对数函数性质及练习(有答案)

合集下载

对数函数精选练习题(带答案)

对数函数精选练习题(带答案)

对数函数精选练习题(带答案)1.函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1 D.⎝⎛⎦⎤12,1答案 D解析 要使函数解析式有意义,须有log 23(2x -1)≥0,所以0<2x -1≤1,所以12<x ≤1,所以函数y =log 23(2x -1)的定义域是⎝⎛⎦⎤12,1.2.函数f (x )=log a (x +b )的大致图象如图,则函数g (x )=a x -b 的图象可能是( ) 答案 D解析 由图象可知0<a <1且0<f (0)<1,即⎩⎪⎨⎪⎧0<a <1, ①0<log a b <1, ②解②得log a 1<log a b <log a a ,∵0<a <1,∴由对数函数的单调性可知a <b <1, 结合①可得a ,b 满足的关系为0<a <b <1,由指数函数的图象和性质可知,g (x )=a x -b 的图象是单调递减的,且一定在y =-1上方.故选D.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093 答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93,故与MN 最接近的是1093.故选D.4.已知函数f (x )是偶函数,定义域为R ,g (x )=f (x )+2x ,若g (log 27)=3,则g ⎝⎛⎭⎫log 217=( )A .-4B .4C .-277 D.277 答案 C解析 由g (log 27)=3可得,g (log 27)=f (log 27)+7=3,即f (log 27)=-4,则g ⎝⎛⎭⎫log 217=f (-log 27)+17=-4+17=-277.5.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=( ) A .-13 B .-12 C.12 D.32 答案 A解析 因为log 49=log 29log 24=log 23>0,f (x )为奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-f (-log 23)=-2-log 23=-2log2 13=-13.6.设a =log 54-log 52,b =ln 23+ln 3,c =1012 lg 5,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c答案 A解析 由题意得,a =log 54-log 52=log 52,b =ln 23+ln 3=ln 2,c =10 12 lg 5=5,得a =1log 25,b =1log 2e ,而log 25>log 2e>1,所以0<1log 25<1log 2e <1,即0<a <b <1.又c =5>1.故a <b <c .故选A.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln (2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称 答案 C解析 f (x )的定义域为(0,2).f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A ,B 错误.∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确.∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0, ∴f (x )的图象不关于点(1,0)对称,∴选项D 错误.故选C. 8.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0 答案 D解析 因为log a b >1,所以a >1,b >1或0<a <1,0<b <1,所以(a -1)(b -1)>0,故A 错误; 当a >1时,由log a b >1,得b >a >1,故B ,C 错误.故选D.9.(2019·北京模拟)如图,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( ) A .2 B .3 C. 2 D.3 答案 D解析 因为直线BC ∥y 轴,所以B ,C 的横坐标相同;又B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,所以|BC |=2.即正三角形ABC 的边长为2.由点A 的坐标为(m ,n ),得B (m +3,n +1),C (m +3,n -1),所以⎩⎪⎨⎪⎧n =log 2m +2,n +1=log 2(m +3)+2,所以log 2m +2+1=log 2(m +3)+2,所以m = 3.10.(2018·湖北宜昌一中模拟)若函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,且b =lg 0.9,c =20.9,则( )A .c <b <aB .b <c <aC .a <b <cD .b <a <c 答案 B解析 由5+4x -x 2>0,得-1<x <5, 又函数t =5+4x -x 2的对称轴方程为x =2, ∴复合函数f (x )=log 0.9(5+4x -x 2)的增区间为(2,5),∵函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,∴⎩⎪⎨⎪⎧a -1≥2,a +1≤5,则3≤a ≤4,而b =lg 0.9<0,1<c =20.9<2,所以b <c <a .11.(2019·石家庄模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1答案 D解析 作出y =10x 与y =|lg (-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨设x 1<x 2,则x 1<-1,-1<x 2<0, 所以10 x 1=lg (-x 1),10 x 2=-lg (-x 2), 此时10 x 1<10 x 2, 即lg (-x 1)<-lg (-x 2), 由此得lg (x 1x 2)<0,所以0<x 1x 2<1.12.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 令x =2得y =log a 1+2=2,所以函数y =log a (x -1)+2的图象恒过定点(2,2).13.(2019·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.答案 3解析 因为2x =3,所以x =log 23.又因为y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3. 14.(2018·兰州模拟)已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________. 答案 2或12解析 ①当a >1时,y =log a x 在[2,4]上为增函数. 由已知得log a 4-log a 2=1,所以log a 2=1,所以a =2. ②当0<a <1时,y =log a x 在[2,4]上为减函数. 由已知得log a 2-log a 4=1,所以log a 12=1,a =12.综上知,a 的值为2或12.15.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.答案 (0,+∞)解析 令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).16.(2019·江苏南京模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥2,2a x -3a ,x <2(其中a >0,且a ≠1)的值域为R ,则实数a 的取值范围为________. 答案 ⎣⎡⎭⎫12,1解析 由题意,分段函数的值域为R ,故其在(-∞,2)上应是单调递减函数,所以0<a <1,根据图象可知,log 122≥2a 2-3a ,解得12≤a ≤1.综上,可得12≤a <1.。

2 第2课时 对数函数及其性质的应用(习题课) 纯答案

2 第2课时 对数函数及其性质的应用(习题课) 纯答案

第2课时 对数函数及其性质的应用(习题课)答案比较对数值的大小【解】 (1)因为函数y =ln x 是增函数,且0.3<2, 所以ln 0.3<ln 2.(2)当a >1时,函数y =log a x 在(0,+∞)上是增函数, 又3.1<5.2,所以log a 3.1<log a 5.2;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数. 又3.1<5.2, 所以log a 3.1>log a 5.2. (3)因为0>log 0.23>log 0.24, 所以1log 0.23<1log 0.24,即log 30.2<log 40.2.(4)因为函数y =log 3x 是增函数,且π>3,所以log 3π>log 33=1,同理,1=log ππ>log π3,即log 3π>log π3.1.解析:选D.因为log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为1.01x 为增函数,所以1.013.4<1.013.5,故B 错;由指数函数图象特点知,3.50.3>3.40.3,故C 错.2.解析:选A.因为a =30.5>1,b =log 312<0,0<c =log 32<1,所以a >c >b .解对数不等式【解】 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为(0,2). (2)当x >1时,log x 12>1=log x x ,解得x <12,此时不等式无解.当0<x <1时,log x 12>1=log x x ,解得x >12,所以12<x <1.综上所述,原不等式的解集为⎪⎭⎫⎝⎛1,21. (3)当a >1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5>x -1,解得x >4.当0<a <1时,原不等式等价于 ⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1, 解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |52<x <4.1.解析:因为函数y =log 0.2x 在(0,+∞)上是减函数,所以由log 0.22x <log 0.2(x -1)得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1,即x的取值范围为(1,+∞).答案:(1,+∞)2.解:由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数,所以⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,所以a >1;当0<a <1时,y =log a x 是减函数,所以⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.所以13<a <23.综上所述,a 的取值范围是⎪⎭⎫⎝⎛3231,∪(1,+∞).对数型函数的单调性【解】 (1)由4x -1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1, 因此log 4(4x 1-1)<log 4(4x 2-1), 即f (x 1)<f (x 2),故f (x )在(0,+∞)上单调递增.(3)因为f (x )在区间⎥⎦⎤⎢⎣⎡2,21上单调递增,又f ⎪⎭⎫⎝⎛21=0,f (2)=log 415,因此f (x )在区间⎥⎦⎤⎢⎣⎡2,21上的值域为[0,log 415].解:因为1-2x >0,所以x <12.又设u =1-2x ,则y =f (u )是(0,+∞)上的增函数.又u =1-2x ,则x ∈()⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12,无单调递增区间.与对数函数有关的值域与最值问题【解】 (1)由题意得⎩⎪⎨⎪⎧1+x >0,3-x >0,解得-1<x <3.所以f (x )的定义域为(-1,3).(2)f (x )=log a [(1+x )(3-x )]=log a (-x 2+2x +3) =log a [-(x -1)2+4],-1<x <3,若0<a <1,则当x =1时,f (x )有最小值log a 4, 所以log a 4=-2,即a -2=4,又0<a <1,所以a =12.若a >1,则当x =1时,f (x )有最大值log a 4,f (x )无最小值. 综上可知,a =12.解:(1)由⎩⎪⎨⎪⎧f (1)=1,f (2)=log 212,得⎩⎪⎨⎪⎧log 2(a -b )=1,log 2(a 2-b 2)=log 212, 所以⎩⎪⎨⎪⎧a -b =2,a 2-b 2=12,即⎩⎪⎨⎪⎧a -b =2,a +b =6,所以a =4,b =2.(2)由(1)知f (x )=log 2(4x -2x ),设t =2x ,因为x ∈[1,3],所以t ∈[2,8]. 令u =4x-2x=t 2-t =⎝⎛⎭⎫t -122-14,所以当t =8,即x =3时,u 最大,u max =56, 故f (x )的最大值为log 256.1.解析:选C.因为x ≥2,所以log 2x ≥1,所以y ≥3. 2.解析:选B.易知函数y =lg|x |是偶函数.当x >0时,y =lg|x |=lg x ,所以在区间(0,+∞)上单调递增.由偶函数的性质知,函数在区间(-∞,0)上单调递减.3.解析:选C.由题意知,f (x )=log a x (0<a <1)为减函数,则f (x )max =f (a )=1,f (x )min =f (2a )=1+log a 2,所以1=3(1+log a 2),即log a 2=-23,解得a -23=2,即a =24,故选C.4.解析:因为y =log 5x 与y =2x +1均为增函数,故函数f (x )=log 5(2x +1)是其定义域上的增函数,所以函数f (x ) 的单调增区间是⎝⎛⎭⎫-12,+∞. 答案:⎝⎛⎭⎫-12,+∞ 5.解:设f (x )=log a x (a >0且a ≠1), 因为f (4)=2,所以log a 4=2,所以a =2,所以f (x )=log 2x ,所以f (2x -3)>f (x )⇒log 2(2x -3)>log 2x ⇒⎩⎪⎨⎪⎧2x -3>0,x >0,2x -3>x ⇒x >3,所以原不等式的解集为(3,+∞).[A 基础达标]1.解析:选C.由指数函数的性质可知,函数y =0.75x 为单调递减函数,又因为-0.1<0.1,所以0.75-0.1>0.750.1.2.解析:选D.f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).3.解析:选D.由函数f (x )的解析式知定义域为⎪⎭⎫ ⎝⎛∞+,61,设t =2x -13(t >0),t 在⎪⎭⎫ ⎝⎛∞+,61上是增函数,y =21log t在(0,+∞)上是减函数,由复合函数的单调性可知f (x )在⎪⎭⎫ ⎝⎛∞+,61上是减函数,故选D. 4.解析:选B.因为a x ≥1=a 0的解集为{x |x ≤0},所以0<a <1,所以x 2+2≥2. 又因为函数y =log a (x 2+2)的最大值为-1,则a =12.5.解析:选B.因为f (x )=log 3x , 所以f (x )在(0,+∞)上为增函数. 又因为2>12>14,所以f (2)>f ⎪⎭⎫ ⎝⎛21>f ⎪⎭⎫ ⎝⎛41.6.解析:由y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2. 答案:(2,+∞)7.解析:由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,解得⎩⎪⎨⎪⎧x >-32,x >65,x <3,即65<x <3,故不等式的解集为{x |65<x <3}. 答案:{x |65<x <3}8.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4.答案:4 9.解:(1)因为y =log 3.1x 在(0,+∞)上是增函数,所以log 3.10.5>log 3.10.2. (2)法一:因为y =21log x 在(0,+∞)上是减函数,所以21log 8<21log 4.法二:21log 8=-3,21log 4=-2,由-3<-2知21log 8<21log 4.(3)因为log 56>log 55=1,log 65<log 66=1,所以log 56>log 65. 10.解:要使y =21log (1-x 2)有意义,则1-x 2>0,所以x 2<1,则-1<x <1,因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =21log t 减小,所以当x ∈(-1,0]时,y =21log (1-x 2)是减函数;同理当x ∈[0,1)时,y =21log (1-x 2)是增函数.故函数y =21log (1-x 2)的单调增区间为[0,1),且函数的最小值y min =21log (1-02)=0.[B 能力提升]11.解析:选D.因为0<12<1,21log m <21log n <0,所以m >n >1,故选D.12.解析:选C.当-1<x <0时,0<x +1<1. 因为log a |x +1|>0,所以0<a <1,所以函数f (x )=log a |x +1|在(-∞,-1)上递增,在(-1,+∞)上递减. 13.解:(1)因为g (9)=log a 9=2,解得a =3,所以g (x )=log 3x .因为函数y =f (x )的图象与g (x )=log 3x 的图象关于x 轴对称,所以f (x )=31log x .(2)因为f (3x -1)>f (-x +5),所以31log (3x -1)>31log (-x +5),则⎩⎪⎨⎪⎧3x -1>0,-x +5>0,3x -1<-x +5, 解得13<x <32,即x 的取值范围为⎝⎛⎭⎫13,32.14.解:设t =x 2-2x +3=(x -1)2+2. 当x ∈R 时,t 有最小值2. 所以lg(x 2-2x +3)的最小值为lg 2.又因为y =a lg(x 2-2x +3)有最大值,所以0<a <1. 由f (x )=log a (3-2x ),得其定义域为⎝⎛⎭⎫-∞,32. 设u (x )=3-2x ,x ∈⎝⎛⎭⎫-∞,32, 则f (x )=log a u (x ).因为u (x )=3-2x 在⎝⎛⎭⎫-∞,32上是减函数, 所以f (x )=log a u (x )在⎝⎛⎭⎫-∞,32上是增函数. 所以f (x )=log a (3-2x )的单调增区间为⎝⎛⎭⎫-∞,32. [C 拓展探究]15.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数, 所以g (x )min =g (2)=3-2a >0, 所以a <32.所以实数a 的取值范围是(0,1)∪⎝⎛⎭⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1, 即log a (3-a )=1,所以a =32.此时f (x )=⎪⎭⎫ ⎝⎛-x 233log 23 但x =2时,f (x )=0log 23无意义.故这样的实数a 不存在.。

