安徽省高考数学试卷 理科 含解析版
2021年安徽省高考数学试卷(理科)解析
2021年安徽省高考数学试卷(理科)一.选择题(每题5分,共50分,在每题给出的四个选项中,只有一个是正确的)1.(5分)(2021•安徽)设i是虚数单位,那么复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2021•安徽)以下函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2021•安徽)设p:1<x<2,q:2x>1,那么p是q成立的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件4.(5分)(2021•安徽)以下双曲线中,核心在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2021•安徽)已知m,n是两条不同直线,α,β是两个不同平面,那么以下命题正确的选项是()A若α,β垂直于.同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2021•安徽)假设样本数据x1,x2,…,x10的标准差为8,那么数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)(2021•安徽)一个四面体的三视图如下图,那么该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)(2021•安徽)△ABC是边长为2的等边三角形,已知向量,知足=2,=2+,那么以下结论正确的选项是()A.||=1 B.⊥C.•=1D.(4+)⊥9.(5分)(2021•安徽)函数f(x)=的图象如下图,那么以下结论成立的是()A .a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<010.(5分)(2021•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,那么以下结论正确的选项是()A .f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每题5分,共25分)11.(5分)(2021•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2021•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2021•安徽)执行如下图的程序框图(算法流程图),输出的n为14.(5分)(2021•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,那么数列{a n}的前n项和等于.15.(5分)(2021•安徽)设x3+ax+b=0,其中a,b均为实数,以下条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2021•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC 边上,AD=BD,求AD的长.17.(12分)(2021•安徽)已知2件次品和3件正品混放在一路,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或检测出3件正品时检测终止.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或检测出3件正品时所需要的检测费用(单位:元),求X的散布列和均值(数学期望)18.(12分)(2021•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n ≥.19.(13分)(2021•安徽)如下图,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2021•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,知足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2021•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx )在(﹣,)内的单调性并判定有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b ﹣知足条件D≤1时的最大值.2021年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每题5分,共50分,在每题给出的四个选项中,只有一个是正确的)1.(5分)(2021•安徽)设i是虚数单位,那么复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题;数系的扩充和复数.分析:先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2021•安徽)以下函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+1考点:函数的零点;函数奇偶性的判断.专题:函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.解答:解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2021•安徽)设p:1<x<2,q:2x>1,那么p是q成立的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2021•安徽)以下双曲线中,核心在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2021•安徽)已知m,n是两条不同直线,α,β是两个不同平面,那么以下命题正确的选项是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2021•安徽)假设样本数据x1,x2,…,x10的标准差为8,那么数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A .8 B.15 C.16 D.32考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2021•安徽)一个四面体的三视图如下图,那么该四面体的表面积是()A .1+B.2+C.1+2D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2021•安徽)△ABC是边长为2的等边三角形,已知向量,知足=2,=2+,那么以下结论正确的选项是()A.||=1 B.⊥C.•=1D.(4+)考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意,知道,,根据已知三角形为等边三角形解之.解答:解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.点评:本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)(2021•安徽)函数f(x)=的图象如下图,那么以下结论成立的是()A .a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0考点:函数的图象.专题:函数的性质及应用.分析:分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.解答:解:函数在P处无意义,即﹣c>0,则c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C点评:本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)(2021•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,那么以下结论正确的选项是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f<f(﹣2)考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.解答:解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.(3分)又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分)∴f(x)=Asin (2x+2kπ+)=Asin(2x+).(6分)∴f(﹣2)=Asin (﹣4+)=Asin (﹣4+2π)>0.f(2)=Asin(4+)<0f(0)=Asin =Asin>0又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)故选:A.点评:本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每题5分,共25分)11.(5分)(2021•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)(2021•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.解答:解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2021•安徽)执行如下图的程序框图(算法流程图),输出的n为4考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.解答:解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)(2021•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,那么数列{a n}的前n 项和等于2n﹣1.考点:等比数列的性质;等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.解答:解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.点评:本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)(2021•安徽)设x3+ax+b=0,其中a,b均为实数,以下条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.解答:解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f (1)=﹣5,f (﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f (﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.点评:本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)(2021•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC 边上,AD=BD,求AD的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.解答:解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3 (4)分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD=== (1)2分点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)(2021•安徽)已知2件次品和3件正品混放在一路,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或检测出3件正品时检测终止.