,想不想赶快了解我们的这位朋友?) 3、鲁迅先生在回到阔别已久的故乡时也像你们一样想起了他三 十年前 儿时的伙伴,当母亲和他提起这位朋友时,他的脑里就忽然闪 出一幅神 异的画面。() 静静地音乐声中听老师讲述闰土刺查的故事。说说听了故事之后 的感受。 他就是鲁迅小说《故乡》中的主人公──少年闰土。

unit7 the monster PPT

unit7 the monster PPT

▪ <点拨>decline,deny,refuse, reject
▪ decline指对别人的邀请、请求、建议、帮助等有礼貌地回 绝,是这组近义词中最文雅的词,语气比较委婉,如:
He declined the nomination.
▪ ②在短语in agony中,agony不可用复数形式。前面 用定冠词或不定冠词均可,如:
▪ She was in an agony of joy. ▪ 她正惊喜着呢。 ▪ I found him in the agony of death. ▪ 我见他受着临死前的煎熬。
▪ ③the/one‘s death agony和
Background Information
▪ About the text: ▪ This text first appeared as a radio
talk, entitled A Monster. Later it was published with the title Of Men and Music in the United States in 1937.
讨论会拖得时间太长并且很累人,发言者每隔一段时间就 停下来吃点点心。
Words & Phrases Study
▪ 6. voluble adj. speaking or spoken fluently ▪ <释例> Her niece is an extremely voluble young
woman. 她的侄女是一个极其善谈、说起话来滔滔不绝的年
▪ 4.conceit n.自负,自高自大;奇想 ▪ He is wise in his own conceit.他自认为聪

& Eng., NASA Langley

& Eng., NASA Langley

\Adding Value" Theme, I
Implicit solution of 108 nonlinearly coupled equations is feasible, and is becoming \routine" in some disciplines { discretized PDEs of hydrodynamics, radiation transport, E&M { solved on thousands of processors, e.g., ASCI platforms Multidisciplinary analysis and design can ride this wave of algorithmic capability { existing single-discipline solvers and optimizers are used in preconditioning the overall solution/optimization process { an outer globalized Newton method provides e ciency and some robustness
AIAA/USAF/NASA/ISSMO MAO Symposium
8 September 2000
Inspiration, I
\One can easily build a telescoping family of algorithms that correspond to di erent formulations of the same optimization] problem . . . The key is the availability of certain components inside the state constraints; in particular, at the very least the action on vectors of the Jacobian of the the constraints with respect to the states, its inverse, its inverse transpose, and the Jacobian of the constraints with respect to the optimization parameters. Simulation codes should be written to make these components accessible to optimizers . . . " R. M. Lewis, in Proc. of the 1995 ICASE/NASA Langley Workshop on Multidisciplinary Design Optimization, N. Alexandrov & M. Y. Hussaini, eds., SIAM, p. 187 (close paraphrase)

新概念英语一册第127课ppt课件

新概念英语一册第127课ppt课件

• It's can't be. 不可能是。 • Let me have another look. 让我再看一看。 • I think you're right! 我想你是对的。
• Isn't he her third husband? 他不是她的第3个丈夫吗?
• No. He must be her fourth or fifth. 不,他一定是她的第4个或第5个丈夫。
最新版整理ppt
9
表示猜测和推断的情态动词must和 can’t
表示对现在和将来的事做推断和猜测,与系动词 be连用 • 肯定的推断:must be 肯定是 • 否定的推断:can’t be 不可能是
(而不是mustn’t be) • 不要把它们和 must , can混淆 • It must be Karen Marsh,the actress.
最新版整理ppt
7
actress 女演员
She is a famous actress. 她是一个著名的女演员。
actor 男演员
He is my favourite actor. 他是我最喜欢的男演员。
男服务员 waiter 男主人 host 女服务员 waitress 女主人 最新版整理ppt hostess 8
最新版整理ppt
11
Translation:
• It must be cold outside. 外面肯定很冷。
• They must be thirsty. 他们肯定很渴。
• He can’t be Mr. Read. 他不可能是里德先生。
• She can’t be late. 她不可能迟到。
KATE: Conrad Reeves, the actor? It's_c_a_n_'_t _b_e__.

