高分子化学第四章作业讲解

合集下载

高分子化学答案第四章

高分子化学答案第四章

3. 试列出绘制二元共聚物组成曲线的基本步骤,并按次步骤绘制下列6种二元共聚物的组成曲线,同时说明其所属的共聚类型。

答:二元共聚物组成曲线(F 1-f 1曲线)绘制步骤:● 判断曲线类型:写出竞聚率r1、r2并比较其大小与0和1的大小关系,判断其所属共聚物组成曲线类型(5中典型曲线中的一种);● 写F 1-f 1式(二元共聚物组成与单体组成关系式):代入具体单体对应的r1、r2值到F 1-f 1式中,并且化为最简式;● 计算:代入几个f 1值(0, 0.2, 0.4, 0.5, 0.6, 0.8, 1),根据F 1-f 1式计算F 1值;如果是有恒比点共聚(反S 形曲线)或嵌段共聚(S 形曲线),再代入F 1 = f 1,计算出恒比点; ● 绘图:依据上述选取的f 1与对应的F 1值绘图,横坐标为f 1值,纵坐标为F 1值。

(1)r 说明控制共聚物组成的主要方法有几种,如果两种单体进行共聚的竞聚率为 r 1=0.40, 21并说明如何控制共聚物组成达到要求。

解:控制共聚物组成的主要方法:(1)控制转化率(在一定范围内);(2)补加消耗得快的单体(活泼单体);(3)上述两种方法同时应用。

r 1=0.40, r 2=0.60(r 1 < 1, r 2 < 1,有恒比点共聚),且F 1-f 1的公式及曲线如下:令F 1=0.5,求得f 1=0.55按照f 1=0.55,f 2=0.45投料即可得到共聚物组成为F 1=0.5的聚合物。

(亦可从图中求出)5. 已知苯乙烯和甲基丙烯酸甲酯的Q 值分别为1.00和0.74,e 值分别为-0.80和0.40,试计算这两种单体分别进行共聚时的竞聚率,并说明共聚类型。

解: Q 苯乙烯=1.00, Q MMA =0.74, e 苯乙烯=-0.80, e MMA =0.40,则: 由竞聚率皆小于1可知聚合为有恒比点共聚,共聚物组成曲线为反S 形。

图4-2 交替共聚组成曲线0.000.200.400.600.80 1.00f 112112-22-f f f )e (e e 211211e Q Q r --=)e (e e 122122e Q Q r --=。

高分子化学第五版第4章课件ppt.ppt

高分子化学第五版第4章课件ppt.ppt
无规共聚物:前为主单体,后为第二单体; 嵌段共聚物:前后代表单体聚合的次序; 接枝共聚物:前为主链,后为支链。
IUPAC命名中,在两种共聚单体间插入表明共聚物类 型的字节: co、alt、b、g分别为Copolymer、Alternating、 Block、Graft缩写。
11
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
ABS是综合性能非常好 的工程塑料,其高强度是因 为SAN上的 C N 有很强极 性,会相互聚集将ABS分子 链紧密结合在一起。同时, 具有橡胶性能的PB使ABS具 有良好的韧性和耐寒性。 ABS广泛用于汽车、飞机零 件、机电外壳等。
16
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
SBS是由St、Bd合成的三元嵌段共聚物,是一 种新型的热塑性弹性体,具有弹性高、抗张强度高、 不易变形、低温性能好,可制成电缆及非轮胎橡胶 制品。
15
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
将苯乙烯和丙烯腈加入到聚丁二烯乳液中进行接 枝共聚合,制得三元共聚物:ABS树脂(AcrylonitrileButadiene-Styrene Terpolymer)
如HIPS:以PB作主链,接枝上St作为支链,以提 高其抗冲性
10
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
2)共聚物的命名 《高分子化学命名原则》:共聚单体名称间加一短横