对数函数及其性质(比较大小)经典练习及答案

对数函数及其性质(比较大小)经典练习及答案

[基础巩固]1.(多选)若log 2a <0,⎝⎛⎭⎫12b >1,则( )A .0<a <1B .a >1C .b >0D .b <0解析 由log 2a <0得0<a <1,由⎝⎛⎭⎫12b >1得b <0,所以选A 、D 项.答案 AD2.函数f (x )=| log 12x |的单调递增区间是( )A .⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞) D .[1,+∞)解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).答案 D3.(2021·新高考全国卷Ⅱ)已知a =log 52,b =log 83,c =12,则下列判断正确的是( ) A .c <b <aB .b <a <cC .a <c <bD .a <b <c解析 a =log 52<log 55=12=log 822<log 83=b ,即a <c <b . 故选C. 答案 C4.不等式log 2(2x +3)>log 2(5x -6)的解集为________.解析 原不等式等价于⎩⎪⎨⎪⎧ 2x +3>0,5x -6>0,2x +3>5x -6,解得65<x <3,所以原不等式的解集为⎝⎛⎭⎫65,3. 答案 ⎝⎛⎭⎫65,35.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,2x ,x <2,则f (log 23)=________;不等式f (x )>4的解集为________.解析 ∵log 23<log 24=2,∴f (log 23)==3,不等式f (x )>4可化为:⎩⎪⎨⎪⎧ x ≥2,log 2(x -1)>4,或⎩⎪⎨⎪⎧x <2,2x >4. 解得x >17或无解.所以原不等式的解集为(17,+∞).答案 3 (17,+∞)6.已知函数f (x )=log a x (a >0,a ≠1),且f (3)-f (2)=1.(1)若f (3m -2)<f (2m +5),求实数m 的取值范围;(2)求使f ⎝⎛⎭⎫x -2x =log 3272成立的x 的值. 解析 因为f (3)-f (2)=1,所以a =32,所以f (x )=log 32x . (1)因为32>1,所以由f (3m -2)<f (2m +5)得⎩⎪⎨⎪⎧ 3m -2>0,2m +5>0,3m -2<2m +5,所以23<m <7. (2)由f ⎝⎛⎭⎫x -2x =log 32 72,即log 32⎝⎛⎭⎫x -2x =log 3272, 所以x -2x =72.所以x =-12或x =4. [能力提升]7.已知f (x )=|ln x |,若a =f ⎝⎛⎭⎫15,b =f ⎝⎛⎭⎫14,c =f (3),则( ) A .a <b <cB .b <c <aC .c <a <bD .c <b <a 解析 因为f (x )=|ln x |,所以a =f ⎝⎛⎭⎫15=⎪⎪⎪⎪ln 15=ln 5,b =f ⎝⎛⎭⎫14=⎪⎪⎪⎪ln 14=ln 4,c =f (3)=|ln 3|=ln 3, 因为y =ln x 是单调递增函数,所以ln 5>ln 4>ln 3,即a >b >c ,故选D.答案 D8.设a =log 132,b =log 23,c =⎝⎛⎭⎫12 0.3 ,则a ,b ,c 从小到大的顺序是________. 解析 因为a =log 13 2<log 131=0,b =log 23>log 22=1,0<c =⎝⎛⎭⎫12 0.3 <⎝⎛⎭⎫12 0 =1,所以a <c <b .答案 a <c <b9.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.解析 函数y =|log 0.5x |的值域为[0,2],则由0≤|log 0.5x |≤2,得14≤x ≤4, 所以[a ,b ]长度的最大值为4-14=154. 答案 15410.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1).(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解析 (1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0, 解得-3<x <1,所以定义域为(-3,1).(2)函数可化为f (x )=log a [(1-x )(x +3)]=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4,又0<a <1,所以log a [-(x +1)2+4]≥log a 4, 即f (x )的最小值为log a 4.由log a 4=-2,得a -2=4,所以a =4-12=12. [探索创新]11.已知函数f (x )=a x -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过点P (3,4),求a 的值;(2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 解析 (1)因为函数y =f (x )的图象经过P (3,4), 所以a 3-1=4,即a 2=4.又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100.∴lg a lg a -1=2(或lg a -1=log a 100).∴(lg a -1)·lg a =2.∴(lg a )2-lg a -2=0,∴lg a =-1或lg a =2,∴a =110或a =100. (3)∵f ⎝⎛⎭⎫lg 1100=f (-2)=a -3,f (-2.1)=a -3.1, 当a >1时,y =a x 在(-∞,+∞)上为增函数, ∵-3>-3.1,∴a -3>a-3.1, 即f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a-3.1, 即f ⎝⎛⎭⎫lg 1100<f (-2.1).。

新高考数学复习考点知识提升专题训练30---对数函数的性质及应用

新高考数学复习考点知识提升专题训练30---对数函数的性质及应用

新高考数学复习考点知识提升专题训练(三十) 对数函数的性质及应用(一)基础落实1.(多选)若log a 2<log b 2<0,则下列结论正确的是( ) A .0<b <1 B .0<a <1 C .a >b D .b >a >1解析:选ABC 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2,所以a >b . 2.若集合A ={}x |3x 2+x -2≤0,则A ∩B =( )A.⎣⎡⎦⎤-1,23B.⎣⎡⎦⎤23,1 C.⎝⎛⎦⎤12,1D.⎝⎛⎦⎤12,23解析:选D A ={}x |3x 2+x -2≤0=⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤23, B ={x |log 2(2x -1)≤0}={x |0<2x -1≤1}=⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤1, ∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<x ≤23. 3.已知函数y =log a (2-ax )在(-1,1)上是x 的减函数,则a 的取值范围是( ) A .(0,2) B .(1,2) C .(1,2] D .[2,+∞)解析:选C4.已知a =log 23,b =log 2e ,c =ln 2,则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .b >a >c D .a >b >c解析:选D 因为函数y =log 2x ,y =ln x 在定义域上单调递增,又3>e >2,所以log 23>log 2e >log 22=1,所以a >b >1,ln e >ln 2,所以c <1,所以a >b >c .5.(多选)对于函数f (x )=lg ⎝⎛⎭⎫1|x -2|+1,下列说法正确的有( )A .f (x +2)是偶函数B .f (x +2)是奇函数C .f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D .f (x )没有最小值解析:选AD 对A 、B ,因为f (x )=lg ⎝ ⎛⎭⎪⎫1|x -2|+1,所以f (x +2)=lg ⎝⎛⎭⎫1|x |+1,又f (-x +2)=lg ⎝ ⎛⎭⎪⎫1|-x |+1=lg ⎝⎛⎭⎫1|x |+1, 故f (x +2)为偶函数,故A 正确,B 错误. 对C ,因为f (x )=当x ∈(2,+∞)时,因为y =1x -2在x ∈(2,+∞)为减函数,故y =1x -2+1为减函数,所以y =lg ⎝ ⎛⎭⎪⎫1x -2+1在区间(2,+∞)为减函数.故C 错误. 对D ,因为当x ∈(2,+∞)时,y =lg ⎝ ⎛⎭⎪⎫1x -2+1为减函数.故当x →+∞时,y →0.故f (x )没有最小值.故D 正确. 6.已知a =e-0.3,b =log 20.6,c =log 3π,则a ,b ,c 从大到小的顺序是________.解析:因为0<e -0.3<e 0=1,log 20.6<log 21=0,log 3π>log 33=1,所以c >a >b . 答案:c >a >b7.设0<a <1,函数f (x )=log a (2a x -2),则使得f (x )<0的x 的取值范围为________.解析:由于y =log a x (0<a <1)在(0,+∞)上为减函数,则2a x -2>1,即a x >32.由于0<a <1,可得x <log a 32.答案:⎝⎛⎭⎫-∞,log a 32 8.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.解析:由得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8) =ln[-(x -1)2+9], 设u =-(x -1)2+9, 又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数, 因此f (x )的单调递减区间是(1,4). 答案:(1,4)9.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4; (3)log 0.57,log 0.67;(4)log 31.25,log 20.8.解:(1)因为函数y =log 23x 是(0,+∞)上的减函数,且0.5<0.6,所以log 230.5>log 230.6.(2)因为函数y =log 1.5x 是(0,+∞)上的增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.(3)因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5, 即log 0.67<log 0.57.(4)因为log 31.25>log 31=0,log 20.8<log 21=0,所以log 31.25>log 20.8. 10.已知函数f (x )=log a (ax 2-x ). (1)若a =12,求f (x )的单调区间;(2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围. 解:(1)当a =12时,f (x )=log 12⎝⎛⎭⎫12x 2-x , 由12x 2-x >0,得x 2-2x >0,解得x <0或x >2, 所以函数的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数的增区间为(-∞,0), 减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象为开口向上,对称轴为x =12a的抛物线,①当0<a <1时,要使函数f (x )在区间[2,4]上是增函数,则g (x )=ax 2-x 在[2,4]上单调递减,且g (x )min =ax 2-x >0,②当a >1时,要使函数f (x )在区间[2,4]上是增函数,则g (x )=ax 2-x 在[2,4]上单调递增,且g (x )min =ax 2-x >0,综上可得,a >1.所以实数a 的取值范围为(1,+∞).(二)综合应用1.设函数则满足不等式f (x )+f ⎝⎛⎭⎫x -14>2的x 的取值范围是( ) A.⎝⎛⎭⎪⎫-23+2578,+∞B.⎝⎛⎦⎤78,1C.⎝⎛⎦⎤1,54D.⎝⎛⎭⎫78,+∞ 解析:选D 由已知f (x )是R 上的增函数, 当x >1时,f (x )>2,当x -14>1,即x >54,不等式显然成立,当x ≤1时,f (x )+f ⎝⎛⎭⎫x -14=4x -2+4⎝⎛⎭⎫x -14-2>2,x >78,所以78<x ≤1, 当1<x ≤54时,f (x )=log 2(x +3)>2,f ⎝⎛⎭⎫x -14=4⎝⎛⎭⎫x -14-2=4x -3>0,不等式f (x )+f ⎝⎛⎭⎫x -14>2成立,综上,满足不等式的x 的取值范围为⎝⎛⎭⎫78,+∞. 2.(多选)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1),则( ) A .函数f (x )+g (x )的定义域为(-1,1) B .函数f (x )+g (x )的图象关于y 轴对称 C .函数f (x )+g (x )在定义域上有最小值0 D .函数f (x )-g (x )在区间(0,1)上是减函数解析:选AB ∵f (x )=log a (x +1),g (x )=log a (1-x )(a >0,且a ≠1), ∴f (x )+g (x )=log a (x +1)+log a (1-x ),由x +1>0且1-x >0得-1<x <1,故A 对;由f (-x )+g (-x )=log a (-x +1)+log a (1+x )=f (x )+g (x )得函数f (x )+g (x )是偶函数, 其图象关于y 轴对称,B 对;∵-1<x <1,∴f (x )+g (x )=log a (1-x 2),∵y =1-x 2在[0,1)上单调递减,由复合函数的单调性可知,当0<a <1时,函数f (x )+g (x )在[0,1)上单调递增,有最小值f (0)+g (0)=log a (1-0)=0;当a >1时,函数f (x )+g (x )在[0,1)上单调递减,无最小值,故C 错;∵f (x )-g (x )=log a (x +1)-log a (1-x ),当0<a <1时,f (x )=log a (x +1)在(0,1)上单调递减,g (x )=log a (1-x )在(0,1)上单调递增,函数f (x )-g (x )在(0,1)上单调递减;当a >1时,f (x )=log a (x +1)在(0,1)上单调递增, g (x )=log a (1-x )在(0,1)上单调递减,函数f (x )-g (x )在(0,1)上单调递增,D 错.故选A 、B.3.已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是________.解析:因为f (a )=f (b ),所以|lg a |=|lg b |,又b >a >0,所以lg a <0,即a <1,lg b >0,即b >1,所以0<a <1<b ,|lg a |=-lg a ,|lg b |=lg b ,即lg a +lg b =lg(ab )=0,所以b =1a ,则a +2b =a +2a.令g (x )=x +2x ,由对勾函数的性质知函数g (x )在(0,1)上单调递减,所以g (a )>1+21=3,即a +2b的取值范围是(3,+∞).答案:(3,+∞)4.已知f (x )=log 12(x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数,求实数a 的取值范围. 解:(1)当a =-1时,f (x )=log 12(x 2+x +1). ∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴log 12 (x 2+x +1)≤log 1234=2-log 23,∴f (x )的值域为(-∞,2-log 23]. ∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上递减, 在⎝⎛⎭⎫-12,+∞上递增,y =log 12x 在(0,+∞)上递减,∴f (x )的单调递增区间为⎝⎛⎦⎤-∞,-12, 单调递减区间为⎝⎛⎭⎫-12,+∞.(2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又y =log 12u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立.解得-1≤a ≤12.故实数a 的取值范围是⎣⎡⎦⎤-1,12. 5.已知函数f (x 2-1)=log mx 22-x 2(m >0,且m ≠1). (1)判断f (x )的奇偶性;(2)解关于x 的不等式f (x )≥log m (3x +1). 解:(1)x +11-x >0⇒(x +1)(1-x )>0⇒-1<x <1.f (x 2-1)=log mx 22-x 2(m >0,且m ≠1), 设x 2-1=t ,则f (t )=log mt +11-t(-1<t <1), 所以f (x )=log m x +11-x (-1<x <1),f (-x )=log m -x +11+x =log m ⎝ ⎛⎭⎪⎫x +11-x -1=-f (x ),故函数f (x )为奇函数. (2)3x +1>0⇒x >-13.不等式f (x )≥log m (3x +1),即f (x )=log m x +11-x≥log m (3x +1)⎝⎛⎭⎫-13<x <1.当m >1时:x +11-x ≥3x +1且-13<x <1,解得x ∈⎝⎛⎦⎤-13,0∪⎣⎡⎭⎫13,1. 当0<m <1时:x +11-x ≤3x +1且-13<x <1,解得x ∈⎣⎡⎦⎤0,13. 综上所述:当m >1时,解集为⎝⎛⎦⎤-13,0∪⎣⎡⎭⎫13,1; 当0<m <1时,解集为⎣⎡⎦⎤0,13.(三)创新发展(多选)某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以函数f (x )=lg1-x1+x为基本素材,研究该函数的相关性质,取得部分研究成果如下:其中研究成果正确的是( ) A .同学甲发现:函数的定义域为(-1,1),且f (x )是偶函数 B .同学乙发现:对于任意的x ∈(-1,1),都有f ⎝⎛⎭⎫2xx 2+1=2f (x )C .同学丙发现:对于任意的a ,b ∈(-1,1),都有f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+abD .同学丁发现:对于函数定义域内任意两个不同的实数x 1,x 2,总满足解析:选BC 对A ,f (x )=lg 1-x 1+x 定义域为1-x1+x >0⇒(1-x )(1+x )>0,解得x ∈(-1,1).又f (-x )=lg 1+x 1-x =-lg 1-x 1+x =-f (x ),故f (x )=lg 1-x1+x为奇函数.故A 错误.对 B ,f ⎝ ⎛⎭⎪⎫2x x 2+1=lg 1-2x x 2+11+2x x 2+1=lg x 2-2x +1x 2+2x +1==2lg 1-x 1+x=2f (x ),又x ∈(-1,1).故B 正确. 对C ,f (a )+f (b )=lg 1-a 1+a +lg 1-b1+b =f ⎝ ⎛⎭⎪⎫a +b 1+ab =lg 1-a +b1+ab 1+a +b 1+ab==故f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab 成立.故C 正确. 对D ,f (0)=lg 1-01+0=0,f ⎝⎛⎭⎫12=lg 1-121+12=lg 13<0,。