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或检测出3件正品时所需要的检测费用(单位:元),求X的散布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.解答:解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:XPEX=200×+300×+400×=350.点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)(2021•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x 轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n ≥.考点:利用导数研究曲线上某点切线方程;数列的求和.专题:导数的概念及应用;点列、递归数列与数学归纳法.分析:(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.解答:解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为=所以T n综上所述,可得对任意的n∈N+,均有点评:本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)(2021•安徽)如下图,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.考点:二面角的平面角及求法;直线与平面平行的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.解答:(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵A1D⊥平面A1B1CD,∴=(0,1,1)为平面A1B1CD的一个法向量,设平面A1EFD 的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos (,)==,∴二面角E﹣AD﹣B1的余弦值为.点评:本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)(2021•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,知足|BM|=2|MA|,直线OM 的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.解答:解:(I)∵点M在线段AB 上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.点评:本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)(2021•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx )在(﹣,)内的单调性并判定有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b ﹣知足条件D≤1时的最大值.考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)设t=sinx,t∈[﹣1,1],求得|f(t)﹣f0(t)|,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,讨论g(1),g(﹣1)取得最大值;(Ⅲ)由(Ⅱ)讨论ab≥0时,ab≤0时,D的取值,求得点(a,b)所在区域,求得s=b ﹣的最大值.解答:解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t <,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f ()=b ﹣;(Ⅱ)设t=sinx,t∈[﹣1,1],|f(t)﹣f0(t)|=|﹣t(a ﹣a0)+(b﹣b0)|,易知t=±1时,取得最大值,设g(t)=|﹣t (a﹣a0)+(b ﹣b0)|,而g(1)=|﹣(a ﹣a0)+(b﹣b0)|,g(﹣1)=|(a﹣a0)+(b ﹣b0)|,则当(a﹣a0)(b ﹣b0)≥0时,D=g(t)max=g (﹣1)=|(a﹣a0)+(b﹣b0)|;当(a﹣a0)(b ﹣b0)≤0时,D=g(t)max=g (1)=|﹣(a﹣a0)+(b﹣b0)|.(Ⅲ)由(Ⅱ)得ab≥0时,D=|a+b|,当ab≤0时,D=|a ﹣b|.即有或,点(a,b)在如图所示的区域内,则有s=b﹣,当b取最大值1时,取最小值0时,s max=1.点评:本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.参与本试卷答题和审题的教师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分前后)菁优网2021年6月13日。
2022年安徽高考理科数学真题及答案
2022年安徽高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己得姓名和座位号填写在答题卡上。
2.回答选择题時,选出每小题答案后,用铅笔把答题卡上对应题目得答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题時,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出得四个选项中,只有一项昰符合题目要求得。
1.设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉2.已知12i z =-,且0z az b ++=,其中a ,b 为实数,则( )A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-3.已知向量,a b满足||1,||2|3==-=a b a b ,则⋅=a b ( )A .2-B .1-C .1D .24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行得人造行星,为研究嫦娥二号绕日周期与地球绕日周期得比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( )A .15b b <B .38b b <C .62b b <D .47b b <5.设F 为抛物线2:4C y x =得焦点,点A 在C 上,点(3,0)B ,若||||AF BF =,则||AB =( )A .2 B..3 D.6.执行下边得程序框图,输出得n =( )A .3B .4C .5D .67.在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 得中点,则( )A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1B EF ∥平面1A ACD .平面1B EF ∥平面11AC D8.已知等比数列{}n a 得前3项和为168,2542a a -=,则6a =( )A .14B .12C .6D .39.已知球O 得半径为1,四棱锥得顶点为O ,底面得四个顶点均在球O 得球面上,则当该四棱锥得体积最大時,其高为( )A .13B .12C 32 10.某棋手与甲、 乙、 丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、 丙比赛获胜得概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘得概率为p ,则( )A .p 与该棋手和甲、 乙、 丙得此赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大11.双曲线C 得两个焦点为12,F F ,以C 得实轴为直径得圆记为D ,过1F 做D 得切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 得离心率为( ) A .52 B .32C .132D .172 12.已知函数(),()f x g x 得定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =得图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24-二、 填空题:本题共4小题,每小题5分,共20分.13.从甲、 乙等5名同学中随机选3名参加社区服务工做,则甲、 乙都入选得概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)-中得三点得一个圆得方程为____________.15.记函数()cos()(0,0)f x x ωϕωϕ=+><<π得最小正周期为T ,若3()2f T =,9x π=为()f x 得零点,则ω得最小值为____________.16.己知1x x =和2x x =分别昰函数2()2e x f x a x =-(0a >且1a ≠)得极小值点和极大值点.若12x x <,则a 得取值范围昰____________.三、 解答题:共70分.解答应写出文字说明、 证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、 23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(12分)记ABC △得内角,,A B C 得对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC △得周长. 18.(2分)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 得中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △得面积最小時,求CF 与平面ABD 所成得角得正弦值.19.(12分)某地经过多年得环境治理,已将荒山改造成了 绿水青山.为估计一林区某种树木得总材积量,随机选取了 10棵這种树木,测量每棵树得根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 1 2 3 4 5 6 7 8 9 10 总和并计算得22i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区這种树木平均一棵得根部横截面积与平均一棵得材积量;(2)求该林区這种树木得根部横截面积与材积量得样本相关系数(精确到0.01);(3)现测量了该林区所有這种树木得根部横截面积,并得到所有這种树木得根部横截面积总和为2186m.已知树木得材积量与其根部横截面积近似成正比.利用以上数据给出该林区這种树木得总材积量得估计值.附:相关系数i()()177.3nix x y yr-=≈-∑.20.(12分)已知椭圆E得中心为坐标原点,对称轴为x轴、y轴,且过()30,2,,12A B⎛--⎫⎪⎝⎭两点.(1)求E得方程;(2)设过点()1,2P-得直线交E于M,N两点,过M且平行于x轴得直线与线段AB交于点T,点H满足MT TH=.证明:直线HN过定点.21.(12分)已知函数()()ln1exf x x ax-=++.(1)当1a=時,求曲线()y f x=在点()()0,0f处得切线方程;(2)若()f x在区间()()1,0,0,-+∞各恰有一个零点,求a得取值范围.(二)选考题,共10分.请考生在第22、 23题中任选一题做答.如果多做,则按所做得第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C得参数方程为2,2sinx ty t⎧=⎪⎨=⎪⎩(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l得极坐标方程为sin03m⎛⎫⎪⎝=⎭π++ρθ.(1)写出l得直角坐标方程;(2)若l 与C 有公共点,求m 得取值范围.23.[选修4-5:不等式选讲](10分)已知a ,b ,c 都昰正数,且3332221a b c ++=,证明: (1)19abc ≤; (2)a b c b c a c a b ++≤+++.全国乙卷理科数学解析。