瑞恩的井-PPT课件 (2)

瑞恩的井-PPT课件  (2)

津巴布韦首都哈拉雷市郊哈特克里夫地区贫民窟里的一名儿童。 哈特克里夫距哈拉雷市中心仅20公里,这里有一大片简陋的棚屋, 里面居住着大批城市贫民。贫民窟里的孩子终日在棚屋外泥泞的黄 土地上玩着他们拣来的物件。
小练笔:
同学们,如果你是瑞恩的家人,或是他学校里 的老师、同学,或是社会上的一位有爱心的人,或 者你就是一位受到瑞恩帮助过的非洲人民,此时, 你想对瑞恩说些什么?
募捐——捐助
我将继续努力,我希望非洲 每个人都能喝上干净的水。
一个星期后,瑞恩收到了一张二十五 美元的汇款单。两个月后,瑞恩已经收到 了七千美元的捐款。
美国德克萨斯州的一个小女孩,
听了瑞恩的故事后,寄来二十五美元, 还附上了一封信。信中写道:我为瑞 恩感动。我也想去帮助别人。我把自 己的头发卖掉了。但愿这些有用。
我希望非洲每个人都能喝上 干净的水。
瑞恩的井——为了这个痛苦的社会
小练笔:
同学们,如果你是瑞恩的家人,或是他学校里 的老师、同学,或是社会上的一位有爱心的人,或 者你就是一位受到瑞恩帮助过的非洲人民,此时, 你想对瑞恩说些什么?
提示:信中你可以赞赞瑞恩行为的不易,讲讲 他的言行在社会上的影响力,还可以对他说说你的 心里话。
第一项工作是为地板吸尘,瑞恩干了两 个小时。当朋友们在外边玩的时候,他得 到了第一个两美元。接下来,他牺牲了看 电影去擦窗子,又得到了两美元。
爷爷知道了这件事,请他捡松球,每 捡一袋就可以得到十美元。期中考试,瑞 恩把成绩单给父母,他们用五美元奖励他 的优秀成绩。
妈妈制作了一个表格,上面画了
三十五行,瑞恩每完成一行的工作就 可以挣到两美元。
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用

英语文学导论

英语文学导论
ß the absolute reclusive 孤独的life of Emily
12
实用精品课件PPT
Section 5
ß death of Miss Emily with her house violently invaded
ß discovery of the murder & her necrophilia(恋尸癖)
10
实用精品课件PPT
Section 3
ß Emily's sickness before dating with Homer barron & passionate 热 烈的love
ß the purchase of arsenic 砒霜
11
实用精品课件PPT
Section 4
ß widespread rumors传闻 in the town
A Rose For Emily
William Faulkner 威廉.福克斯
1
实用精品课件PPT
William Faulkner
ß His growth:Born in a wealthy family, Mississippi/ "the American Deep South"/rise and fall/"a Faulknerian world"/nostalgia(怀 旧)/impending doom即将发生的命运
The ladies in Jefferson
ß the curious women(p.9)
ß "only a woman could have believed it"(p.9)
Plot review

EMBT事务所

EMBT事务所

恩瑞克· 米拉莱斯
(Enric Miralles,1955- 2000年7月3日)西班 牙建筑师。1955年生于 巴塞罗那,2000年7月 3日,因患脑瘤英年早 逝。1978年毕业于 Barcelona ETSAB

贝纳戴塔· 塔格里亚布出生
在米兰,并在威尼斯和纽约 生活和工1989年,她毕业于 位于威尼斯的“威尼斯建筑 学1991年,她与恩利克· 米拉 勒斯开始合作,并在巴塞罗 那组建了恩利克· 米拉勒斯/贝 纳戴塔· 塔亚布(EMBT 建筑 事务所)青年建筑师国际办 公室
设计手稿