高一 对数与对数函数知识点+例题+练习 含答案

高一 对数与对数函数知识点+例题+练习 含答案

1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。

第4章专题5 对数函数以及图像与性质(一)

第4章专题5 对数函数以及图像与性质(一)

对数函数的图像与性质(一)考向一 对数函数的概念1、下列函数是对数函数的是( ) A .3log (1)y x =+B .log (2)(0a y x a =>,且1)a ≠C .y lnx =D .2(0,1)a y log x a a =>≠且【分析】根据对数函数的定义即可得出.【解答】解:根据对数函数的定义可得:只有y lnx =为对数函数. 故选:C .2、若函数y =log (2a -1)x +(a 2-5a +4)是对数函数,则a =________. 【解析】因为函数y =log (2a -1)x +(a 2-5a +4)是对数函数,所以⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,a 2-5a +4=0,解得a =4.3、对数函数f(x)的图象经过点(14,2),则f(x)= . 【答案】log 12x【解析】设数函数f(x)=log a x ,(a >0且a ≠1) ∵图象经过点(14,2), 得a =12∴f(x)=log 12x故答案为:log 12x4、已知 f(x 6)=log 2x ,那么 f(8)等于 ( ) A . 43B . 8C . 18D . 12【答案】D【解析】由题可知,x >0,令x 6=8,得x =816=212,所以f(8)=log 2⁡212=12.考向二 对数函数的图像1、(1)如图是对数函数log a y x =的图象,已知a 值取3,43,35,110,则相应于1C ,2C ,3C ,4C 的a 值依次是( ). A .3,43,35,110B .3,43,110,35 C .43,3,35,110D .43,3,110,35 (2)当1a >时,在同一坐标系中,函数x y a -=与log a y x =的图象是( )(3)若函数()0,1xy a a a =>≠的值域为{}1y y ≥,则函数log a y x =的图象大致是( )【答案】⑴A ⑵D ⑶B2、同一直角坐标系中,当时,函数与的图象是A. B. C. D.【答案】C【解析】当时,函数,,所以图象过点,在其定义域上是增函数;函数的图象过点,在其定义域上是减函数.故选C.3、当0<a<1时,在同一坐标系中,函数y=a x 与y=log a x 的图象是( )【答案】D【解析】因为函数y=a x 与y=log a x 互为反函数,所以它们的图象关于直线y=x 对称, 且当0<a<1时,函数y=a x 与y=log a x 都是减函数,观察图象知,D 正确.故选D. 4、若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A .1(,)b aB .(10,1)a b -C .10(,1)b a+ D .2(,2)a b D 【解析】当2x a =时,2lg 2lg 2y a a b ===,所以点2(,2)a b 在函数lg y x =图象上.5、已知函数2log ()y x a b =++的图象不经过第四象限,则实数a 、b 满足( )A .1a ,0bB .0a >,1bC .210b og a +D .20b a +【分析】因为函数2log ()y x a b =++的图象不经过第四象限,所以当0x =时,0y ,所以2log 0a b +.【解答】解:函数2log ()y x a b =++的图象不经过第四象限, ∴当0x =时,0y ,2log 0a b ∴+,故选:C .【点评】本题主要考查了指数函数的图象和性质,是基础题.6、如图,若1C ,2C 分别为函数log a y x =和log b y x =的图象,则( )A .01a b <<<B .01b a <<<C .1a b >>D .b a l >>【分析】由题意利用对数函数的单调性和特殊点,得出结论.【解答】解:根据1C ,2C 分别为函数log a y x =和log b y x =的图象,可得01b <<,01a <<,且b a <, 故选:B .7、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .【分析】根据二次函数的开口方向,对称轴及对数函数的增减性,逐个检验即可得出答案. 【解答】解:由对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--可知,①当01a <<时,此时10a -<,对数函数log a y x =为减函数,②当1a >时,此时10a ->,对数函数log a y x =为增函数,题意. 故选:A .8、已知点(,)m n 在函数2log y x =的图象上,则下列各点也在该函数图象上的是( )A .2(m ,2)nB .(2,2)m nC .(2,1)m n ++D .(,1)2mn -数图象上.【解答】解:点(,)m n 在函数2log y x =的图象上,2log y m n ∴==,故选:D .考向三 对数函数的性质1、函数()()322(01)a f x log x a a +>≠=-,恒过定点________. 【答案】(1,2)【解析】当1x =时,()()13222a f log +==-.所以函数()()322(01)a f x log x a a +>≠=-,恒过定点(1,2).2、已知函数f (x )=log a (x+1)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 . 令x+1=1,得x=0,则f (0)=log a 1+1=1,即定点P 的坐标为(0,1).3、已知函数f (x )=log a (x-m )+n 的图象恒过点(3,5),则lg m+lg n 等于( ) A .10 B .lg12C .1D .110解析:(1)由已知可得{3-m =1,n =5,∴{m =2,n =5,∴lg⁡m+lg n=lg 2+lg 5=lg 10=1.4、已知函数1()log 1(0x b f x a x a -=+->且1a ≠,0b >且1)b ≠,则()f x 的图象过定点( ) A .(0,1)B .(1,1)C .(1,0)D .(0,0)【分析】当1x =时,()f x f =(1)0log 111010b a =+-=+-=,即可求出结果.【解答】解:当1x =时,()f x f =(1)0log 111010b a =+-=+-=, ()f x ∴的图象过定点(1,0),故选:C .5、函数2()log f x x =是( ) A .(0,)+∞上的增函数 B .(0,)+∞上的减函数 C .R 上的增函数D .R 上的减函数【分析】对数函数log (0a y x a =>且1)a ≠,定义域为(0,)+∞;当1a >时在(0,)+∞上为增函数;当01a <<时,在(0,)+∞上为减函数.【解答】解:log (0a y x a =>且1)a ≠,定义域为(0,)+∞; 当1a >时,在(0,)+∞上为增函数, 当01a <<时,在(0,)+∞上为减函数.本题21a =>,故2log y x =在(0,)+∞上为增函数. 故选:A . 6、函数23log 2(01ax y a x +=+>+且1)a ≠的图象经过的定点坐标为 . 【分析】令真数等于1,求得x 、y 的值,可得函数的图象经过定点的坐标.故函数23log (01ax y a x +=>+且1)a ≠的图象经过的定点坐标为(2,2)-, 故答案为:(2,2)-.考向四 对数函数的性质应用1、比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.【解析】 (1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数, 且13>15,所以0>log 213>log 215, 所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y(3)取中间值1,因为log 23>log 22=1=log 55>log 54, 所以log 23>log 54.2、(1)比较大小(填“>”,“<”或“=”).①0.5log 2011____0.5log 2012;② 1.5log 2011____ 1.5log 2012;③0.5log 3____0.6log 3;④0.5log 0.8____0.6log 0.8; ⑤ 1.5log 3____2log 3; ⑥ 1.5log 0.8____2log 0.8.(2)若3log 4a =,7log 6b =,2log 0.8c =,则( ). A .a b c >> B .b a c >>C .c a b >>D .b c a >>(3)若20.3a =,2log 0.3b =,3log 4c =,则( ). A .a b c >> B .b a c >>C .c a b >>D .b c a >>(4)若101a b c >><<,,则( )A. c c a b <B.c c ab ba <C.log log b a a c b c< D.log log a b c c<【答案】⑴①>;②<;③>;④<;⑤>;⑥<.⑵A ; ⑶C ; 4C ; 3、若log m 8.1<log n 8.1<0,那么m,n 满足的条件是( ) (A)m>n>1 (B)n>m>1(C)0<n<m<1 (D)0<m<n<1【答案】C【解析】由题意知m,n 一定都是大于0且小于1的数,根据函数图象(图略)知,当x>1时,底数越大,函数值越小,故选C.4、若函数()log (0a f x x a =>且1)a ≠在区间[a ,22]a 上的最大值比最小值多2,则(a = )A .2B .3或13C .4或12D .2或12的单调性即可解题.①当1a > 时,2(2)2a a log a log a -=,得2a =,故选:A .5、设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 B 【解析】由指数函数的性质知,若333a b ,则1a b ,由对数函数的性质,3log 3b ;反之,取12,13b ,显然有3log 3b ,此时01b a ,于是333ab ,所以“333a b”是log 3log 3a b <的充分不必要条件,选B .6、若2log 13a <,则a 的取值范围是( ) A. ()20,1, 3⎛⎫+∞ ⎪⎝⎭ B. 2,3⎛⎫+∞ ⎪⎝⎭ C. 2,13⎛⎫ ⎪⎝⎭ D. 220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭【答案】C7、函数f(x)是奇函数,且在区间[0,4]上是减函数,则比较大小()f π-_______21(log )8f . 【答案】>8、已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围.【解析】因为函数y =log 0.7x 在(0,+∞)上为减函数,所以由log 0.7(2x )<log 0.7(x -1)得⎩⎪⎨⎪⎧ 2x >0,x -1>0,2x >x -1,解得x >1.即x 的取值范围是(1,+∞).9、已知f(x)=log 3x ,则的大小是 A. B.C.D.【答案】B 【解析】由函数y=log 3x 的图象可知,图象呈上升趋势,即随着x 的增大,函数值y 也在增大,故.10、函数12log y x =,x ∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]【答案】A11、设a =log 123,b =(13)0.2,c =213则 ( )A.b <a <cB.c <b <aC.c <a <bD.a <b <c 【答案】D 【解析】由题得a =log 123<log 121=0,b >0,c >0.b =(13)0.2<(13)0=1, c =213>20=1,所以a <b <c .故选:D考向五 指数函数与对数函数的关系(反函数)1、下列说法正确的是( ) A .函数x y a =与1()x y a =图象关于x 轴对称B .函数log a y x =与1log ay x =图象关于y 轴对称C .函数x y a =与log a y x =图象关于直线y x =对称D .函数x y a =与log a y x =图象关于y 轴对称【分析】根据图象关于原点对称、图象关于x 轴对称、图象关于y 轴对称、图象关于y x =对称,分别画出出各个函数图象,再对照选项即可得出正确答案.【解答】解:令2a =,分别作出对应的图象,由图象可知 ,函数,函数对于选项C ,D 函数x y a =与log a y x =图象关于直线y x =对称,故C 正确,D 不正确.故选:C .2、(1)若()x f x a =,()log b g x x =-,且lg lg 0a b +=,1a ≠,1b ≠.则()y f x =与()y g x =的图象( )A .关于直线0x y +=对称B .关于直线0x y -=对称C .关于y 轴对称D .关于原点对称(2)若函数()x f x a =(0a >,且1a ≠)的反函数的图象过点(21)-,,则a =______.(3)若()3log f x x =的反函数是()y g x =,则()1g -值为( )A .3B .3-C .13D .13-3、已知函数2()log f x x =,若函数()g x 是()f x 的反函数,则()()2f g =( )A .1B .2C .3D .4 【答案】B【解析】由函数2y f x log x ==() ,得2y x =,把x 与y 互换,可得2x y =,即2x g x ()=,∴2224g ==() ,则()22442f g f log ===()().故选:B4、若函数()y f x =与函数2log y x =互为反函数,则(1(f += )A .9B .11C .16D .18【分析】首先求出反函数的关系式,进一步利用对数的运算的应用求出结果.【解答】解:因为函数()y f x =与函数2log y x =互为反函数,所以()2x f x =,故选:D . 【点评】本题考查的知识要点:反函数,对数的运算,主要考查学生的运算能力和转换能力及思维能力,属于基础题.5、设函数()(0x b f x a a +=>且1)a ≠的图象过点(1,8),其反函数的图象过(16,2),则(a b += )A .3B .4C .5D .6【分析】根据反函数的图象过(16,2),可知()f x 图象过点(2,16),和(1,8),代入联立解得. 【解答】解:()(0x b f x a a +=>且1)a ≠的图象过点(1,8),∴代入得18b a +=①,其反函数的图象过(16,2),()(0x b f x a a +∴=>且1)a ≠的图象过点(2,16),∴代入得216b a +=②,联立①②,解之得2a =,2b =,故选:B .【点评】本题考查反函数,以及指数函数,属于基础题.【点评】本题主要考查函数的图象的对称性的应用,考查了命题的真假判断与应用,属于基础题.6、已知函数()x f x a =,()log (0,1)a g x x a a =>≠,若f (3)g (3)0>,则()f x 与()g x 的图象为( )A .B .C .D .【分析】根据指数函数的性质,由f (3)g (3)0>得到g (3)0>从而得到a 的取值范围,然后根据指数函数和对数函数的性质即可得到结论. 【解答】解:()x f x a =,()log (0,1)a g x x a a =>≠,若f (3)g (3)0>,f ∴(3)0>,g (3)0>,1a ∴>,即()f x ,()g x 都为增函数,故选:B .。