2022年安徽高考理科数学真题及答案
2022年安徽高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉2.已知12i z =-,且0z az b ++=,其中a ,b 为实数,则( )A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-3.已知向量,a b 满足||1,||3,|2|3==-=a b a b ,则⋅=a b ( )A .2-B .1-C .1D .24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( )A .15b b <B .38b b <C .62b b <D .47b b <5.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若||||AF BF =,则||AB =( )A .2B .22C .3D .326.执行下边的程序框图,输出的n =( ) A .3 B .4 C .5 D .6 7.在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则( ) A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BD C .平面1B EF ∥平面1A AC D .平面1B EF ∥平面11AC D 8.已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14 B .12 C .6 D .3 9.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( ) A .13 B .12 C 3 D .22 10.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的此赛次序无关 B .该棋手在第二盘与甲比赛,p 最大 C .该棋手在第二盘与乙比赛,p 最大 D .该棋手在第二盘与丙比赛,p 最大 11.双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A 5.32 C 13 D 1712.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24- 二、填空题:本题共4小题,每小题5分,共20分. 13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.15.记函数()cos()(0,0)f x x ωϕωϕ=+><<π的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.16.己知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC △的周长.18.(2分)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ; (2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值. 19.(12分) 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 1 2 3 4 5 6 7 8 9 10 总和 根部横截面积i x 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量i y 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9 并计算得22i i i i i=1i=1i=10.038, 1.6158,0.2474x y x y ===∑∑∑. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数i =122=1=1()() 1.89617()7().3n i i n n i i i i x x y y r x x y y -=-≈--∑∑∑. 20.(12分) 已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点. (1)求E 的方程; (2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点. 21.(12分) 已知函数()()ln 1e x f x x ax -=++. (1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2,2sin x t y t⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为sin 03m ⎛⎫ ⎪⎝=⎭π++ρθ. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.23.[选修4-5:不等式选讲](10分)已知a ,b ,c 都是正数,且3332221a b c ++=,证明:(1)19abc ≤; (2)a b c b c a c a b ++≤+++.全国乙卷理科数学解析。
高考安徽卷理科数学详细解析版
2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,复数aii1+2-为纯虚数,则实数a 为 (A )2 (B) -2 (C) 1-2 (D) 12【答案】A 【解析】法一:()()()()()ai i ai a a ii i i 1+2+1+2-+2+1==2-2-2+5为纯虚数,所以,a a 2-=0=2; 法二:设aibi i1+=2-得ai b bi 1+=+2,所以,b a =1=2 ; 法三:()i a i ai i i-1+=2-2-为纯虚数,所以a =2,答案为A ; (2) 双曲线x y 222-=8的实轴长是(A )2 (B)222【答案】C【解析】双曲线方程可变为x y 22-=148,所以,a a 2=4=2,实轴长a 2=4。
(3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=(A )-3 (B) -1 (C)1 (D)3 【答案】A 【解析】法一:()f x 是定义在R 上的奇函数,且x ≤0时, ()f x x x 2=2-()()()()2112113f f ∴=--=--+-=-,故选A.法二:设0x >,则0x -<,()f x 是定义在R 上的奇函数,且x ≤0时,()f x x x 2=2-,()()()2222f x x x x x ∴-=---=+,又()()f x f x -=-,()22f x x x ∴=--,()212113f ∴=-⨯-=-,故选A.(4)设变量,x y 满足1,x y +≤则2x y +的最大值和最小值分别为(A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 【答案】B【解析】法一:特值验证:当0,1x y ==时,22x y +=,故排除A ,C ;当0,1x y ==-时,22x y +=-,故排除D ,答案为B 。
普通高等学校招生全国统一考试数学理科试题(安徽卷)全解析
绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II 卷第3至第4页。
全卷满分150分钟,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效.,在试题卷........。
....、草稿纸上答题无效4.考试结束,务必将试题卷和答题卡一并上交。
5、双曲线方程为2221x y -=,则它的右焦点坐标为A 、⎫⎪⎪⎝⎭B 、⎫⎪⎪⎝⎭C 、⎫⎪⎪⎝⎭D 、) 5.C【解析】双曲线的2211,2a b ==,232c =,2c =,所以右焦点为⎫⎪⎪⎝⎭. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b=+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论.6、设0abc >,二次函数()2f x ax bx c =++的图象可能是9、动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。
已知时间0t =时,点A 的坐标是1(2,则当012t ≤≤时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是A 、[]0,1B 、[]1,7C 、[]7,12D 、[]0,1和[]7,129.D第Ⅱ卷(非选择题,共90分)13.4()()()1235524349()|||10111011101122P B P B A P B A P B A =++=⨯+⨯+⨯=。
普通高等学校招生全国统一考试(安徽卷)——数学理解析
2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答.题卡..规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答................题卷、草稿纸上答题无效...........。
4.考试结束,务必将试卷和答题卡一并上交。
参考公式:第Ⅰ卷(选择题共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。
(1)设i是虚数单位,则复数在复平面内所对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】B(2)下列函数中,既是偶函数又存在零点的是(A)(B)(C)(D)【答案】A【解析】(3)设,则p是q成立的(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】A4、下列双曲线中,焦点在轴上且渐近线方程为的是()(A)(B)(C)(D)【答案】C【解析】–5、已知,是两条不同直线,,是两个不同平面,则下列命题正确的是()(A)若,垂直于同一平面,则与平行(B)若,平行于同一平面,则与平行(C)若,不平行,则在内不存在与平行的直线(D)若,不平行,则与不可能垂直于同一平面【答案】D6、若样本数据,,,的标准差为,则数据,,,的标准差为()(A)(B)(C)(D)【答案】C7、一个四面体的三视图如图所示,则该四面体的表面积是()(A)(B)(C)(D)【答案】B【解析】8、是边长为的等边三角形,已知向量,满足,,则下列结论正确的是()(A)(B)(C)(D)【答案】D9、函数的图象如图所示,则下列结论成立的是( )(A ),, (B ),, (C ),, (D ),, 【答案】C10、已知函数()()sin f x x ωϕ=A +(,,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-【答案】A【解析】第二卷二.填空题11.的展开式中的系数是(用数字填写答案)【答案】【解析】12.在极坐标中,圆上的点到直线距离的最大值是【答案】【解析】13.执行如图所示的程序框图(算法流程图),输出的为【答案】【解析】14.已知数列是递增的等比数列,,则数列的前项和等于【答案】【解析】15. 设,其中均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号) ;;;;.【答案】①③④⑤ 【解析】三.解答题16.在中,,6,4A AB AC π===,点D 在边上,,求的长。