这是整个城市唯 一的现代建筑。 建筑的入口位于 地形最低点。这 个建筑的周围都 是一些老建筑。
设计理念

海洋、树叶和附近索 尔兹伯里峭壁岩石等 元素,不断的通过重 复或转换,这个标志 性的形象主导了整个 方案设计
设计思想

EMBT的构想是将 苏格兰的民族个性 同该用地的设计要 求――允许议会大 厦面向圣路德公园 的景色展开
使用柳条将会重新 利用和复兴这种具 有千年历史、正濒 临失传的传统手工 艺而且这也融合了 东、西方的文化— 同时体现出独特的 西班牙和中国风格 采用绿色材料再次发展了城市的乡村地区将濒临失传的 工艺再次带到生活中来在中国和西班牙的文化互通间搭 建一座桥梁将乡村Байду номын сангаас素引入到了城市和建设中提醒城市 不要忘了乡村和乡村传统

一个船只和海洋 业用地变成一个 专为人们服务的 地方。“水”是 这个项目的着重 点,可以让人们 欣赏着水,同时 又可以在水边进 行活动。
4、圣卡特琳娜市场

一个极具体现 EMBT设计理念的 建筑项目,改建之 前,圣卡特琳娜市 场已经是非常的衰 落破旧的。当时的 整个社区也是很衰 落。

莱尼和他们ppt

莱尼和他们ppt
2.notgedrungen 只好
3.ausdienen 穿坏,用坏
4.Anpöbelei 辱骂
5.aufhetzen 煽动
另外一点也需要补充说明: 莱尼是一个父母双亡的孤 儿(Vollweise),有几个别扭 的婆婆家亲戚,还有几个 住在乡下的不太别扭的娘 家亲戚和一个二十五岁的 儿子,他取她小时候用过 的名字,目前正在坐牢。
Erklären
immobil :不动的,固定的 Vermögen:财富;有能力 做到 inflaktionistisch:通货膨胀 aufgeben:放弃,不再进 行 Kriegerwitwe:阵亡士兵遗 孀 es geht jm. dreckig:某人 经济状况很糟糕
Ä derung:条纹,纹理 Erschlaffen:肌肉
伤害损害hauptinhalt2lebensgewohnheitenessenrauchentrinkenundauto说教学过程1seelenundliebeslebenseelenundliebesleben对于莱尼的整个身世对于她的精神生活和爱情生活笔者无缘亲眼目睹然而为了获得有关莱尼的情况掌握人们常说的客观材料甚至还要在有关的段落提到提供情况的人的名字笔者也尽了一切努力而这里的报道十拿九稳地可以说是符合实际情况的
Hale Waihona Puke 莱尼这个人平时沉默寡言,遇事更守口如 瓶——这里既然提到了两种非属体质上的 特点,就有必要再补充两点:她既不怨天 尤人,也不饮悔于怀,她甚至没有悔恨自 己不曾哀悼第一格丈夫之死。莱尼遇事从 不反悔,对于她,丝毫谈不上什么懊悔 “太多”或“太少”;大概她根本不知道 懊悔是怎么一回事。在这一点上——以及 其他一些方面——想必是宗教教育对她失 败了,或者应该说是失败了,也许这对莱 尼倒是一桩好事吧。