高分子化学第四章

高分子化学第四章

RAFT自由基聚合
RAFT 试剂
Z S C S R
双硫酯
其中 Z: 能够活化C=S键对自由基加成的基团,通 常 为芳基、烷基 R:活泼自由基离去基团,断键后生成的自由 基 R应具有再引发聚合的活性,通常为枯 基、异苯基乙基、腈基异丙基等
RAFT自由基聚合 常用RAFT 试剂
S C CH3 S C CH3 S C H S C CH3 S C CH3 S C CN CH3
活性种
2,2,6,6-四甲基 -1-哌啶氧自由基 St + (TEMPO)
+ St
休眠种
缺点:只适用于苯乙烯及其衍生物等少数几种单体; TEMPO价格昂贵;聚合反应速率较低。
(2) 原子转移自由基聚合 (ATRP) 1995年,Matyjaszewski和王锦山等首先报道了原 子 转 移 自 由 基 聚 合 技 术 (Atom Transfer Radical Polymerization, ATRP)。他们采用 α -氯代乙苯为引 发剂,氯化亚铜和2,2’-联二吡啶( bpy )为催化剂,在 130 oC下进行苯乙烯本体聚合,得到聚合物不仅分 子量分布窄,理论分子量和实测值非常接近;而且 当加入第二种单体(丙烯酸甲酯)时,获得了嵌段 共聚物,表明ATRP具有明显的活性聚合特征。
第四章 离子聚合反应
阳离子聚合的特点: 快引发,快增长,易转移,难终止
4.1.3 阳离子聚合机理 4.1.3.1. 链引发
阳离子引发活化能为Ei = 8.4‾21 kJ/mol(自由 基聚合的Ed= 100~170kJ/mol),相对于自由基聚合 的慢引发,阳离子聚合的引发极快,瞬间完成。
第四章 离子聚合反应 4.1.3.2. 链增长
α-氯代乙苯

高分子化学第四章(离子聚合)

高分子化学第四章(离子聚合)

(2)Lewis酸
这类引发剂包括AlCl3、BF3、SnCl4、SnCl5、ZnCl2和TiCl4 等金属卤化物,以及 RAlCl2,R2AlCl 等有机金属化合物,其中 以铝、硼 、钛、锡的卤化物应用最广。
Lewis 酸引发阳离子聚合时,可在高收率下获得较高分子量 的聚合物,因此从工业上看,它们是阳离子聚合的主要引发剂。
(5)聚合方法
自由基聚合可以在水介质中进行,但水对离子聚合的引发剂和 链增长活性中心有失活作用,因此离子聚合一般采用溶液聚合, 偶有本体聚合,而不能进行乳液聚合和悬浮聚合。
4.2 阳 离 子 聚 合
4.2.1 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的亲核性烯类单体,包 括以下三大类:
(1)带给电子取代基的烯烃如:
Lewis 酸引发时常需要在质子给体(又称质子源)或正碳离 子给体(又称正碳离子源)的存在下才能有效。
质子给体或正碳离子给体是引发剂,而 Lewis 酸是助引发剂 (或称活化剂),二者一起称为引发体系。
质子给体 一类在 Lewis 酸存在下能析出质子的物质,如水、卤 化氢、醇、有机酸等;以 BF3 和 H2O引发体系为例:
阳离子聚合反应过程中的异构化反应
碳阳离子可进行重排形成更稳定的碳阳离子,在阳离子聚合 中也存在这种重排反应,如 β-蒎烯的阳离子聚合:
4.2.2.3 链转移和链终止 链转移反应 链转移反应是阳离子聚合中常见的副反应,有以下几种形式:
(1)向单体链转移: 增长链碳阳离子以 H+ 形式脱去 β-氢给单体,这是阳离子聚
(Ph)3C+ClO4- + OR
Ph Ph
Ph
CH2 CH ClO4OR
(4)卤素 卤素 I2 也可引发乙烯基醚、苯乙烯等的聚合,其引发反应被认

材料化学-第四章高分子材料化学习题及答案

材料化学-第四章高分子材料化学习题及答案

第四章高分子材料化学习题:1、高聚物相对分子质量有哪些测试方法?分别适用于何种聚合物分子,获得的相对分子质量有何不同?(10分)答:测定高聚物相对分子质量的方法:渗透压、光散射、粘度法、超离心法、沉淀法和凝胶色谱法等。