普通高等学校招生全国统一考试(安徽卷)理数答案解析(正式版)(解析版).docx
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、草稿纸上答题无效............................ 4. 考试结束,务必将试卷和答题卡一并上交.参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+. 标准差222121[()()()]n s x x x x x x n =-+-++-L 121()n x x x x n=+++L . 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.(1)设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B【解析】 试题分析:由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.考点:1.复数的运算;2.复数的几何意义.(2)下列函数中,既是偶函数又存在零点的是( )(A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+【答案】A考点:1.函数的奇偶性;2.函数零点的概念.(3)设:12,:21xp x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】A【解析】试题分析:由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件,选A.考点:1.指数运算;2.充要条件的概念.(4)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( ) (A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 【答案】C【解析】试题分析:由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C.考点:1.双曲线的渐近线.(5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D考点:1.直线、平面的垂直、平行判定定理以及性质定理的应用.(6)若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )32【答案】C【解析】试题分析:设样本数据1x ,2x ,⋅⋅⋅,10x DX 8DX =,即方差64DX =,而数据121x -,221x -,⋅⋅⋅,1021x -的方差22(21)2264D X DX -==⨯226416⨯=.故选C. 考点:1.样本的方差与标准差的应用.(7)一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+(B )23+ (C )122+(D )2【答案】B考点:1.复数的运算;2.共轭复数.(8)C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( )(A )1b =r (B )a b ⊥r r (C )1a b ⋅=r r (D )()4C a b +⊥B u u u r r r 【答案】D【解析】试题分析:如图,由题意,(2)2BC AC AB a b a b =-=+-=u u u r u u u r u u u r r r r r ,故||2b =r ,故A 错误;|2|2||2a a ==r r ,所以||1a =r ,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=o u u u r u u u r r r r r r r ,所以1a b ⋅=-r r ,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=u u u r u u u r u u u r ,且AD BC ⊥u u u r u u u r ,所以()4C a b +⊥B u u u r r r ,故选D. 考点:1.平面向量的线性运算;2.平面向量的数量积.(9)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】C考点:1.函数的图象与应用.(10)已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<-(C )()()()202f f f -<< (D )()()()202f f f <<-【答案】A考点:1.三角函数的图象与应用;2.函数值的大小比较.第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)371()x x +的展开式中5x 的系数是 .(用数字填写答案)【答案】35【解析】 试题分析:由题意372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 考点:1.二项式定理的展开式应用.(12)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6考点:1.极坐标方程与平面直角坐标方程的转化;2.圆上的点到直线的距离.(13)执行如图所示的程序框图(算法流程图),输出的n 为.【答案】4【解析】试题分析:由题意,程序框图循环如下:①1,1a n ==;②131,2112a n =+==+;③ 171,33512a n =+==+;④1171,471215a n =+==+,此时17| 1.414|0.0030.00512-≈<,所以输出4n =. 考点:1.程序框图的应用.(14)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .【答案】21n-【解析】 试题分析:由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==,即3418a q a ==,所以2q =,因而数列{}n a 的前n 项和 1(1)1221112n nn n a q S q --===---. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.(15)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的 是 .(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.【答案】①③④⑤考点:1函数零点与方程的根之间的关系;2.函数的单调性及其极值.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的 指定区域内.(16)(本小题满分12分)在ABC ∆中,3,6,324A AB AC π===点D 在BC 边上,AD BD =,求AD 的长. 10【解析】试题分析:根据题意,设出ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,由余弦定理求出a 的长度,考点:1.正弦定理、余弦定理的应用.(17)(本小题满分12分)已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【答案】(1)310;(2)350.【解析】试题分析:(Ⅰ)依据题目所给的条件可以先设“第一次检查出的是次品且第二次检测出的是正品”为事件A.得出1123253()10A AP AA==.(Ⅱ)X的可能取值为200,300,400.依此求出各自的概率136,,101010,列出考点:1.概率;2.随机变量的分布列与期望.(18)(本小题满分12分)设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=L ,证明14n T n≥. 【答案】(1)1n n x n =+;(2)14n T n ≥. 【解析】 试题分析:(Ⅰ)对题中所给曲线进行求导,得出曲线221n y x +=+在点(12),处的切线斜率为22n +.从而可以写成切线方程为2(22)(1)y n x -=+-.令0y =.解得切线与x 轴交点的横坐标1111n n x n n =-=++.(Ⅱ)要证14n T n≥,需考虑通项221n x -,通过适当放缩能够使得每项相消.先表示出考点:1.曲线的切线方程;2.数列的通项公式;3.放缩法证明不等式.(19)(本小题满分13分)如图所示,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中 点,过1,,A D E 的平面交1CD 于F.(Ⅰ)证明:1//EF B C(Ⅱ)求二面角11E A D B --余弦值.【答案】(1)1//EF B C ;(2)6考点:1.线面平行的判定定理与性质定理;2.二面角的求解.(20)(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为 ()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求 E 的方程.【答案】(I )255;(II )221459x y +=. 试题解析:(I )由题设条件知,点M 的坐标为21(,)33a b ,又5OM k =,从而52b a =,进而得 225,2a b c a b b ==-=,故255c e a ==. (II )由题设条件和(I )的计算结果可得,直线AB 15y bb +=,点N 的坐标为51,)22b b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为1517(,)244x b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有11517424415712255x b b b b b x +-+=⎪⎪⎪⎨+⎪=⎪⎪-⎪⎩解得3b =,所以35b =椭圆E 的方程为221459x y +=.考点:1.椭圆的离心率;2.椭圆的标准方程;3.点点关于直线对称的应用.(21)(本小题满分13分)设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a zb =-满足D 1≤时的最大值. 【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.试题解析:(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.考点:1.函数的单调性、极值与最值;2.绝对值不等式的应用.。
普通高等学校招生理科数学全国统一考试试题(安徽卷)(含解析)
普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z =(A )1+i (B )1i - (C )1+i - (D )1-i -【答案】A【解析】设2bi 2a 2)i b (a 2bi)i -a (bi)+a (22z bi.z -a =z .bi,+a =z 22+=++=+⋅⇒=+⋅z i 则i zb a a+=⇒⎩⎨⎧==⇒⎩⎨⎧==+⇒111222b b a 22所以选A(2) 如图所示,程序框图(算法流程图)的输出结果是(A )16 (B )2524 (C )34 (D )1112【答案】D 【解析】.1211,1211122366141210=∴=++=+++=s s ,所以选D(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;C 选项可以推导证明,故是定理。
所以选A(4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 (A ) 充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。
高考安徽理科数学试题及答案word解析版
为线段 CC1 上的动点,过点 A, P, Q 的平面截该正方体所得的截面记为 的是 __________( 写出所有正确命题的编号 ).