高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案1、已知3a=2,那么log3 8-2log3 6用a表示是()A、a-2.B、5a-2.C、3a-(1+a)。

D、3a-a2/2答案:A。

解析:由3a=2,可得a=log3 2,代入log3 8-2log3 6中得:log3 8-2log3 6=log3 2-2log3 (2×3)=3log3 2-2(log3 2+log33)=3a-2(a+1)=a-2.2、2loga(M-2N)=logaM+logaN,则M的值为()A、N/4.B、M/4.C、(M+N)2.D、(M-N)2答案:B。

解析:2loga(M-2N)=logaM+logaNloga(M-2N)2=logaMNM-2N=MNM=4N3、已知x+y=1,x>0,y>0,且loga(1+x)=m,loga(1-y)=n,则loga y等于()A、m+n-2.B、m-n-2.C、(m+n)/2.D、(m-n)/2答案:D。

解析:由已知可得1-x=y,代入loga(1+x)=m中得loga(2-x)=m,两式相减得loga[(2-x)/(1+x)]=m-n,化简得loga[(1-x)/x]=m-n,即loga y=m-n,所以答案为D。

4、若x1,x2是方程lg2x+(lg3+lg2)lgx+lg3·lg2=0的两根,则x1x2=()A、1/3.B、1/6.C、1/9.D、1/36答案:B。

解析:将lg2x+(lg3+lg2)lgx+lg3·lg2=0化为对数形式,得:log2x+(log23+log22)logx+log32=0log2x+(log2×3+log22)logx+log3+log2=0XXXlog2x+log2xlog23+log32+log2=0log2x(1+log23)+log32+log2=0log2x=log32+log2/(1+log23)x=2log32+log2/(1+log23)x1x2=2log32+log2/(1+log23)×2log32+log2/(1+log23)2log32+log2/(1+log23)22log32+2log2/(1+log23)2log2(3/2)2/(1+log23)2log2(9/4)/(1+log23)2log29/(1+log23)2log29/(1+log2+log23)2log29/(3+log23)2log29/(3+log2+log3)2log29/(3+1+log3)2log29/(4+log3)2log29/(4+log3/log10)2log29/(4+0.4771)1/61.答案D,已知lg2x+(lg2+lg3)lgx+lg2lg3=0的两根为x1、x2,则x1•x2的值为16.2.答案C,已知log7[log3(log2x)]=0,则x等于2^3=8,x-1/2=2^3-1/2=15/2,x1•x2=2^3•15/2=60.3.答案C,lg12=2a+b,lg15=b-a+1,比值为(2a+b)/(1-a+b),化简得到2a+b/(1-a+b)。

高中数学《对数函数图像与性质》精选练习(含详细解析)

高中数学《对数函数图像与性质》精选练习(含详细解析)

高中数学《对数函数图像与性质》精选练习(含详细解析)一、选择题1.给出下列函数:(1)y=log2(x-1). (2)y=log x2x.(3)y=log(e+1)x. (4)y=4log33x.(5)y=log(3+π)x. (6)y=lg5x.(7)y=lgx+1.其中是对数函数的个数为( )A.1B.2C.3D.42.已知对数函数f(x)过点(2,4),则f()的值为( )A.-1B.1C.D.3.函数f(x)=log a(x+2)+1(a>0,且a≠1)的图象必经过点( )A.(1,-1)B.(1,0)C.(-1,1)D.(0,1)4函数y=的定义域是( )A.(-∞,1]B.(0,1]C.[-1,0)D.(-1,0]5.如图所示,曲线是对数函数f(x)=log a x的图象,已知a取,,,,则对应于C1,C2,C3,C4的a值依次为( )A.,,,B.,,,C.,,,D.,,,6.函数f(x)=的定义域是( )A.(-1,+∞)B.[-1,+∞)C.(-1,1)∪(1,+∞)D.[-1,1)∪(1,+∞)7.已知a>0且a≠1,则函数y=log a x和y=(1-a)x在同一直角坐标系中的图象可能是下列图象中的( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(2)(3)二、填空题(每小题5分,共15分)8若函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,且f(2)=1,则f(x)= .9若对数函数f(x)=log a x+(a2-4a-5),则a= .10已知集合A={x|y=log2(x-1)},B={y|y=2x+1,x∈A},则A∩B= .11若函数y=log a+3的图象恒过定点P,则P点坐标为.12.函数f(x)=log2(1+4x)-x,若f(a)=b,则f(-a)= .三、解答题13.已知函数y=log a(x+3)-(a>0,a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,求b的值.14已知函数f(x)=log2.(1)求证:f(x1)+f(x2)=f.(2)若f=1,f(-b)=,求f(a)的值.15若函数y=log a(x+a)(a>0且a≠1)的图象过点(-1,0).(1)求a的值.(2)求函数的定义域.16已知f(x)=|log3x|.(1)画出函数f(x)的图象.(2)讨论关于x的方程|log3x|=a(a∈R)的解的个数.参考答案与解析1【解析】选 B.由对数函数的概念可知(1)(2)(4)(6)(7)都不符合对数函数形式的特点,只有(3)(5)符合.2【解析】选B.设f(x)=logax,由f(x)过点(2,4),则loga2=4,即a4=2,解得a=,所以f(x)=lo x,所以f()=lo=1.3【解析】选C.当x+2=1时,f(x)=loga (x+2)+1=loga1+1=1,即x=-1时,f(-1)=1,故函数恒过定点(-1,1).4【解析】选B.要使函数有意义,必须lo(2x-1)≥0,则0<2x-1≤1,即1<2x≤2,解得0<x≤1,故函数的定义域为(0,1].5【解析】选A.先排C1,C2底的顺序,底都大于1,当x>1时图低的底大,C1,C2对应的a分别为,.然后考虑C3,C4底的顺序,底都小于1,当x<1时底大的图高,C3,C4对应的a分别为,.综合以上分析,可得C1,C2,C3,C4的a值依次为,,,.故选A.6【解析】选C.解不等式组可得x>-1,且x≠1,故定义域为(-1,1)∪(1,+∞).7【解析】选B.当0<a<1时,1-a>0,函数y=logax在(0,+∞)上是减函数.函数y=(1-a)x在R上是增函数.图(3)符合此要求.当a>1时,1-a<0,函数y=logax在(0,+∞)上是增函数.函数y=(1-a)x在R上是减函数.图(2)符合此要求.8【解析】由题意知f(x)=loga x,又f(2)=1,所以loga2=1,所以a=2,f(x)=log2x.答案:log2x9【解析】由对数函数的定义可知,解得a=5.答案:510【解析】由题知x-1>0,解得x>1,所以y=2x+1>2+1=3,所以A∩B=(3,+∞).答案:(3,+∞)11【解析】因为y=logat的图象恒过(1,0), 所以令=1,得x=-2,此时y=3,所以该函数过定点(-2,3).答案:(-2,3)12【解析】因为f(a)=log2(1+4a)-a=b,所以log2(1+4a)=a+b,所以f(-a)=log2(1+4-a)+a=log2+a=log2(1+4a)-log222a+a=a+b-2a+a=b.答案:b13【解析】当x+3=1,即x=-2时,对任意的a>0,且a≠1都有y=loga1-=0-=-,所以函数y=loga(x+3)-的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则-=3-2+b,所以b=-1.14【解析】(1)左边=f(x1)+f(x2)=log2+log2=log2=log2.右边=log2=log2.所以左边=右边.(2)因为f(-b)=log2=-log2=,所以f(b)=-,利用(1)可知:f(a)+f(b)=f,所以-+f(a)=1,解得f(a)=.15【解析】(1)将(-1,0)代入y=loga (x+a)(a>0,a≠1)中,有0=loga(-1+a),则-1+a=1,所以a=2.(2)由(1)知y=log2(x+2),x+2>0,解得x>-2,所以函数的定义域为{x|x>-2}.16【解析】(1)函数f(x)=对应的函数f(x)的图象为:(2)设函数y=|log3x|和y=a.当a<0时,两图象无交点,原方程解的个数为0个.当a=0时,两图象只有1个交点,原方程只有1解.当a>0时,两图象有2个交点,原方程有2解.。

对数函数及其性质(人教A版)(含答案)

对数函数及其性质(人教A版)(含答案)

对数函数及其性质(人教A版)一、单选题(共10道,每道10分)1.函数的定义域是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:对数函数的定义域2.已知函数的定义域是,则的定义域为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:对数函数的定义域3.已知函数,则的值为( )A.4B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数函数的值域与最值4.函数的值域为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:对数函数的值域5.函数的图象必经过定点( )A.(1,0)B.(1,1)C.(1,2)D.(2,1)答案:B解题思路:试题难度:三颗星知识点:对数函数的图象与性质6.设,,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:对数值大小的比较7.已知函数在上是增函数,则a的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的单调性8.若函数的定义域为,则k的取值范围是( )A. B.C. D.解题思路:试题难度:三颗星知识点:对数函数的定义域9.已知函数在上恒有,则a的取值范围是( )A.(1,2)B.C.(1,3)D.(2,3)答案:A解题思路:试题难度:三颗星知识点:对数函数的值域与最值10.下列函数中既不是奇函数,又不是偶函数的是( )A. B.C. D.解题思路:试题难度:三颗星知识点:对数函数的图象与性质。

对数与对数运算(附答案)

对数与对数运算(附答案)