这些方法中,有些方法偏向于较大的聚合物分子,有的方法偏向于较小的聚合物分子。

聚合物相对分子质量实际是指它的平均相对分子质量。

(1)数均相对分子质量( Mn ) 采用冰点降低、沸点升高、渗透压和蒸气压降低等方法测定的数均相对分子质量,即总质量除以样品中所含的分子数。

(2)质均相对分子质量( Mω) 采用光散射等方法测定质均相对分子质量。

(3)粘均相对分子质量( Mη) 采用粘度法测定粘均相对分子质量。

2、详述高分子聚合物的分类及各自的特征并举例。

(20分)答:高分子化合物常以形状、合成方法、热行为、分子结构及使用性能进行分类。

1、按高聚物的热行为分类(1) 热固性高聚物高聚物受热变成永久固定形状的高聚物(有些不需加热)。

不可再熔融或再成型。

结构:加热时,线型高聚物链之间形成永久的交联,产生不可再流动的坚硬体型结构,继续加热、加压只能造成链的断裂,引起性质的严重破坏。

利用这一特性,热固性高聚物可作耐热的结构材料。

典型的热固性高聚物有环氧树脂、酚醛树脂、不饱和聚酯树脂、有机硅树脂、聚氨酯等。

(2) 热塑性高聚物熔融状态下使它成型(塑化),冷却后定型,但是可以再加热又形成一个新的形状,可以多次重复加工。

结构:没有大分子链的严重断裂,其性质也不发生显著变化,称为热塑性高聚物。

根据这一特性,可以用热塑性高聚物碎屑进行再生和再加工。

聚乙烯、聚氯乙烯、ABS树脂、聚酰胺等都属于热塑性高聚物。

2、按高聚物的分子结构分类(1) 碳链高聚物大分子主链完全由碳原于组成,绝大部分烯类聚合物属于这一类。

如聚乙烯、聚苯乙烯、聚丁二烯等。

(2) 杂链高聚物大分子主链中除碳原子外,还有氧、氮、硫等杂原子。

如聚醚、聚酯、聚硫橡胶等。

高分子化学_第四章

高分子化学_第四章

第四章1. 无轨、交替、嵌段、接枝共聚物的结构有何差异?举例说明这些共聚物名称中单体前后位置的规定。

⑴. 无规共聚物:两结构单元M 1、M 2按概率无规排布,M 1、M 2连续的单元数不多,自一至十几不等。

多数自由基共聚物属于这一类型,如氯乙烯一醋酸乙烯酯共聚物。

⑵. 交替共聚物:共聚物中M 1、M 2两单元严格交替相间。

苯乙烯~马来酸酐共聚物属于这一类。

⑶. 嵌段共聚物:由较长的M 1链段和另一较长的M 2链段构成的大分子,每一链段可长达几百至几千结构单元,这一类称作AB 型嵌段共聚物。

也有ABA 型(如苯乙烯一丁二烯一苯乙烯三嵌段共聚物SBS )和(AB )。

(AB)x 型。

⑷. 接枝共聚物:主链由M 1单元组成,支链则由另一种M 2单元组成。

抗冲聚苯乙烯(聚丁二烯接枝苯乙烯)属于这一类。

3. 说明竞聚率21,r r 的定义,指明理想共聚、交替共聚、恒比共聚时竞聚率数值的特征。

⑴. 定义:竞聚率为均聚增长和共聚增长速率常数之比。

2122212111k k r k k r ==⑵. 竞聚率数值的特征: ①. 理想共聚:1,21=r r ;②. 交替共聚:021==r r ;③. 恒比共聚:理想恒比共聚:1121,1f F r r ===其5. 示意画出下列各对竞聚率的共聚物组成曲线,并说明其特征。

5.01=f 时,低转化阶段的1F 约是多少?且曲线不对称。

=?可求出由组成方程:122221211212111F f r f f f r f f f r F +++=6. 醋酸烯丙酯(028.0 ,13.1=-=Q e )和甲基丙烯酸甲酯(74.0 ,41.0==Q e )等摩尔共聚,是否合理? 根据e Q -式:()[]()[]0066.041.013.113.1exp 74.0028.0exp 211211=--=--=e e e Q Q r ()[]()[]056.1413.141.041.0exp 028.074.0exp 122122=+-=--=e e e Q Q r 由21,r r 值知,醋酸烯丙酯易和甲基丙烯酸甲酯反应而共聚,而甲基丙烯酸甲酯则易与自身反应而均聚,所以等摩尔共聚,不合理。