S .则下列命题正确
①当 0
CQ
1 时, S 为四边形;②当 CQ
1 时, S 为等腰梯形;
2
2
3
1
3
③当 CQ
时, 4
S 与 C1D1 的交点
R 满足 C1R
;④当
x1
x2
xn
x1 0
x2 0
xn 0
图象上一点与坐标原点连线的斜率相等,即
n 可看成过原点的直线与 y f x 的交点个数.
如图所示,由数形结合知识可得,①为 n 2 ,②为 n 3 ,③为 n 4 ,故选 B . uuur uuur uuur uuur
( 9)【 2013 年安徽,理 9,5 分】在平面直角坐标系中, O 是坐标原点, 两定点 A ,B 满足 OA = OB OA OB 2 ,
【答案】 D
【解析】由题意知
1 10x
1
1
,所以 x lg
2
2
lg 2,故选 D .
( 7)【 2013 年安徽,理 7, 5 分】在极坐标系中,圆
2cos 的垂直于极轴的两条切线方程分别为(
)
( A) 0( R)和 cos 2
( B) ( R)和 cos 2
( C) ( R)和 cos 1
( D) 0( R)和 cos 1
同的数 x1, x2, , xn ,使得
f
x1
f =
x2
f =L =
xn
,则 n 的取值范围是(
x1
x2
xn
安徽高考数学(理)卷文档版(有答案)
2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,.在答题卷、草......稿纸上答题无效.......。
4. 考试结束,务必将试卷和答题卡一并上交。
参考公式:如果事件A 、B 互斥,那么 如果事件A 、B 相互独立,那么 P (A+B )= P (A )+ P (B ) P (A·B )= P (A )·P (B ) 第I 卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,z 表示复数z 的共轭复数。
若,1i z +=则zi z i+⋅=( ) A .2- B .2i - C .2 D .2i 2.“0<x ”是“0)1ln(<+x ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.如图所示,程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .89 4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴, 建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧-=+=31y y t x ,(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A .14B .142C .2D .225.y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( )A .121-或 B .212或C .2或1D .12-或 6.设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A .12B .23C .0D .21-7.一个多面体的三视图如图所示,则该多面体的表面积为( )A.21 B.18 C .21 D .188.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有( ) A .24对 B .30对 C .48对 D .60对 9.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或810.在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满2()OQ a b =+。
2022年安徽高考理科数学真题及答案
2022年安徽高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =,则( )A .2M ∈B .3M ∈C .4M ∉D .5M ∉2.已知12i z =-,且0z az b ++=,其中a ,b 为实数,则( )A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-3.已知向量,a b 满足||1,||3,|2|3==-=a b a b ,则⋅=a b ( )A .2-B .1-C .1D .24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( )A .15b b <B .38b b <C .62b b <D .47b b <5.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若||||AF BF =,则||AB =( )A .2B .22C .3D .326.执行下边的程序框图,输出的n =( ) A .3 B .4 C .5 D .6 7.在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则( ) A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BD C .平面1B EF ∥平面1A AC D .平面1B EF ∥平面11AC D 8.已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14 B .12 C .6 D .3 9.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( ) A .13 B .12 C 3 D .22 10.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的此赛次序无关 B .该棋手在第二盘与甲比赛,p 最大 C .该棋手在第二盘与乙比赛,p 最大 D .该棋手在第二盘与丙比赛,p 最大 11.双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A 5.32 C 13 D 1712.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24- 二、填空题:本题共4小题,每小题5分,共20分. 13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.14.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.15.记函数()cos()(0,0)f x x ωϕωϕ=+><<π的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.16.己知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC △的周长.18.(2分)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ; (2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值. 19.(12分) 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 1 2 3 4 5 6 7 8 9 10 总和 根部横截面积i x 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量i y 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9 并计算得22i i i i i=1i=1i=10.038, 1.6158,0.2474x y x y ===∑∑∑. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数i =122=1=1()() 1.89617()7().3n i i n n i i i i x x y y r x x y y -=-≈--∑∑∑. 20.(12分) 已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点. (1)求E 的方程; (2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点. 21.(12分) 已知函数()()ln 1e x f x x ax -=++. (1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2,2sin x t y t⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为sin 03m ⎛⎫ ⎪⎝=⎭π++ρθ. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.23.[选修4-5:不等式选讲](10分)已知a ,b ,c 都是正数,且3332221a b c ++=,证明:(1)19abc ≤; (2)a b c b c a c a b ++≤+++.全国乙卷理科数学解析。
理数高考试题答案及解析-安徽.pdf
( A) 1或 3
(B) 1或 4
(C) 2 或 3
(D) 2 或 4
【解析】选 D
C62 −13 = 15 −13 = 2