莱斯的翻译类型学与文本类型翻译PPT课件

莱斯的翻译类型学与文本类型翻译PPT课件

莱斯与纽马克的翻译理论的共性
受奈达影响,二者翻译方法都是建立在对等的基础之上,都认为文本分析是翻 译的基础,提出对于不同功能的文本应采取不同的翻译方法。 对翻译性质的认定相同,都认为翻译既是科学又是艺术。 不仅都注重文本的功能,而且都非常重视读者的反应。 都意识到翻译和文化的关系,承认翻译时会出现意义的走失。 都很关注客观的翻译批评,而且都提出了批评的方法
Hale Waihona Puke 莱斯“翻译类型学理论”形成的脉络
Otto Kade:实用性文本翻译, Rudolf Walter Jumpelt:科技翻译, Eugene A. Nida:《圣经》翻译, Rolf Kloepfer:散文和诗歌翻译, Ralph-Rainer Wuthenow:古代文献 翻译。
共同缺点:把自己在某一方面研究 所得的结论推广到其它的文本翻译 中,说成唯一、通用的翻译标准。 她认为,能够解决所有类型文本的 方法并不存在,必须先分清文本类 型,以此选择翻译手段。“文本类 型学”是翻译者选择翻译策略的前 提和依据,也是评论翻译的标准。
翻译方法 翻译步骤
翻译标准 翻译批评
莱斯与纽马克翻译理论的差异
莱斯
面向译文(target text-oriented)
纽马克
面向原文(source text-oriented)
译者在分析了原文本,选择了翻译的方法之后,从以 下四个层面进行具体翻译。①原语文本层面②所指 层面③衔接层面④自然层面。
翻译过程分为分析阶段和再次词语表现阶段, 在分析阶段,分三步分清源文本功能:一是确定 原文功能类别,二是确定文本体裁,三是分析语 言风格。
卡特琳娜·莱斯(Katharine Reiss)是德国功能翻译论的创始人,在《翻译批评— — 其潜能与局限》一书中,她已经把文本功能引入翻译批评,提出功能翻译理论的 思想,所以说,该书是功能翻译理论形成的前奏。

《劳斯莱斯》课件

《劳斯莱斯》课件
斯将提供更加丰富的定制化服务, 包括外观、内饰以及特殊功能等。
技术创新
01
02
03
轻量化技术
通过采用新型材料和工艺 ,降低车身重量,提高燃 油效率和性能。
混合动力技术
研发更高效的混合动力系 统,以提升车辆的燃油经 济性和排放性能。
智能驾驶辅助系统
不断升级和完善智能驾驶 辅助系统,提高驾驶安全 性和便利性。
市场策略
拓展市场份额
通过加强品牌宣传和市场 推广,提高劳斯莱斯在全 球市场的份额。
提升品牌形象
通过与文化、艺术等领域 合作,提升劳斯莱斯品牌 的文化内涵和高端形象。
优化销售渠道
拓展线上销售渠道,并优 化线下门店布局,提高客 户购车体验和服务质量。
05
劳斯莱斯在中国
市场表现
市场份额
劳斯莱斯在中国市场上的份额逐 年增长,已成为超豪华汽车品牌
04
05
2003年推出双门轿车魅影系 列
产品线概览
01
02
03
04
幻影系列
劳斯莱斯旗舰车型,代表了品 牌最高水准
古斯特系列
中大型豪华轿车,适合商务和 私人使用
魅影系列
双门四座敞篷车,强调运动与 时尚
库里南
大型豪华SUV,兼具越野与豪 华舒适
品牌理念
“精益求精,至臻完 美”的品牌理念
为客户创造独一无二 的豪华体验
发动机技术
总结词:长寿命
详细描述:劳斯莱斯的发动机设计注重耐用性,采用高品质的材料和精密的制造工艺,确保发动机具有较长的使用寿命。
发动机技术
01
总结词:静谧性
02
详细描述:劳斯莱斯的发动机经 过精心设计和调校,有效降低了 噪音和振动,为乘客提供更加舒 适的车内环境。