高分子化学(潘祖仁)教案-第四章-聚合方法

高分子化学(潘祖仁)教案-第四章-聚合方法

四. 悬浮聚合(suspension polymerization)
2. 分散剂(dispersant)
起分散作用,使机高分子:吸附在液滴表面,形成保护膜。 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等天然高 分子及其衍生物。多采用质量稳定的合成高分子。 2)不溶于水的无机粉末:包围液滴,起机械隔离作用。主要有碳 酸镁、滑石粉、高岭土等。 分散剂种类的选择和用量的确定随聚合物种类和颗粒的 要求而定。
产品特性 操作方式 生产实例
一. 引言(Introduction)
本体聚合(Bulk Polymerization)
悬浮聚合
物料起始状态
乳液聚合
(Emulsion Polymerization)
(Suspension Polymerization)
溶液聚合(Solution Polymerization)
极大部分聚合发生在胶束内。
胶束是油溶性单体和水溶性引发剂相遇的场所; 胶束内[M]很高,且比表面积大,提供了自由基扩散进入引 发聚合的条件。
5.3 乳液聚合机理——成核机理(Mechanism of Nucleation)
胶束聚合后形成乳胶粒的过程——成核过程
胶束成核 ( micellar nucleation ) 成核过程 均相成核 ( homogeneou s nucleation )
• 大部分单体分散成液滴(droplet)。
单体 液滴
直径约10,000A,表面 吸附着乳化剂,液滴 数约为1010~1012。
单体液滴是提供 单体的仓库
• 极少量单体和少量乳化剂以分子分散状态溶解于水中。
乳化剂 少量在水相中 大部分形成胶束 部分吸附于单体液滴 小部分增溶胶束内 大部分在单体液滴内 大部分在水中 单体 引发剂

《高分子化学》第4章 自由基共聚合

《高分子化学》第4章 自由基共聚合

6
第四章 自由基共聚合
由一段M1链段与一段M2链段构成的嵌段共聚物, 称为AB型嵌段共聚物。如苯乙烯—丁二烯(SB)嵌 段共聚物。由两段M1链段与一段M2链段构成的嵌段 共聚物,称为ABA型嵌段共聚物。如苯乙烯—丁二 烯—苯乙烯(SBS)嵌段共聚物。由n段M1链段与n 段M2链段交替构成的嵌段共聚物,称为(AB)n型嵌 段共聚物。
1, 2-二苯乙烯也不能均聚,但能与马来酸酐共聚, 产物严格交替。
13
第四章 自由基共聚合
(3)理论研究 共聚合反应可用于研究单体、自由基、阴
离子和阳离子的活性,了解单体活性与聚合 物结构之间的关系。
14
第四章 自由基共聚合
4.2 二元共聚物的组成与序列分布
4.2.1 共聚组成的特点 两种单体进行共聚时,由于化学结构不同,反应
R iM1
k
21[M
. 2
][M
1
]
k12
[M1.
][M
2
]
R
t11
R t12
0
d[M
. 2
]
dt
R iM2
k
12
[M
. 1
][M
2
]
k
21[M
. 2
][M
1
]
R
t22
R t12
0
(4—4) (4—5)
因为自由基总浓度不变,即
R iM1 R t11 R t12 0 R iM2 R t22 R t12 0
W2
W1 r1KW1 W2
dW2
W2
r2 W2
W1
m2 m1
W2 r2W2 KW1
(4—15)
K m2