①设仅有甲与乙,丙没交换纪念品,则收到 4 份纪念品的同学人数为 2 人 ②设仅有甲与乙,丙与丁没交换纪念品,则收到 4 份纪念品的同学人数为 4 人
第 II 卷(非选择题 共 100 分)
按逆时针旋转 3
uuur 后,得向量 OQ
4
则点 Q 的坐标是( )
( A) (−7 2, − 2)
(B) (−7 2, 2) (C) (−4 6, −2)
【解析】选 A
uuur 【方法一】设 OP
=
(10cos ,10sin )
cos
=
3 ,sin
=
4
5
5
则
uuur OQ=来自(10 cos(+
3
),10 sin(
2
2
2
当 x [− , 0] 时, (x + ) [0, ] g(x) = g(x + ) = 1 sin 2(x + ) = − 1 sin 2x
2
2
2
22
22
当 x [− , − ) 时, (x + ) [0, ) g(x) = g(x + ) = 1 sin 2(x + ) = 1 sin 2x
(2)下列函数中,不满足: f (2x) = 2 f (x) 的是(
)
( A) f (x) = x 【解析】选 C
(B) f (x) = x − x (C) f (x) = x + (D) f (x) = −x
2020年普通高等学校招生全国统一考试数学理试题(安徽卷,解析版)
2020年普通高等学校招生全国统一考试数学理试题(安徽卷,解析版)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。
全卷满分150分钟,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡...上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效.,在试题卷....、草稿纸上答题无效........。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+ 如果A 与B 是两个任意事件,()0P A ≠,那么如果事件A 与B 相互独立,那么 ()()()|P AB P A P B A =()()()P AB P A P B =第Ⅰ卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、i=A 、1412-B 、1412+ C 、126i + D 、126- 1.B【解析】(33)3313433i i iii-+===++,选B.【规律总结】33i+为分式形式的复数问题,化简时通常分子与分母同时乘以分母的共轭复数3i-,然后利用复数的代数运算,结合21i=-得结论.2、若集合121log2A x x⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A=RðA、2(,0],2⎛⎫-∞+∞⎪⎪⎝⎭U B、2,2⎛⎫+∞⎪⎪⎝⎭C、2(,0][,)2-∞+∞U D、2[,)2+∞2.A5、双曲线方程为2221x y-=,则它的右焦点坐标为A、22⎛⎫⎪⎪⎝⎭B、52⎛⎫⎪⎪⎝⎭C、62⎛⎫⎪⎪⎝⎭D、)3,05.C【解析】双曲线的2211,2a b ==,232c =,62c =,所以右焦点为6,02⎛⎫ ⎪ ⎪⎝⎭. 【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用222c a b=+求出c 即可得出交点坐标.但因方程不是标准形式,很多学生会误认为21b =或22b =,从而得出错误结论.6、设0abc >,二次函数()2f x ax bx c =++的图象可能是6.D【解析】当0a >时,b 、c 同号,(C )(D )两图中0c <,故0,02bb a<->,选项(D )符合.【方法技巧】根据二次函数图像开口向上或向下,分0a >或0a <两种情况分类考虑.另外还要注意c 值是抛物线与y 轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等. 7、设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 距离为1010的点的个数为 A 、1 B 、2C 、3D 、47.B【解析】化曲线C 的参数方程为普通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离71031010d ==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,7107103>在直线l 的另外一侧没有圆上的点符合要求,所以选B.【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为71010,然后再判断知71071031010>-,进而得出结论.8、一个几何体的三视图如图,该几何体的表面积为 A 、280 B 、292C 、360D 、372 8.C【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i?=()A.﹣2B.﹣2i C.2D.2i2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34B.55C.78D.894.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t 为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A.B.2C.D.25.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1B.2或C.2或﹣1D.2或16.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B.C.0D.﹣7.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.188.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.﹣1或5C.﹣1或﹣4D.﹣4或8 10.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,?=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3B.1<r<3≤RC.r≤1<R<3D.1<r<3<R二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.12.(5分)数列{an }是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q= .13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+anx n.若点Ai (i,ai)(i=0,1,2)的位置如图所示,则a= .14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F 1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=?+?+?+?+?,Smin表示S所有可能取值中的最小值.则下列命题正确的是(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则Smin与||无关;③若∥,则Smin与||无关;④若||>4||,则Smin>0;⑤若||=2||,S=8||2,则与的夹角为.min三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{an }满足a1>,an+1=an+an1﹣p.证明:an>an+1>.2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i?=()A.﹣2B.﹣2i C.2D.2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】把z及代入+i?,然后直接利用复数代数形式的乘除运算化简求值.【解答】解:∵z=1+i,∴,∴+i?==.故选:C.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;5L:简易逻辑.【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解答】解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.3.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.34B.55C.78D.89【考点】E9:程序框图的三种基本逻辑结构的应用;EF:程序框图.【专题】5K:算法和程序框图.【分析】写出前几次循环的结果,不满足判断框中的条件,退出循环,输出z 的值.【解答】解:第一次循环得z=2,x=1,y=2;第二次循环得z=3,x=2,y=3;第三次循环得z=5,x=3,y=5;第四次循环得z=8,x=5,y=8;第五次循环得z=13,x=8,y=13;第六次循环得z=21,x=13,y=21;第七次循环得z=34,x=21,y=34;第八次循环得z=55,x=34,y=55;退出循环,输出55,故选:B.