2.2 对数函数2.2.1 对数与对数运算知识点一:对数的概念与性质1.以下说法不正确的是A .0和负数没有对数B .对数值可以是任意实数C .以a(a >0,a ≠1)为底1的对数等于0D .以3为底9的对数等于±22.设log 34·log 48·log 8m =log 416,那么m 等于A.92B .9C .18D .27 3.2211+log 52⋅的值等于A .2+ 5B .2 5C .2+52 D .1+52 4.若log 31-2x 9=0,则x =__________. 5.给出以下三个命题:①对数的真数是非负数;②若a >0且a ≠1,则log a 1=0;③若a >0且a ≠1,则log a a =1.其中正确命题的序号是__________.知识点二:指数式与对数式的互化6.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx ,则x =100;④若e =lnx ,则x =e 2.其中正确的是A .①③B .②④C .①②D .③④7.下列指数式与对数式互化不正确的一组是A .e 0=1与ln1=0B .813-=12与log 812=-13C .log 39=2与912=3 D .log 77=1与71=78.已知lg3=α,lg4=β,求10α+β、10α-β、10-2α、105β.9.已知log a 2=m ,log a 3=n ,求a 2m +n .知识点三:对数的运算性质及换底公式10.若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数为 ①log a x·log a y =log a (x +y) ②log a x -log a y =log a (x -y) ③log ax y=log a x÷log a y ④log a (xy)=log a x·log a yA .0B .1C .2D .311.log 56·log 67·log 78·log 89·log 910的值为A .1B .lg5 C.1lg5D .1+lg2 12.若a >0,a 23=49,则log 23a =__________. 13.设3a =4b =36,求2a +1b的值.能力点一:求值问题14.计算2log 525+3log 264-8log 71的值为A .14B .8C .22D .2715.2log a (M -2N)=log a M +log a N ,则M N的值为 A.14B .4C .1D .4或1 16.(2010河南洛阳高一期中)华南虎是我国一级保护动物,为挽救濒临物种,国家建立了华南虎繁殖基地,第一年(1986年)只有20只,由于科学的人工培养,华南虎的数量y(只)与培养时间x(年)间的关系可近似符合y =alog 2(x +1),则到2016年时,预测华南虎约有__________只.17.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lgE -3.2,其中E(焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于__________颗广岛原子弹.18.求下列各式中的x 值:(1)log 8x =-23;(2)log x 27=34;(3)x =log 128.能力点二:对数运算性质的综合问题19.已知lga 、lgb 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值是 A .4 B .3 C .2 D .120.lg2=a ,lg3=b ,用a 、b 表示lg 458=__________. 21.(1)lg2+lg5-lg8lg50-lg40; (2)log 34273log 5[412log 210-(33)23-7log 72].22.已知x ,y ,z 均大于1,a ≠0,log z a =24,log y a =40,log (xyz)a =12,求log x a.23.甲、乙两人解关于x 的方程:log 2x +b +c·log x 2=0,甲写错了常数b ,得到解为14和18;乙写错了常数c ,得到解为12和64,求b ,c 都正确的情况下该方程的解.答案与解析基础巩固1.D2.B ∵log 416=2,∴log 34·log 48·log 8m =2,即lgm =lg9.∴m =9,应选B.3.B 原式=21+log 22log 2 5.4.-4 由已知可得1-2x 9=1, ∴1-2x =9.∴2x =-8.∴x =-4.5.②③ ①对数的真数为正数,故①错;②∵a 0=1,∴log a 1=0,②对;③∵a 1=a ,∴log a a =1,③对.6.C 7.C8.解:由条件得10α=3,10β=4,则10α+β=10α·10β=12,10α-β=10α10β=34,10-2α=(10α)-2=19, 10β5=(10β)15=415. 9.解:log a 2=m ,log a 3=n ,由对数定义知a m =2,a n =3,∴(a m )2=4,即a 2m =4.∴a 2m +n =a 2m ·a n =4×3=12.10.A11.C 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5. 12.3 a >0,由a 23=49,知(a 13)2=(23)2,∴a 13=23. 两端取对数得log 23a 13=log 2323=1,即13log 23a =1, ∴log 23a =3.13.解法一:由3a =4b =36,得log 336=a ,log 436=b ,∴由换底公式a =log 336=1log 363,b =log 436=1log 364.∴2a +1b=2log 363+log 364=log 3636=1. 解法二:对已知条件的两边取以6为底的对数,得alog 63=2blog 62=2,∴2a =log 63,1b=log 62. ∴2a +1b=log 63+log 62 =log 66=1.能力提升14.C 原式=2×2+3×6-8×0=22.15.B 由题意,得M >0,N >0,M -2N >0.故M N>2,显然只有B 符合条件. 16.100 当x =1时,y =alog 2(1+1)=20,∴a =20.∴y =20log 2(x +1),到2016年时,培养时间为(2 016-1 986)+1=31(年),则到2016年时,预测华南虎的数量约为y =20log 2(31+1)=100(只).17.1 000 设里氏8.0级,6.0级地震释放的能量分别为E 2,E 1,则8-6=23(lgE 2-lgE 1),即lg E 2E 1=3. ∴E 2E 1=103=1 000,即汶川大地震所释放的能量相当于1 000颗广岛原子弹.18.解:(1)由log 8x =-23,得 x =823-=(23) 23-=2-2=14. (2)由log x 27=34,得x 34=27=33, ∴x 14=3.∴x =34=81.(3)由x =log 128,得(12)x =8=23=(12)-3,∴x =-3. 19.C lga +lgb =2,lga·lgb =12,(lg a b)2=(lga -lgb)2=(lga +lgb)2-4lga·lgb =4-2=2. 20.1-4a +2b 原式=lg45-3lg2=lg5+2lg3-3lg2=1-4lg2+2lg3=1-4a +2b.21.解:(1)原式=lg 2×58lg 5040=lg 54lg 54=1. (2)原式=log 33433·log 5[22log 10-(332)23-77log 2] =(34log 33-log 33)log 5(10-3-2)=(34-1)·log 55=-14. 22.解:由log z a =24得log a z =124, 由log y a =40得log a y =140, 由log (xyz)a =12得log a (xyz)=112, 即log a x +log a y +log a z =112. ∴log a x +140+124=112, 解得log a x =160. ∴log x a =1log a x=60. 拓展探究23.解:由甲可知2142181log log 20,41log log 20,8b c b c ⎧++⋅=⎪⎪⎨⎪++⋅=⎪⎩即⎩⎨⎧ -2+b -12c =0,①-3+b -13c =0. ②由①-②,得1-16c =0,∴c =6. 由乙可知2122641log log 202log 64log 20b c b c ⎧++⋅=⎪⎨⎪++⋅=⎩ 即⎩⎪⎨⎪⎧-1+b -c =0, ③6+b +16c =0. ④由③+④×6,得7b +35=0, ∴b =-5.综上,方程为log 2x +6log x 2-5=0,即(log 2x)2-5log 2x +6=0, ∴log 2x =2或log 2x =3.∴x =4或x =8,即原方程的解为4或8.。