王槐三第四版高分子化学-第4章-共聚10

王槐三第四版高分子化学-第4章-共聚10

3)三个链终止反应:
~M1. + ~ M1. = P; ~M1. + ~ M2. = P; ~M2. + ~ M2. = P;
互换反应
8/84
两种单体的消耗速率:
-d[M1]/dt =V11+V21 =k11[M1.][M1]+k21[M2.][M1]
-d[M2]/dt =V12+V22 =k12[M1.][M2]+k22[M2.][M2]
图4-4 接近交替共聚组成曲线 r1 =0.05, r2 = 0
控制M2单体的摩尔分数 大于0.2,即可获得接近 交替排列的共聚物。
19/84
图4-5 接近交替共聚组成曲线 r1 = 0.05,r2 = 0.05
由图可看出: 控制M1单体或 M2的摩尔分数 在0.2~0.8间, 即可获得接近 交替排列的共 聚物。
逐步聚合中,a - R - a + b -R′- b型两种单体进行的缩 聚反应却不能称为共聚反应,产物亦不能称为共聚物, 而分别称为混缩聚反应和混缩聚物。共聚合多用于连锁 聚合,如自由基共聚,离子共聚。
通常均聚物的性能总存在一定的缺陷,因而在实际生 产中往往需要对某些均聚物进行改性。聚合物改性的主 要方法包括共聚、共混和聚合物化学反应。
何,共聚物两种结构单元始终等量交替排列。
其共聚物组成曲线是一条的F1 = 0.5水平线。 只有像顺丁烯二酸酐和乙酸 2-氯烯丙基酯或
者和 1,2-二苯基乙烯等 1,2-二取代的单体,因
为不能均聚而只能进行严格的交替共聚。
16/84
右图显示,组成曲线与对角
线相交于F1=f2=0.5。交点上, 即当两种单体等摩尔比时,生成
剩下量多的单体。此即图形中箭头的含义。可见,不能

高分子化学(第四版)第四章 自由基共聚合

高分子化学(第四版)第四章 自由基共聚合

组成可由均聚、 组成可由均聚、 共聚速率常数 [M]、[M•]确定 、
应用稳态假定R 消去[M 应用稳态假定 i=Rt , R12=R21 消去 •]
10
“稳态假定”:R12=R21: 稳态假定”
R11 = k 11 M 1• [M 1 ]
[ ]
R12 = k12 M 1• [M 2 ]
• d[M1 ] k11 M1 [M1 ] + k21 M• [M1 ] 2 = • d[M2 ] k22 M• [M2 ] + k12 M1 [M2 ] 2
假定: 假定:
1、等活性假设:自由基的活性与链长无关。 、等活性假设:自由基的活性与链长无关。 2、无前末端效应:链自由基的活性只取决于末端单体单元的结构, 、无前末端效应:链自由基的活性只取决于末端单体单元的结构, 与前末端单元的结构无关。 与前末端单元的结构无关。 活性一样) ( M 1M 1* 和⋯M2M1* 活性一样) ⋯ 3、聚合度很大:单体主要消耗在链增长反应过程中,而消耗在链引发 、聚合度很大:单体主要消耗在链增长反应过程中, 中的单体数可忽略不计, >>R 中的单体数可忽略不计,Rp >> i 。 4、无解聚反应:聚合反应是不可逆的,无解聚反应 、无解聚反应:聚合反应是不可逆的, 5、稳态假定:体系中自由基浓度不变。 要求 i=Rt ,R12=R21 、稳态假定:体系中自由基浓度不变。 要求R
• 12 ⋯ M 1• + M 2 ⋯ M 1M 2 ⋯ →
• 2
• 2
kt22
• 2 2
kt
• Rt12 = 2kt12 M1• M 2
[ ][ ]
交叉终止
kt11, Rt11,分别表示终止速率常数和终止速率 分别表示终止速率常数和终止速率。

高分子化学-高化第四章答案

高分子化学-高化第四章答案

第四章离子聚合习题参考答案1.与自由基聚合相比,离子聚合活性中心有些什么特点?解答:离子聚合和自由基聚合的根本不同就是生长链末端所带活性中心不同。

离子聚合活性中心的特征在于:离子聚合生长链的活性中心带电荷,为了抵消其电荷,在活性中心近旁就要有一个带相反电荷的离子存在,称之为反离子,当活性中心与反离子之间得距离小于某一个临界值时被称作离子对。

活性中心和反离子的结合,可以是极性共价键、离子键、乃至自由离子等多种形式,彼此处于平衡状态:BA B+A B+A B AⅠ为极性共价物种,它通常是非活性的,一般可以忽略。