【点评】本题考查程序框图中的循环结构,常用的方法是写出前几次循环的结果找规律,属于一道基础题.4.(5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t 为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被圆C截得的弦长为()A.B.2C.D.2【考点】J9:直线与圆的位置关系;Q8:点的极坐标和直角坐标的互化;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】先求出直线和圆的直角坐标方程,求出半径和弦心距,再利用弦长公式求得弦长.【解答】解:直线l的参数方程是(t为参数),化为普通方程为 x﹣y ﹣4=0;圆C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4,表示以(2,0)为圆心、半径r等于2的圆.弦心距d==<r,∴弦长为2=2=2,故选:D.【点评】本题主要考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,属于中档题.5.(5分)x,y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1B.2或C.2或﹣1D.2或1【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;34:方程思想;35:转化思想.【分析】由题意作出已知条件的平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由几何意义可得.【解答】解:由题意作出约束条件,平面区域,将z=y﹣ax化为y=ax+z,z相当于直线y=ax+z的纵截距,由题意可得,y=ax+z与y=2x+2或与y=2﹣x平行,故a=2或﹣1;故选:C.【点评】本题考查了简单线性规划,作图要细致认真,注意目标函数的几何意义是解题的关键之一,属于中档题.6.(5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A.B.C.0D.﹣【考点】3P:抽象函数及其应用;3T:函数的值.【专题】51:函数的性质及应用.【分析】利用已知条件,逐步求解表达式的值即可.【解答】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.【点评】本题考查抽象函数的应用,函数值的求法,考查计算能力.7.(5分)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+B.18+C.21D.18【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】判断几何体的形状,结合三视图的数据,求出几何体的表面积.【解答】解:由三视图可知,几何体是正方体的棱长为2,截去两个正三棱锥,侧棱互相垂直,侧棱长为1,几何体的表面积为:S正方体﹣2S棱锥侧+2S棱锥底==21+.故选:A.【点评】本题考查三视图求解几何体的表面积,解题的关键是判断几何体的形状.8.(5分)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对【考点】D9:排列、组合及简单计数问题;LM:异面直线及其所成的角.【专题】5O:排列组合.【分析】利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.【解答】解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.【点评】本题考查排列组合的综合应用,逆向思维是解题本题的关键.9.(5分)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.﹣1或5C.﹣1或﹣4D.﹣4或8【考点】&2:带绝对值的函数;5A:函数最值的应用.【专题】17:选作题;5T:不等式.【分析】分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.【解答】解:<﹣1时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤x≤﹣1,f(x)=﹣x﹣1+2x+a=x+a﹣1≥﹣1;x>﹣1,f(x)=x+1+2x+a=3x+a+1>a﹣2,∴﹣1=3或a﹣2=3,∴a=8或a=5,a=5时,﹣1<a﹣2,故舍去;≥﹣1时,x<﹣1,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>2﹣a;﹣1≤x≤﹣,f(x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣+1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣a=3或﹣+1=3,∴a=﹣1或a=﹣4,a=﹣1时,﹣+1<2﹣a,故舍去;综上,a=﹣4或8.故选:D.【点评】本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.10.(5分)在平面直角坐标系xOy中.已知向量、,||=||=1,?=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()A.1<r<R<3B.1<r<3≤R C.r≤1<R<3D.1<r<3<R 【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用;5B:直线与圆.【分析】不妨令=(1,0),=(0,1),则P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R 的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,进而根据圆圆相交的充要条件得到答案.【解答】解:∵平面直角坐标系xOy中.已知向量、,||=||=1,?=0,不妨令=(1,0),=(0,1),则=(+)=(,),=cosθ+sinθ=(cosθ,sinθ),故P点的轨迹为单位圆,Ω={P|(0<r≤||≤R,r<R}表示的平面区域为:以Q点为圆心,内径为r,外径为R的圆环,若C∩Ω为两段分离的曲线,则单位圆与圆环的内外圆均相交,故|OQ|﹣1<r<R<|OQ|+1,∵|OQ|=2,故1<r<R<3,故选:A.【点评】本题考查的知识点是向量在几何中的应用,其中根据已知分析出P的轨迹及Ω={P|(0<r≤||≤R,r<R}表示的平面区域,是解答的关键.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】57:三角函数的图像与性质.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式为y=sin(2x+﹣2φ),再根据所得图象关于y轴对称可得﹣2φ=kπ+,k∈z,由此求得φ的最小正值.【解答】解:将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象对应的函数解析式为y=sin[2(x﹣φ)+]=sin(2x+﹣2φ)关于y轴对称,则﹣2φ=kπ+,k∈z,即φ=﹣﹣,故φ的最小正值为,故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.12.(5分)数列{an }是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q= 1 .【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】设出等差数列的公差,由a1+1,a3+3,a5+5构成公比为q的等比数列列式求出公差,则由化简得答案.【解答】解:设等差数列{an}的公差为d,由a1+1,a3+3,a5+5构成等比数列,得:,整理得:,即+5a1+a1+4d.化简得:(d+1)2=0,即d=﹣1.∴q==.故答案为:1.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.13.(5分)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+anx n.若点Ai (i,ai)(i=0,1,2)的位置如图所示,则a= 3 .【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】求出(1+)n的展开式的通项为,由图知,a=1,a 1=3,a2=4,列出方程组,求出a的值.【解答】解:(1+)n的展开式的通项为,由图知,a0=1,a1=3,a2=4,∴,,,,a2﹣3a=0,解得a=3,故答案为:3.【点评】本题考查解决二项式的特定项问题,关键是求出展开式的通项,属于一道中档题.14.(5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F 1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1 .【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】求出B(﹣c,﹣b2),代入椭圆方程,结合1=b2+c2,即可求出椭圆的方程.