《瑞恩的井》PPT教学课件4

《瑞恩的井》PPT教学课件4

说一说:
在 的帮助下,瑞恩 。
理解:
瑞恩的井—— 为了这个痛苦直默默地对自己说:—— 面对当地居民的真挚感谢,瑞恩再次对自己说:—— 面对孩子们洒下的热泪,瑞恩更加坚定地对自己说:——
希望非洲每个人都能喝上干净的水
说话:
好样的!瑞恩————
补充资料:
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
勇于探索真理是人的天职。 ──哥白尼 有很多人是用青春的幸福作成功代价的。 ──莫扎特 越学习,越发现自己的无知。 ──笛卡尔 在观察的领域中,机遇只偏爱那种有准备的头脑。 ──巴斯德 在天才和勤奋两者之间,我毫不迟疑地选择勤奋,她是几乎世界上一切成就的催产婆。 ──爱因斯坦 在知识的山峰上登得越高,眼前展现的景色就越壮观。 ──拉吉舍夫 正确的道路是这样:吸取你的前辈所做的一切,然后再往前走。 ──托尔斯泰 知识就是力量。 ──培根 知识是引导人生到光明与真实境界的灯烛。 ──李大钊 只有不畏攀登的采药者,只有不怕巨浪的弄潮儿,才能登上高峰采得仙草,深入水底觅得骊珠。 ──华罗庚 只有满怀自信的人,才能在任何地方都怀有自信沉浸在生活中,并实现自己底意志。 ──高尔基 重要的不是知识的数量,而是知识的质量。有些人知道得很多,但却不知道最有用的东西。 ──托尔斯泰 追求真理比占有真理更加难能可贵。 ──爱因斯坦 走你的路,让别人去说罢! ──但丁 最有成就的科学家都具有狂热者的热情。 ──贝弗里奇 昨天不能唤回来,明天还不确实,而能确有把握的就是今天。今日一天,当明日两天。 ──耶曼逊 只有天才和科学结了婚才能得到最好的结果。 ──斯宾塞 最可怕的敌人,就是没有坚强的信念。 ──罗曼· 罗兰 在科学上没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望达到光辉的顶点。 ──马克思 人只有为自己同时代人的完善,为他们的幸福而工作,他才能达到自身的完善。─马克思 生活就像海洋,只有意志坚强的人,才能到达彼岸。 ──马克思 人的价值蕴藏在人的才能之中。 ──马克思 万事开头难,每门科学都是如此。 ──马克思 一切节省,归根到底都归结为时间的节省。 ──马克思 利用时间是一个极其高级的规律。 ──恩格斯 社会一旦有技术上的需要,则这种需要就会比十所大学更能把科学推向前进。──恩格斯 在马克思看来,科学是一种在历史上起推动作用的、革命的力量。任何一门理论科学中的每一个新发现,即使它的实际应用甚至还无法预见,都使马克思感到衷心的喜悦,但是当有了立即会对工业、对一般历史发展产生革命影响的时候,他的喜悦就完全不同了。

西班牙建筑

西班牙建筑

西班牙建筑西班牙建筑建筑风格:人们往往习惯于将那些有庭院和纯白墙面的建筑称作西班牙风格建筑,而事实上,这些并不仅仅是西班牙建筑的特点,差不多地中海沿岸国家、中东地区乃至整个阿拉伯世界的建筑似乎都有着类似的特征。

那么,到底什么才是"西班牙风格"呢?或许我们并不能用一句话或者是一个定义来做为衡量标准,但综观经典西班牙建筑楼盘,我们不难总结出其中的8个重点细节,它们都表达西班牙建筑了西班牙建筑的共同之处,证实了这种建筑风格及形式的美观和宜居性。

1、海湾式布局:西班牙是海洋国家,所以"水"是西班牙风格的灵魂元素之一,一些西班牙项目通常在空间分割中使用水系、绿化带为分隔媒介,使社区与外部自然区分,由社区空间到生活空间,水岸气息散落每个角落,体现了建筑与水与人的完美和谐。

2、层级分明的规划设计:西班牙建筑通常以远高近低的层级方式排布,高低错落,符合人的空间尺度感。

外立面设计着西班牙建筑重突出整体的层次感和空间表情,通过空间层次的转变,打破传统立面的单一和呆板,其节奏、比例、尺度符合数学美。

3、创新联排别墅独栋化:以往的联排别墅大多是多联体的简单复制,不具备可识别性和整体感官效果。

而在现在的一些西班牙建筑项目中,设计者通常用模块的形式雕筑联排别墅,每户不再是简单的复制。

这样的设计对于过客是美景的享受,对于家人则是舒适的生活空间。

4、浅色调:西班牙风格的最大特点是在西班牙建筑中融入了阳光和活力,采取更为质朴温暖的色彩,使建筑外立面色彩明快,既醒目又不过分张扬,且采用柔和的特殊涂料,不产生反射光,不会晃眼,给人以踏实的感觉。

5、具有典型的西班牙建筑元素及特征:从红陶筒瓦到手工抹灰墙(STUCCO),从弧型墙到一步阳台,还有铁艺、陶艺西班牙建筑挂件等,以及对于小拱璇、文化石外墙、红色坡屋顶、圆弧檐口等符号的抽象化利用,都表达出西班牙风格的特征。