Ⅱ和Ⅲ为离子对,引发剂绝大多数以这种形式存在。

其中,Ⅱ称作紧密离子对,即反离子在整个时间里紧靠着活性中心。

Ⅲ称作松散离子对,即活性中心与反离子之间被溶剂分子隔开,或者说是被溶剂化。

Ⅳ为自由离子。

通常在一个聚合体系中,增长物种包括以上两种或两种以上的形式,它们彼此之间处于热力学平衡状态。

反离子及离子对的存在对整个链增长都有影响。

不仅影响单体的的聚合速度,聚合物的立体构型有时也受影响,条件适当时可以得到立体规整的聚合物。

2.适合阴离子聚合的单体主要有哪些,与适合自由基聚合的单体相比的些什么特点?解答:对能进行阴离子聚合的单体有一个基本要求:①适合阴离子聚合的单体主要有:(1)有较强吸电子取代基的烯类化合物主要有丙烯酸酯类、丙烯腈、偏二腈基乙烯、硝基乙烯等。

(2)有π-π共轭结构的化合物主要有苯乙烯、丁二烯、异戊二烯等。

这类单体由于共轭作用而使活性中心稳定。

(3)杂环化合物②与适合自由基聚合的单体相比的特点:(1)有足够的亲电结构,可以为亲核的引发剂引发形成活性中心,即要求有较强吸电子取代基的化合物。

如V Ac,由于电效应弱,不利于阴离子聚合。

(2)形成的阴离子活性中心应有足够的活性,以进行增长反应。

如二乙烯基苯,由于空间位阻大,可形成阴离子活性中心,但无法增长。

(3)不含易受阴离子进攻的结构,如甲基丙烯酸,其活泼氢可使活性中心失活。

高分子化学 第四章__自由基共聚合

高分子化学 第四章__自由基共聚合

4.1 概 述-2、意义
例如马来酸酐是1,2取代单体,不能均聚。 但与苯乙烯或醋酸乙烯能很好共聚,是优良的 织物处理剂和悬浮聚合分散剂。 /p-21194446.html 1,2-二苯乙烯也不能均聚,但能与马来酸酐共 聚。产物严格交替。 理论研究:通过共聚反应研究可了解不同单体 和链活性种的聚合活性大小、有关单体结构与 聚合活性之间的关系、聚合反应机理多方面的 信息等,完善高分子化学理论体系。
Poly(A-co-B):A-B共聚物 Poly(A-alt-B):A-B交替共聚物
A-b-B copolymer:A-B嵌段共聚物
Poly(A)-g-poly(B):聚A接枝聚B
4.2 二元共聚物的组成
共聚物性能
密切相关
共聚物组成
不相等 但相关
单体组成
共同决定
单体单元含量与 连接方式
单体相对活性
r1表征了单体M1和M2分别与末端为M1*的增长链 反应的相对活性,它是影响共聚物组成与原料单体混 合物组成之间定量关系的重要因素。
4.2 二元共聚物的组成-1、组成方程
r1 = k11/k12, r2 = k22/k21
r1 = 0,表示M1的均聚反应速率常数为0,不能 进行自聚反应,M1*只能与M2反应; r1 > 1,表示M1*优先与M1反应发生链增长; r1 < 1,表示M1*优先与M2反应发生链增长; r1 = 1,表示当两单体浓度相等时,M1*与M1和 M2反应发生链增长的几率相等; r1 = ∞,表明M1*只会与M1发生均聚反应,不会 发生共聚反应。
该类例子很多,如丁二烯—苯乙烯体系( r1=1.35, r2=0.58,50℃);氯乙 烯—醋酸乙烯酯体系( r1=1.68, r2=0.23 );甲基丙烯酸甲酯—丙烯酸甲酯体 系( r1=1.91, r2=0.5 )。 苯乙烯—醋酸乙烯酯体系也属此类( r1 = 55, r2 = 0.01 ),但因r1>> 1, r2 << 1,故实际上聚合前期得到的聚合物中主要是苯乙烯单元,而后期的聚合 物中主要是醋酸乙烯酯单元,产物几乎是两种均聚物的混合物。