高中数学复习:对数函数的图像和性质练习及答案

高中数学复习:对数函数的图像和性质练习及答案

高中数学复习:对数函数的图像和性质练习及答案1.已知函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩则函数y=f (1-x)的大致图象是()A. B. C.D.【答案】D【解析】先画出函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩的草图,令函数f (x)的图象关于y轴对称,得函数f (-x)的图象,再把所得的函数f (-x)的图象,向右平移1个单位,得到函数y=f (1-x)的图象,故选:D.2.函数f(x)=10x与函数g(x)=lgx的图象A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x 对称 【答案】D【解析】因为f (x )=10x 与函数g (x )=lgx 是一对反函数,所以其图象关于y=x 对称.故选D.3.函数f (x )=ln|11x x +-|的大致图象是( ) A. B. C. D.【答案】D【解析】因为()()11ln ln 11x x f x f x x x-+-==-=-+-,所以函数()f x 是奇函数,图象关于原点对称,可排除,A C ;由()2ln30f =>,可排除B ,故选D.4.函数f (x )=log 2(x+1)与g (x )=2﹣x +1在同一直角坐标系下的图象大致是( )A. B. C. D.【答案】B【解析】定义域为,函数为增函数;定义域为,函数为减函数,所以结合指数函数对数函数的性质可知B 图像正确5.已知函数f(x)=-x 2+2,g(x)=log 2|x |,则函数F(x)=f(x)·g(x)的图象大致为( )A. B. C. D.【答案】B【解析】由题意得,函数()(),f x g x 为偶函数,∴函数()()()F x f x g x =为偶函数,其图象关于y 轴对称,故只需考虑0x >时的情形即可.由函数()(),f x g x 的取值情况可得,当0x >时,函数()F x 的取值情况为先负、再正、再负, 所以结合各选项得B 满足题意.故选B.6.设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A.1,13⎛⎫⎪⎝⎭ B.()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C.11,33⎛⎫- ⎪⎝⎭D.11,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ 【答案】A【解析】因为函数()()21ln 11f x x x =+-+定义域为R ,关于原点对称, 且()()()()()2211ln 1ln 111f x x x f x x x -=+--=+-=++-, 所以函数()f x 是偶函数,又()f x 在()0,∞+是增函数,所以()()21f x f x >-等价于()()21fx f x >-, 所以2213410x x x x >--+<,, 解得113x <<, 故选:A7.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( ) A. B. C.D.【答案】C 【解析】函数2()ln(1)x x e e f x x --=+, 则2()()ln(1)x xe ef x f x x ---==-+,所以()f x 为奇函数,排除B 选项; 当x →+∞时,2()ln(1)x xe ef x x --=→+∞+,所以排除A 选项; 当1x =时,11 2.720.37(1) 3.4ln(11)ln 20.69e e e ef -----==≈≈+, 排除D 选项;综上可知,C 为正确选项,故选:C.8.函数()1ln 1y x x=-+的图象大致为( ) A. B. C. D.【答案】A【解析】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A.9.函数()()22ln 11x f x x +=+的大致图像为( )A. B. C. D.【答案】B【解析】因为()()22ln 11x f x x +=+是由()22ln x g x x=向左平移一个单位得到的, 因为()22ln ()(0)()x g x g x x x --==≠-, 所以函数()22ln x g x x =为偶函数,图像关于y 轴对称, 所以()f x 的图像关于1x =-对称,故可排除A ,D 选项;又当2x <-或0x >时,2ln 10x +>,()210x +>,所以()0f x >,故可排除C 选项故选:B .10.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A. B. C. D.【答案】D【解析】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.故选:D11.函数()24ln x f x x =的部分图象大致为( ) A. B. C. D.【答案】A【解析】因为()24ln x f x x =是偶函数,排除B ,当01x <<时,ln 0x <,()204ln x f x x=<,排除C , 当x e =时()214e f e =>,排除D. 故选:A.12.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2﹣2x ﹣3,求当x ≤0时,不等式f (x )≥0整数解的个数为( )A.4B.3C.2D.1【答案】A【解析】由函数为奇函数可知当x ≤0时,不等式f (x )≥0整数解的个数与0x ≥时()0f x ≤的个数相同,由奇函数可知()00f =,由2230x x --≤得()()320x x -+≤,所以整数解为1,2,3,所以满足题意要求的整数点有4个 13.若x 1,x 2是方程2x =12⎛⎫⎪⎝⎭+1-1x 的两个实数解,则x 1+x 2=________.【答案】-1【解析】∵2x =1112x -+⎛⎫ ⎪⎝⎭ ,∴2x =112x - ,∴x =1x-1,∴x 2+x -1=0.∴x 1+x 2=-1.故答案:-114.已知函数()lg f x x =. (1)画出函数()y f x =的草图,并根据草图求出满足()1f x >的x 的集合;(2)若0a b <<,且()()f a f b >,求证:1ab <.【答案】(1)图见解析,(0,110)∪(10,+∞).(2)证明见解析 【解析】(1)画出函数()y f x =的草图,如图所示:令()1f x =,则lg 1,lg 1x x ==±,可得10x =或110x =. 故满足()1f x >的x 的集合为1(0,)(10,)10⋃+∞. (2)证明:若0a b <<,且()()f a f b >,则lg lg a b >.当01a b <<≤时, lg lg a b >显然成立且1ab <.当01a b <≤≤,因为lg lg a b >则lg lg lg +lg 0lg 01a b a b ab ab -><⇒<⇒<,成立 当1a b ≤<时, lg lg a b >不成立.综上所述1ab <成立.15.已知函数2()4||3f x x x =-+,(1)试证明函数()f x 是偶函数;(2)画出()f x 的图象;(要求先用铅笔画出草图,再用黑色签字笔描摹,否则不给分)(3)请根据图象指出函数()f x 的单调递增区间与单调递减区间;(不必证明)(4)当实数k 取不同的值时,讨论关于x 的方程24||3x x k -+=的实根的个数;(不必求出方程的解)【答案】(1)详见解析(2)详见解析(3)增区间()()+∞-,2,0,2减区间)2,0(),2,(--∞(4)①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根【解析】(1)()f x 的定义域为R ,且2()()4||3f x x x -=---+24||3()x x f x =-+=故()f x 为偶函数;(2)如图(3)递增区间有:()()+∞-,2,0,2递减区间有:)2,0(),2,(--∞(4)根据图象可知,①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根;16.已知函数f (x )=x ln x -x .(1)设g (x )=f (x )+|x -a |,a ∈R.e 为自然对数的底数.①当32a e =-时,判断函数g (x )零点的个数; ②1,x e e ⎡⎤∈⎢⎥⎣⎦时,求函数g (x )的最小值. (2)设0<m <n <1,求证:()2201m f n m +<+ 【答案】(1)① g (x )有且仅有两个零点.②a -e.(2)证明见解析【解析】(1)①当32a e =-时, g (x )=x ln x -x +|x +32e |=x ln x +32e , g ′(x )=1+ln x ,当0<x <1e 时,g ′(x )<0;当x >1e时,g ′(x )>0; 因此g (x )在(0,1e )上单调递减,在(1e ,+∞)上单调递增, 又434412424g =0e e e e e -⎛⎫-=> ⎪⎝⎭,g (1e )=-1e +23322e e e-=<0,g (1)=32e >0, 所以g (x )有且仅有两个零点.②(i )当a ≤1e 时,g (x )=x ln x -x +x -a =x ln x -a , 因为x ∈[1e,e ],g ′(x )=1+lnx ≥0恒成立, 所以g (x )在[1e ,e ]上单调递增,所以此时g (x )的最小值为g (1e )=-1e-a . (ii )当a ≥e 时,g (x )=x ln x -x +a -x =x ln x -2x +a ,因为x ∈[1e,e],g ′(x )=ln x -1≤0恒成立, 所以g (x )在[1e,e ]上单调递减,所以此时g (x )的最小值为g (e )=a -e . (iii )当1e<a <e 时, 若1e ≤x ≤a ,则g (x )=x ln x -x +a -x =x ln x -2x +a , 若a ≤x ≤e ,则g (x )=x ln x -x +x -a =x ln x -a ,由(i ),(ii )知g (x )在[1e,a ]上单调递减,在[a ,e ]上单调递增, 所以此时g (x )的最小值为g (a )=a ln a -a ,综上有:当a ≤1e 时,g (x )的最小值为-1e-a ;当1e<a <e 时,g (x )的最小值为a ln a -a ; 当a ≥e 时,g (x )的最小值为a -e . (2)设h (x )=221x x +, 则当x ∈(0,1)时,h ′(x )=()()222211x x -+>0,于是h (x )在(0,1)单调递增, 又0<m <n <1,所以h (m )<h (n ),从而有()()()2222ln 111m f n f n h n n n m n ⎛⎫+<+=-+ ⎪++⎝⎭设φ(x )=22ln 11n n -++,x >0 则φ′(x )=()()()222222114011x x x x x x --=≥++因此φ(x )在(0,+∞)上单调递增,因为0<n <1,所以φ(n )<φ(1)=0,即ln n -1+221n +<0, 因此()2222ln 1011m f n n n m n ⎛⎫+<-+< ⎪++⎝⎭ 即原不等式得证.17.已知函数f (x )=xln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ).(1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数;(2)当1[,]x e e ∈时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围.【答案】(1)答案不唯一,见解析;(2)3<a ≤e +2e+1. 【解析】(1)()1f x lnx '=+,所以切线的斜率()11k f ='=,又()10f =,所以曲线在点(1,0)处的切线方程为1y x =-, 由221y x ax y x ⎧=-+-⎨=-⎩,得2(1)10x a x +-+=,由△22(1)423(1)(3)a a a a a =--=--=+-可得, 当△0>时,即1a <-或3a >时,有两个公共点, 当△0=时,即1a =-或3a =时,有一个公共点, 当△0<时,即13a -<>时,没有公共点, (2)2()()2y f x g x x ax xlnx =-=-++, 由0y =,得2a x lnx x=++, 令2()h x x lnx x=++,则2(1)(2)()x x h x x -+'=,当1[x e∈,]e 时,由()0h x '=,得1x =,所以()h x 在1[e,]e 上单调递减,在[1,]e 上单调递增,因此()()13min h x h ==, 由11()21h e e e =+-,()21h e e e =++,比较可知()1h h e e ⎛⎫> ⎪⎝⎭,所以,结合函数图象可得, 当231a e e<++时,函数()()y f x g x =-有两个零点. 18.根据函数f(x)=log 2x 的图像和性质解决以下问题: (1)若f(a)>f(2),求a 的取值范围; (2)求y =log 2(2x -1)在[2,14]上的最值.【答案】(1) (2,+∞) (2) 最小值为log 23,最大值为log 227【解析】(1)由函数2()log f x x =的单调性及()(2)f a f >,即可求出a 的取值范围;(2)根据定义域为[2,14],表示出21x -的取值范围,结合对数函数的性质,即可求得最值. 试题解析:函数f (x )=log 2x 的图象如图:(1)因为f (x )=log 2x 是增函数,故f (a )>f (2),即log 2a >log 22,则a >2.所以a 的取值范围为(2,+∞). (2)∵2≤x ≤14,∴3≤2x -1≤27, ∴log 23≤log 2(2x -1)≤log 227.∴函数y =log 2(2x -1)在[2,14]上的最小值为log 23,最大值为log 227.19.已知定义在R 上的函数()y f x =满足()()()111f x f x f x -=+=-,当[]12x ∈,时,2()log f x x =,若方程()0f x ax -=在()0+∞,上恰好有两个实数根,则正实数a 的值为( ) A.2log eeB.1ln 2e C.12D.2【答案】C【解析】由()()()111f x f x f x -=+=-,可知()f x 为偶函数,且一条对称轴为1x =, 再由()()11f x f x +=-,可得()2()f x f x +=,即函数()f x 的周期为2.根据[]12x ∈,时,2()log f x x =作出函数()f x 的草图,如图所示:方程()0f x ax -=在()0+∞,上恰好有两个实数根, ∴函数y ax =与()y f x =的图象在y 轴右侧有两个交点,设y ax =与2log y x =相切时,切点坐标为()020log x x ,, 由1ln2y x '=,得2000log 1ln2x x x =,解得02x e =>.∴由图象可知,当直线y ax =过点()21,时,方程()0f x ax -=在()0+∞,上恰好有两个实数根, 12a ∴=. 故选:C .20.已知函数2|1|,0()log ,0x x f x x x +≤⎧=⎨>⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x xx x++的取值范围是().A.(1,)-+∞ B.[1,1)- C.(,1)-∞ D.(]1,1-【答案】D【解析】函数()21,0|log,0x xf xx x⎧+⎪=⎨>⎪⎩,的图象如下:根据图象可得:若方程()f x a=有四个不同的解1x,2x,3x,4x,且1234x x x x<<<,则11x a+=-,21x a+=,23log x a=-,24log x a=.(01)a<≤122x x+=-,32ax-=,42ax=∴则31222344()22221222a aa a ax x xx x---++=-⋅+=-⋅.令2a t,(1t∈,2],而函数2y tt=-在(1,2]单调递增.所以211tt-<-≤,则21212aa∴-<-.故选:D.21.函数()log1xaf x a x=-有两个不同的零点,则实数a的取值范围是()A.()1,10 B.()1,+∞C.0,1D.()10,+∞【答案】B【解析】函数()f x有两个零点等价于1xya⎛⎫= ⎪⎝⎭与log ay x=的图象有两个交点,当01a<<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a>时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.22.已知函数()2,11,12x a x f x x a x ⎧+≤⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,则a 的取值范围为( )A.1,2⎛⎤-∞- ⎥⎝⎦B.[)2,-+∞C.12,2⎡⎤--⎢⎥⎣⎦D.12,2⎡⎫--⎪⎢⎣⎭【答案】D【解析】当1x ≤时,(]2,2xy a a a =+∈+,当1x >时,11,22y x a a ⎛⎫=+∈++∞ ⎪⎝⎭, 两段均为增函数,函数()f x 恰有两个零点,可得102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解得12,2a ⎡⎫∈--⎪⎢⎣⎭. 故选:D23.给出下列四个结论:(1)若集合A ={x,y },B ={0,2x },且A=B ,则x =1,y =0;(2)若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0); (3)函数1()f x x=的单调减区间是{}0x x ≠; (4)若()()()f x y f x f y +=⋅,且(1)2f =,则(2)(4)(2014)(2016)(2018)2018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=其中不正确的有______.【答案】(3)【解析】(1)因为A=B ,所以20,0,1x y x x x ≠==∴=,故(1)正确;(2)因为函数f (x )的定义域为(-1,1),所以121110x x -<+<∴-<<,故(2)正确; (3)函数1()f x x=的单调减区间是(,0)-∞和(0,)+∞,故(3)错误; (4)因为()()()f x y f x f y +=⋅,所以(1)()(1)2()f x f x f f x +=⋅=, 因此(2)(4)(2014)(2016)(2018)210092018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=⨯=,故(4)正确;故答案为:(3) 24.已知1275a -⎛⎫= ⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a 、b 、c 的大小关系是( ). A.b a c << B.c b a <<C.c a b <<D.b c a <<【答案】C 【解析】12125757a -⎛⎫=⎛⎫= ⎝⎭⎪⎭⎪⎝<135()7b =,225log log 107c =<= 因此c a b << 故选:C.25.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( )A.2,13⎛⎫⎪⎝⎭B.(0,1)C.20,3⎛⎫ ⎪⎝⎭D.[)3,+∞ 【答案】C【解析】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a ,综上023a <<. 故选:C .26.设3log 7a =, 1.12b =, 3.10.8c =,则( ) A.b a c << B.a c b <<C.c b a <<D.c a b <<【答案】D【解析】因为333log 7(log 3,log 9)a =∈,所以(1,2)a ∈; 1.122b =>; 3.100.80.81c =<=; 所以c a b <<, 故选D.27.三个数0.76,60.7,0.7log 6的大小顺序是( )A.60.70.7log 60.76<<B.60.70.70.76log 6<< C.0.760.7log 660.7<<D.60.70.70.7log 66<<【答案】A【解析】因为0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=;所以60.70.7log 60.76<<.故选:A.28.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是( ) A.x y z << B.y z x << C.z y x << D.z x y <<【答案】B 【解析】0.4221x =>=,2lg lg105y =<=,0.421525z ⎛⎫<= ⎪⎝⎫⎭⎭⎛=⎪⎝,又0z >,即01z <<. 因此,y z x <<. 故选:B.考点1函数的反函数1.函数y=ln x+1(x>0)的反函数为( )A.y=e x+1(x∈R)B.y=e x-1(x∈R)C.y=e x+1(x>1)D.y=e x-1(x>1)【答案】B【解析】由y=ln x+1,得x=e y-1.又因为函数y=ln x+1的值域为R,于是y=ln x+1的反函数为y=e x-1(x∈R).故选B.2.函数f(x)=(x-1)2+1(x<1)的反函数为( )A.f-1(x)=1+(x>1)B.f-1(x)=1-(x>1)C.f-1(x)=1+(x≥1)D.f-1(x)=1-(x≥1)【答案】B【解析】∵x<1⇒y=(x-1)2+1,∴(x-1)2=y-1⇒x-1=-,∴反函数为f-1(x)=1-(x>1).3.已知指数函数f(x)=ax(a>0,a≠1),f(x)的反函数记为y=g(x),且g(x)过点(4,2),则f(x)的解析式是( )A.f(x)=log4xB.f(x)=log2xC.f(x)=2xD.f(x)=4x【答案】C【解析】指数函数的解析式为:f(x)=a x(a>0,a≠1),∵f(x)的反函数记为y=g(x)函数的图象经过(4,2)点,∴f(x)的图象经过(2,4)点,∴4=a2,a=2,∴指数函数的解析式为y=2x.故选C.4.已知函数f(x)的反函数为g(x)=log2x+1,则f(2)+g(2)等于( )A.1 B.2 C.3 D.4【答案】D【解析】因为函数f(x)的反函数为g(x)=log2x+1,所以f(2)+g(2)=f(2)+2.而根据反函数的图象与性质可知f(2)=2,因此选D.5.函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则函数y=f(4x-x2)的递增区间是________.【答案】(0,2)【解析】∵函数y=f(x)的图象与y=2x的图象关于直线y=x对称,∴y=f(x)与y=2x互为反函数,∵y=2x的反函数为y=log2x,∴f(x)=log2x,f(4x-x2)=log2(4x-x2).令t=4x-x2,则t>0,即4x-x2>0,∴x∈(0,4),又∵t=4x-x2的对称轴为x=2,且对数的底数大于1,∴y=f(4x-x2)的递增区间为(0,2).6.设f-1(x)为f(x)=2x-2+,x∈[0,2]的反函数,则y=f(x)+f-1(x)的最大值为________.【答案】4【解析】由题意得:f(x)在[0,2]上单调递增,值域为[,2],所以f-1(x)在[,2]上单调递增,因此y =f(x)+f-1(x)在[,2]上单调递增,其最大值为f(2)+f-1(2)=2+2=4.7.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.4【答案】B【解析】函数f(x)=a x+log a(x+1),令y1=a x,y2=log a(x+1),显然在[0,1]上,y1=a x与y2=log a(x+1)同增或同减.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+log a2+1+0=a,解得a=.8.设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a等于( ) A.-1 B.1 C.2 D.4【答案】C【解析】设(x,y)是函数y=f(x)的图象上任意一点,它关于直线y=-x对称点为(-y,-x),由已知知(-y,-x)在函数y=2x+a的图象上,∴-x=2-y+a,解得y=-log2(-x)+a,即f(x)=-log2(-x)+a,∴f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2.9.方程log2x+log2(x-1)=1的解集为M,方程22x+1-9·2x+4=0的解集为N,那么M与N的关系是( ) A.M=N B.M N C.M N D.M∩N=∅【答案】B【解析】由log2x+log2(x-1)=1,得x(x-1)=2,解得x=-1(舍)或x=2,故M={2};由22x+1-9·2x+4=0,得2·(2x)2-9·2x+4=0,解得2x=4或2x=,即x=2或x=-1,故N={2,-1},因此有M N.10.已知函数f(x)=若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)【答案】C【解析】①当a>0时,f(a)=log2a,f(-a)=,f(a)>f(-a),即log2a>=log2,∴a>,解得a>1.②当a<0时,f(a)=,f(-a)=log2(-a),f(a)>f(-a),即>log2(-a)=,∴-a<,解得-1<a<0,由①②得-1<a<0或a>1.11.若函数f(x)=x2lg a-2x+1的图象与x轴有两个交点,则实数a的取值范围是( ) A.0<a<10B.1<a<10C.0<a<1D.0<a<1或1<a<10【答案】D【解析】lg a≠0且Δ=4-4lg a>0,解得0<a<1或1<a<10,故选D.12.已知集合A={x|x2≥1,x∈R},B={x|log2x<2,x∈R},则∁R A∩B等于( ) A.[0,1]B.(0,1)C.(-3,1)D.[-3,1]【答案】B【解析】集合A={x|x2≥1,x∈R}={x|x≥1,或x≤-1},B={x|log2x<2,x∈R}={x|0<x<4},∴∁R A=(-1,1),∴∁R A∩B=(0,1),故选B.13.已知函数f(x)=log a(x-1)(a>0,且a≠1),g(x)=log a(3-x)(a>0,且a≠1).(1)求函数h(x)=f(x)-g(x)的定义域;(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.【答案】(1)要使函数h(x)=f(x)-g(x)=log a(x-1)-log a(3-x)有意义,需有解得1<x<3,故函数h(x)=f(x)-g(x)的定义域为(1,3).(2)因为不等式f(x)≥g(x),即log a(x-1)≥log a(3-x),当a>1时,有解得2≤x<3.当0<a<1时,有解得1<x≤2.综上可得,当a>1时,不等式f(x)≥g(x)中x的取值范围为[2,3);当0<a<1时,不等式f(x)≥g(x)中x 的取值范围为(1,2].14.已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值;(2)求使f(x)-g(x)>0的x的取值范围.【答案】(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即log a(1+x)>log a(1-x),①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0.15.下列函数关系中,可以看成是指数型函数y=ka x(k∈R,a>0且a≠1)模型的是( )A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)B.我国人口年自然增长率为1%,我国人口总数随年份的变化关系C.如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系D.信件的邮资与其重量间的函数关系【答案】B【解析】A:竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系,是二次函数关系;B:我国人口年自然增长率为1%,我国人口总数随年份的变化关系,是指数型函数关系;C:如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系,是反比例函数关系;D:信件的邮资与其重量间的函数关系,是正比例函数关系.故选B.16.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为如图所示的( )A.B.C.D.【答案】D【解析】设原来森林蓄积量是a,则a(1+10.4%)y=ax,1.104y=x,所以y=log1.104x,故选D.17.如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3则有t1+t2=t3;其中正确的说法有________.(请把正确的说法的序号都填在横线上)【答案】①②④【解析】∵其关系为指数函数,图象过(4,16)点,∴指数函数的底数为2,故①正确;当t=5时,s=32>30,故②正确;4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;∵t1=1,t2=log23,t3=log26,∴有t1+t2=t3,故④正确.综上可知,①②④正确.故答案为①②④.18.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】因为a′=a·e-kt,即=e-kt.两边取对数,得lg=-kt lge.①又知14C的半衰期是5570年,即当t=5570时,=.故lg=-5570k lge,即k lge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.19.诺贝尔奖发放方式为:每年一次,把资金总额平均分成6份,奖励在6个领域(物理学、化学、文学、经济学、医学或生理学、和平事业)为人类作出最有益贡献的人,每年发放奖金总金额是基金在该年度所获利息的一半,另一半利息用于基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%,资料显示:1999年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示为第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依此类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.03129≈1.32,1.031210≈1.36)【答案】(1)由题意知f(2)=f(1)(1+6.24%)-f(1)×6.24%=f(1)×(1+3.12%),f(3)=f(2)(1+6.4%)-f(2)×6.24%=f(1)(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9≈26107(万美元).2009年诺贝尔奖各项金额为×f(10)×6.24%≈136(万美元),与150万美元相比少了约14万美元.故该新闻是假的.20.某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市的人口总数y(万人)与年份x(年)的函数解析式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年后该城市人口总数将达到120万人.(精确到1年)[参考数据:(1+1.2%)10≈1.127,(1+1.2%)15≈1.196,(1+1.2%)16≈1.210]【答案】(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%);2年后该城市人口总数为y=100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;3年后该城市人口总数为y=100(1+1.2%)3…故x年后该城市人口总数为y=100(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万人).(3)令y=120,则有100(1+1.2%)x=120,解得x≈16.即大约16年后该城市人口总数将达到120万人.。