6、取材朴实,产品完全手工化、精细化:西班牙建筑采用的建筑材料一般都会给人斑驳的、手工的、比较旧的感觉,但却非常有视觉感和生态性,像陶瓦,泥土烧制、环保吸水等都可以保持屋内温度。

Elias27 Story22页PPT文档

Elias27 Story22页PPT文档

If you are born in the late 1800's, and you are a Chinese Mandela, what will you do?
谢谢
Para 4
What unfair situation did black people face in South Africa? no vote/ no ideal job/ live in the poorest part What’s Mandela’s policy (政策) towards the unfair situation? answer violence with violence
问谁又能做到
Hint 1 (线索)
Hint 2
Hint 3
•Fight for rights •Be in prison for a long time (监狱) •Win Nobel Peace Prize
The female version of ____ (女版)
___ is the first black president like Barack Obam 3
South Africa 2019 World Cup
Everyone was waiting for___.
Nelson Mandela
Unit 5 Nelson Mandela-a modern hero
Elias' Story
Predicting
A black lawyer Guidance/generous
Poor family/little education/miner No passbook
Close-reading: Part II
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏格兰议ቤተ መጻሕፍቲ ባይዱ大厦设计
1998
意大利
圣米开勒
公墓设计
1998
意大利
威尼斯
威尼斯艺术学校
1997
德国
汉堡
汉堡音乐学校设计
1997
希腊
撒罗尼卡
撒罗尼卡码头设计
1997
荷兰
瓦尔克霍夫城堡设计
1997
西班牙
赫纳洛
Fontanals俱乐部高尔夫酒店设计
1997
西班牙
Palafolls公共图书馆设计
1997
西班牙
圣卡塔琳娜超市翻新设计
Enric Miralles 1972-2000
El Croquis
世界
1997
荷兰
乌得勒支
市政厅翻新设计
1997
荷兰
阿姆斯特丹
Borneo Eiland的六幢住宅设计
1997
西班牙
巴塞罗那
巴塞罗那市中心两个住宅翻新
1996
日本
东京
日本国家图书馆设计
1995
德国
法兰克福
有轨电车车站设计
1995
德国
莱比锡
莱比锡体育馆
1995
西班牙
比戈大学图书馆大楼设计
1995
西班牙
巴塞罗那
La Llauna学校校舍
1990
西班牙
图书俱乐部交谊中心
1989
西班牙
维斯卡体育中心设计
1987
西班牙
马略卡岛铁道公园设计
1985
西班牙
巴塞罗那
伊瓜达拉公墓设计
1984
西班牙
巴塞罗那
艺术大楼设计
参考资料:
Enric Miralles & Benedetta Tagliabue Embt Work in Progress 2006 DAP
伊瓜达拉墓园
1995
日本
Tateyama博物馆的展厅天堂
1995
西班牙
巴塞罗那
La Llauna学校教学楼一层翻修
1994
西班牙
Morella寄宿学校校舍
1993
德国
不莱梅
不莱梅港修复设计
1993
西班牙
阿里坎特
为Rythmic Gimnastics设计的市民中心
1993
西班牙
巴塞罗那
图书俱乐部交谊中心
年份
国家
地区
项目名称
2000
西班牙
巴塞罗那
天然气公司新总部大楼设计
2000
德国
沃尔夫斯堡
科技中心设计
1999
意大利
Salemo法院设计
1999
意大利
Salemo体育馆设计
1999
英国
摩尔农场
1999
西班牙
巴塞罗那
蒙特利公园
1999
意大利
萨勒诺
萨勒诺法院设计
1998
德国
伏罗托
人行桥设计
1998
英国
苏格兰
1993
日本
高岗火车站入口设计
1993
日本
Unazuki沉思展台
1993
西班牙
巴塞罗那
图书俱乐部交谊中心
1993
西班牙
巴塞罗那
Hostalets de Baleny社交中心
1992
西班牙
马德里
为Circulo de Lectores设计的社交中心
1991
西班牙
巴塞罗那
奥运会射击训练场
1991
西班牙
巴塞罗那
相关文档
最新文档