高分子化学(潘祖仁)教案-第4章-聚合方法

高分子化学(潘祖仁)教案-第4章-聚合方法
溶液聚合的关键:溶剂(solvent)的选择。
1. 溶剂的活性
溶剂对聚合的影响:溶剂是介质,不参加反应,但溶 剂对引发剂有诱导分解作用,链自由基对溶剂有链转 移反应。
2. 溶剂对聚合物的溶解性能及凝胶效应的影响
选用良溶剂时,有可能消除凝胶效应(gel effect),而选 用沉淀剂时,则凝胶效应显著,劣溶剂的影响介于两者 之间。
乳化剂种类(Type of Emulsifier)
根据极性基团的性质可分: ➢阴离子型(anionic):羧酸盐类(RCOOM)、硫酸盐类 (ROSO 3 M) 、 磺 酸 盐 类 (RSO 3 M) 、 磷 酸 盐 类 (ROPO(OM) );
2
➢阳离子型(cationic):季铵盐类(RN + (CH3)3Cl-)、其他 铵的盐类(RNH2 ·HCl);
➢ 聚合初期:转化率和粘度不大,易散热。 ➢ 当转化率提高(10~30%):体系粘度增大,加上凝胶效应, 放热加剧。
如散热不良,轻则造成局部过热,使分子量分布变宽,影 响产品性能;重则温度失控,引起爆聚(implosion)。
改进的方法:分段聚合
第一阶段:低转化率和低粘,可在搅拌釜中进行; 第二阶段:高粘,在特殊反应器中进行。(如有机玻璃板的制造)。 本体聚合示例:MMA、苯乙烯、氯乙烯、乙烯。
亲水的极性基团 hydrophilic polar group
亲油的非极性基团 hydrophobic nonpolar group
例:硬脂酸钠(sodium stearate):C17H35COONa
亲油的非极性基团
亲水的极性基团
5.2 乳化作用(Emulsification)及乳化剂(Emulsifier)——乳化剂

《高分子化学》教案第4章自由基聚合实施

《高分子化学》教案第4章自由基聚合实施

第四章自由基链式聚合实施方法本章要点:1.自由基链式聚合的实施:通常有本体聚合、溶液聚合、悬浮聚合和乳液聚合,它们有不同的适用场合,有着各自的优缺点;2.本体聚合:为解决散热问题,采用分段聚合;3.溶液聚合:溶剂的选择性是关键;4.悬浮聚合:聚合机理同常规的本体或溶液聚合,分散剂起到关键作用,产物的粒径达到mm级;5.乳液聚合:具有特殊的聚合机理和聚合规律,通过增加乳化剂用量可同时提高聚合速率和产物的分子量;6.大品种高分子:低密度聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚乙酸乙烯酯和丁苯橡胶等等,宜采取适当方法生产。

本章难点:1.乳液聚合的聚合场所:增溶胶束和乳胶粒为乳液聚合的主要差所;2.乳液聚合的聚合过程:根据聚合速率,乳液聚合分为三个阶段;聚合过程中单体和乳化剂的物料转移由单体液滴、至水相、再至乳胶粒;聚合过程中分散相(胶束、单体液滴和乳胶粒)按一定规律变化;3.乳液聚合动力学:经典的乳液聚合包含许多理想条件。

4.1 聚合方法和聚合体系4.1.1 单体在反应介质中的分散状态本体聚合没有反应介质,溶液聚合中单体以分子状态溶解在反应介质,悬浮聚合中单体以mm级的分散相悬浮于反应介质中,在乳液聚合中单体主要存在于分散相的单体液滴和乳胶粒中。

4.1.2. 按聚合体系的相态单体及其聚合物以分子状态溶解在反应介质中,聚合体系成为一相,此时为均相聚合;反之,单体或/和聚合物不溶于反应介质,聚合体系具有多个相,此时为非均相聚合。