指数函数对数函数专练习题(含答案)

指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.对图象的影响在第一象限内,从顺时针方向看图象,逐渐在第四象限内,从顺时针方向看图象,逐渐指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b,则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x ---+的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b ba >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =2341()2x x --+[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n + D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g的两根是,αβ,则αβg 的值是( )A 、lg5lg 7gB 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭UB 、()1,11,2⎛⎫+∞ ⎪⎝⎭UC 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭UB 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

对数函数的图象及性质-课时作业(含解析) (21)

对数函数的图象及性质-课时作业(含解析) (21)

[A 基础达标]1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1, b =ln 0.5<0, 0<c =0.60.5<0.60=1, 故a >c >b .2.(2019·衡阳高一检测)函数y =log 15(1-3x )的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)解析:选C.因为3x >0,所以-3x <0, 所以1-3x <1.又y =log 15t (t =1-3x )是关于t 的减函数,所以y =log 15t >log 151=0.选C.3.(2019·聊城高一检测)关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝⎛⎭⎫12,+∞上是增函数B .f (x )在⎝⎛⎭⎫12,+∞上是减函数C .f (x )在⎝⎛⎭⎫-∞,12上是增函数 D .f (x )在⎝⎛⎭⎫-∞,12上是减函数 解析:选C.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为⎝⎛⎭⎫-∞,12.由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.因为y =1-2x 在(-∞,+∞)上是减函数,所以f (x )在⎝⎛⎭⎫-∞,12上是增函数,故选C.4.(2019·六安高一检测)若a >1,且log 1ax 1=log a x 2=log a +1x 3<0,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 3<x 2<x 1D .x 3<x 1<x 2解析:选C.因为log 1a x 1=log a x 2=log a +1x 3<0,所以lg x 1lg 1a =lg x 2lg a =lg x 3lg (a +1)<0,因为a >1,则lg 1a <0,lg(a +1)>lg a >0,所以lg x 1>0,lg x 2<0,lg x 3<0,且lg x 2>lg x 3,所以x 1>1,0<x 3<x 2<1,所以x 3<x 2<x 1.5.下列函数为奇函数的是( ) A .f (x )=lg ⎝⎛⎭⎫2x +12x B .f (x )=|lg x | C .f (x )=lg |x |D .f (x )=lg1-x1+x解析:选D.对于选项A 中的函数f (x )=lg ⎝⎛⎭⎫2x +12x ,函数定义域为R ,f (-x )=lg ⎝ ⎛⎭⎪⎫2-x +12-x =lg ⎝⎛⎭⎫12x +2x =f (x ),故选项A 中的函数为偶函数;对于选项B 中的函数f (x )=|lg x |,由于函数定义域为(0,+∞),不关于原点对称,故选项B 中的函数既不是奇函数,也不是偶函数;对于选项C 中的函数f (x )=lg|x |,定义域为(-∞,0)∪(0,+∞),关于原点对称,f (-x )=lg|-x |=lg|x |=f (x ),故选项C 中的函数为偶函数;对于选项D 中的函数f (x )=lg 1-x1+x ,由于函数的定义域为(-1,1),关于原点对称,f (-x )=lg 1+x 1-x =-lg 1-x1+x=-f (x ),故选项D 中的函数为奇函数.故选D.6.若lg(2x -4)≤1,则x 的取值范围是________. 解析:由lg(2x -4)≤1得lg(2x -4)≤lg 10, 所以0<2x -4≤10, 解得2<x ≤7. 答案:(2,7]7.(2019·凉州高一检测)已知函数y =log 2(1-x )的值域为(-∞,0),则其定义域是________.解析:因为函数y =log 2(1-x )的值域为(-∞,0),所以0<1-x <1,即-1<x -1<0,解得0<x <1,所以该函数的定义域为(0,1).答案:(0,1)8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a =________.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4.答案:49.已知函数f (x )是定义在R 上的奇函数.当x >0时,f (x )=log 2x . (1)求f (x )的解析式; (2)解关于x 的不等式f (x )≤12.解:(1)设x <0,则-x >0, 因为当x >0时,f (x )=log 2x , 所以f (-x )=log 2(-x ), 又因为函数f (x )是奇函数, 所以f (x )=-f (-x )=-log 2(-x ). 当x =0时,f (0)=0,综上所述,f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.(2)由(1)得不等式f (x )≤12可化为x >0时,log 2x ≤12,解得0<x ≤ 2.x =0时,0≤12满足条件.x <0时,-log 2(-x )≤12,解得x ≤-22.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-22或0≤x ≤2.10.已知函数f (x )=log 2(1+x 2). 求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上是增函数.证明:(1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x 21)-log 2(1+x 22)=log 21+x 211+x 22.因为0<x 1<x 2,所以0<x 21<x 22,0<1+x 21<1+x 22,所以0<1+x 211+x 22<1.又函数y =log 2x 在(0,+∞)上是增函数,所以log 21+x 211+x 22<0.所以f (x 1)<f (x 2).所以函数f (x )在区间(0,+∞)上是增函数.[B 能力提升]11.log 12(a 2+a +1)与log 1234的大小关系为( )A .log 12(a 2+a +1)≥log 1234B .log 12(a 2+a +1)>log 1234C .log 12(a 2+a +1)≤log 1234D .log 12(a 2+a +1)<log 1234解析:选C.因为y =log 12x 在(0,+∞)上是减函数,而a 2+a +1=⎝⎛⎭⎫a +122+34≥34,所以log 12(a 2+a +1)≤log 1234.12.(2019·大庆高一检测)若⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a .则a ,b 满足的关系式是( )A .a >1且b >1B .a >1且0<b <1C .b >1且0<a <1D .0<a <1且0<b <1解析:选C.因为⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a ,所以log a 14>0,log b a <0,即0<a <1,b >1.13.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4,又0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )的最小值为log a 4.由log a 4=-2,得a -2=4,所以a =4-12=12. 14.(选做题)已知函数f (x )=log a (3-ax ),(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数,所以g (x )min =g (2)=3-2a >0,所以a <32.所以实数a 的取值范围是(0,1)∪⎝⎛⎭⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1, 即log a (3-a )=1,所以a =32.此时f (x )=log 32⎝⎛⎭⎫3-32x . 但x =2时,f (x )=log 320无意义.故这样的实数a 不存在.。