【解答】解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2,∴A点坐标为(c,b2),设B(x,y),∵|AF1|=3|F1B|,∴=3,∴(﹣c﹣c,﹣b2)=3(x+c,y),∴B(﹣c,﹣b2),代入椭圆方程可得,∵1=b2+c2,∴b2=,c2=,∴x2+=1.故答案为:x2+=1.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,属于中档题.15.(5分)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=?+?+?+?+?,Smin表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则Smin与||无关;③若∥,则Smin与||无关;④若||>4||,则Smin>0;⑤若||=2||,Smin=8||2,则与的夹角为.【考点】2K:命题的真假判断与应用;96:平行向量(共线).【专题】5A:平面向量及应用;5L:简易逻辑.【分析】依题意,可求得S有3种结果:S1=++++,S 2=+?+?++,S3=?+?+?+?+,可判断①错误;进一步分析有S1﹣S2=S2﹣S3=+﹣2?≥+﹣2||?||=≥0,即S中最小为S3;再对②③④⑤逐一分析即可得答案.【解答】解:∵xi ,yi(i=1,2,3,4,5)均由2个和3个排列而成,∴S=xi yi可能情况有三种:①S=2+3;②S=+2?+2;③S=4?+.S有3种结果:S1=++++,S2=+?+?++,S3=?+?+?+?+,故①错误;∵S1﹣S2=S2﹣S3=+﹣2?≥+﹣2||?||=≥0,∴S中最小为S3;若⊥,则Smin =S3=,与||无关,故②正确;③若∥,则Smin =S3=4?+,与||有关,故③错误;④若||>4||,则Smin =S3=4||?||cosθ+>﹣4||?||+>﹣+=0,故④正确;⑤若||=2||,Smin =S3=8||2cosθ+4=8,∴2cosθ=1,∴θ=,即与的夹角为.综上所述,命题正确的是②④,故答案为:②④.【点评】本题考查命题的真假判断与应用,着重考查平面向量的数量积的综合应用,考查推理、分析与运算的综合应用,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答早答题卡上的指定区域.16.(12分)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【专题】15:综合题;56:三角函数的求值.【分析】(Ⅰ)利用正弦定理,可得a=6cosB,再利用余弦定理,即可求a的值;(Ⅱ)求出sinA,cosA,即可求sin(A+)的值.【解答】解:(Ⅰ)∵A=2B,,b=3,∴a=6cosB,∴a=6,∴a=2;(Ⅱ)∵a=6cosB,∴cosB=,∴sinB=,∴sinA=sin2B=,cosA=cos2B=2cos2B﹣1=﹣,∴sin(A+)=(sinA+cosA)=.【点评】本题考查余弦定理、考查正弦定理,考查二倍角公式,考查学生的计算能力,属于中档题.17.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(1)根据概率的乘法公式,求出对应的概率,即可得到结论.(2)利用离散型随机变量分别求出对应的概率,即可求X的分布列;以及均值.【解答】解:用A表示甲在4局以内(含4局)赢得比赛的是事件,Ak表示第k局甲获胜,Bk表示第k局乙获胜,则P(Ak )=,P(Bk)=,k=1,2,3,4,5(Ⅰ)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=()2+×()2+××()2=.(Ⅱ)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=,P(X=5)=P(A1B2A3B4A5)+P(B1A2B3A4B5)+P(B1A2B3A4A5)+P(A1B2A3B4B5)==,或者P(X=5)=1﹣P(X=2)﹣P(X=3)﹣P(X=4)=,故分布列为:X2 3 45PE(X)=2×+3×+4×+5×=.【点评】本题主要考查概率的计算,以及离散型分布列的计算,以及利用期望的计算,考查学生的计算能力.18.(12分)设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】53:导数的综合应用.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.【点评】本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.19.(13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.【考点】KH:直线与圆锥曲线的综合.【专题】5C:向量与圆锥曲线.【分析】(Ⅰ)由题意设出直线l1和l2的方程,然后分别和两抛物线联立求得交点坐标,得到的坐标,然后由向量共线得答案;(Ⅱ)结合(Ⅰ)可知△A1B1C1与△A2B2C2的三边平行,进一步得到两三角形相似,由相似三角形的面积比等于相似比的平方得答案.【解答】(Ⅰ)证明:由题意可知,l1和l2的斜率存在且不为0,设l1:y=k1x,l2:y=k2x.联立,解得.联立,解得.联立,解得.联立,解得.∴,.,∴A1B1∥A2B2;(Ⅱ)解:由(Ⅰ)知A1B1∥A2B2,同(Ⅰ)可证B1C1∥B2C2,A1C1∥A2C2.∴△A1B1C1∽△A2B2C2,因此,又,∴.故.【点评】本题是直线与圆锥曲线的综合题,考查了向量共线的坐标表示,训练了三角形的相似比与面积比的关系,考查了学生的计算能力,是压轴题.20.(13分)如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.【考点】LF:棱柱、棱锥、棱台的体积;MJ:二面角的平面角及求法.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)证明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可证明Q为BB1的中点;(Ⅱ)设BC=a,则AD=2a,则==,VQ﹣ABCD ==ahd,利用V棱柱=ahd,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,DE⊥A1E,可得∠AEA1为平面α与底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan∠AEA1==1,即可求平面α与底面ABCD所成二面角的大小.【解答】(Ⅰ)证明:∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面QBC∥平面A1D1 DA,∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D∴△QBC∽△A1AD,∴=,∴Q为BB1的中点;(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2,设BC=a,则AD=2a,∴==,VQ﹣ABCD==ahd,∴V2=,∵V棱柱=ahd,∴V1=ahd,∴四棱柱被平面α所分成上、下两部分的体积之比;(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,∴∠AEA1为平面α与底面ABCD所成二面角的平面角,∵BC∥AD,AD=2BC,∴S△ADC =2S△ABC,∵梯形ABCD的面积为6,DC=2,∴S△ADC=4,AE=4,∴tan∠AEA1==1,∴∠AEA1=,∴平面α与底面ABCD所成二面角的大小为.【点评】本题考查面面平行的性质,考查体积的计算,考查面面角,考查学生分析解决问题的能力,属于中档题.21.(13分)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{an }满足a1>,an+1=an+an1﹣p.证明:an>an+1>.【考点】8K:数列与不等式的综合;F9:分析法和综合法;R6:不等式的证明.【专题】33:函数思想;55:点列、递归数列与数学归纳法.【分析】第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从an+1着手,由an+1=an+an1﹣p,将求证式进行等价转化后即可解决,用相同的方式将an >an+1进行转换,设法利用已证结论证明.【解答】证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证an+1>.∵an+1=an+an1﹣p,∴只需证an+an1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴an +an1﹣p>,即an+1>.再证an >an+1.只需证an >an+an1﹣p,化简、整理得anp>c,只需证an>c.由前知an+1>成立,即从数列{an}的第2项开始成立,又n=1时,由题设知成立,∴对n∈N*成立,∴an >an+1.综上知,an >an+1>,原不等式得证.【点评】本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.。