4.1.3. 按单体的物理状态分类分为气相聚合、液相聚合和固相聚合。

4.2 本体聚合4.2.1 本体聚合的组成和特点本体聚合体系由单体、引发剂和少量助剂组成。

除用引发剂进行聚合以外,还可用光和辐照来进行聚合。

本体聚合的聚合速率高,产物纯度大,但是散热和搅拌困难。

4.2.2 本体聚合的适用场合产物纯度高,特别适用于生产板材和型材等透明制品,且所用设备比较简单。

本体聚合反应,也特别适合于实验室研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节习题
1 在热机械曲线上,为什么PMMA 的高弹区范围比PS 的大? (已知PMMA 的=g T 378K ,=f T 433—473K ;PS 的=g T 373K ,=f T 383—423K
2 为什么热机械曲线上f T 的转折不如g T 明晰?
3 假如从实验得到如下一些高聚物的热-机械曲线,如图6-12,试问它们各主要适合作什么材料(如塑料、橡胶、纤维等?为什么?
橡胶
(a (b
(a (b
图6-12高聚物的温度-形变曲线
4 从化学结构角度讨论以下各对聚合物为什么存在g T 的差别.
T
ε
20 60 100 140 180 A 塑料
T
ε -60 0 40 B 20 210 T
ε C 纤维
80 100 T
ε D 塑料
CH 2CH 2
(1
(150K 和
CH 2
CH CH 3
(250K
(2
CH 2
CH C O OCH 3 (283K 和 CH 2
CH O C O CH 3 (350K
(3
CH 2
CH 2O (232K 和 CH 2 CH OH
(358K
(4
CH 2
CH C OC 2H 5
O (249K

CH 2
CH 2
CH CH 3
C
OCH 3
O (378K
5 从结构出发排列出下列各组高聚物T g 顺序并简要说明理由。

(1
C CH 3
CH 3
C
, C
H
H C
,
CH 2
CH
CH
CH 2
,
(CH
CH n
,
C
H
C H ,
CH 2CH 2
(N CH 2(5NHCO CH 2(4CO n , H
(2
(CH 2
CH Cl
n ,
(CH 2
C Cl
n ,
(CH CH n ,
Cl
Cl
Cl
(CH 2
CH C
CH 2Cl
n
(3
(CH 2
CH CH 3
n
CH C 2H 5
n
(CH 2
(CH 2CH C 4H 9 n
,
,
(CH 2
CH C 6H 13 n
(CH 2
CH n (CH 2
CH n (CH 2
CH n (CH 2
CH F
n
(4
Cl
CN
(CH 2
CH C
CH 3
CH 3
CH 3
n
(CH 2
CH C 4H 9 n
(5
,
(CH 2
2n
(CH 2
C CH 3 CH 3n (6 ,
CH (CH 2 C F
F
n (CH 2
C Cl
Cl n ,
(7
(NH (CH 2NHCO (CH 2CO 6
n (O (CH 2OCO 6(CH 2CO 2n (NH (CH 2NHCO CO n
66,,
(8(O(CH2OCO(CH2CO
8n
8
(OCH
2
CH2OCOCH2CH2COn
(O O CO(CH
22CO
n
,
(9(O(CH
2O
2(CH2O C CH C
O
O
CH2
CH3
2
(x
n
X=0 ,2 ,4 ,6 ,8
5 为什么腈纶用湿法纺丝,而涤纶用熔融纺丝?(腈纶不能nianliu
6 观察到含有线型(CH2n酯基的聚丙烯酸酯,其
g
T随n的增加而规则减少,用自由体积理论解释这一现象。

7 解释为什么高速行驶中的汽车内胎易爆破.(链段来不及运动,处在玻璃态
第二、三节习题
1. 指出下列高分子材料的使用温度范围,非晶态热塑性塑料,晶态热塑性塑料,热固性塑料,硫化橡胶。

2. 在同一坐标系中画出结晶度分别为10%和80%的结晶聚合物的形变-温度曲线,并讨论结晶度对曲线的影响规律。

3. 何为强迫高弹形变?其形变能否恢复?(Tg之前不能恢复,Tg 之后可以产生温度范围?(Tb-Tg
4.已知某有机玻璃的T b=20℃、T f=190℃、T g=90℃, 试分别画出该种有机玻璃在0℃、75℃、130℃下的拉伸应力—应变曲线示意图。

5.为什么PVC塑料袋不能用作食品袋?(增塑剂过多,易渗透出来
6. 简述炭黑增强橡胶作用机理。

7.简述高弹形变的特点。

8.画出非晶态聚合物在适宜的拉伸速率下,在玻璃化转变温度以下30度时的应力-应变曲线,并指出从该曲线所能获得的信息。

相关文档
最新文档