4.4.2.1对数函数的图象和性质(练习题)- 2021-2022学年高一上学期数学人教A版

4.4.2.1对数函数的图象和性质(练习题)- 2021-2022学年高一上学期数学人教A版

对数函数的图象和性质一、选择题(每小题5分,共20分)1.(2021·丰台高一检测)已知a =ln 3,b =log 0.32,c =log 32,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b2.(2021·廊坊高一检测)设a =log 3 e ,b =12log e ,c =e -1,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b3.若点(a ,b)在函数f(x)=ln x 的图象上,则下列点中,不在函数f(x)图象上的是( ) A .⎝⎛⎭⎫1a ,-bB .(a +e ,1+b)C .⎝⎛⎭⎫e a ,1-bD .(a 2,2b)4.函数y =|lg (x +1)|的图象是( )二、填空题(每小题5分,共10分)5.(2021·洛阳高一检测)函数y =log a (2x -3)+4的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f(3)=________.6.设函数y =a x 的反函数为f(x),则f(a +1)与f(2)的大小关系是________. 三、解答题(每小题10分,共20分)7.(2021·信阳高一检测)已知函数f(x)=log 3(ax +b)的部分图象如图所示.(1)求f(x)的解析式与定义域;(2)函数f(x)能否由y =log 3x 的图象平移变换得到; (3)求f(x)在[4,6]上的最大值、最小值.8.已知函数f(x)=(log 4x)2+12log x -3,x ∈[1,8],求f(x)的值域以及取得最值时x 的值.能力过关一、选择题(每小题5分,共10分)1.(2021·泰安高一检测)对数函数y =log a x(a >0且a≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )2.(多选题)若实数a ,b 满足log a 2<log b 2,则下列关系中成立的是( ) A .0<b<a<1 B .0<a<1<b C .a>b>1D .0<b<1<a二、填空题(每小题5分,共10分)3.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x<1,log 2x ,x≥1,则f(8)=________,若直线y =m 与函数f(x)的图象只有1个交点,则实数m 的取值范围是________.4.若log a 25 <1,则a 的取值范围为________.三、解答题(每小题10分,共20分) 5.已知函数f(x)=|12log x |.(1)画出函数y =f(x)的图象; (2)写出函数y =f(x)的单调区间;(3)当x ∈⎣⎡⎦⎤12,m 时,函数y =f(x)的值域为[0,1],求m 的取值范围. 6.(2021·徐州高一检测)设函数f(x)=lg (x 2-2x +a). (1)求函数f(x)的定义域A ;(2)若对任意实数m ,关于x 的方程f(x)=m 总有解,求实数a 的取值范围.一、选择题(每小题5分,共20分)1.(2021·丰台高一检测)已知a =ln 3,b =log 0.32,c =log 32,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b分析选C.a =ln 3>1,b =log 0.32<0,c =log 32∈(0,1),则a >c >b. 2.(2021·廊坊高一检测)设a =log 3 e ,b =12log e ,c =e -1,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b分析选C.因为c =1e ,log 3e>11e233log 3>log 3=1e>0, 1122log e<log 1=0,所以a >c >b.3.若点(a ,b)在函数f(x)=ln x 的图象上,则下列点中,不在函数f(x)图象上的是( ) A .⎝⎛⎭⎫1a ,-bB .(a +e ,1+b)C .⎝⎛⎭⎫e a ,1-bD .(a 2,2b)分析选B.因为点(a ,b)在f(x)=ln x 的图象上,所以b =ln a ,所以-b =ln 1a ,1-b =ln ea ,2b =2ln a =lna 2.4.函数y =|lg (x +1)|的图象是( )分析选A.由于函数y =lg (x +1)的图象可由函数y =lg x 的图象左移一个单位而得到,函数y =lg x 的图象与x 轴的交点是(1,0),故函数y =lg (x +1)的图象与x 轴的交点是(0,0),即函数y =|lg (x +1)|的图象与x 轴的公共点是(0,0),考查四个选项中的图象只有A 选项符合题意. 二、填空题(每小题5分,共10分)5.(2021·洛阳高一检测)函数y =log a (2x -3)+4的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f(3)=________.分析因为log a 1=0,所以当2x -3=1,即x =2时,y =4,所以点A 的坐标是A(2,4).幂函数f(x)=x α的图象过点A(2,4),所以4=2α,解得α=2;所以幂函数为f(x)=x 2,则f(3)=9. 答案:96.设函数y =a x 的反函数为f(x),则f(a +1)与f(2)的大小关系是________. 分析因为y =a x 的反函数为f(x),所以f(x)=log a x. 当a>1时,a +1>2,f(x)=log a x 是单调递增函数,则f(a +1)>f(2);当0<a<1时,a +1<2,f(x)=log a x 是单调递减函数,则f(a +1)>f(2).综上f(a +1)>f(2). 答案:f(a +1)>f(2)三、解答题(每小题10分,共20分)7.(2021·信阳高一检测)已知函数f(x)=log 3(ax +b)的部分图象如图所示.(1)求f(x)的解析式与定义域;(2)函数f(x)能否由y =log 3x 的图象平移变换得到; (3)求f(x)在[4,6]上的最大值、最小值.分析(1)把图象中A ,B 两点坐标代入函数f(x)=log 3(ax +b),得⎩⎪⎨⎪⎧2a +b =3,5a +b =9, 解得⎩⎪⎨⎪⎧a =2,b =-1. 故f(x)=log 3(2x -1),定义域为⎝⎛⎭⎫12,+∞ . (2)可以,由f(x)=log 3(2x -1)=log 3⎣⎡⎦⎤2⎝⎛⎭⎫x -12 =log 3⎝⎛⎭⎫x -12 +log 32, 所以f(x)的图象是由y =log 3x 的图象向右平移12 个单位,再向上平移log 32个单位得到的.(3)由函数的单调性可得,最大值为f(6)=log 311,最小值为f(4)=log 37. 8.已知函数f(x)=(log 4x)2+12log x -3,x ∈[1,8],求f(x)的值域以及取得最值时x 的值.分析令t =log 4x ,t ∈⎣⎡⎦⎤0,32 , 又12log x =-12 log 2x =-412=-log 4x ,则y =t 2-t -3,t ∈⎣⎡⎦⎤0,32 ,函数对称轴为t =12 ∈⎣⎡⎦⎤0,32 , 故当t =12 ,即x =2时,f(x)min =-134 .当t =32 ,即x =8时,f(x)max =-94 ,所以f(x)的值域是⎣⎡⎦⎤-134,-94 , 当x =2时,f(x)min =-134 ;当x =8时,f(x)max =-94.能力过关一、选择题(每小题5分,共10分)1.(2021·泰安高一检测)对数函数y =log a x(a >0且a≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )分析选A.由对数函数y =log a x(a >0且a≠1)与二次函数y =(a -1)x 2-x 可知,①当0<a <1时,此时a -1<0,对数函数y =log a x 为减函数,而二次函数y =(a -1)x 2-x 开口向下,且其对称轴为x =12(a -1),故排除C 与D ;②当a >1时,此时a -1>0,对数函数y =log a x 为增函数,而二次函数y =(a -1)x 2-x 开口向上,且其对称轴为x =12(a -1),故B 错误,而A 符合题意.2.(多选题)若实数a ,b 满足log a 2<log b 2,则下列关系中成立的是( ) A .0<b<a<1 B .0<a<1<b C .a>b>1D .0<b<1<a分析选ABC.根据题意,实数a ,b 满足log a 2<log b 2,对于A ,若a ,b 均大于0小于1,依题意,必有0<b<a<1,故A 有可能成立;对于B ,若log b 2>0>log a 2,则有0<a<1<b ,故B 有可能成立;对于C ,若a ,b 均大于1,由log a 2<log b 2,知必有a>b>1,故C 有可能成立;对于D ,当0<b<1<a 时,log a 2>0,log b 2<0,log a 2<log b 2不能成立. 二、填空题(每小题5分,共10分)3.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x<1,log 2x ,x≥1 ,则f(8)=________,若直线y =m 与函数f(x)的图象只有1个交点,则实数m 的取值范围是________.分析当x =8时,f(8)=log 28=3;作出函数f(x)的图象,如图所示,若直线y =m 与函数f(x)的图象只有1个交点,由图象可知,当m≥2或m =0时满足条件. 答案:3 {0}∪[2,+∞)4.若log a 25 <1,则a 的取值范围为________.分析log a 25 <1即log a 25<log a a ,当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25 <log a a ,得a <25 ,故0<a <25.故a 的取值范围为0<a <25 或a >1.答案:0<a <25或a >1三、解答题(每小题10分,共20分) 5.已知函数f(x)=|12log x |.(1)画出函数y =f(x)的图象; (2)写出函数y =f(x)的单调区间;(3)当x ∈⎣⎡⎦⎤12,m 时,函数y =f(x)的值域为[0,1],求m 的取值范围. 分析(1)先作出y =log 12x 的图象,再把y =log 12x 的图象x 轴下方的部分往上翻折,得到f(x)=⎪⎪⎪⎪log 12x 的图象如图.(2)f(x)的定义域为(0,+∞),由图可知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.(3)由f(x)=|log12x|的图象可知f⎝⎛⎭⎫12=f(2)=1,f(1)=0,由题意结合图象知,1≤m≤2.6.(2021·徐州高一检测)设函数f(x)=lg (x2-2x+a).(1)求函数f(x)的定义域A;(2)若对任意实数m,关于x的方程f(x)=m总有解,求实数a的取值范围.分析(1)由f(x)=lg (x2-2x+a)有意义,可得x2-2x+a=(x-1)2+a-1>0,当a>1时,f(x)的定义域为A=R;当a=1时,f(x)的定义域为A={x|x≠1};当a<1时,f(x)的定义域为A={x|x>1+1-a 或x<1-1-a }.(2)对任意实数m∈R,方程f(x)=m总有解,等价于函数f(x)=lg (x2-2x+a)的值域为R,即t=x2-2x+a能取遍所有正数即可,所以Δ=4-4a≥0,a≤1,实数a的取值范围为(-∞,1].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征⎩⎪⎨⎪⎧log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________.(1)y =log (a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较(3)底数a对对数函数的图象的影响①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a ,43,35,110中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( )A 43,35,110B ,43,110,35C .43,35,110 D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 443,35,110.答案:A点技巧 根据图象判断对数函数的底数大小的方法 (1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. (2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域; ②互为反函数的两个函数的图象关于直线y =x 对称. (3)求已知函数的反函数,一般步骤如下: ①由y =f (x )解出x ,即用y 表示出x ; ②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB .12x C .12log x D .2x -2解析:因为函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x , 又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x . 答案:A 【例3-2】函数f (x )=3x(0<x ≤2)的反函数的定义域为( )A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞) 解析:∵ 0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f(x)的反函数的定义域为(1,9].答案:B【例3-3】若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点( ) A.(5,1) B.(1,5) C.(1,1) D.(5,5)解析:由于原函数与反函数的图象关于直线y=x对称,而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图象必经过点(5,1).答案:A4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y=log a x(a>0,且a≠1)中仅含有一个常数a,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f(m)=n或图象过点(m,n)等等.通常利用待定系数法求解,设出对数函数的解析式f(x)=log a x(a>0,且a≠1),利用已知条件列方程求出常数a的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m=n,这时先把对数式log a m=n化为指数式的形式a n=m,把m化为以n为指数的指数幂形式m=k n(k>0,且k≠1),则解得a=k>0.还可以直接写出1na m=,再利用指数幂的运算性质化简1nm.例如:解方程log a4=-2,则a-2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a=±.又a>0,所以12a=.当然,也可以直接写出124a-=,再利用指数幂的运算性质,得11212214(2)22a---====.【例4-1】已知f(e x)=x,则f(5)=( )A.e5B.5e C.ln 5 D.log5e解析:(方法一)令t=e x,则x=ln t,所以f(t)=ln t,即f(x)=ln x.所以f(5)=ln 5.(方法二)令e x=5,则x=ln 5,所以f(5)=ln 5.答案:C【例4-2】已知对数函数f(x)的图象经过点1,29⎛⎫⎪⎝⎭,试求f(3)的值.分析:设出函数f(x)的解析式,利用待定系数法即可求出.解:设f(x)=log a x(a>0,且a≠1),∵对数函数f(x)的图象经过点1,29⎛⎫⎪⎝⎭,∴11log299af⎛⎫==⎪⎝⎭.∴a2=19.∴a=11222111933⎡⎤⎛⎫⎛⎫==⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f(x)=13log x.∴f(3)=111331log 3log3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f(x)的反函数的图象过点(2,9),且f(b)=12,试求b的值.解:设f(x)=log a x(a>0,且a≠1),则它的反函数为y=a x(a>0,且a≠1),由条件知a2=9=32,从而a=3.于是f(x)=log3x,则f(b)=log3b=12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则: ①分式中分母不等于零;②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集. 【例5】求下列函数的定义域.(1)y =log 5(1-x );(2)y =log (2x -1)(5x -4);(3)y=.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解. 解:(1)要使函数有意义,则1-x >0,解得x <1, 所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log (43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y=的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下: ①分解成y =log a u ,u =f (x )这两个函数; ②求f (x )的定义域; ③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞). (2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4. 又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a>0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2. 答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象. 解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况: (1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小. 要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<ba<b,∴0<log bba<1.由log b a-log bba=2logbab,∵a2>b>1,∴2ab>1.∴2logbab>0,即log b a>log bba.∴log a b>log b a>log b ba>log aab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a>0,且a≠1时,有①log a f(x)=log a g(x)⇔f(x)=g(x)(f(x)>0,g(x)>0);②当a>1时,log a f(x)>log a g(x)⇔f(x)>g(x)(f(x)>0,g(x)>0);③当0<a<1时,log a f(x)>log a g(x)⇔f(x)<g(x)(f(x)>0,g(x)>0).(2)常见的对数不等式有三种类型:①形如log a f(x)>log a g(x)的不等式,借助函数y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.②形如log a f(x)>b的不等式,应将b化为以a为对数的对数式的形式,再借助函数y=log a x的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集. ④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33xx x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a . ∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )的定义域是⎝⎛⎭⎫-∞,32.设u =3-2x ,x ∈⎝⎛⎭⎫-∞,32,∵u =3-2x 在⎝⎛⎭⎫-∞,32上是减函数,且y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )在⎝⎛⎭⎫-∞,32上是减函数.∴函数y =log 2(3-2x )的单调减区间是⎝⎛⎭⎫-∞,32.【例10-1】求函数y =log a (a -a x)的单调区间.解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x)在(-∞,1)上递减. (2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x)在(1,+∞)上递减. 综上所述,函数y =log a (a -a x)在其定义域上递减.析规律 判断函数y =log a f (x )的单调性的方法 函数y =log a f (x )可看成是y =log a u 与u=f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围. 解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立. ∴1,2210,2au ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩ ∴-1≤a ≤12.。

相关文档
最新文档